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A1 IDENTIFIABILITY THEORY

A1.1 PROOF FOR THEOREM 1

Let us first shed light on the identifiability theory on the special case with τ = 1, i.e.,

xt = g(zt), zit = fi (zt−1, ϵit) , zt = m(xt:t−µ). (1)

Theorem A1 (Identifiability under Non-invertible Generative Process). For a series of observations
xt and estimated latent variables ẑt, suppose there exists function ĝ, m̂ which subject to

xt = ĝ(ẑt), ẑt = m̂(xt:t−µ). (2)

If assumptions

• (conditional independence) the components of ẑt are mutually independent conditional on
ẑt−1,

• (sufficiency) let ηkt ≜ log p(zkt|zt−1), and

vk,t ≜
( ∂2ηkt
∂zk,t∂z1,t−1

,
∂2ηkt

∂zk,t∂z2,t−1
, ...,

∂2ηkt
∂zk,t∂zn,t−1

,0,0, · · · ,0
)⊺

v̊k,t ≜
(
0,0, · · · ,0, ∂3ηkt

∂z2k,t∂z1,t−1
,

∂3ηkt
∂z2k,t∂z2,t−1

, ...,
∂3ηkt

∂z2k,t∂zn,t−1

)⊺
.

, (3)

for each value of zt, v1t, v̊1t,v2t, v̊2t, ...,vnt, v̊nt ∈ R2n, as 2n vector functions in z1,t−1,
z2,t−1, ..., zn,t−1, are linearly independent,

• (continuity) ẑ is defined on a continuous manifold, and m, m̂,g, ĝ are secondary differen-
tiable, i.e., ∂2zi

∂a∂b for a, b ∈ {ẑi,t | ∀i} ∪ {xi,j | ∀i,∀j = t, t− 1, · · · , t− µ} exists,

are satisfied, then zt must be a component-wise transformation of a permuted version of ẑt with
regard to context {xj | ∀j = t, t− 1, · · · , t− µ}.

Proof. For any t, combining Eq 1 and Eq 2 gives

zt = m(xt:t−µ) = m(ĝ(ẑt),xt−1:t−µ). (4)

as well as ẑt = m̂(g(zt),xt−1:t−µ) similarly. Upon Eq 4, we have an unified partially invertible
function zt = h(ẑt|xt−1:t−µ) where h = m◦ ĝ with Jacobian ∂zt

∂ẑt
= Ht(ẑt;xt−1:t−µ). By partially

invertible it means that z and ẑ are in one-to-one correspondence for any context observations
xt−1:t−µ that are fixed. Let us consider the mapping from joint distribution (ẑt,xt−1:t−µ−1) to
(zt,xt−1:t−µ−1), i.e.,

P (zt,xt−1:t−µ−1) = P (ẑt,xt−1:t−µ−1) / |Jt|, (5)

where
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Jt =

[
∂zt

∂ẑt
0

∗ I

]
. (6)

which is a lower triangle matrix, where I infers eye matrix and ∗ infers any possible matrix. Thus, we
have determinant |Jt| = |∂zt

∂ẑt
| = |Ht|. Dividing both sides of Eq 5 by P (xt−1:t−µ−1) gives

LHS = P (zt|xt−1:t−µ−1) = P (zt|zt−1), (7)

since zt and xt−1:t−µ−1 are independent conditioned on zt−1. Similarly we can derive the estimated
distribution RHS = P (ẑt|xt−1:t−µ−1) = P (ẑt|ẑt−1) as well, which yields to

P (zt|zt−1) = P (ẑt|ẑt−1) / |Ht|. (8)

From a direct observation, if the components of ẑt are mutually independent given ẑt−1,, then for any
distinct i ̸= j, ẑit and ẑjt are conditionally independent given (ẑt \ {ẑit, ẑjt}) ∪ ẑt−1. This mutual
independence of the components of ẑt based on ẑt−1 implies two things:

• ẑit is independent from ẑt \ {ẑit, ẑjt} conditional on ẑt−1. Formally,

p(ẑit | ẑt−1) = p(ẑit | (ẑt \ {ẑit, ẑjt}) ∪ ẑt−1).

• ẑit is independent from ẑt \ {ẑit} conditional on ẑt−1. Represented as:

p(ẑit | ẑt−1) = p(ẑit | (ẑt \ {ẑit}) ∪ ẑt−1).

From these two equations, we can derive:

p(ẑit | (ẑt \ {ẑit}) ∪ ẑt−1) = p(ẑit | (ẑt \ {ẑit, ẑjt}) ∪ ẑt−1),

which yields that ẑit and ẑjt are conditionally independent given ẑt \ {ẑit, ẑjt}) ∪ ẑt−1 for i ̸= j.

Leveraging an inherent fact, i.e., if ẑit and ẑjt are conditionally independent given ẑt \ {ẑit, ẑjt}) ∪
ẑt−1, the subsequent equation arises:

∂2 log p(ẑt, ẑt−1)

∂ẑit∂ẑjt
= 0,

assuming the cross second-order derivative exists. Given that p(ẑt, ẑt−1) = p(ẑt | ẑt−1)p(ẑt−1) and
p(ẑt−1) remains independent of ẑit or ẑjt, the above equality is equivalent to

∂2 log p(ẑt | ẑt−1)

∂ẑit∂ẑjt
= 0. (9)

Referencing Eq 7, it gets expressed as:

log p(ẑt | ẑt−1) = log p(zt | zt−1) + log |Ht| =
n∑

k=1

ηkt + log |Ht|. (10)

The partial derivative w.r.t. ẑit is presented below:

∂ log p(ẑt | ẑt−1)

∂ẑit
=

n∑
k=1

∂ηkt
∂zkt

· ∂zkt
∂ẑit

+
∂ log |Ht|

∂ẑit

=

n∑
k=1

∂ηkt
∂zkt

·Hkit +
∂ log |Ht|

∂ẑit
.

The second-order cross derivative can be depicted as:

∂2 log p(ẑt | ẑt−1)

∂ẑit∂ẑjt
=

n∑
k=1

(∂2ηkt
∂z2kt

·HkitHkjt +
∂ηkt
∂zkt

· ∂Hkit

∂ẑjt

)
+

∂2 log |Ht|
∂ẑit∂ẑjt

. (11)
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According to Eq 9, the right-hand side of the presented equation consistently equals 0. Therefore,
for each index l ranging from 1 to n, and every associated value of zl,t−1, its partial derivative with
respect to zl,t−1 remains 0. That is,

n∑
k=1

( ∂3ηkt
∂z2kt∂zl,t−1

·HkitHkjt +
∂2ηkt

∂zkt∂zl,t−1
· ∂Hkit

∂ẑjt

)
≡ 0, (12)

where we leveraged the fact that entries of Ht do not depend on zl,t−1.

Considering any given value of zt, v1t, v̊1t,v2t, v̊2t, ...,vnt, v̊nt are linearly independent, to make
the above equation hold true, one has to set HkitHkjt = 0 or i ̸= j. In other words, each row
of Ht consists of at most a single non-zero entry. Given that h has continuous domain and is
partially invertible with regard to context {xj | ∀j ̸= t}, according to Lemma A2, zt must be a
component-wise transformation of a permuted version of ẑt with regard to context.

A1.2 EXTENSION TO MULTIPLE TRANSITION TIME LAG τ

For the sake of simplicity, we consider only one special case with τ = 1 in Theorem A1. Our
identifiability theorem can be actually extended to arbitrary lags directly. For any given τ , according to
modularity we have different conclusion at Eq 7 as P (zt|xt−1:t−µ−τ ) = P (zt|zt−1:t−τ ). Similarity
RHS = P (ẑt|xt−1:t−µ−τ ) = P (ẑt|ẑt−1:t−τ ) holds true as well. In addition, some modifications
are needed in sufficiency assumption, i.e., re-define ηkt ≜ log p(zkt|zt−1:t−τ ) and there should
be at least 2n linear independent vectors for v, v̊ with regard to zl,η where l = 1, 2, · · · , n and
t− τ ≤ µ ≤ t− 1. No extra changes are needed.

A1.3 IDENTIFIABILITY UNDER TIME-DELAYED MIXING PROCESS

As a more general case, the non-invertibility can be introduced by the neighboring latent variables.
When the effect from other latent variables diminishes, this setting will be reduced to the basic
scenario as described in Theorem A1. To formalize this problem, consider a time-delayed mixing
generative process with a transition lag of τ = 2 and a mixing lag of r = 1:

xt = g(zt; zt−1), zit = fi (zt−1, zt−2, ϵit) , (13)

where zt can be recovered by current observation as well as µ previous observations xt:t−µ, i.e.,

zt = m(xt:t−µ). (14)

Corollary A1 (Identifiability under Time-Delayed Mixing Process). For a series of observations x
and estimated latent variables ẑt, suppose there exists function ĝ and m̂ which satisfies

xt = ĝ(ẑt; ẑt−1), ẑt = m̂(xt:t−µ). (15)

If assumptions

• (conditional independence) the components of ẑt are mutually independent conditional on
ẑt−1, ẑt−2,

• (sufficiency) let ϕkt ≜ log p(zkt|zt−1, zt−2), and

vk,t ≜
( ∂2ϕkt

∂zk,t∂z1,t−2
,

∂2ϕkt

∂zk,t∂z2,t−2
, ...,

∂2ϕkt

∂zk,t∂zn,t−2
,0,0, · · · ,0

)⊺

v̊k,t ≜
(
0,0, · · · ,0, ∂3ϕkt

∂z2k,t∂z1,t−2
,

∂3ϕkt

∂z2k,t∂z2,t−2
, ...,

∂3ϕkt

∂z2k,t∂zn,t−2

)⊺
.

, (16)

for each value of zt, v1t, v̊1t,v2t, v̊2t, ...,vnt, v̊nt ∈ R2n, as 2n vector functions in z1,t−2,
z2,t−2, ..., zn,t−2, are linearly independent,

• (continuity) ẑ is defined on a continuous manifold, and m, m̂,g, ĝ are secondary differ-
entiable, i.e., ∂2zi

∂a∂b for a, b ∈ {ẑi,t | ∀i} ∪ {xi,j | ∀i,∀j = t, t − 1, · · · , t − µ − 1}
exists,
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are satisfied, then zt must be a component-wise transformation of a permuted version of ẑt with
regard to context {xj | ∀j = t, t− 1, · · · , t− µ− 1}.

Proof. For any t, combining Eq 13 and Eq 14 gives

zt = m(xt:t−µ)

= m(ĝ(ẑt, ẑt−1),xt−1:t−µ)

= m(ĝ(ẑt, m̂(xt−1:t−µ−1)),xt−1:t−µ),

(17)

as well as ẑt = m̂(g(zt,m(xt−1:t−µ−1)),xt−1:t−µ) similarly. Upon Eq 17, we have an uni-
fied partially invertible function zt = h(ẑt|xt−1:t−µ−1) where h = m ◦ ĝ with Jacobian
∂zt

∂ẑt
= Ht(ẑt;xt−1:t−µ−1). By partially invertible it means that z and ẑ are in one-to-one cor-

respondence for any context observations xt−1:t−µ−1 that are fixed. Let us consider the mapping
from joint distribution (ẑt,xt−1:t−µ−2) to (zt,xt−1:t−µ−2), i.e.,

P (zt,xt−1:t−µ−2) = P (ẑt,xt−1:t−µ−2) / |Jt|, (18)

where

Jt =

[
∂zt

∂ẑt
0

∗ I

]
, (19)

which is a lower triangle matrix, where I infers eye matrix and ∗ infers any possible matrix. Thus, we
have determinant |Jt| = |∂zt

∂ẑt
| = |Ht|. Dividing both sides of Eq 18 by P (xt−1:t−µ−2) gives

LHS = P (zt|xt−1:t−µ−2) = P (zt|zt−1, zt−2), (20)

since zt and xt−1:t−µ−2 are independent conditioned on zt−1, zt−2. Similarly, RHS =
P (ẑt|xt−1:t−µ−2) = P (ẑt|ẑt−1, ẑt−2) holds true as well, which yields to

P (zt|zt−1, zt−2) = P (ẑt|ẑt−1, ẑt−2) / |Ht|. (21)

The rest part of proof is very similar to its counterpart in Theorem A1 with transition lag of τ = 2, so
we simply omit the same part. The only difference to be notified is that since the partially invertible
function h is defined on xt−1:t−µ−1, which leads to an effect that the Jacobian matrix Ht is a function
of zt, according to zt−1 = m(xt−1:t−µ−1).

In this case, when it comes to the secondary derivative equation

∂2 log p(ẑt | ẑt−1)

∂ẑit∂ẑjt
=

n∑
k=1

(∂2ηkt
∂z2kt

·HkitHkjt +
∂ηkt
∂zkt

· ∂Hkit

∂ẑjt

)
+

∂2 log |Ht|
∂ẑit∂ẑjt

, (22)

where the Jacobian item ∂2 log |Ht|
∂ẑit∂ẑjt

cannot be eliminated by derive it with respect to zl,t−1. A further
preceding time step is needed to enforce the Jacobian item to be zero as mentioned in the sufficiency
assumption, i.e.,

∂3 log |Ht|
∂ẑit∂ẑjt∂zl,t−2

= 0. (23)

Note that in the proof of Corollary A1, we require the transition lag τ = 2 to be larger than the mixing
lag r = 1. As long as this inequality τ > r is satisfied, the parameters τ and µ can be extended to
arbitrary numbers following a similar modification in Appendix A1.2.
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A1.4 NECESSITY OF CONTINUITY

Let us first give an extreme example to illustrate the importance of extra constraints for identifia-
bility. Consider 4 independent random variables u, v, x, y subjects to standard normal distribution
respectively. Suppose that there exist an invertible function (x, y) = h(u, v) satisfies{

x = I(x+ y > 0) · u+ I(x+ y ≤ 0) · v
y = I(x+ y > 0) · v + I(x+ y ≤ 0) · u. (24)

Notice that the Jacobian from (u, v) to (x, y) contains at most one non-zero entry for each column
or row. However, the result (x, y) is still entangled, and the identifiability of (u, v) is not achieved.
What if now we notate latent variable as ẑ = (u, v), estimated latent variable as z = (x, y) and the
transition process with two mixing functions as h = g−1 ◦ ĝ?

In the literature of nonlinear ICA, the gap between Hij ·Hik = 0 when j ̸= k and identifiability
is ill-discussed. In linear ICA, since the Jacobian is a constant matrix, these two statements are
equivalent. Nevertheless, in nonlinear ICA, H = ∂z

∂ẑ is not a constant, but a function of ẑ, which may
leads to the failure of identifiability as shown in Eq 24.

The counterexamples can still be easily constructed even if function h is continuous. For brevity, let
us denote a segment-wise linear indicator function as f(u, v) = min(max(0, u+ v + 0.5), 1), and
we have h as {

x = f(u, v) · u+ (1− f(u, v)) · v
y = f(u, v) · v + (1− f(u, v)) · u. (25)

When u, v, x, y are independent uniform distributions on [−2,−1] ∪ [1, 2], all conditions are still
satisfied while the identifiability cannot be achieved.

To fill this gap, two more assumptions are needed. The domain Ẑ of ẑ should be continuous, i.e., for
any ẑ(1), ẑ(2) ∈ Ẑ , there exists a continuous path connecting ẑ(1) and ẑ(2) with all points of the path
are in Ẑ . In addition, function h should be second-order differentiable.
Lemma A1 (Disentanglement with Continuity). For ẑ defined on continuous domain Ẑ ⊂ Rn and
second order differentiable invertible function h which satisfies z = h(ẑ), if there exists at most one
non-zero entry in each row of the Jacobian matrix H = ∂z

∂ẑ , ẑ is a disentangled version of z up to a
permutation and a element-wise nonlinear operation.

Proof. According to Inverse function theorem, since the inverse function exists at a point ẑ, the
derivative h′(ẑ) is invertible at ẑ and the determinant of the Jacobian matrix H at ẑ is of full rank. In
addition, since ẑ is defined on continuous domain and h is second order differentiable, the range of
∂zi
∂ẑ for any i is continuous. That is, the range for ∂zi

∂ẑ is defined on the n-dimensional axis except 0,
which leads to 2n separated blocks.

If there exist two ẑ(1) and ẑ(2) with different entries j ̸= k subjects to
∂z

(1)
i

∂ẑ
(1)
j

= 0,
∂z

(1)
i

∂ẑ
(1)
k

= a ̸= 0,

∂z
(2)
i

∂ẑ
(2)
j

= b ̸= 0,
∂z

(1)
i

∂ẑ
(1)
k

= 0,
(26)

who belongs to 2 different blocks, the assumption will be violated that there exists at least one path
connecting ẑ(1) and ẑ(2) without stepping into {0} ∪ {x|∃j ̸= k, xj · xk ̸= 0}. Thus, such a case is
not allowed, and the identifiability is assured.

When it comes to partially invertible function with regard to side information c, the proof is the same
with only a modification on conditions. That is, the continuous domain assumption is applied to (z, c),
and the second order differentiable is extended to both z and c, i.e., ∂2zi

∂a∂b for a, b ∈ {z|zi} ∪ {c|ci}
when a ̸= b exists.
Lemma A2 (Disentanglement with Continuously for Partially Invertible Function). For ẑ, c defined
on a continuous domain Ẑ ⊂ Rn, C ⊂ Rm respectively and second order differentiable partially

5



Under review as a conference paper at ICLR 2024

invertible function h which satisfies z = h(ẑ, c), i.e., ∂2zi
∂a∂b for a, b ∈ {z|zi} ∪ {c|ci} when a ̸= b

exists, if there exists at most one non-zero entry in each row of the Jacobian matrix H = ∂z
∂ẑ , ẑ is a

disentangled version of z up to a permutation and an element-wise nonlinear operation.

Proof. Similar to Lemma A1, the range for ∂zi
∂ẑ is defined on the n-dimensional axis except 0, which

leads to 2n separated blocks. If there exist two pairs of (ẑ(1), c(1)) and (ẑ(2), c(2)) with different
entries j ̸= k subjects to 

∂z
(1)
i

∂ẑ
(1)
j

= 0,
∂z

(1)
i

∂ẑ
(1)
k

= a ̸= 0,

∂z
(2)
i

∂ẑ
(2)
j

= b ̸= 0,
∂z

(1)
i

∂ẑ
(1)
k

= 0,
(27)

who belongs to 2 different blocks, the assumption will be violated as well. Thus, such a case is not
allowed, and the identifiability is assured.

A1.5 IDENTIFIABILITY BENEFITS FROM NON-STATIONARITY

We can further leverage the advantage of non-stationary data for identifiability. Let vkt(ur) be vkt,
which is defined in Eq 3, in the ur context. Similarly, Let v̊kt(ur) be v̊kt in the ur context. Let

skt ≜
(
vkt(u1)

⊺, ...,vkt(um)⊺,
∂2ηkt(u2)

∂z2kt
− ∂2ηkt(u1)

∂z2kt
, ...,

∂2ηkt(um)

∂z2kt
− ∂2ηkt(um−1)

∂z2kt

)⊺
,

s̊kt ≜
(
v̊kt(u1)

⊺, ..., v̊kt(um)⊺,
∂ηkt(u2)

∂zkt
− ∂ηkt(u1)

∂zkt
, ...,

∂ηkt(um)

∂zkt
− ∂ηkt(um−1)

∂zkt

)⊺
.

As provided below, in our case, the identifiability of zt is guaranteed by the linear independence of
the whole function vectors skt and s̊kt, with k = 1, 2, ..., n. This linear independence is generally a
much stronger condition.
Corollary A2 (Identifiability under Non-Stationary Process). Suppose xt = g(zt), zt = m(xt:t−µ)
and that the conditional distribution p(zk,t | zt−1,u) may change across m values of the context
variable u, denoted by u1, u2, ..., um. Suppose the components of zt are mutually independent
conditional on zt−1 in each context. Assume that the components of ẑt are also mutually independent
conditional on ẑt−1. If the 2n function vectors sk,t and s̊k,t, with k = 1, 2, ..., n, are linearly
independent, then ẑt is a permuted invertible component-wise transformation of zt.

Proof. Drawing upon the arguments in the proof of Theorem A1, given that the components of ẑt
are mutually independent conditional on ẑt−1, we know that for i ̸= j,

∂2 log p(ẑt | ẑt−1;u)

∂ẑit∂ẑjt
=

n∑
k=1

(∂2ηkt(u)

∂z2kt
·HkitHkjt+

∂ηkt(u)

∂zkt
· ∂Hkit

∂ẑjt

)
− ∂2 log |Ht|

∂ẑit∂ẑjt
≡ 0. (28)

In contrast to Eq 11, we now allow p(ẑt | ẑt−1) to depend on u. Given that the aforementioned
equation is always 0, its partial derivative w.r.t. zl,t−1 yields

∂3 log p(ẑt | ẑt−1;u)

∂ẑit∂ẑjt∂zl,t−1
=

n∑
k=1

( ∂3ηkt(u)

∂z2kt∂zl,t−1
·HkitHkjt +

∂2ηkt(u)

∂zkt∂zl,t−1
· ∂Hkit

∂ẑjt

)
≡ 0. (29)

Similarly, when using varied values for u in Eq 28, computing the difference between these instances
yields

∂2 log p(ẑt | ẑt−1;ur+1)

∂ẑit∂ẑjt
− ∂2 log p(ẑt | ẑt−1;ur+1)

∂ẑit∂ẑjt

=

n∑
k=1

[(∂2ηkt(ur+1)

∂z2kt
− ∂2ηkt(ur)

∂z2kt

)
·HkitHkjt +

(∂ηkt(ur+1)

∂zkt
− ∂ηkt(ur)

∂zkt

)
· ∂Hkit

∂ẑjt

]
≡ 0.

(30)

Therefore, if skt and s̊kt, for k = 1, 2, ..., n, are linearly independent, HkitHkjt has to be zero for
all k and i ̸= j. Building on the insights from the proof of Theorem A1, ẑt is compelled to be a
permutation of a component-wise invertible transformation of zt.
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setting τ = 1, r = 2 τ = 2, r = 1

CaRiNG 0.9436 0.9131
CaRiNG (lagged decoder) 0.9250 0.9220

TDRL 0.8947 0.7519

Table A1: Ablation study on different settings for UG-TDMP. (a) The second column is a more
difficult scenario compared to the first, where the performance of CaRiNG remains good while that
of baseline decreases significantly. (b) Omit the time-lagged latent variables in the decoder will not
damage the performance much, but one can enjoy the benefits from a much simpler model.

A2 EXPERIMENT SETTINGS

A2.1 REPRODUCIBILITY

All experiments are done in a GPU workstation with CPU: Intel(R) Xeon(R) Platinum 8168 CPU @
2.70GHz, GPU: Tesla V100. The source code and the generated data for the simulation experiments
are attached in the supplementary materials.

A2.2 SYNTHETIC DATASET GENERATION

In this section, we give 2 representative simulation settings for NG and NG-TDMP respectively
to reveal the identifiability results. For each synthetic dataset, we set latent space to be 3, i.e.,
xt ∈ X ⊆ R3.

Non-invertible Generation For NG, we set the transition lag as τ = 1. We first generate 10, 000
data points from uniform distribution as the initial state z0 ∼ U(0, 1). For t = 1, · · · , 9, each latent
variable zt will be generated from the proceeding latent variable zt−1 through a nonlinear function f
with a non-additive zero-biased Gaussian noise ϵt (σ = 0.1), i.e., zt = f(zt, ϵt). To introduce the
non-invertibility, the mixing function g leverages only the first two entries of the latent variables to
generate the 2-d observation zt = g(x1,t, x2,t) ∈ Z ⊆ R2.

Time-Delayed Mixing Process For UG-TDMP, we set the transition lag as τ = 1 and mixing lag
r = 2. Similar to the Non-invertible Generation scenario, we generate the initial states from uniform
distribution and the subsequent latent variables following a nonlinear transition function. The noise is
also introduced in a nonlinear Gaussian (σ = 0.1) way. The mixing process is a nonlinear function
with regard to zt plus a side information from previous steps zt−1:t−2, i.e.,

xt = A3×3 · σ
(
B3×3 · σ(C3×3 · zt)

)
+

[
0
0

D3×1zt−1 + E3×1zt−2

]
, (31)

where σ refers to the ReLU function and the capital characters refer to matrices. Note that we make
two modifications to show the advantage of CaRiNG . The reason we consider larger mixing lag is
that it is a much more difficult scenario to handle, with more distribution from the mixing process
and less dynamic information from transition. We run experiments in both scenarios with different
transition and mixing lag. Besides, we also find out that even without time-lagged latent variables in
the decoder, it leads to a smaller model that is more stable and easy to train. Refer to Table A1 for a
detailed ablation study.

Post-processing Precedure During the generating process, we did not explicitly enforce the data to
meet the constraint zt = m(xt:t−µ). On the contrary, we implement a checker to filter the data that
is qualified. To be more precise, we do linear regression from xt:t−µ to zt to figure out how much
information of latent variables can be recovered from observation series in the best case. We choose
the smallest µ when the amount of information that can be recovered is acceptable. We set µ = 2 for
UG and µ = 4 for UG-TDMP.
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A2.3 IMPLEMENTATION DETAILS

A2.3.1 SYNTHETIC DATA

Network Architecture To implement the Sequence-to-Step encoder, we leverage the torch.unfold
to generate the nesting observations. Let us denote x

(µ)
t = [xt, · · · ,xt−µ] as inputs. For the time

steps that do not exist, we simply pad them with zero. Refer to Table A2 for detailed network
architecture.

Training Details The models were implemented in PyTorch 1.11.0. An AdamW optimizer is used
for training this network. We set the learning rate as 0.001 and the mini-batch size as 64. We train
each model under four random seeds (770, 771, 772, 773) and report the overall performance with
mean and standard deviation across different random seeds.

Table A2: Architecture details. BS: batch size, T: length of time series, i_dim: input dimension,
o_dim: output dimension, z_dim: latent dimension, LeakyReLU: Leaky Rectified Linear Unit.

Configuration Description Output

1. Sequence-to-Step Encoder Encoder for Synthetic Data

Input: x(µ)
1:T Observed time series BS × T × i_dim

Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense Temporal embeddings BS × T × z_dim

2. Step-to-Step Decoder Decoder for Synthetic Data
Input: ẑ1:T Sampled latent variables BS × T × z_dim
Dense 128 neurons, LeakyReLU BS × T × 128
Dense 128 neurons, LeakyReLU BS × T × 128
Dense i_dim neurons, reconstructed x̂1:T BS × T × o_dim

3. Factorized Inference Network Bidirectional Inference Network
Input Sequential embeddings BS × T × z_dim
Bottleneck Compute mean and variance of posterior µ1:T , σ1:T

Reparameterization Sequential sampling ẑ1:T

4. Modular Prior Nonlinear Transition Prior Network
Input Sampled latent variable sequence ẑ1:T BS × T × z_dim
InverseTransition Compute estimated residuals ϵ̂it BS × T × z_dim
JacobianCompute Compute log (|det (J)|) BS

A2.3.2 REAL-WORLD DATASET

Network Architecture We choose HCRN (Le et al., 2020) (without classification head) as the
encoder backbone of CaRiNG on the real-world dataset: SUTD-TrafficQA. Given that HCRN is
an encoder that calculates the cross attention between visual input and text input sequentially, we
apply a decoder, which shares the same structure as the Step-to-Step Decoder shown in Table A2 to
reconstruct the visual feature embedded with the temporal information. As it goes to transition prior,
we use the Modular Prior shown in Table A2. This encoder-decoder structure can guide the model
to learn the hidden representation with identifiable guarantees under the non-invertible generation
process.

A3 MORE VISUALIZATION RESULTS ON REAL-WORLD DATA

As shown Table A1, we provide some positive examples and also fail cases to analyze our model.
From the top two examples, we can find that our method can solve the occlusions well. From the
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Q:Which could be the reason for this accident?

Q: Could the accident be prevented if all vehicles drive in the correct
direction?
A: No, that was not the main cause of the accident.

Q: What types of vehicles that if get removed from the videos, there won't
be an accident?
A: Mini van or van.

Q:	What	could	possibly	cause	this	accident?

A:	Sudden	or	extreme	movement	by	a	vehicleA:	Retrograde	vehicles	.

Figure A1: Qualitative resutls on SUTD-TrafficQA dataset. We provide some positive examples
and also fail cases to analyze our model.

bottom right one, we find that our model can solve the blurred situation. However, when the alignment
between visual and textual domains is difficult. The model may fail.

A4 RELATED WORK

A4.1 CAUSAL DISCOVERY WITH LATENT VARIABLES

Some studies have aimed to discover causally related latent variables, such as Silva et al. (2006);
Kummerfeld & Ramsey (2016); Huang et al. (2022) leverage the vanishing Tetrad conditions Spear-
man (1928) or rank constraints to identify latent variables in linear-Gaussian models, and Shimizu
et al. (2009); Cai & Xie (2019); Xie et al. (2020; 2022) draw upon non-Gaussianity in their analysis
for linear, non-Gaussian scenarios. Furthermore, some methods aim to find the structure beyond the
latent variables, resulting in the hierarchical structure. Some hierarchical model-based approaches
assume tree-like configurations, such as Pearl (1988); Zhang (2004); Choi et al. (2011); Drton et al.
(2017), while the other methods assume a broader hierarchical structure Xie et al. (2022); Huang et al.
(2022). However, these methods remain confined to linear frameworks and face escalating challenges
with intricate datasets, such as videos.

A4.2 NONLINEAR ICA FOR TIME SERIES DATA

Nonlinear ICA represents an alternative methodology to identify latent causal variables within time
series data. Such methods leverage auxiliary data—like class labels and domain indices—and
impose independence constraints to facilitate the identifiability of latent variables. To illustrate:
Time-contrastive learning (TCL (Hyvarinen & Morioka, 2016)) adopts the independent sources
premise and capitalizes on the variability in variance across different data segments. Furthermore,
Permutation-based contrastive (PCL (Hyvarinen & Morioka, 2017)) puts forth a learning paradigm
that distinguishes genuine independent sources from their permuted counterparts. Furthermore,
i-VAE (Khemakhem et al., 2020) utilizes deep neural networks, VAEs, to closely approximate
the joint distribution encompassing observed and auxiliary non-stationary regimes. Recent work,
exemplified by LEAP (Yao et al., 2022b), has tackled both stationary and non-stationary scenarios in
tandem. In the stationary context, LEAP postulates a linear non-Gaussian generative process. For the
non-stationary context, it assumes a nonlinear generative process, gaining leverage from auxiliary
variables. Advancing beyond LEAP, TDRL (Yao et al., 2022a) initially extends the linear non-
Gaussian generative assumption to a nonlinear formulation for stationary scenarios. Subsequently,
it broadens the non-stationary framework to accommodate structural shifts, global alterations, and
combinations thereof. Additionally, CITRIS (Lippe et al., 2022b;a) champions the use of intervention
target data to precisely identify scalar and multi-dimensional latent causal factors. However, a
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common thread across these methodologies is the presumption of an invertible generative process, a
stance that often deviates from the realities of actual data.

A5 BROADER IMPACTS, LIMITATION, AND FUTURE WORK

This study introduces both a theoretical framework and a practical approach for extracting causal
representations from time-series data. Such advancements enable the development of more transparent
and interpretative models, enhancing our grasp of causal dynamics in real-world settings. This
approach may benefit many real-world applications, including healthcare, auto-driving, and finance,
but it could also be used illegally. For example, within the financial sphere, it can be harnessed to
decipher ever-evolving market trends, optimizing predictions and thereby influencing investment
and risk management decisions. However, it’s imperative to note that any misjudgment of causal
relationships could lead to detrimental consequences in these domains. Thus, establishing causal
links must be executed with precision to prevent skewed or biased inferences.

Theoretically, though allowing for the non-invertible generation process, our theoretical assumptions
still fall short of fully capturing the intricacies of real-world scenarios. For example, identifiability
requires the absence of instantaneous causal relations, i.e., relying solely on time-delayed influences
within the latent causal dynamics. Furthermore, we operate under the presumption that the number of
variables remains consistent across different time steps, signifying that no agents enter or exit the
environment. Moving forward, we aim to broaden our framework to ensure identifiability in more
general settings, embracing instantaneous causal dynamics and the flexibility for variables to either
enter or exit.

In our experiments, we evaluate our approach with both simulated and real-world datasets. However,
our simulation relies predominantly on data points, creating a gap from real-world data. Concurrently,
the real datasets lack the presence of ground truth latent variables. In the future, we plan to develop
a benchmark specifically tailored for the causal representation learning task. This benchmark will
harness the capabilities of game engines and renderers to produce videos embedded with ground-truth
latent variables.
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