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ABSTRACT

Predictive coding has been established as a promising neuroscientific theory to
describe the mechanism of information processing in the retina or cortex. This the-
ory hypothesises that cortex predicts sensory inputs at various levels of abstraction
to minimise prediction errors. Inspired by predictive coding, Chen et al. (2024)
proposed another theory, temporal prediction hypothesis, to claim that sequence
memory residing in hippocampus has emerged through predicting input signals
from the past sensory inputs. Specifically, they supposed that the CA3 predictor
in hippocampus creates synaptic delay between input signals, which is compen-
sated by the following CA1 predictor. Though recorded neural activities were
replicated based on the temporal prediction hypothesis, its validity has not been
fully explored. In this work, we aim to explore the temporal prediction hypothesis
from the perspective of self-supervised learning (SSL). Specifically, we focus on
non-contrastive learning, which generates two augmented views of an input image
and predicts one from another. Non-contrastive learning is intimately related to
the temporal prediction hypothesis because the synaptic delay is implicitly created
by StopGradient. Building upon a popular non-contrastive learner, SimSiam, we
propose PhiNet, an extension of SimSiam with two predictors explicitly corre-
sponding to the CA3 and CAl, respectively. Through studying the PhiNet model,
we discover two findings. First, meaningful data representations emerge in PhiNet
more stably than in SimSiam. This is initially supported by our learning dynamics
analysis: PhiNet is more robust to the representational collapse. Second, PhiNet
adapts more quickly to newly incoming patterns in online and continual learning
scenarios. For practitioners, we additionally propose an extension called X-PhiNet
integrated with a momentum encoder, excelling in continual learning. All in all,
our work reveals that the temporal prediction hypothesis is a reasonable model in
terms of the robustness and adaptivity.

0 https://github.com/riverstone496/PhiNets

1 INTRODUCTION

How does learning and adaptivity emerge in a biological system? It has been a long-standing question
in both neuroscience and machine learning. In the neuroscience community, predictive coding has
been a promising hypothesis to support the flexibility of biological brains. While predictive coding
was initially proposed to explain cortical functions, Chen et al. (2024) recently extended predictive
coding to propose the temporal prediction hypothesis, which claims that the hippocampus predicts
future sensory inputs based on past experiences (Mumford, 1992; Rao and Ballard, 1999; Friston,
2005). Specifically, Chen et al. (2024, Figure 1) modelled the hippocampus with the CA3 predictor
followed by the CA1 predictor—while the former yields synaptic delay to input signals, the latter
compensates the time difference between the past and incoming signals by temporal prediction. This
is the first attempt to explain the mechanism of sequence (short-term) memory from the viewpoint of
temporal prediction. While they tested the temporal prediction hypothesis by using recorded neural
activities, the validity of the hypothesis has not been explored sufficiently.
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This work is aimed at exploring a learning model built upon the temporal prediction hypothesis to
see when the hypothesis is reasonable. To this end, we shed light on self-supervised learning (SSL).
SSL is a paradigm to train a learner from input sensory patterns without supervised signals, which
aligns to biological learning more closely. Over the past decade, machine learning researchers have
developed a number of SSL models. Popular SSL models are SImCLR (Chen et al., 2020a) and
MoCo (Chen et al., 2020b), which are contrastive learning methods that learn data representations
with two augmented views generated from an input image by minimizing the InfoNCE loss (van den
Oord et al., 2018), requiring a tremendous number of negative samples to stably obtain representations.
Thus, we focus on another SSL model, non-contrastive learning, which learns data representations
from only the two augmented views without requiring negative samples. Specifically, SimSiam (Chen
and He, 2021) is a natural model to study the temporal prediction hypothesis—SimSiam predicts
one augmented view of an input image from another view, introducing an implicit time difference
through the StopGradient operation. For this reason, we choose SimSiam, unlike the other non-
contrastive models such as Barlow Twins (Zbontar et al., 2021). This implicit connection between
SimSiam and the temporal prediction hypothesis is an appealing test bed to computationally verify
how memory-based prediction processes in the brain behave in different scenarios.

Building upon SimSiam, we propose the brain-inspired SSL model PhiNet for investigating the
effectivity of the temporal prediction hypothesis in the context of machine learning. PhiNet extends
SimSiam by incorporating an additional predictor after the original predictor. We associate the
original and additional predictors with the CA3 and CA1 regions in the hippocampal model (see
Figure 1 in Chen et al. (2024) and Figure 1b). We leverage PhiNet as a computational model to
implement the temporal prediction hypothesis and study when it effectively learns sensory inputs.

Our first discovery is that PhiNet is less prone to the representational collapse, which leads to
stable learning. Non-contrastive learning intrinsically faces the challenge of collapsing into a trivial
representation because it eliminates explicit negative signals. In Section 4, we theoretically analyse
the learning dynamics of PhiNet to reveal that PhiNet is less sensitive to initialization and the
weight decay hyperparameter, and has a wider retraction basin to a non-trivial representation (in
(C1)), relative to SimSiam. This supports the empirically better linear probing performance and
hyperparameter robustness of PhiNet across different image datasets. Our second discovery is
that PhiNet empirically performs better in online and continual learning, in particular. We tested
PhiNet and baseline non-contrastive learners by using the CIFAR-5m dataset (Nakkiran et al., 2021),
exposing learners to a gigantic amount of input images but with only significantly fewer epochs. In
this scenario, effective memory functions are necessary to lead the learning to success. As a result,
PhiNet exhibits better accuracy with less forgetting than SimSiam. Therefore, the effectiveness of the
temporal prediction hypothesis is witnessed from the perspective of the robustness and adaptivity.

For practically better performance, we extend PhiNet to additionally propose X-PhiNet, which
incorporates a momentum encoder, inspired by the Complementary Learning Systems (CLS) the-
ory (McClelland et al., 1995). This extra momentum encoder represent long-term memory in the
neocortex, storing information derived from the hippocampal model. X-PhiNet maintains good
performances especially in online and continual learning scenarios.

Contributions.

 Section 3: we propose a new non-contrastive learning model called PhiNet, which is inspired by
a hippocampal model (Chen et al., 2024).

e Section 4: we compare the learning dynamics (Tian et al., 2021) of PhiNet and SimSiam.
Consequently, it elucidates that PhiNet can avoid the complete collapse of representations (Liu
et al., 2023; Bao, 2023) more easily than SimSiam with the aid of the additional predictor.

» Section 5.1: we investigate the image classification performance of PhiNet using CIFAR and
ImageNet datasets. We show that PhiNet performs comparably to SimSiam but is more robust
against weight decay.

» Section 5.2: we further extend PhiNet by proposing X-PhiNet to integrate the neocortex model
based on the Complementary Learning Systems (CLS) theory (McClelland et al., 1995). Experi-
mentally, X-PhiNet works effectively in online and continual learning.

Limitations One major limitation of our approach is the use of backpropagation, which differs from
the mechanisms in biological neural networks. Our long-term goal is to eliminate backpropagation
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to better imitate brain function, but this work focuses on structural aspects of network architectures.
Currently, backpropagation-free predictive coding mechanisms for complex architectures like ResNet
are in the early stages of development, with most research being limited to simple CNNs. Future
research should explore if the proposed structure can enable effective learning with backpropagation-
free predictive coding. Another key difference between PhiNet and brains is the presence of recurrent
structures. Making the data into time series data and adding a recurrent structure to the model remains
as future work.

2 RELATED WORK

Brain-inspired methods. Predictive coding, initially introduced as a theory of the retina (Srinivasan
et al., 1982), has gained attention as a unifying theory of cortical functions (Mumford, 1992; Rao
and Ballard, 1999; Friston, 2005). They suggest that brains operate by predicting sensory inputs at
various levels of abstraction to minimise prediction errors. Recent studies have leveraged these ideas
for contrastive learning (van den Oord et al., 2018; Henaff, 2020). Chen et al. (2024) extended the
predictive coding theory to the hippocampus with the temporal prediction hypothesis. Specifically,
the temporal prediction hypothesis supposes that prediction errors are calculated with the CA1 model
and used to update the CA3 model. Some studies have attempted to apply the hippocampal model
to representation learning (Pham et al., 2021; 2023). Among them, DualNet refines representation
learning based on CLS theory (McClelland et al., 1995; Kumaran et al., 2016), which supposes that
the interplay between slow (self-supervised) and fast (supervised) architectures is the basis of brain
learning. Pham et al. (2021) examined supervised learning tasks alongside self-supervised training.

Self-supervised learning. Current mainstream approaches to self-supervised learning (SSL) often
rely on cross-view prediction frameworks (Becker and Hinton, 1992), with contrastive learning
emerging as a prominent SSL paradigm. In contrastive learning like SImCLR (Chen et al., 2020a), a
network contrasts positive (similar) and negative (dissimilar) samples to learn data representations.
One limitation of SimCLR is its empirical reliance on gigantic negative samples. Theoretically,
contrastive learning essentially requires huge number of negative samples (Bao et al., 2022; Awasthi
et al., 2022). To address this issue, recent research has focused on approaches free from negative
sampling (Grill et al., 2020; Caron et al., 2020; 2021). For instance, BYOL (Grill et al., 2020)
trains representations by aligning online and target networks, where the target network is created
by maintaining a moving average of the online network parameters. SimSiam (Chen and He, 2021)
utilises a Siamese network to align two augmented views of an input by fixing one of the networks
with StopGradient. While the lack of negative samples may easily yield collapsed representations,
namely, constant representations, Tian et al. (2021) analysed the BYOL/SimSiam dynamics with a
two-layer network and found that complete collapse is prevented unless weight decay is excessively
strong. We partially leverage their analysis framework to explain the mechanism of our PhiNet.
In recent years, many studies have leveraged SimSiam for continual learning (Smith et al., 2021;
Madaan et al., 2022) and reinforcement learning (Tang et al., 2023). RM-SimSiam (Fu et al., 2024)
and CaSSLe (Fini et al., 2022) enhance the performance of continual learning by incorporating a
memory block into SimSiam, while its architecture has not been neuroscientifically grounded. In
video self-supervised learning, built on predictive coding principles, a common strategy is to train
a predictor that takes a frame or clip from one time-step to generate a distinct representation at a
different time-step (Han et al., 2019; 2020; Tan et al., 2023; Bardes et al., 2024).

Note that our aim is to bridge the temporal prediction hypothesis and self-supervised learning. To
this end, non-contrastive learning provides a better model because both hippocampus and neocortex
do not have any mechanism corresponding to negative sample generation. Specifically, SimSiam is a
simple yet powerful learning model, and we can benefit from its StopGradient to effectively draw a
connection to predictive coding. Thus, we focus on SimSiam as a backbone model in this work.

3  PHINETS (®-NETS)

In this paper, we propose PhiNets, which are non-contrastive methods based on CLS theory (Mc-
Clelland et al., 1995) and the temporal prediction hypothesis (Chen et al., 2024). Chen et al. (2024,
Figure 1) provides a hippocampal model, where the entorhinal cortex (EC) serves as an input signal
layer, the CA3 region serves as the predictor, and the CA1 region measures the prediction error.
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(a) SimSiam architecture. (b) PhiNet architecture. (c) X-PhiNet architecture.

Figure 1: The architecture of SimSiam (Chen and He, 2021) and PhiNets. EMA in the X-PhiNet
model stands for the exponential moving average. The architecture originates from a single input,
branches out into three paths, and then compares the similarity of all paths in Sim-2. Thus, we call it
PhiNet (®-Net) because the shape of the architecture resembles the Greek letter Phi (®).

The CA3 region receives an input signal from the EC and recurrently forecasts future signals. The
prediction output of CA3 is propagated to the CA1 region, which computes the discrepancy between
the CA3 prediction and the EC input and refines the internal model stored in CA3. Compensating for
the time differences between EC-CA3 and EC—CAI is hypothesised to facilitate the learning and
replay of time sequences in the hippocampus.

Whereas Chen et al. (2024) tested this model to replicate recorded neural activities through simulation,
we develop a self-supervised learner PhiNet based on this hypothesis as follows:

* We use deep encoders f and/or fion, to represent cortex. See Section 3.2 for more details.

* We model CA3 by a predictor network.

* We model CA1 by combining a loss function and another predictor.

* We train the model by jointly minimizing the loss for the hippocampus and the neocortex models.

* The long-term memory is implemented by an exponential moving average.

Figures 1a and 1b depict the architecture of Sim- CA1l EC
Siam and PhiNet, respectively. Figure 2 illus- e S
trates how PhiNet can be interpreted as a hip- predictor g V NC
pocampal model (Chen et al., 2024) under the
temporal prediction hypothesis. B Shim-

. . SG-1
Note that our approach diverges from the tem- predictor n CA3 SG2
poral prediction hypothesis method proposed by Il 1l
Chen et al. (2024). Specifically, while they as- 2 2 z
sume an image sequence as input, we consider encoder f encoder f-M A encoder fiong
an original input image and two augmented im- o "
ages as input and feedback signals with time r image z———©

difference (thanks to the StopGradient opera-
tion), expanding the applicability of hippocam- Figure 2: The interpretation as a hippocampal
pal models to standard vision tasks. model. NC stands for NeoCortex.

3.1 FAST LEARNING BASED ON TEMPORAL PREDICTION HYPOTHESIS

We provide detailed implementation of the hippocampal model, which serves as a fast learner. The
model consists of EC, CA3, and CA1, and we describe each of them below.

Modelling of EC layer. The entorhinal cortex (EC) is the main input and output cortex of the
hippocampus (Chen et al., 2024). Let us denote the original input as z; € R%. We model that the

hippocampal model has two augmented signals from the original input as z!" € R? and z{* € R,

in addition to the original input a;. Let f : R? — R™ denote the encoder. Then, the cortical
representation in the EC is given as follows:

2V = f@V), 2P = f@?), and z = f(z)).
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We regard each corresponding to the layers II, III, and V of the EC in Chen et al. (2024, Figure 1).
For self-supervised training, we have the triplet dataset D = {(ml(.l), scl@) ;) }_,. The hippocampal

learning can be characterized as a learning problem of the encoder f from the tralmng dataset D.

Modelling of CA3 region. The CA3 region is responsible for predicting future signals:
1 1 2 2
h =n(z"),  h® =h(z?),

where h : R™ — R™ is the predictor network. We implement the predictor with a two-layer neural
network with the ReLU activation and batch normalization.

Modelling of CA1 region. CA1 measures the difference between the predicted signal and its future
signal. In this paper, we model CA1 by a mixture of a loss function and a predictor, while Chen et al.
(2024) uses only the MSE loss for modelling CA1. For the Sim-1 of CA1 depicted in Figure 2, we

use the symmetric negative cosine loss function to measure the temporally distant signal z (layer
I1I of EC) and the predicted representation from CA3 hz(-l) =h(z fl)).

. (0) 1 & (h(l)) ( ) 1 > (zgl))ThEQ)
Cos =5 1. (9. a5 1y . (9.
2n = Hhﬂuz||z§2 o 27 S 120 2R

where 0 represent the entire model parameter and 21-( ) = = SG(z, ( )) € R™ is a latent variable with
StopGradient, in which the gradient update shall not be executed

Remark that StopGradient yields a “time difference” during backpropagation, for which we can
interpret PhiNet as a hippocampal model. Let us look closely at Sim-1 in Figure 1b. We let f;
denote the encoder f at the ¢-th gradient update. The left path of Sim-1 can then be expressed
as h) = h(f,(x)). As the right path of Sim-1 is adopted with StopGradient, it can be written
as z?) = SG(f;(x)) = f;_1(x). Eventually, Sim-1 aligns f;(x) and f;_;(z) by the predictor h.
This Sim-1 interpretation indicates that PhiNet predicts past signals, which slightly deviates from
the original temporal prediction hypothesis (Chen et al., 2024) supposing that CA3 is in charge of
predicting future signals.

In addition to measuring the difference, the CA1 region outputs the signal to the EC (V layer). Thus,
we model the output of CA1 as follows:

1 1 2 2
u = gh), y® = g(n®).
where g : R™ — R™ is another predictor network. As we will see soon, CLS theory supposes that
this feedback from CA1 to the EC eventually propagates to the neocortex (NC), which is stored in

long-term memory.

3.2 INCORPORATING SLOW LEARNING MECHANISM

The hippocampus and neocortex play crucial roles in brain cognition. For effective long-term
memory storage, it is essential to transfer information from the hippocampus to the NC. We first
aim to formulate the joint learning of the hippocampus and NC models. Then, we propose using
the exponential moving average (EMA) to transfer model parameters from short-term to long-term
memory, with the goal of compressing the original input signal.

In the EC layer, we model the update of the encoder function by using the output of CA1 and the
representation z; = f(x;) (V layer of EC). Then, the loss function can be given as follows:

1 2
Lnc(6 Zn“ G(z)|3 + Zny” G(z)|2.

This corresponds to Sim-2 in Flgure 2 and is regarded as slow learmng. Finally, the whole objective
function of PhiNet is given as

L(6) = Lcos(0) + Lne(0)
Hippocampus loss / Sim-1 ~ Neocortex loss / Sim-2
We then minimise L(6) to learn the hippocampus and the NC models. The optimisation can be
efficiently performed using backpropagation. It is worth noting that we can utilise different loss

functions for Sim-1 and/or Sim-2 in PhiNet. In this paper, we set Sim-1 to negative cosine similarity
and Sim-2 to either MSE or the negative cosine similarity.
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X-PhiNet: Slow learning via stable encoder. The original PhiNet formulation employs the same
encoder for both the short-term and long-term memories for simplicity (Section 3.2). To further
enhance slow learning, the input representation in EC-V z; should maintain long-term signals. Thus,
we introduce the following stable encoder for long-term memory:

Z; = flong(mi)-

Then, we solve the PhiNet optimisation problem by minimising both Lyc(€) and Lces(0) using the
exponential moving average (EMA) of the model parameters of f and fione as

€long — 6€long + (]- - 5)57

where £ and &ne are the model parameters of f and fiong, respectively, and 3 € [0, 1] is a hyperpa-
rameter. Model parameters persist in fion, more stably than the original encoder f, which facilitates
slow learning. We call this method as X-PhiNet.

4 WHAT WE BENEFIT FROM ADDITIONAL CA1 PREDICTOR: LEARNING
DYNAMICS PERSPECTIVE

When PhiNet is compared with SimSiam, the additional predictor g in CAL1 is peculiar. We study the
learning dynamics of PhiNet with a toy model. Despite its simplicity, dynamics analysis is beneficial
in showcasing how the predictor g effectively prevents complete collapse.

Analysis model. Let us specify the analysis model, following Tian et al. (2021). The d-dimensional
input is sampled from the isotropic normal  ~ A/(0,I) and augmented by the isotropic normal

xM) 2?2 ~ N(z,0%T), where o2 indicates the strength of data augmentation. The encoder f and
predictors g and h are modelled by linear networks without bias: f(x) == Wz, g(h) == Wh,
and h(z) := W),z, where W; € R™*? and Wy, W), € R™*™_ The predictors  and g transform
latents (M), (1) € R™ into A1), y(1) € R™ with the same dimension m to predict the other noisy
latent z(?) and the noise-free latent z, respectively (see Figure 1b).

Unlike Lc, introduced in Section 3, we focus on the (not symmetrised) MSE loss for measuring the
discrepancy between h(!) and z(? for the transparency of analysis. Interested readers may refer to
Halvagal et al. (2023) and Bao (2023) for further extension to incorporate the cosine loss into the
SimSiam dynamics. Consequently, the expected loss function of PhiNet L(W ¢, W, W},) is given
as follows:

L= %EwEm<1>7m<m|m W Wz — SG(W ;z@)|? + |[W,W, W,z — SG(Wz)|?| .
We will analyse the gradient flow W{ f,g.h) = ~VL - PW . g.ny (p > 0: weight decay intensity)
subsequently. The gradient flows are derived as follows (see Appendix B.1):

Wy =W, {(1+0*) I+ Wy W)W, — (L+ W))W, — pWy,
W, = —{(1+ )W), —IW;W[W, — pW,,
W, = {1+ I+ W, W)W), — I+ W, )}WW[ — pW,,.

Eigenvalue dynamics. The matrix dynamics we have derived are rigorous but not amenable
to further analysis. Here, we decouple the matrix dynamics into the eigenvalue dynamics. Let
P = WfW}'— € R™>*™_Following Tian et al. (2021, Theorem 3) and Bao (2023, Proposition 1),
we can show that the eigenspaces of ®, W, and W, quickly align as ¢ increases (see Appendix B.2).
Therefore, we assume the following conditions:

(A1) W, and W, are symmetric.
(A2) The eigenspaces of ®, W, and W, align for every time step ¢.
Under these assumptions, ®, W, and W), are simultaneously diagonalizable and can be written

as ® = UAsUT, W, = UA,U", and W, = UA,U", where U is the (time-dependent)
common orthogonal eigenvectors. Here, Ag = diag[¢,...,dn], Ay = diag[yi,...,vm], and
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MEDIUM (p = 0.03)

I - —

Figure 3: State space diagrams of PhiNet dynamics with different levels of weight decay: STRONG
(p = 0.12), MEDIUM (p = 0.03), LIGHT (p = 0.003), and WEAK (p = 0.0001). The vector fields are
numerically computed with o2 = 1.5. The state space bifurcates at the boundary of each level. The

nullclines are shown with the green real (zb = 0) and dotted (7 = 0) lines. The red dots are sinks.

Ay, = diag[vn, . . ., 1] are the corresponding eigenvalues. Noting that the dynamics quickly falls
on to ¢(t) = 1(t)?, we can decouple the matrix dynamics into the eigenvalue dynamics of (1, )
only (shown in Appendix B.3 and B.4):

. . b ={(1+7) ~ 1+0*) 1+ — py,
(PhiNet-dynamics) { _ (1
={1-(1+0*)P}® —py.
From the (1), v)-dynamics, it is easy to see that (¢»,) = (0, 0) is one of the equilibrium points. Can
the eigenvalues escape from this collapsed solution?

Bifurcation of PhiNet dynamics. The state space diagrams of dynamics (1) are shown in Figure 3.
In this figure, the nullclines 1/1 = 0 and ¥ = 0 are shown in the green real and dotted lines, respectively.
Noting that intersecting points of nullclines are equilibrium points (Hirsch et al., 2012), we observe
saddle-node bifurcation of PhiNet dynamics parametrized by weight decay p > 0.

* STRONG: Weight decay p is too strong that the collapsed point (¢, v) = (0, 0) is a unique sink.
* MEDIUM: A new sink (¢, ) such that ¢) > 0 and y ~ 0 emerges. The number of sinks is two.
* LIGHT: Another non-trivial sink (4, ) such that ¢,y > 0 emerges. There are three sinks.

* WEAK: The last sink emerges such that ) < 0 and v < 0. The number of sinks is four.

Comparison with SimSiam dynamics. Tian et al. (2021) derived the SimSiam dynamics under
the same setup as above. Specifically, they modelled the encoder f and the predictor i with linear
networks Wy and Wy, z, respectively, and defined the gradient flow dynamics with the MSE loss
W, Wz — SG(W ;2(?)||? (without the additional predictor g). By decoupling the matrix
dynamics into the eigenvalues with the same adiabatic elimination ¢ = 12, we can derive the
SimSiam dynamics solely with respect to ¢ -dynamics as follows:

(SimSiam-dynamics) ¢ = {1 — (1 + o) }¥? — pyb. )
We set 7 = 1 (ablating the exponential moving average used in BYOL) in Tian et al. (2021, Eq. (16))

to obtain this dynamics. SimSiam is free from the additional predictor g, so the dynamics (2) is
univariate, unlike the bivariate system (1). Figure 4 shows the dynamics (2).
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Figure 4: Illustration of SimSiam dynamics (2). Un-

like the bivariate PhiNet dynamics shown in Figure 3, Figure 5: The SimSiam-MEDIUM flow is
SimSiam dynamics is univariate, shown in the v-axis. conjugate with the flow on the nullcline ) =
The red dots are sinks. 0 (green real line) in PhiNet-MEDIUM.

Table 1: PhiNet is comparable to SimSiam. We trained the models for 100 epochs and then validated
them on the test sets using linear probing on the head. We trained with three seeds and calculated
means and variances (subscripts). Both are unstable when the weight decay is small, but PhiNet still
achieves high accuracy.

Accuracy by Linear Probing (w.r.t. weight decay)
0.0 0.00001  0.00002 0.00005 0.0001 0.0002

SimSiam 25.410.02 2.630_18 60.821.57 44-5133.64 68.170.18 67.120.13
PhiNet (MSE) | 49.899.35 55.901.57 33.927.40 66.730.03 68.250.21 67.83¢.15

The SimSiam dynamics bifurcates into STRONG and MEDIUM at p = 1/4(1 + o2). These two modes
correspond to STRONG and MEDIUM of PhiNet in that v-axis of Figure 4 and the nullcline ¢y = 0
(green real line) in Figure 3 are topologically conjugate. The other LIGHT and WEAK are peculiar to
the PhiNet dynamics. By comparing Figures 3 and 4, we have the following observations:

(C1) The retraction basin to non-collapsed solutions is wider: Since SimSiam dynamics is univariate,
1 cannot avoid collapse once /(0) is initialized outside the retraction basin to the non-collapse
point ¥* # 0 (namely, smaller than the source point A in Figure 5). By contrast, PhiNet avoids
collapse even if ¢(0) is close to zero, as long as v(0) is sufficiently large (see the initial point
% in Figure 5).

(C2) Even negative initialization 1 can avoid collapse: In SimSiam-MEDIUM, ) cannot be attracted

to the non-collapsed solution if ¢(0) is initialized to negative. By contrast, PhiNet-WEAK has
a negative sink (at the bottom left in Figure 3), which attracts negative initialization ¥ (0) < 0.

To sum it up, we have witnessed with a toy model that PhiNet is advantageous over SimSiam because
the collapsed solution can be avoided more easily. This is why another predictor g is beneficial.

Remark 1. The learning dynamics analysis in this section reveals that smaller weight decay p brings
us benefits only regarding the stability of non-collapsed solutions. Indeed, we may benefit from larger
p to accelerate convergence to the invariant parabola and eigenspace alignment of (2, W, W)
(Appendices B.4 and B.2), each of which corresponds to the positive effects #3 and #7 in Tian et al.
(2021), respectively. Moreover, moderately large p often yields good generalization in non-contrastive
learning (Cabannes et al., 2023). Thus, smaller p may not be a silver bullet.

5 EXPERIMENTS

We first test the robustness of PhiNets against the design choice and weight decay hyperparameter.
We then discuss the effectiveness of X-PhiNets in online and continual learning.

5.1 LINEAR PROBING ANALYSIS

Figure 6 and Table | show the sensitivity analysis using CIFAR10 (Krizhevsky, 2009) and Ima-
geNet (Krizhevsky et al., 2012), respectively, by changing the weight decay parameter. First, we
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Figure 6: PhiNet and X-PhiNet are robust against weight decay. We evaluated PhiNet variants in
(al)-(a2) and compared the existing non-contrastive methods with PhiNet in (b1)-(b2) on CIFAR10.
We evaluated the performance using linear probing.The loss function in brackets represents neocortex

loss Lnc(0). PhiNets perform partlcularly better than the baselines when weight decay is small.
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Figure 7: PhiNet is stable in the early stages of learning. We trained PhiNet and SimSiam with a
batch size of 1024 and the weight decay of 1e — 4 on STL10. SimSiam is unstable in the early stages
of learning. This may be due to the cosine loss being too small in SimSiam.

emphasise the improvement of PhiNet over SimSiam for most of the setups, supporting the importance
of the CA1 predictor and Sim-2 loss. Subsequently, we closely look at the results.

PhiNet improves SimSiam. We observed weight decay significantly impacts the final model
performance. When the MSE loss is used for Sim-2, PhiNet consistently outperforms the original
SimSiam or other baselines (BYOL, RM-SimSiam) regardless of weight decay value, shown in
Figure 6 (right). Moreover, as shown in Figure 7, PhiNet have a stabilizing effect during the early
stages of training. This can likely be attributed to PhiNet’s regularization effect, which prevents the
cosine loss from becoming too small at the early phase of training.

Bless of additional CA1 predictor. To see whether the additional predictor g besides h is beneficial,
we test variants of predictor g: g = h (reminiscent of the recurrent structure in CA3) and g = I
(identity predictor). For CIFAR10 with batch size = 128, Figure 6 (left) indicates that the predictor
choice slightly affects the final model performance if we properly set the weight decay. However, if
we set the batch size as 1024, the separate predictor performs more stably over other choices.

Sim-2 loss should be MSE. Based on Figure 6 and Table 11 in the appendix, we found that the MSE
loss used for Sim-2 generally improves model performance across most weight decay parameters,
while the negative cosine loss performs comparably to the MSE loss with smaller weight decay but
degrades it with larger weight decay.

Overall, our sensitivity study on CIFAR10 revealed that PhiNets are robust to the choice of the
weight decay parameter, which supports the importance of the CA1 predictor and Sim-2 loss. See
Appendix E.1 for more detailed sensitivity studies. In addition, the results for different batch sizes
and datasets (STL10 (Coates et al., 2011)) can be found in Appendix E.4.

5.2 ONLINE LEARNING AND CONTINUAL LEARNING

SimSiam and other non-contrastive methods typically require up to 800 epochs of training on
CIFAR10, which is quite different from the online nature of brains. To address this, we conducted
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Table 2: X-PhiNet performs good results when memorization is important. We trained PhiNets
on CIFAR-5m and Split CIFAR-5m. In Split CIFAR-5m, Acc is the average of the final accuracy
(higher is better), and Fg is Forgetting (smaller is better). We present the results for two different
weight decay (5e — 4 and 2e — 5) in Split CIFAR-5m.

Barlow PhiNet RM- X-PhiNet ~ X-PhiNet
Twins (MSE) SimSiam (MSE) (Cos)

CIFAR-5m 81.050.04 77.71197 85.320.10 76.74182 82.099922 87.300.13 87.46¢.14

Split C-5m Acc 90-44028 90.84()‘31 90.300‘17 90-69011 90.04011 91-02036 92.830‘12
(wd=5e—4) Fg 1.610'50 2.450'42 3.361‘10 2.960'23 2.440'22 3'440.36 1.950'19

Split C-5m Acc 86.87()‘12 88.20()‘35 89.860‘34 88.60()‘15 87.07()‘36 90.900(33 90.720‘23
(Wd=26-5) Fg —0.160,23 0.360,51 1.290‘94 0.050'19 0.820,14 —1.030'41 0.430'17

BYOL SimSiam

.

- BarlowTwins
BYOL
PhiNet(mse)
X-PhiNet(mse)
X-PhiNet(cos)
RM-SimSiam
SimSiam

©
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Figure 8: X-PhiNet is also robust to weight decay in continual learning. We measured the mean
accuracy and forgetting at different weight decay on Split CIFAR-5m.

experiments using the CIFAR-5m dataset, which has six million synthetic CIFAR10-like images
generated by the DDPM generative model (Nakkiran et al., 2021). Instead of training CIFAR10 with
50k samples for 800 epochs, we trained CIFAR-5m with 5Sm samples for 8 epochs. Although this
is not exactly online learning, it seems closer to online learning compared to CIFAR10 due to the
restriction on the training epochs. Table 2 shows that X-PhiNet has higher accuracy than SimSiam and
PhiNet. The superior performance of X-PhiNet compared to PhiNet suggests that long-term memory
with EMA is important in online learning. Sensitivity to weight decay and results for one-epoch
online learning are given in Appendix D.1.

X-PhiNet draws inspiration from CLS theory, which proposes a framework for understanding con-
tinual learning processes in human brains. To evaluate the effectiveness of X-PhiNet in continual
learning, we created a split CIFAR-5m dataset from CIFAR-5m, dividing it into five tasks, each
with two classes. We trained on each task for one epoch and evaluated performance by the average
accuracy across all tasks and the average forgetting, which is the difference between the peak ac-
curacy and the final accuracy of each task. Table 2 shows that X-PhiNet has higher performance
than SimSiam while maintaining minimal forgetting. Figure 8 further demonstrates that X-PhiNet
consistently outperforms other methods like SimSiam in continual learning, regardless of weight
decay. X-PhiNet also demonstrates high performance on Split CIFAR10 and Split CIFAR100, as
well as when using replay methods (Appendix D.2).

6 CONCLUSION

In this paper, we proposed PhiNets based on non-contrastive learning with the temporal prediction
hypothesis. Specifically, we leveraged StopGradient to artificially simulate the synaptic delay, and the
prediction errors are modelled via Sim-1 and Sim-2 losses. Through theoretical analysis of learning
dynamics, we showed that the proposed PhiNets have an advantage over SimSiam by more easily
avoiding collapsed solutions. We empirically validated that the proposed PhiNets are robust with
respect to weight decay and favorably comparable with SimSiam in terms of final classification
performance. Experimental results also show that X-PhiNet performs better than SimSiam in online
and continual learning, where memory function matters. These findings corroborate the effectiveness
of the temporal prediction hypothesis when robustness and adaptivity are important.

10
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A LIMITATIONS AND FUTURE WORK (EXTENDED VERSION)

One major limitation of our approach is the use of backpropagation, which differs from the mech-
anisms in biological neural networks. Our long-term goal is to eliminate backpropagation to
better imitate brain function, but this work focuses on the model’s structural aspects. Currently,
backpropagation-free predictive coding mechanisms for complex architectures like ResNet are in the
early stages of development, with most research limited to simple CNNs. Conversely, non-contrastive
methods like SimSiam require more advanced models than ResNet. Future research should explore
if the proposed structure can enable effective learning with backpropagation-free predictive coding.
Another key difference between PhiNet and brains is the presence of recurrent structures. However,
in this PhiNet, only one time step is considered, so it is possible that the recurrent structure required
to predict time series data was not necessary. Making the data into time series data and adding a
recurrent structure to the model remains as future work.

It is also unclear whether cosine loss or MSE loss is more suitable for the Sim-2 in PhiNets. Cosine
loss performs better when weight decay is small or online and continual learning where the additional
predictor of PhiNets is important. However, MSE loss is preferable when weight decay is large on
CIFARI10. This is likely because using cosine loss in sim-2 has a stronger impact on learning dynamics
compared to MSE loss. Analyzing gradient norms could be useful for this kind of evaluation, but is
left for future work.

B DETAILS OF LEARNING DYNAMICS ANALYSIS

In this section, we complement the missing details of learning dynamics analysis provided in Section 4.

In our analysis, we will use the gradient flow W 5y = ~VL— PWis gy (p > 0), which is the
continuous limit of gradient descent. This corresponds to considering the following gradient descent
in discrete updates and taking the limit as n — 0.

Wisgn(t+m) =Wipgn(t) = VL —1oW s, A3)
(Wirgmt+m) = Wipgn () = =VL—pWip,n C5)

I =

B.1 DERIVATION OF MATRIX DYNAMICS

Recall the PhiNet loss function:
L= %Eme<1)7w<2)|w 1WA W20 — SGW @) + [W, W, W 2! — SG(W )]
Let us derive its matrix gradient.
Vw,L = %vwfna: [(m“)TW}w; —SG(z®TW] ) (W, W,z — SG(W,z?))
+@ VW] W] W] —SG(zTW]))(W,W, W) — SG(me))}
- {W;thfE[x“)x(l)T] - W;Wfﬂz[a:(?)m(l”]}
+ {W;W;Wgwhwfﬂz[m(l)w(m] - W{W;WfE[mU)T]}
=W/ {(I + W] W)W, W EzVzMT] - W E[zP2)T] - W;WflE[mU)T]}
=W {(1+0M) I+ W, W)W, — (T+ W)} Wy,
where the last line is derived from our assumption on the data distributions:
Em]Emm‘m[w(l)ac(l)T] =Ep[zx']+ 0T = (1+ 07,

Em]Em(l)@(z)‘m[CB(2)(E(1)T] =Eplzx'] =1,

EmEm(l)|m[mm(l)T] =Ffzx'] =1
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Similarly, we derive Vw, L and Vi, L.

Vw,L =W, WE[zHzWTWIW/] - W;E[zz™T|W] W]
={(1+* )W, - I} W,W[W,.

Vw, L = {WthE[a:“)a:(N]W} - WfE[:c(Q):c“)T]W}}
+{ W, W, W, W BT IW] - W W e TIW] |
={(1+*) I+ W, W)W, — (I+ W)} W;W|.

From these, we obtain the matrix dynamics.

B.2 EIGENSPACE ALIGNMENT

Our aim is to show that the three matrices ®, W, and W, share a common eigenspace, i.e.,
simultaneously diagonalizable, asymptotically in time ¢. Let

Cl = [¢7W9]7 CQ = [@,WhL and Cg = [Wg,Wh],

where [A, B] :== AB — BA is the commutator (matrix). By noting that commutative matrices are
simultaneously diagonalizable, we show that the time-dependent commutators C1(t), Ca(t), and
C3(t) asymptotically converges to O as t — oo.

Hereafter, we assume the symmetry assumption (A1) on W, and Wy, and heavily use the following
formulas on commutators implicitly:

* [A;A]=0.

* [A,B]=—-[B,A].

* [A,BC]=[A,B|C+ BJA,C].

* [AB,C]=A[B,C] + [A,C]B.

First, compute C; based on the matrix dynamics of @ (can be found in Appendix B.3) and W ,:

C,=dW, +dW, - W, & - W,
={-(14+ ) (Wr(I+W2)W,® + W, (I+ W_)W,,) + (W, ® + dW),)
+ (WLW, & + dW ,W),) — 208 IW, + &{—((1 + 0*)W;, —1)®W,, — pW,}
+{(L+ )W), —~1)@W, + )W, } @
+ W {(1+0*) (WL + W)W, & + W, (I + W2)W;,) — (W, ® + BW),)
—(W,W,® + W, W,,) +2pP}
=—3pC1 + (1+0°) Wy, Wy,(I+ W2)W, 8] + (1 + 0°)[W,, @W, (I + W2)W,,]
+ W, ® + dW,;,, W ] + [W;,, W, @W ] + [&, W, W, W]
+ (1 +0*)W), —T)®W,,, ]
= —3pC; + (1 +*){(C3W,® + ®W,C3) + (W, C3® + PC3W),)
+ (CsW W), + W, W2C;3)®@ — (W,W_ W, C; + CW,W.W,)
— (W3C1 + CIW3) + ®(Cs Wi W), + W, W Cs)}
+ (W,LC1 +C W) — (C3® + 2C3) — (C38W, + W, ,PCs)
+ (CIW, W, + W, W,,C) — (1 + 0?)(W,®Cy + C2@W,,) + ®Cs.
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Similarly, C; and Cs are computed:
Cy = —3pCy + (CoW), + W, Cz) — C1® + (W,C; + C,W,) + (C3® + ®Cs)
— (14 0%)Cy® — (1+0°)(W,C1 + C1W,) + (1 + 0°)W,(C3W, + W C3)
— (14 0*)(Wir(I+ W)W,,C; + CoW,(I1+ W;)W,,)
+ (1 +0?)®W,(C3W, + W,C3) W,
Cs = —3pCs + (I— (14 0> )W4,)CoW, + (1 + 0%) I+ W])(W,,C; — C3®)
+(I+W,)C,.
Next, we vectorize the commutator matrices—for C € R"*", vec(C) € R" indicates a (column)

vector stacking the columns of C. For the commutators Cq, Co, and Csg, let us write £ := vec(Cy),
n = vec(Cz), and ¢ := vec(Cs). In what follows, we heavily leverage the vectorization formula:

* vec(ABC) = (CT ® A)vec(B) = (I® AB)vec(C) = (C'BT @ I)vec(A)
s vec(AB) = (I® A)vec(B) = (BT @ I)vec(A)

Here, A ® B denotes the Kronecker product of two matrices. We writt A B :=A®B+B® A
for notational convenience. We derive the ODE of € = vec(C) as follows:

€= -3pIE + (1+ o) ((BW,, & I)¢ + (2 & W3 )¢ + (2 @ I) (W, W2 I)¢
— (W, W.W, 6D - ToWi)E+ (10 @) (W,W2aI)C) + (1o W)€
— (@I -(Wy@aD)(+(W,W,raDE - (1+0)IdW,®)n+ (I ®)n
= —{3pI+1& (1 +*)W,(I+ W)W,) + W, (I+ W) }¢
{1+ (10 W,®) -1 ®}n
—{I+Wy)@2aI—-(1+0*)(2W, 01+ (I ®)(W,W, B1))}¢
= —(3pI + K11)¢€ — Kiom — Ki3¢,

where
Kii =1® (14 0*)W,r(I+W2)W,) + W, (I+W,),

Ko=1+) 1 W;®) -1,
Kis=I+Wy)@0I-(140%)(dW, 01+ (10 ®)(W,W.aI)).
Similarly, we derive the ODEs of 17 = vec(Csz) and ¢ = vec(Cs).
1= —K21§ — (3pI + Ka2)n — Kas(,
¢ =K — Kgom — (3pI + Ka3)(,
where
Koy =0@I+(1+0%)(W,al),
Kp=01+0*) (@D +Io{(1+")(Wil+ W)W, — (W, + Wy))},
Koz=-10®— (1+0*){(I0 W)+ (W, @W,)}(Ie W,),
K3 =—(1+0*)I0 I+ W,)W;,) —I® I+ W),
Ki = W, @ (I —(1+05Wy),
Kz = (1+0%)(®® (I+W7)).
By combining all the above, we obtain a single ODE for (£, 1, €):

4 1-& 3pI + K11 Ko Kis K
3| = Ko 3pI 4 Koo Kos n |
K3, K3, 3pI + Kas ¢
~——
=3pI+K ==

or alternatively, £ = —(3pI + K)Z. Note that K (t) is time-dependent. Finally, we can obtain the
desired result by invoking Tian et al. (2021, Lemma 2).
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Lemma 1 (Tian et al. (2021, Lemma 2)). Let H(t) be time-varying positive semidefinite matrices
whose minimal eigenvalues are bounded away from zero:

i i > .
tlgg )\mm(H(t)) = A0 >0

Then, the following dynamics
dw(t)
dt
o, Which means that w(t) — 0.

= —H(t)w(?)
satisfies ||w(t)]|2 < exp(—Aot)||w(0)

When minimal eigenvalues of 3pI + K(¢) are always bounded away from zero, we immediately see
=(t) — 0, namely, (C4(t), Ca(t), Cs(t)) — (0,0, 0) as t — co. The strict positive-definiteness
of 3pI + K(t) would not be necessarily satisfied; however, larger weight decay p > 0 induces it
more easily. The convergence of the commutators is faster with larger p > 0 as well.

B.3 DECOUPLING INTO EIGENVALUE DYNAMICS

We have obtained the following matrix dynamics:
W= -Wi{(1+)I+ W, W)W, — 1+ W )}W; - pW;,
W, = —{(1+ )W), - TTW, W] W, — pW,,
W, = {1+ I+ W, W)W), - T+ W))W W[ — pW,,.

Our aim is to decouple the matrix dynamics into their eigenvalue counterparts. Beforehand, let us
execute the change-of-variable ® = W fWJT:

®=W,W; + W;W|
=-W, {1+*) I+ W, W)W, - (I+W,)} &
—®{(1+0)W, I+ W, W) — 1+ W)} W), — 2p®.
By the symmetry assumption (A1), (®, W4, W}, )-dynamics can be simplified as follows:
®=—(1+0){W,I+W2)W;,, @} +{W),, 8} + (W, W, & + BW W) — 2p®, (5)

W, =—{(1+0)W), — I} 8W), — pW,,,

W, =—{(1+*) T+ WHW,, + I+ W)} & — pW,,,
where {A,B} := AB + BA is the anticommutator for two symmetric matrices A and B with the

same dimension.

Next, we decouple them into the corresponding eigenvalues. The parameter matrices are simultane-
ously diagonalized by ® = UAL,UT, W, = UAgUT, and W, = UA,UT, with the aid of the
symmetry assumption (A1) and common eigenspace assumption (A2). Here, we can easily show
that the eigenspace is time-independent, namely, U =0, using the same argument of Tian et al.
(2021, Appendix B.1). By multiplying U and U from left and right, respectively, ®-dynamics can
be written as follows:

Ag = —2(1+0%)(IT+ A2)AfAg + 2A4Ag + 2ARAgAe — 2pAs,

where all matrices are diagonal, and thus, we can write down the dynamics in terms of j-th diagonal
element (but the index j is omitted for simplicity):

¢ ==2(1+0°)(1+7°)0°¢ + 206 + 20y — 20
We can decouple W ;- and W ,-dynamics similarly:
==+ (W —1)dv —pv,
=1+ A+ + L+ 1)} — pv.

Note that ¢ and y correspond to (one of the) eigenvalues of the linear networks h and g, respectively.
Intuitively, we can regard v and -y as “scalarization” of the predictor networks.
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To sum it up, we decouple the dynamics of (®, Wj,, W) into the following dynamics of (¢, ¥, 7):

(®-dynamics) ¢ = —200{(1+ %)L+~ — (L+7)} — 209, (6)
(W, -dynamics) U =—¢{(1+ o)1+ — (1+7)} — p, @)
(W ;-dynamics) i = —ypd{(1+ %) — 1} — py, (8)

B.4 ADIABATIC ELIMINATION

The eigenvalue dynamics obtained in Appendix B.3 is jointly with respect to (¢, v, ). Here, we
eliminate ¢ by confirming that ¢ and v are asymptotically bound on an invariant parabola.

By combining (6) and (7), we have 2w1/} — ¢ = —2p(p? — ¢). This can be integrated, and we obtain
the following solution:

D(t)? — ¢(t) = Cexp(—2pt) =570, ©)

where C'is a constant of integration. Thus, (¢(t),1(t)) converges to this invariant parabola (9) expo-
nentially quickly, which we suppose is much faster than the dynamics stabilization. On this invariant
parabola ¢ = 12, the eigenvalue dynamics can be further simplified as follows by eliminating ¢:

{z/'J ={(147) - 1+ A +)¢}? — py,
¥o={1-QQ+ >V} —py.

Note that the convergence to the invariant parabola is faster when weight decay p is more intense.

C PSEUDOCODE FOR PHINET AND X-PHINET

The pseudo codes for PhiNet and X-PhiNet are shown in Listing.1 and Listing.2.

# f: backbone + projection mlp
# h: prediction mlp

3 # g: prediction mlp

4
5

6

N

=

)

=

S I e e

for x in loader: # load a minibatch x with n samples
x1l, x2 = aug(x), aug(x) # random augmentation
z0, z1, z2 = f(x), f(x1), f£(x2) # projections, n-by-d
pl, p2 = h(zl), h(z2) # predictions, n-by-d
vl, v2 = g(pl), g(p2) # predictions, n-by-d
z0 = z0.detach ()
Lcos = D(pl, z2)/2 + D(p2, z1)/2 # loss
Lcor = mse_loss(yl, z0)/2 + mse_loss(y2,z0)/2
L = Lcos + Lcor
L.backward() # back-propagate
update (f, h) # SGD update

def D(p, z): # negative cosine similarity
z = z.detach() # stop gradient
p = normalize(p, dim=1) # 1l2-normalize
z = normalize(z, dim=1) # l2-normalize
return —(px*z) .sum(dim=1) .mean ()

Listing 1: PhiNet Pseudocode (PyTorch-like)

# f: backbone + projection mlp

# h: prediction mlp

# g: prediction mlp

for x in loader: # load a minibatch x with n samples

x1l, x2 = aug(x), aug(x) # random augmentation

z0, z1, z2 = f_long(x), f(x1l), f(x2) # projections, n-by-d
pl, p2 = h(zl), h(z2) # predictions, n-by-d

vl, v2 = g(pl), g(p2) # predictions, n-by-d

z0 = z0.detach ()
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Table 3: X-PhiNet performs robustly for different weight decays on CIFAR-5m.

Accuracy by Linear Probing (w.r.t. weight decay)

0.0001 5e-05 2e-05 le-05
BYOL 67.88058 75.71g.34 81.050.04 80.70¢.84
SimSiam 77.690,67 75.025,92 76.873,13 77.711_97
PhiNet 76.432.12  T7.57201 77.641.44 T77.7T4079
RM-SimSiam 74‘240.56 77.520_88 82.090_22 79.380,38

X-PhiNet with Aug (mse) | 65.9616.204 83.21g.15 86.45925 85.17954
X-PhiNet with Allg (COS) 84.310_29 86.400,31 86.960_17 84.850_99
X-PhiNet (mse) 69.021405 84.24937 87.30g.13 85.11.17
X-PhiNet (COS) 85.800'34 87.290'22 87.460.19 85.030'19
X-PhiNet (COS, g = I) 84‘720_16 86.410_08 86.710_27 83.830_36

Table 4: X-PhiNet performs robustly well for one epoch training.

Accuracy by Linear Probing (w.r.t. weight decay)

0.0001 5e-05 2e-05 le-05
BYOL 63.860.77 59.800.50 58.04052 57.650.38
SimSiam 68.500,19 69.650,29 69.411.06 69.600,97
PhiNet 66.27160 64.261.80 64.341.13 62.681 g9

RM-SimSiam 62.901_11 63-301486 63.450.92 63.051,76
X-PhiNet (mse) 74.250.30 72.650.85 71-200.48 71-950,65
X-PhiNet (COS) 74.760‘52 72~890.66 72.100_15 71 .930,51

Lcos = D (pl,

z2)/2 + D(p2, zl1l)/2 # loss

Lcor = mse_loss(yl, z0)/2 + mse_loss(y2,z0)/2
L = Lcos + Lcor

L.backward ()
update (£, h)

# back-propagate
# SGD update

f long = beta » f_long + (l-beta) » £ # EMA for projection

def D(

, z): # negative cosine similarity
z.detach () # stop gradient
normalize (p, dim=1) # l2-normalize
normalize (z, dim=1) # 12-normalize

return —(p*z).sum(dim=1) .mean ()

Listing 2: X-PhiNet Pseudocode (PyTorch-like)

I no

D
%
p
zZ

D ADDITIONAL EXPERIMENTS ON ONLINE AND CONTINUAL LEARNING

D.1 CIFAR-5M (ONLINE LEARNING)

Table 3 shows the accuracy of linear probing for different weight decay values in CIFAR-5m. X-
PhiNet consistently demonstrates high performance. In Table 4, we trained for only one epoch on
CIFAR-5m. Also in this case, X-PhiNet performs better than SimSiam. Additionally, X-PhiNet with
g = I achieves lower accuracy compared to the standard X-PhiNet (cos). This represents a major
difference from the results shown in Figure 6, where both achieved similar accuracy with batch size =
128.

In Table 3, "X-PhiNet with Aug (mse)" and "X-PhiNet with Aug (cos)" represent cases where data
augmentation is also applied to the input = of fione. In this scenario, all inputs to the model are
augmented. While X-PhiNet with Aug outperforms other baselines such as SimSiam and RM-
SimSiam, its performance is still inferior to our standard X-PhiNet. This discrepancy might be
attributed to an imbalance in regularization strength, although the exact reason remains unclear and is
left for future work.
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D.2 CONTINUAL LEARNING

Epochs per task. In Table 2, we trained on each task for one epoch. However, in Madaan et al.
(2022), 200 epochs were trained for each task on Split CIFAR10, and the number of iterations differs
from this case. The effect of early stopping may be apparent when the number of iterations is different.
Thus, we trained on each task for two epochs to match the number of iterations. The result is shown
in Table 5. The performance of X-PhiNet is still high even when the number of epochs per task is set
to 2 epochs.

Table 5: X-PhiNet shows higher accuracy when the number of epochs per task is increased.
We trained X-PhiNet on Split CIFAR-5m. Unlike Table 2, this table presents results obtained from
training 2 epochs for each task.

Cas Barlow . RM- X-PhiNet X-PhiNet
‘ BYOL SimSiam Twins PhiNet SimSiam (MSE) (Cos)
91.360.25 92.250.10 90.73p.28 92.220909 90.11p34 92.330.15 92.830.06

4.100.25  3.880.33  95.25067  4.01g26 612050  3.79047  3.7lo.14

Split C-5m  Acc
(2epoch) Fg

Replay with Mixup. Replay is one of the most promising methods for improving the performance
of continual learning though it requires additional memory costs (Hsu et al., 2018; Van de Ven et al.,
2020; Madaan et al., 2022; Lin et al., 2022). We thus examined the performance of our method in
combination with the mixup-based replay method proposed in (Madaan et al., 2022). Table 6 shows
that when only one epoch is trained for each task, X-PhiNet shows considerably higher accuracy
than the other methods. On the other hand, when we train two epochs for each task, the accuracy of
other methods such as BYOL, BarlowTwins and RM-SimSiam also increases, showing an accuracy
comparable to that of X-PhiNet.

Table 6: X-PhiNet performs higher or comparable results for Split-CIFARSm even with Mixup.
We trained X-PhiNet on Split CIFAR-5m with replay methods.

Barlow PhiNet RM- X-PhiNet X-PhiNet
Twins ! SimSiam  (MSE) (Cos)

90.18p65 91.51g42  90.74p63  91.66p21  91.92¢ 17 91.78p.29 92.430.14
0.363.07 —1.700.09 —0.973.05 —2.21¢9.54 —1.14¢.27 —0.730.07 —0.690.65

92.360.03 91.770.01 92.36070 91.00178 92.48p12 9212928 92.26¢ 35

‘ BYOL SimSiam

Split C-5m  Acc
(lepoch) Fg

Split C-5m  Acc
(2epoch) Fg

Split CIFAR10 and Split CIFAR100. Up to this point, we have experimented with continual
learning using the CIFAR-5m-based dataset. Now, we test on the standard benchmarks, Split
CIFAR10 and Split CIFAR100. Table 7 shows that in both Split CIFAR10 and Split CIFAR100,
X-PhiNet outperforms SimSiam. However, PhiNet sometimes shows higher accuracy than X-PhiNet.
Note that PhiNet is a special case of X-PhiNet, and we have set the momentum of X-PhiNet to 0.99
in this study. If we carefully select the momentum value, X-PhiNet’s performance might improve,
surpassing PhiNet. When using mixup for replay, X-PhiNet shows significantly higher accuracy
compared to other methods.

Effect of exponential moving average X-PhiNet has an additional hyperparameter, the exponential
moving average. We set 8 = 0.99 in all the experiments in this paper. As shown in Table 8, in
tasks such as continual learning, where it is important to apply a strong exponential moving average,
accuracy increases as J increases and then decreases again from a certain point.

E ADDITIONAL EXPERIMENTS ON THE ROBUSTNESS OF PHINET

E.1 ADDITIONAL ABLATION STUDY WITH CIFAR10

Usage of original input: We first investigate what is the best way to input the original signal to
the model. To this end, we first replace one of the augmented signals in SimSiam as an original
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Table 7: X-PhiNet produces good results when memorization is important. We trained X-PhiNet
on Split CIFAR10. Acc is the average of the final Acc (higher is better), and Fg is Forgetting (smaller
is better).

SimSiam  RM-SimSiam PhiNet X-PhiNet X-PhiNet  X-PhiNet
(MSE) (¢g=1I,MSE) (MSE) (Cos)
Spllt C10 Acc 91.050'29 89.350'08 91.250'09 90.650443 90.900'50 90.970'49
(FineTune) Fg 5~310.65 3~700416 4.860'50 1.020,31 5-720.82 3.950,37
Split C100 Acc | 77.930p.64 78.19¢0.41 78.50¢9.25 78.31¢.16 77.500.04 77.440 .98
(FineTune) Fg 7.061,00 *0.57()‘98 6.51()‘31 5.49127 8.46()‘21 4.46034
Sp]lt C10 Acc 9068089 91~140.84 8989069 9069021 9049032 91.56¢.12
(Mixup) Fg 0.850,16 1.080‘60 1.040.22 _2-111.61 1.800_09 1.36015
Split C100 Acc 81.770,14 82.470,70 80.760‘18 82.160‘76 83.320,04 83.880,26
(Mixup)  Fg | 1.230.8 —1.350.05 1.181 97 —1.23213 128034  —0.070.30

Table 8: X-PhiNet produces good results when memorization is important. We trained X-PhiNet
on Split CIFAR100 with mixup with different exponential moving average value.

EMA 3
0.999 0.997 0.99 0.97 0.9 0.7

8319022 82.62006 8388026 82.7200s S81.76061 81.730.06
—0.2203¢  0.330.06 —0.070.30 0.730.64  2.150.11  1.82¢.69

Split C100  Acc
(Mixup) Fg

input. Then, we found that comparing the augmented images and original input significantly degrades
the model performance. This indicates that the original SimSiam performs pretty well even if we
do not use the original inputs, and naively adding additional input hurts the model performance
significantly. In contrast, the PhiNet with MSE loss and StopGradient compares favorably with the
original SimSiam model.

StopGradient-2: We analysed the impact of the StopGradient-2 technique, as shown in the table.
The StopGradient operator effectively prevents mode collapse. Interestingly, while the StopGradient
operator is not essential for avoiding mode collapse, models without it perform worse compared to
those with it. Thus, the StopGradient operator contributes to improved stability when using the MSE
loss. On the other hand, mode collapse still occurs with the negative cosine loss function.

E.2 COMPARISON OF FAST LEARNER WITH SLOW LEARNER

We can observe that EMA plays as a slow learner through experiments. In Figure 9, we conducted
continual learning experiments, where linear probing of the EMA encoder (dashed lines) performs
consistently worse than the encoder without EMA (solid lines). This indicates that EMA does not
quickly adapt to the most recent samples and learns more stable features as a slow learner. In this
sense, we believe it is natural to think of slow learning as serving as a regularization for past samples,
similar to other continual learning techniques such as elastic weight consolidation.

E.3 ADDITIONAL ABLATION STUDY WITH IMAGENET

Table 10 shows the ablation of additional predictors in ImageNet. In this case, we used a higher
weight decay of le-3. g = h has a lower accuracy than other methods, which is consistent with the
results in CIFAR10.

E.4 FOR DIFFERENT DATASETS AND EVALUATION METRICS WITH DIFFERENT BATCH SIZES

Table 11 and Table 12 present the CIFAR10 experiment results with varying batch sizes and weight
decay. PhiNet shows equal or better performance than SimSiam across different batch sizes. The
evaluation trends from KNN classification and linear probing are also consistent. It is also a consistent
result that training on CIFAR10 performs poorly when cosine loss is used as the cortex loss function.
Table 13 shows the results for STL10, where PhiNet performs comparably to SimSiam. However, as
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Table 9: Ablation study for PhiNet using CIFAR10 data. We use SGD with momentum as an
optimiser and set the base learning rate as 0.03 and run 800 epochs. We evaluated the performance
using KNN classification with K = 200. See Table 19 for further details.

Acc (w.r.t. weight decay)

Method Sim-2  SG-2  Pred-2 0.0 0.0005 0.001
SimSiam - - - 74.120_39 90.390_10 90.980_02
SimSiam (Orig-In) - - - 72.820_18 76.671,13 69.031137
MSE v’ g 77.771_13 90.770_22 91.380,19
MSE \/ g = I 77.630_11 91.010_12 91.500_07
MSE g 62.800.47 91.400‘23 89.010.55
PhiNet MSE v’ h 7487058 91.239.12  91.18¢.34
Cos v’ g 80.060_47 87.730_26 88.270_24
Cos v’ g = I 75.343_27 87.380_17 87.900_10
Cos g 27.574.41 9.980‘00 9.980‘00
Cos v’ h 75-990.28 85.970.23 85.040,11
CIFAR-5m Split-CIFAR10(wd=1e-3) Split-CIFAR10(wd=1e-4)
. 85
> <0 /r/.--ru 20 P 50
3 f 257
5 /7 75 [P 2N —
9 70 7 II A=A, SN 70
< § 70
60 7 i
0 2 4 6 0 10 0 10
Epoch task task
—— X-PhiNet (cos) X-PhiNet (mse)

Figure 9: The accuracy for slow weight is lower than the accuracy for fast weight. The solid line
represents the accuracy of the fast weights (the encoder without momentum), while the dashed line
represents the accuracy of the slow weights (the encoder with momentum). Note that the accuracy
for split-CIFAR10 represents the average accuracy.

Table 10: g = h has a low accuracy on ImageNet. We trained the models for 100 epochs and
then validated them on the test sets using linear probing on the head. Unlike Table 1, we train linear
probing for 40 epochs to save computational costs.

Model
SimSiam  PhiNet (MSE) PhiNet (g = I) PhiNet (g = h)
Linear Probing Acc |  66.35 66.64 66.47 55.12

illustrated in Figure 7, PhiNet demonstrates better convergence in the early learning stages. In the
early stages of training, when SimSiam is not stable, the cosine loss is smaller than that of the PhiNet,
while as the training continues, the cosine loss increases again, in agreement with the PhiNet. This
suggests that something close to mode collapse occurs in the early stages of SimSiam training, while
PhiNet may suppress this collapse.

E.5 PERFORMANCE ON TRANSFER LEARNING

We conducted experiments for transfer learning using object detection on VOC. In Table 14, following
the original SimSiam paper, we conducted pre-training experiments with two different settings for
learning rate and weight decay. This table demonstrates that our X-PhiNet produces comparable
performance to MoCo across various tasks. Furthermore, as shown in Table 15, we can find that
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Table 11: PhiNet shows equal or better performance than SimSiam. Sensitivity analysis for
PhiNet using CIFAR10 data. We use SGD with momentum as an optimiser, set the base learning rate
as 0.03, and run 800 epochs. We evaluated the performance using KNN classification with K = 200.

weight decay Acc (w.r.t. batch size)

128 256 512 1024
SimSiam 86.352,28 88.050,66 88.340_28 85.962_93
0.0001 PhiNet 88.90p023 88.92p5109 88.93p033 88.91¢07

X-PhiNet (MSE) | 88.67p.39 88.67¢923 88.7lg20 88.44¢.32
X-PhiNet (COS) 82.575,67 79.31 10.65 72.3519_83 84.790_56

SimSiam 90.150_15 90.360_15 90.390_10 90.890_08

0.0005 PhiNet 90.400.16 90.480p.34 90.57p15 91.15¢04
’ X-PhiNet (MSE) | 90.050.20 90.13p02  90.399.12  90.70¢.10
X-PhiNet (COS) 86.35023 86.360_16 86.420.11 86.650_65

SimSiam 91.230,11 91.300.05 90.980.02 76.6812.83

0.001 PhiNet 91.23p.07 91.4400s8 91.50¢03 73.977.0a

X-PhiNet (MSE) 91.04¢.13 91.099.14 91.119.13 90.08¢p 37
X-PhiNet (COS) 86.540.18 86.331.04 86.790.75 87.471,16

Table 12: Linear probing shows similar trends to knn classification. Sensitivity analysis for
PhiNet using CIFAR10 data. We use SGD with momentum as an optimiser, set the base learning rate
as 0.03, and run 800 epochs. We evaluated the performance using linear probing on the head.

weight decay Acc (w.r.t. batch size)

128 256 512 1024
SimSiam 88.641_73 89.440_35 89.390_49 88.011_80
0.0001 PhiNet 90.279.13 89.83p.35 89.799.24  89.700.21
‘ X-PhiNet (MSE) | 88.679.39 88.6709.23 88.7lgag  88.44¢.32
X-PhiNet (COS) 83.294.10 84.150.46 72-3519.84 83.232,52
SimSiam 90.390_07 90.680_05 91.150,12 91.650_06
0.0005 PhiNet 90.680.10 90.870.34 91.11g90s  91.93013
’ X-PhiNet (MSE) | 90.059.29 90.139.02 90.399.12  90.70¢.10
X-PhiNet (COS) 86.520412 86.470,11 86.450_16 87.000418
SimSiam 92.090.22 92.360.11 92.460.29 77.7112.73
0.001 PhiNet 92.18p.06 92.44¢.01 92.63¢.08 75.18¢.69
’ X-PhiNet (MSE) | 91.040.13 91.099.14 91.11g.13  90.08¢.37
X-PhiNet (COS) 87.040.33 87.080.20 87.240‘19 88.150.09

Table 13: SimSham and PhiNet show comparable performance. Sensitivity analysis for PhiNet
using STL10 data. We use SGD with momentum as an optimiser, set the base learning rate as 0.03,
and run 800 epochs. We evaluated the performance using linear probing on the head.

Acc (w.r.t. batch size)
128 256 512 1024

SimSiam 85.972.46 87.260.26 87.530_20 87.170_05

weight decay

0.0001 PhiNet | 84.280.41 87.32016 87.22012 87.01g.2s
0.0005 SimSiam 88.890.34 89.230.11 89.390_12 88.570_40

’ PhiNet | 89.33p.13 89.26p.02 89.3609.27 88.62¢.36
0.001 SimSiam 89.540.05 89.610.11 89.370_03 nannpan

PhiNet 89.520.06 89.71p.07 89.28p23 10.00¢.01
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VOC 07 detection VOC 07+12 detection
Pretrained AP5g AP AP7;  APsg AP AP5

MoCo v2 | 732  46.6 502 823 57.1 632

SimSiam (Ir=0.05, wd=1e-4) | 71.7 455 494 80.6 551 610
SimSiam (Ir=0.5, wd=1e-5) 73.6 46.6 498 82.7 573 64.6

PhiNet (Ir=0.05, wd=1e-4) 7277 4635 504 819 568 6281
PhiNet (Ir=0.5, wd=1e-5) 744 462 498 826 564 626

X-PhiNet (Ir=0.05, wd=1e-4) | 72.9 462 499 823 569 639
X-PhiNet (Ir=0.5, wd=1e-5) 749 459 50.1 827 557 624

Table 14: In transfer learning for object detection, X-PhiNet is comparable to MoCo (He et al.,
2020) and SimSiam. PhiNet is pre-trained by two training recipes similar to those in the SimSiam

paper.

wd | 23 le-3 Se-4 2.5e4 1.25e-4 6.25e-5 3.125e-5 1.5625e-5
SimSiam ‘ 10.00 63.53 90.80 90.05 89.06 79.70 78.14 76.35
MoCo ‘ 87.47 88.11 87.76 87.01 85.79 83.45 81.34 80.44
PhiNet ‘ 10.00 78.33 91.19 90.35 89.34 86.25 83.21 81.60

Table 15: PhiNet is robust to weight decay in transfer learning. Performance comparison of
SimSiam, MoCo, and PhiNet at different weight decay values.

PhiNet demonstrates a higher sensitivity to weight decay. Thus, it seems that our PhiNet can be
extended to object detection without any modifications.

E.6 ON THE AUGMENTATION FOR x

We use the unaugmented view for the Sim-2 loss to simulate a “time difference” between different
views, which is partially supported by the temporal prediction hypothesis. This architecture does
slightly increase the performance. See Table 16 and Figure 10, where “with aug” performs slightly
worse than our proposed architecture while robustness to weight decay is still higher than SimSiam.

E.7 COMPUTATIONAL COSTS

Table 17 shows the memory consumption when training on CIFAR10. There is little overhead for
PhiNet and X-PhiNet over SimSiam, as the maximum memory consumption during training is not
only related to weights, but also to gradients and activation state. In fact, the GPU consumption is
highly dependent on batch size, indicating that the gradient and activation state, which are dependent
on batch size, are dominant in this setting. Additionally, Table 18 includes a comparison of training
times, demonstrating that PhiNet can be trained in time comparable to SimSiam.

Accuracy by Linear Probing (w.r.t. weight decay)
0.0001 5e-05 2e-05 le-05

SimSiam 77.690,67 75.025.92 76.873.13 77.711‘97
X-PhiNet with Aug (mse) 65.9616.24 83.210,15 86.450.25 85.170_54
X-PhiNet with Aug (cos) | 84.31p99  86.400.31  86.96017 84.850.99

X-PhiNet (mse) 69.0214.25 84.240.37 87.300,13 85.110'17
X-PhiNet (COS) 85.800,34 87.290.22 87.46()‘19 85.030_19

Table 16: Even when x is augmented, X-PhiNet performs better than SimSiam (CIFAR-5m).
We used the same setting as in Table 3 in the original paper. “with aug” performs data augmentation
for x, which is not augmented in Table 3.

24



Published as a conference paper at ICLR 2025

Batch Size = 128 Batch Size = 1024
95 —-&- BYOL
i =W ;
R P Y X-PhiNet
g %0 T~ ~m A k. oAl ¥ (mse)
< /’\q/r‘ i M——u SR
— 85 / Z p 7 —e. X-Phi (et
5] ’ 7 > " v \ (mse with aug)
4 o/ X] \ aug
LE o= ’ ‘ F/,/‘ / .
80 : ’ A / \ X-PhiNet
/ / \ (cos)
/ / \
75 - - . X-PhiNet
2718 2~ 13 21 279 2~ 15 2713 211 279 (cos with aug)
weight decay weight decay SimSiam

Figure 10: Even when z is augmented, PhiNet is more robust to weight decay than SimSiam
(CIFAR10). We used the same setting as in Figure 6 in the original paper. “with aug” performs data
augmentation for x, which is not data augmented in Figure 6.

Table 17: Comparison of GPU memory costs. This is a comparison of memory consumption when
training on CIFAR10. We report batch sizes of 128 and 1024.

. Qs Barlow . RM- X-PhiNet X-PhiNet

Batch Size BYOL SimSiam Twins PhiNet SimSiam (MSE) (Cos)
BS=128 4.3 (GB) 326 (GB) 2.79 (GB) 325(GB) 4.06(GB) 3.44(GB) 3.44(GB)
BS=1024 2228 (GB) 17.10(GB) 12.23(GB) 17.18(GB) 21.96(GB) 17.11(GB) 17.11 (GB)

E.8 STABLE RANK OF ADDITIONAL PREDICTOR LAYER

Figure 11 shows the rank for 2 linear layers in additional predictor blocks of PhiNet. We used stable
rank in this figure and it is defined as srank(M) = ||M||% /|| M ||?, which is the lower rank of the
standard rank and is more stable to the small eigenvalues of M. According to this figure, the rank of
the additional layer remains large when the weight decay is small, suggesting that the additional layer
may play a more important role in learning when the weight decay is small.

F EXPERIMENTAL SETTINGS

F.1 SETTINGS FOR TRAINING WITH CIFAR10, CIFAR100 AND STL10

Table 19 shows the model and experimental setup for Figure 6, Table 9, Table 11, Table 12 and
Table 13. Note that in the graph of sensitivity with respect to weight decay, we explored a wider
range of values. For linear probing evaluation, we trained the head layer by SGD for 100 epochs. For
both CIFAR10 and STL10, we used 50,000 samples for training and 10,000 samples for testing. We
have implemented it based on code that is already publicly available'.

F.2 SETTINGS FOR TRAINING ON IMAGENET

In our ImageNet (Russakovsky et al., 2015) experiments, we follow the formal implementation of
SimSiam by Pytorch’ (Chen and He, 2021). Table 20 shows the model and experimental setup for
Table 1. For ImageNet, we used 1,281,167 samples for training and 100,000 samples for testing. We
trained on the three seeds and obtained the mean and variance.

'"https://github.com/PatrickHua/SimSiam
https://github.com/facebookresearch/simsiam

Table 18: Comparison of different models with varying batch sizes.

Batch Size \ SimSiam BYOL Barlow-Twins RM-SimSiam PhiNet X-PhiNet

BS=128 | 6.89(h) 7.09(h)  21.38 (h) 7.76 (h) 6.89 (h)  7.04 (h)
BS=1024 | 6.74(h) 6.51 (h) 7.68 (h) 7.03 (h) 6.44 (h)  6.52 (h)
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Figure 11: The smaller the weight decay, the larger the rank of the additional predictor. We
trained PhiNet on CIFAR10 with SGD and evaluate the rank for layers in additional predictor blocks.

Table 19: The experimental setups of Figure 6, Table 9, Table 11, Table 12 and Table 13.

Optimiser SGD
Momentum 09
Learning Learning Rate 0.03
Epochs 800
Encoder Backbone ResNet18_cifar_variantl
Projector output dimension 2048
Latent dimension m 2048
Predictor h Hidden dimension A 512
Activation function RelLU
Batch normalization Yes
Latent dimension m 2048
Hidden dimension g 512
Predictor g Activation function (Hidden) ReLU
Activation function (Output) Tanh
Batch normalization Yes
Computational resource  GPUs V100 or A100
Table 20: The experimental setups of Table 1.
Optimiser SGD
Momentum 0.9
Learning Learning Rate 0.05
Epochs 100
Encoder Backbone ResNet50
Projector output dimension 2048
Latent dimension m 2048
Predictor h Hidden dimension h 512
edicto Activation function ReLU
Batch normalization Yes
Latent dimension m 2048
Hidden dimension g 512
Predictor g Activation function (Hidden) RelLU
Activation function (Output) Tanh
Batch normalization Yes
Computational resource  GPUs 4xV100
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F.3 SETTINGS FOR TRAINING ON CIFAR-5M

CIFAR-5m (Nakkiran et al., 2021) is a dataset that is sometimes used as a vision dataset for online
learning (Vyas et al., 2023; Sarnthein et al., 2023). We experimented with CIFAR-5m in a setting
similar to online learning. Note that CIFAR-5m has 5m samples, but we chose to train CIFAR-5m
for 8 epochs, as most of the SimSiam training on CIFAR10 involves training for 800 epochs. We
experimented with three learning rates: {0.03, 0.01, 0.003}, and selected the one that yielded the best
results. For Barlow Twins, the learning rate of 0.03 does not converge, so 0.003 is chosen instead.
For all other methods, a learning rate of 0.03 is selected. The model architecture is the same as in
CIFARI10.

F.4 SETTINGS FOR TRAINING ON SPLIT CIFAR10, SPLIT CIFAR100 AND SPLIT-CIFAR-5M

As a benchmark for evaluating continual learning, we used split CIFAR10 and split CI-
FAR100 (Krizhevsky, 2009). Additionally, we created split cifar-Sm, which is inspired by split-
CIFARI10 but uses CIFAR-5m dataset. In split CIFAR10 and split CIFARSm, we split CIFAR10 and
CIFAR-5m into 5 tasks, each of which contains 2 classes. In split CIFAR10 , we split CIFAR100 into
10 tasks, each of which contains 2 classes. The model architecture is the same as in CIFAR10. The
implementation of continual learning is based on the official implementation of Madaan et al. (2022).

We evaluated the results using Average Accuracy and Average Forgetting. The average accuracy after
the model has trained for 7 tasks is defined as:

1 T
Ar = o 2%-7 (10)

where a, ; is the validation accuracy on task ¢ after the model finished task ¢. The average forgetting
is defined as the difference between the maximum accuracy and the final accuracy of each task.
Therefore, average forgetting after the model has trained for 7' tasks can be defined as:

1 T-1

o S 1
T O ey (s~ 0r N
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