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Claim 2. �
ln(ax2) dx = x ln(ax2)− 2x+ C

Proof. Use integration by parts. Let:243

f(x) = ax2

f �(x) = 2ax

u = ln f(x)

du = f �(x)/f(x)dx

dv = dx

v = x

Also note:244

x f �(x)
f(x)

=
2ax2

ax2
= 2

So the original problem can be integrated by parts:245
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A.2 Negative result: probabilistic core-sets249

Instead of using a deterministic algorithm to compute core-sets, we score random batches on their250

likelihood of being a subset of the optimal core-set. The goal is for the concatenation of the best-251

scoring batches with the training set to result in a set of elements that are spread out on the feature252

space and occur in dense regions, minimizing δ by definition.253

Suppose we are interested in classifying whether a real number is positive or not. Figure 8 shows254

the unlabelled data and the result of learning a Gaussian mixture model (GMM) over the features.255

We then use the trained GMM to estimate feature probabilities, which are required for computing256

modified batch-BALD scores (see Appendix A.3). Figure 9 shows that higher scores indicate features257

that are likely spread apart. For random batches sampled from this toy dataset, Figure 10 shows that258

the distribution of scores form a long right tail that contains the most likely core-set centers.259
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Figure 8: Left: collected data with one feature being the value along the real axis. Middle: the true distribution
of the input features. Right: Gaussian mixture with 32 components fit to the collected data. We purposefully
overfit the GMM because the distribution of features is not known a priori and we would like high resolution for
computing joint information later.

Figure 9: Given the trained Gaussian mixture model from Figure 8, we estimate the probability per component for
each element. We use the probabilities to compute a modified batch-BALD joint information score (M-bBALD),
which is positively correlated with entropy across the components. The batches with the highest scores occur at
dense regions but are spread out across the feature distribution. We want to avoid redundant labelling of elements
in the left column. Top row: each figure contains eight dotted lines that represent the locations of elements in
three different batches. Bottom row: corresponding probabilities per GMM component for each element.

In the subsequent iterations, we first construct a new unlabelled data pool that contains features that260

have low probability to have appeared in the labelled pool, according to a fitted GMM on the labelled261

pool. Then, we fit a new GMM on this modified unlabelled pool and repeat the selection algorithm to262

search for the batch with the highest modified batch-BALD score when combined with the existing263

training data. We also experiment with interpolating the modified batch-BALD score with the least264

confidence acquisition metric.265
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Figure 10: The distribution of modified batch-BALD scores for randomly sampled batches have a long right tail
from which we mine for likely core-set elements. Range of scores depends on the number of components in the
Gaussian mixture model.

We plot test accuracy versus number of labelled points for random acquisition (random), maximum266

entropy (max-entropy), least certainty (min-max-probs), probabilistic core-set (probabilistic-coreset)267

and an exploitative version of probabilistic core-set that interpolates with least certainty at a 9:1 ratio268

(probabilistic-coreset-exploitive-0.1). Figures 11 and 12 show that there is modest improvement269

of the core-set variants from the random baseline in both toy datasets, although its significance is270

unknown. The entropy and least certainty methods performed poorly.271

Figure 11: In the toy experiment with 0.5 standard deviation, clusters were mostly separable and core-set variants
dominated all baselines. Shaded area represents one standard deviation.
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Figure 12: In the toy experiment with 1 standard deviation, clusters overlapped substantially and probabilistic
core-set methods formed a modest upper bound in accuracy over all baselines. Shaded area represents one
standard deviation.

Figure 13 shows examples of data points acquired in the toy experiments by probabilistic core-set272

versus the points evaluated to be informative by maximum entropy (Figure 14) and least confidence273

(Figure 15). Whereas the core-set variants prioritized covering the input space, the uncertainty-based274

methods focused on areas of overlapping clusters, which are prone to error and hard to classify.275

Figure 13: Batch-BALD effectively maximized the distance between elements of selected batches.

Figure 14: Maximizing entropy resulted in concentrated sampling in the most uncertain regions.

16



Figure 15: Least confidence also concentrates sampling along uncertain regions.

The poor performance of entropy and uncertainty methods for large batch acquisition in a noisy276

classification dataset agrees with existing work [11, 5, 10]. The cause of this is wasteful labelling277

requests in uncertain regions of features that turned out to be inseparable. In contrast, core-set variants278

and random acquisition are successful because they covered the majority of the input space.279

The effect of increasingly difficult separability on acquisition function efficiency is clear in the toy280

data with 0.5 versus 1 standard deviation. When multiple class distributions overlap substantially,281

their joint distribution density is sampled more frequently under the core-set variants, which is282

harmful because those samples do not improve test accuracy for noisy class boundaries. This suggests283

that class inseparability may play some role in the poor performance of the core-set variants.284

Overall, probabilistic core-sets barely improved from random acquisitions and cost more computation285

than Algorithm 2. Like Sener and Savarese [10], we also conclude with the belief that any method286

that depends on distributional density sampling will have difficulty exceeding random sampling at287

an unknown test because of the obvious fact that i.i.d. samples are already well-represented in the288

target distribution. Then, the main beneficial effect of these density sampling techniques is to reduce289

redundancy, but this may be a rare phenomenon in the typical high dimensional representations of290

under-determined and nonlinear classification tasks.291

A.3 Batch-BALD evaluates the mutual information of batches of data292

Given a distribution of model parameters, Bayesian active learning by disagreement (BALD) evaluates293

the information of a single data point as its marginal entropy penalized with the average entropy294

across the parameter distribution [5]. Intuitively, this selects for samples that elicit low overall295

certainty from the Bayesian model, but high individual certainty from the competing hypotheses296

sampled from its parameter distribution. Naive application of BALD to a batch of data may lead to297

the overestimation of mutual information between elements within the batch [5]. On the other hand,298

Batch-BALD scores their joint information [5].299

The Batch-BALD information metric is useful for identifying likely and different core-set centers in300

two important but different ways from its original setting. First, we fit a GMM and sample its means301

θ from P (θ), which we assume to be uniform. We use these Gaussian means to estimate P (y|x, θ).302

Second, since there may exist multiple means that cover the same peak, optimizing for batch BALD303

identifies peaks with high overall certainty that have low likelihood of intersecting with other peaks.304
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