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1. Qualitative Results

We first present some qualitative reconstruction examples
in Fig. 1. These are the raw outputs of the proposed SfM
pipeline, without further refinement. We point out that our
method produces relatively dense outputs, despite the fact
that it only leverages sparse matches. This is because the in-
verse reprojection function π−1(·) (Section 4.2 of the main
paper) can be used to infer a 3D point for every pixel, i.e. not
just those belonging to sparse matches. Since MASt3R is
limited to image downscaled to 512 pixels in their largest di-
mension, we can typically produce about 200,000 3D points
per image.

2. Other retrieval variants based on MASt3R
features

In the main paper, we propose to use ASMK [10] on the to-
ken features output from the MASt3R encoder, after apply-
ing whitening. In this supplementary material, we compare
this strategy to using a global descriptor representation per
image with a cosine similarity between image representa-
tions. We also compare to a strategy where a small projec-
tor is learned on top of the frozen MASt3R encoder feature
with ASMK, following an approach similar to HOW [11]
and FIRe [13] for training it. Results are reported in Ta-
ble 1.

For the global representation, we experimentally find
that global average pooling performs slightly better than
global max-pooling, and that applying PCA-whitening was
beneficial and report this approach. However, the per-
formance of such a method remains lower than applying
ASMK on the token features (top row).

For learning a projector prior to applying ASMK, we
follow the strategy of HOW and FIRe, which show that a
model can be trained with a standard global representation
obtained by a weighted sum of local features. As training
dataset, we use the same training data as MASt3R, compute

Retrieval Aachen-Day-Night InLoc

Day Night DUC1 DUC2

MASt3R-ASMK 88.7/94.9/98.2 77.5/90.6/97.9 58.1/82.8/94.4 69.5/90.8/92.4
MASt3R-global 86.7/93.7/97.6 68.6/84.8/93.2 60.6/81.8/91.9 66.4/87.8/90.8
MASt3R-proj-ASMK 88.0/94.8/98.2 70.2/88.0/94.2 60.1/80.8/91.4 74.0/92.4/93.1

Table 1. Comparison of retrieval based on MASt3R features.
We compare the visual localization accuracy using top-20 re-
trieved images with ASMK (top row), a global feature representa-
tion obtained by averaging pooling the local features and applying
whitening (middle row), and ASMK when first learning a projec-
tor on top of the MASt3R features (bottom row).

the overlap in terms of 3D points between these image pairs,
and consider as positive pairs any pair with more than 10%
overlap, and as negatives pairs any pair coming from two
different sequences or datasets. While we observe an im-
provement in terms of the retrieval mean-average-precision
metric on an held-out validation set, this does not yield sig-
nificant gains when applied to visual localization (bottom
row). We thus keep the training-free ASMK approach for
MASt3R-SfM.

3. Robustness to pure rotations

We perform additional experiments regarding purely ro-
tational cases, i.e. situations where all cameras share the
same optical center. In such cases, the triangulation step
from traditional SfM pipeline becomes ill-defined and no-
toriously fails. To that aim, we leverage mapping images
from the InLoc dataset [9] which are conveniently gener-
ated as perspective crops (with a 60◦ field-of-view) of 360
panoramic images at three different pitch values, regularly
sampled every 30◦. This leads to bundles of 36 RGB im-
ages that exactly share a common optical center. Using
regular sampling, we select 20 sequences from the DUC1
and DUC2 sets and use them to evaluate rotation estima-
tion accuracy. Results in terms of RRA@5 in Tab. 2 clearly
confirm that methods based on the traditional SfM pipeline
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Figure 1. Qualitative reconstruction results for MASt3R-SfM on ETH-3D (top) and Tanks&Temples (bottom). These are the raw outputs
of the proposed SfM pipeline, without further refinement.



such as COLMAP [7] or VGGSfM [12] do dramatically fail
in such a situation. In contrast, MASt3R-SfM performs
much better, achieving 100% accuracy on some scenes,
even though it also fail in a few cases. Disabling the op-
timization of anchor depth values (i.e. fixing depth to the
canonical depthmaps) slightly improves the performance.
Failure cases. After analyzing the results, we observe that
failures are due to the presence of outlier (false) matches
between similar-looking structures. A few examples of such
wrong matching are given in Fig. 2. These are typically hard
outliers that would pass geometric verification. In fact, the
matching problem in such cases becomes ill-defined, since
even for a human observer it can be challenging to notice
that the two images show different parts of the scene.

4. Additional Results
More comparisons on CO3D and RealEstate10K. We
provide comparisons with further baselines on the CO3D
and RealEstate10K datasets for the cases of 3, 5 and 10
input images in Tab. 3. We observe that MASt3R-SfM
largely outperforms all competing approaches, only neared
by DUSt3R which is much less precise overall.
Detailed Tanks&Temple results. For completeness,
we provide detailed results for every scene of the
Tanks&Temples dataset [3] in Tab. 5. As mentioned in
the main paper, some scenes from T&T are part of the
MegaDepth dataset, and thus were used as training data
for the MASt3R checkpoint. These scenes are individu-
ally marked with a † in Tab. 5 and listed in full in Tab. 4.
Importantly, we do not observe any significant differences
between seen and unseen scenes in terms of accuracies and
comparison with the state of the art. For instance, perfor-
mances on Courtroom, Ignatius or Barn are con-
stantly better than state-of-the-art methods in all metrics for
most numbers of input views.

5. Additional ablations
We study the effect of varying the hyperparameters for the
construction of the sparse scene graph (Section 4.1 of the
main paper) in Fig. 3. Generally increasing the number of
key images (Na) or nearest neighbors (k) leads to improve-
ments in performance, which saturates above Na ≥ 20 or
k ≥ 10.

6. Parametrizations of Cameras
As noted by other authors [4], a clever parametrization of
cameras can significantly accelerate convergence. In the
main paper, we describe a camera Kn = (Kn, Pn) clas-
sically as intrinsic and extrinsic parameters, where

Kn =

 fn 0 cx
0 fn cy
0 0 1

 ∈ R3×3, (1)

Pn =

[
Rn tn
0 1

]
∈ R4×4. (2)

Here, fn > 0 denotes the camera focal, (cx, cy) =
(W/2, H/2) is the optical center, Rn ∈ R3×3 is a rota-
tion matrix typically represented as a quaternion qn ∈ R4

internally, and tn ∈ R3 is a translation.

Camera parametrization. During optimization, 3D
points are constructed using the inverse reprojection func-
tion π−1(·) as a function of the camera intrinsics Kn, ex-
trinsics Pn, pixel coordinates and depthmaps Zn (see Sec-
tion 4.2 of the main paper). One potential issue with this
classical parametrization is that small changes in the ex-
trinsics can typically induce a large change in the recon-
structed 3D points. For instance, small noise on the rota-
tion Rn could result in a potentially large absolute motion
of 3D points, motion whose amplitude would be propor-
tional to the points’ distance to camera (i.e. their depth).
It seems therefore natural to reparametrize cameras so as
to better balance the variations between camera parameters
and 3D points. To do so, we propose to switch the cam-
era rotation center from the optical center to a point ‘in the
middle’ of the 3D point-cloud generated by this camera, or
more precisely, at the intersection of the −→z vector from the
camera center and the median depth plane. In more details,
we construct the extrinsics Pn using a fixed post-translation
T̃n ∈ R4 on the z-axis as as Pn

def
= TnP

′
n, with

T̃n =


1 0 0 0
0 1 0 0
0 0 1 m̃z

n

0 0 0 1

 , (3)

where m̃z
n = median(Z̃n)fn/f̃n is the median canonical

depth for image In modulated by the ratio of the current
focal length w.r.t. the canonical focal f̃n, and P ′

n is again
parameterized as a quaternion and a translation. This way,
rotation and translation noise in Rn are naturally compen-
sated and have a lot less impact on the positions of the re-
constructed 3D points, as illustrated in Tab. 6.

Kinematic chain. A second source of undesirable cor-
relations between camera parameters stems from the intri-
cate relationship between overlapping viewpoints. Indeed,
if two views overlap, then modifying the position or rota-
tion of one camera will most likely also result in a similar
modification of the second camera, since the modification
will impact the 3D points shared by both cameras. Thus,
instead of representing all cameras independently, we pro-
pose to express them relatively to each other using a kine-
matic chain. This naturally conveys the idea than modify-
ing one camera will impact the other cameras by design. In
practice, we define a kinematic tree T = (V,D) over all
cameras V . T consists of a single root node r ∈ V and a
set of directed edges (n → m) ∈ D, with |D| = N − 1
since T is a tree. The pose of all cameras is then computed



7154 false matches
(30° azimut, 0° elevation)                            (240° azimut, 0° elevation)

6659 false matches
(60° azimut, 30° elevation)                            (180° azimut, 30° elevation)
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Figure 2. Illustration of the typical failure case due to false matches. In all failure cases that we have manually reviewed, the root cause
of failure was the presence of wrong matches (outliers) between similar-looking parts of the same scene. Here, we show 3 such wrong pairs
for the InLoc dataset (purely rotational case, specifically for the scene DUC1/007), each time printing the ground-truth cameras’ azimuth
and elevation and a small number of randomly-selected matches (showing all of them would impair readibility).

in sequence, starting from the root as
∀(n → m) ∈ D, Pm = Pn→mPn. (4)

Internally, we thus only store as free variables the set of
poses {Pr} ∩ {Pn→m}(n→m)∈D, each one represented as
mentioned above. In the end, this parametrization results in
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COLMAP [6] 1.0 6.0 4.4 0.5 12.4 0.5 4.4 1.0 1.0 0.5 1.0 2.4 14.4 5.7 7.8 8.4 5.7 0.5 1.3 3.7 4.1
FlowMap [8] 0.3 0.2 0.0 0.2 0.0 0.3 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.1
VGGSfM [12] 2.5 0.0 1.0 0.5 0.0 1.0 0.0 0.2 2.1 0.0 0.0 0.0 2.9 4.1 4.9 0.3 1.0 1.1 3.3 1.6 1.3
ACE-Zero [1] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 89.0 100.0 100.0 99.5

MASt3R-SfM 89.0 0.8 100.0 94.4 89.0 94.4 15.1 94.6 87.5 28.7 100.0 12.9 24.8 48.3 11.0 89.0 94.4 19.0 100.0 51.0 62.2
MASt3R-SfM† 94.4 15.2 99.5 100.0 89.0 94.4 84.0 94.4 94.4 25.1 94.4 23.0 29.7 100.0 30.5 94.4 22.2 23.5 89.0 37.1 66.7

Table 2. Pure Rotation Case Evaluation. RRA@5 (↑) on 20 randomly chosen scenes from the InLoc dataset. MASt3R-SfM† denotes
our approach with disabled depth optimization for better optimization stability.

Methods #Frames Co3Dv2 RealEstate10K
RRA@15 RTA@15 mAA(30) mAA(30)

COLMAP+SPSG 3 ∼22 ∼14 ∼15 ∼23
PixSfM 3 ∼18 ∼8 ∼10 ∼17
Relpose 3 ∼56 - - -
PoseDiffusion 3 ∼75 ∼75 ∼61 - (∼77)
VGGSfM 3 58.7 51.2 45.4 -
DUSt3R 3 95.3 88.3 77.5 69.5
MASt3R-SfM 3 94.7 92.1 85.7 84.3

COLMAP+SPSG 5 ∼21 ∼17 ∼17 ∼34
PixSfM 5 ∼21 ∼16 ∼15 ∼30
Relpose 5 ∼56 - - -
PoseDiffusion 5 ∼77 ∼76 ∼63 - (∼78)
VGGSfM 5 80.4 75.0 69.0 -
DUSt3R 5 95.5 86.7 76.5 67.4
MASt3R-SfM 5 95.0 91.9 86.4 85.3

COLMAP+SPSG 10 31.6 27.3 25.3 45.2
PixSfM 10 33.7 32.9 30.1 49.4
Relpose 10 57.1 - - -
PoseDiffusion 10 80.5 79.8 66.5 48.0 (∼80)
VGGSfM 10 91.5 86.8 81.9 -
DUSt3R 10 96.2 86.8 76.7 67.7
MASt3R-SfM 10 96.0 93.1 88.0 86.8

Table 3. Comparison with the state of the art for multi-view
pose regression on the CO3Dv2 [5] and RealEstate10K [14]
datasets with 3, 5 and 10 random frames. (Parentheses) indi-
cates results obtained after training on RealEstate10K. In contrast,
we report results without training on RealEstate10K.

MegaDepth ID T&T scene
5000 Family
5001 Auditorium
5002 Courthouse
5003 Horse
5004 Francis
5005 Lighthouse
5006 M60

MegaDepth ID T&T scene
5007 Ballroom
5008 Museum
5009 Panther
5010 Playground
5011 Temple
5012 Train
5013 Palace

Table 4. List of T&T scenes that are part of the training of the
MASt3R checkpoint.

exactly the same number of parameters as the classical one.
We experiment with different strategies to construct the

kinematic tree T and report the results in Tab. 6: ‘star’
refers to a baseline where N − 1 cameras are connected
to the root camera, which performs even worse than a clas-
sical parametrization; ‘MST’ denotes a kinematic tree de-
fined as maximum spanning tree over the similarity ma-
trix S; and ‘H. clust.’ refers to a tree formed by hier-
archical clustering using either raw similarities from im-
age retrieval or actual number of correspondences after the
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Figure 3. Pose accuracy (↑) on T&T-200 w.r.t. the number of key
images Na and number of nearest neighbors k

pairwise forward with MASt3R. This latter strategy per-
forms best and significantly improves over previous base-
lines, highlighting the importance of a balanced graph with
approximately log2(N) levels (in comparison, a star-tree
has just 1 level, while a MST tree can potentially have N/2
levels at most). Note that the sparse scene graph G from
Section 4.1 of the main paper and the kinematic tree T share
no relation other than being defined over the same set of
nodes.
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Barn 0.0000 0.1128 0.1101 0.0898 0.1143 0.0011 0.3 2.3 1.0 53.3 46.7 100. 0.3 1.3 0.3 51.3 47.3 100. 8.0 100. 100. 96.0 100. 100.
Caterpillar 0.0631 0.1125 0.1075 0.0301 0.0887 0.0299 15.3 2.3 1.0 92.0 46.7 94.3 17.0 3.0 0.0 92.0 47.0 92.0 60.0 100. 100. 100. 100. 100.
Church 0.0868 0.1097 0.1071 0.0962 0.0936 0.0697 33.3 0.7 1.0 32.7 60.0 50.3 41.0 1.3 0.0 35.7 66.7 45.7 92.0 100. 100. 80.0 100. 100.
Courthouse† 0.0000 0.1060 0.1119 0.1126 0.1119 0.1040 0.0 1.0 1.3 17.3 16.3 44.3 0.0 0.0 0.7 18.0 23.3 43.0 8.0 100. 100. 100. 96.0 100.
Ignatius 0.0129 0.1129 0.1090 0.0005 0.0004 0.0002 92.0 1.3 1.0 100. 100. 100. 100. 2.0 0.7 100. 100. 100. 100. 100. 100. 100. 100. 100.
Meetingroom 0.0000 0.1125 0.1046 0.0559 0.0996 0.0049 0.3 2.0 1.0 38.7 50.0 85.7 0.3 0.3 1.7 36.3 46.3 82.3 8.0 100. 100. 100. 100. 100.
Truck 0.0916 0.1145 0.1072 0.0012 0.0981 0.0010 27.7 2.3 0.3 99.3 42.0 99.7 27.0 1.7 0.3 100. 40.7 100. 80.0 100. 100. 100. 100. 100.
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Family† 0.0023 0.1099 0.1090 0.0043 0.0045 0.0042 17.0 1.0 4.3 98.3 98.3 95.0 18.3 1.7 0.3 73.7 75.3 78.0 44.0 100. 100. 100. 100. 100.
Francis† 0.0001 0.1084 0.1138 0.0024 0.0898 0.0176 15.0 0.3 3.0 98.0 42.3 76.3 15.0 1.0 0.3 92.0 43.7 75.3 40.0 100. 100. 100. 100. 100.
Horse† 0.0055 0.1120 0.1056 0.0058 0.0072 0.0052 16.7 1.3 1.7 89.3 88.7 74.3 14.7 1.7 0.0 65.7 67.0 65.0 52.0 100. 100. 100. 100. 100.
Lighthouse† 0.0411 0.1146 0.1128 0.0034 0.0853 0.0007 0.3 0.7 1.3 97.0 61.7 100. 0.7 0.3 0.7 100. 64.0 100. 40.0 100. 100. 100. 100. 100.
M60† 0.0407 0.1118 0.1120 0.0970 0.0461 0.0005 2.0 2.0 2.7 73.7 83.3 99.7 2.0 2.0 2.3 77.3 84.3 100. 20.0 100. 100. 100. 100. 100.
Panther† 0.0000 0.1147 0.1125 0.0016 0.1122 0.0005 2.0 0.7 2.0 99.3 48.0 99.7 2.0 0.0 2.0 100. 48.7 100. 16.0 100. 100. 100. 100. 100.
Playground† 0.0000 0.1101 0.1065 0.0017 0.0009 0.0004 0.3 0.7 3.0 99.7 100. 100. 0.3 2.0 2.0 100. 100. 100. 8.0 100. 100. 100. 100. 100.
Train† 0.0807 0.1116 0.1091 0.0777 0.1152 0.0770 5.7 1.3 0.7 61.0 28.7 65.0 12.3 0.0 0.0 64.3 28.7 64.3 68.0 100. 100. 100. 100. 100.
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d

Auditorium† 0.0630 0.1071 0.1087 0.1063 0.1066 0.1067 0.0 1.3 2.0 2.3 3.3 2.0 0.0 0.3 0.3 0.3 0.3 0.3 44.0 100. 100. 100. 100. 100.
Ballroom† 0.0912 0.1114 0.1129 0.1108 0.0955 0.0618 11.3 2.0 1.3 12.3 31.0 20.7 11.7 4.0 2.7 24.7 32.3 24.7 64.0 100. 100. 100. 100. 100.
Courtroom 0.0865 0.1107 0.1102 0.1057 0.1048 0.0847 15.3 4.0 1.7 1.7 12.0 44.3 15.3 2.0 0.0 0.3 23.0 42.0 48.0 100. 100. 84.0 92.0 100.
Museum† 0.1012 0.1130 0.1059 0.0994 0.1077 0.0969 2.0 0.3 0.3 2.0 7.0 11.0 2.7 0.0 0.0 2.0 12.3 12.0 84.0 100. 100. 76.0 100. 100.
Palace† 0.0321 0.1136 0.0684 0.1057 0.1126 0.0273 5.0 0.7 1.0 13.7 22.3 38.3 5.0 0.0 0.7 12.3 13.0 34.0 28.0 100. 100. 88.0 100. 100.
Temple† 0.0069 0.1147 0.1030 0.1090 0.1089 0.0122 2.3 0.7 0.7 24.3 33.7 75.0 2.0 0.0 0.3 24.7 33.7 69.7 20.0 100. 100. 96.0 100. 100.
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Barn 0.0003 0.0786 0.0793 0.0641 0.0007 0.0005 20.7 1.7 3.4 33.1 99.7 99.9 20.7 1.5 0.7 24.3 100. 100. 46.0 100. 100. 96.0 100. 100.
Caterpillar 0.0313 0.0802 0.0795 0.0162 0.0161 0.0161 55.0 4.5 3.5 95.2 96.9 96.7 67.2 4.4 2.3 96.0 96.0 96.0 92.0 100. 100. 100. 100. 100.
Church 0.0389 0.0681 0.0799 0.0436 0.0443 0.0707 59.6 9.8 1.2 64.2 71.8 49.4 60.5 16.2 0.7 70.3 85.0 47.5 96.0 100. 100. 98.0 100. 100.
Courthouse† 0.0001 0.0784 0.0799 0.0694 0.0752 0.0738 2.3 1.4 1.8 35.1 32.6 25.9 2.3 0.1 0.5 34.7 33.2 25.8 16.0 100. 100. 100. 100. 100.
Ignatius 0.0008 0.0118 0.0808 0.0004 0.0004 0.0001 91.9 95.8 1.4 99.9 100. 100. 92.1 100. 0.5 100. 100. 100. 96.0 100. 100. 100. 100. 100.
Meetingroom 0.0175 0.0770 0.0694 0.0159 0.0767 0.0141 8.2 7.0 2.1 81.7 43.3 83.7 8.2 5.6 1.3 83.1 37.6 86.4 32.0 100. 100. 100. 100. 100.
Truck 0.0729 0.0734 0.0773 0.0009 0.0008 0.0005 38.0 8.5 3.0 99.5 99.8 99.8 38.4 5.7 2.0 100. 100. 100. 86.0 100. 100. 100. 100. 100.

In
te

rm
ed

ia
te

Family† 0.0071 0.0035 0.0176 0.0030 0.0029 0.0028 53.6 91.6 30.9 98.3 95.8 96.7 46.4 86.4 17.8 77.6 81.0 81.1 96.0 100. 100. 100. 100. 100.
Francis† 0.0451 0.0796 0.0784 0.0013 0.0134 0.0201 37.4 1.6 2.4 98.4 96.0 38.4 37.3 6.2 3.3 100. 96.0 36.4 78.0 100. 100. 100. 100. 100.
Horse† 0.0103 0.0742 0.0737 0.0039 0.0036 0.0036 66.3 4.7 5.5 90.3 73.7 75.8 61.5 8.7 1.8 66.4 67.0 65.9 100. 100. 100. 100. 100. 100.
Lighthouse† 0.0009 0.0795 0.0762 0.0017 0.0659 0.0003 24.5 0.8 0.5 98.7 65.3 100. 24.5 0.0 0.0 100. 67.2 100. 50.0 100. 100. 100. 100. 100.
M60† 0.0002 0.0784 0.0800 0.0018 0.0006 0.0003 9.7 2.8 1.5 98.4 99.8 100. 9.8 3.0 0.8 100. 100. 100. 32.0 100. 100. 100. 100. 100.
Panther† 0.0001 0.0762 0.0779 0.0041 0.0734 0.0004 2.9 0.7 2.0 96.1 51.6 99.8 2.9 0.3 1.1 96.0 51.9 100. 18.0 100. 100. 100. 100. 100.
Playground† 0.0092 0.0807 0.0653 0.0010 0.0003 0.0003 0.2 1.4 3.0 99.7 100. 100. 0.2 0.7 1.2 100. 100. 100. 10.0 100. 100. 100. 100. 100.
Train† 0.0663 0.0810 0.0789 0.0545 0.0736 0.0530 11.6 1.3 1.1 55.8 28.7 64.7 25.8 0.3 1.1 58.7 29.9 64.6 70.0 100. 100. 98.0 100. 100.

A
dv

an
ce

d

Auditorium† 0.0789 0.0802 0.0790 0.0760 0.0756 0.0756 0.1 0.8 0.3 1.2 1.8 1.5 0.1 0.9 0.7 1.0 1.0 1.1 22.0 100. 100. 96.0 100. 100.
Ballroom† 0.0656 0.0775 0.0777 0.0545 0.0732 0.0677 15.6 1.6 3.8 37.1 25.6 19.1 19.4 5.2 2.2 47.8 31.3 23.4 68.0 100. 100. 100. 100. 100.
Courtroom 0.0794 0.0793 0.0754 0.0819 0.0649 0.0531 17.1 3.6 0.4 25.3 59.7 77.3 18.5 3.1 0.1 27.4 68.4 78.4 68.0 100. 100. 98.0 100. 100.
Museum† 0.0636 0.0788 0.0723 0.0804 0.0767 0.0675 9.4 0.8 0.7 1.1 9.5 11.0 9.5 1.8 0.4 1.1 15.7 11.0 78.0 100. 100. 94.0 100. 100.
Palace† 0.0199 0.0807 0.0607 0.0803 0.0547 0.0238 35.3 0.4 1.6 5.3 13.6 44.8 33.3 0.1 1.1 9.2 11.5 49.3 70.0 100. 100. 96.0 100. 100.
Temple† 0.0041 0.0809 0.0753 0.0724 0.0727 0.0029 16.7 0.7 0.9 33.5 51.8 87.3 14.2 0.1 0.5 31.6 50.5 84.7 46.0 100. 100. 96.0 100. 100.

10
0

vi
ew

s
Tr

ai
n

Barn 0.0301 0.0555 0.0316 0.0557 0.0004 0.0019 72.9 12.0 1.6 12.9 99.9 97.9 72.5 9.4 0.6 11.3 100. 98.0 99.0 100. 100. 92.0 100. 100.
Caterpillar 0.0289 0.0119 0.0455 0.0111 0.0111 0.0112 56.7 77.5 20.9 95.4 96.9 95.3 61.8 54.8 20.2 96.0 96.0 94.1 98.0 100. 100. 100. 100. 100.
Church 0.0298 0.0368 0.0516 0.0296 0.0348 0.0353 65.9 67.5 1.1 61.1 76.0 63.1 66.6 77.3 0.9 72.1 86.7 63.2 99.0 100. 100. 97.0 99.0 100.
Courthouse† 0.0516 0.0572 0.0548 0.0561 0.0564 0.0465 3.8 0.6 0.5 18.9 51.5 24.4 3.8 0.1 0.8 20.0 50.6 20.4 27.0 100. 100. 96.0 100. 100.
Ignatius 0.0100 0.0007 0.0469 0.0002 0.0002 0.0001 96.0 99.9 16.4 100. 100. 100. 100. 100. 9.6 100. 100. 100. 100. 100. 100. 100. 100. 100.
Meetingroom 0.0097 0.0525 0.0457 0.0411 0.0135 0.0089 58.2 7.1 8.3 79.7 83.8 85.1 50.9 6.7 5.1 78.9 82.3 86.1 84.0 100. 100. 100. 100. 100.
Truck 0.0208 0.0008 0.0170 0.0005 0.0005 0.0003 92.1 99.6 32.8 99.7 99.8 99.7 92.1 100. 15.2 100. 100. 100. 100. 100. 100. 100. 100. 100.

In
te

rm
ed

ia
te

Family† 0.0047 0.0034 0.0040 0.0446 0.0021 0.0019 58.8 83.7 70.4 48.9 96.3 96.9 50.0 71.5 50.0 43.6 80.8 81.3 100. 100. 100. 100. 100. 100.
Francis† 0.0400 0.0077 0.0547 0.0009 0.0002 0.0027 51.8 45.0 0.4 98.7 99.9 88.1 51.1 22.6 0.2 100. 100. 72.6 100. 100. 100. 100. 100. 100.
Horse† 0.0039 0.0054 0.0142 0.0026 0.0025 0.0026 70.2 67.2 36.3 91.7 73.9 75.9 68.6 42.1 14.6 68.6 68.0 68.0 100. 100. 100. 100. 100. 100.
Lighthouse† 0.0090 0.0571 0.0536 0.0014 0.0479 0.0003 83.7 1.4 1.3 97.2 66.9 99.8 90.2 0.9 0.6 100. 68.9 100. 99.0 100. 100. 100. 100. 100.
M60† 0.0019 0.0547 0.0573 0.0057 0.0003 0.0002 48.9 28.7 8.1 93.1 99.9 100. 50.2 31.0 6.8 92.1 100. 100. 71.0 100. 100. 99.0 100. 100.
Panther† 0.0244 0.0521 0.0561 0.0004 0.0521 0.0002 28.2 18.0 1.6 99.2 51.9 99.5 27.2 15.2 1.6 100. 52.4 100. 70.0 100. 100. 100. 100. 100.
Playground† 0.0002 0.0570 0.0527 0.0004 0.0002 0.0002 14.2 0.7 8.6 99.9 100. 100. 14.2 0.3 6.2 100. 100. 100. 38.0 100. 100. 100. 100. 100.
Train† 0.0533 0.0564 0.0392 0.0373 0.0554 0.0372 24.6 0.9 4.1 66.4 31.6 65.6 42.7 1.5 3.9 65.0 37.2 65.0 99.0 100. 100. 100. 100. 100.

A
dv

an
ce

d

Auditorium† 0.0481 0.0555 0.0550 0.0536 0.0532 0.0532 1.5 1.2 0.5 2.1 1.5 1.6 1.2 2.1 0.3 1.1 1.2 1.2 94.0 100. 100. 100. 100. 100.
Ballroom† 0.0477 0.0531 0.0531 0.0431 0.0491 0.0377 27.6 6.6 2.3 36.0 32.9 20.2 38.2 9.1 2.9 47.9 41.8 25.0 97.0 100. 100. 98.0 100. 100.
Courtroom 0.0526 0.0525 0.0529 0.0576 0.0461 0.0398 41.2 15.2 0.6 45.2 64.6 72.3 42.3 18.6 0.4 47.4 66.3 71.8 88.0 100. 100. 100. 100. 100.
Museum† 0.0502 0.0517 0.0526 0.0554 0.0481 0.0502 8.1 7.8 0.4 8.7 13.4 11.7 8.1 8.7 0.4 9.2 14.9 12.5 99.0 100. 100. 98.0 100. 100.
Palace† 0.0167 0.0572 0.0480 0.0590 0.0419 0.0205 38.1 1.7 1.1 7.1 21.2 38.1 34.2 1.2 1.4 9.2 16.6 30.0 79.0 100. 100. 90.0 99.0 100.
Temple† 0.0210 0.0575 0.0499 0.0526 0.0528 0.0025 14.8 0.5 2.2 35.7 54.5 83.9 9.0 0.0 0.9 32.9 52.3 82.9 58.0 100. 100. 99.0 100. 100.

20
0
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ew

s
Tr
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n

Barn 0.0222 0.0317 0.0199 - - 0.0010 73.4 44.1 29.8 - - 93.0 73.0 32.0 22.4 - - 89.7 100. 100. 100. - - 100.
Caterpillar 0.0160 0.0076 0.0100 0.0076 - 0.0075 73.3 93.8 53.0 94.4 - 95.9 85.4 82.6 43.1 96.0 - 96.0 100. 100. 100. 100. - 100.
Church 0.0274 0.0218 0.0320 - - 0.0212 65.7 71.6 2.4 - - 65.5 82.6 84.6 1.9 - - 66.4 100. 100. 100. - - 100.
Courthouse† 0.0406 0.0407 0.0389 - 0.0404 0.0303 28.0 0.7 3.2 - 35.1 30.1 27.9 0.1 1.8 - 33.4 23.6 75.0 100. 100. - 100. 100.
Ignatius 0.0218 0.0004 0.0124 0.0004 0.0002 0.0001 68.7 100. 33.1 98.8 99.9 100. 100. 100. 22.2 99.0 100. 100. 100. 100. 100. 99.5 100. 100.
Meetingroom 0.0145 0.0060 0.0329 - 0.0063 0.0063 68.9 81.7 13.6 - 88.1 88.5 69.5 88.0 8.9 - 84.4 90.9 100. 100. 100. - 100. 100.
Truck 0.0002 0.0007 0.0034 0.0004 - 0.0003 99.9 99.7 78.1 99.8 - 99.8 100. 100. 85.8 100. - 100. 100. 100. 100. 100. - 100.

In
te

rm
ed

ia
te

Family† 0.0032 0.0014 0.0028 0.0015 - 0.0274 62.4 98.3 69.2 98.2 - 25.0 50.4 82.0 50.4 79.0 - 23.2 100. 100. 100. 100. - 100.
Francis† 0.0001 0.0101 0.0062 0.0097 - 0.0040 100. 80.3 56.4 90.8 - 77.6 100. 51.2 54.7 92.1 - 60.7 100. 100. 100. 100. - 100.
Horse† 0.0023 0.0019 0.0021 0.0018 0.0018 0.0019 74.0 81.5 77.7 92.1 74.2 73.8 69.3 67.8 57.4 69.0 68.5 63.0 100. 100. 100. 100. 100. 100.
Lighthouse† 0.0001 0.0192 0.0377 0.0010 - 0.0013 98.0 31.1 1.9 96.7 - 98.8 98.0 28.0 1.9 100. - 98.9 99.0 100. 100. 100. - 100.
M60† 0.0062 0.0004 0.0351 - - 0.0002 73.7 99.9 21.4 - - 100. 100. 100. 20.9 - - 100. 100. 100. 100. - - 100.
Panther† 0.0011 0.0004 0.0177 0.0236 0.0003 0.0002 92.8 99.5 32.3 55.9 99.3 99.5 100. 100. 28.8 55.6 100. 100. 100. 100. 100. 100. 100. 100.
Playground† 0.0371 0.0071 0.0174 0.0003 - 0.0001 26.2 60.0 38.2 99.7 - 100. 61.5 62.6 39.4 100. - 100. 100. 100. 100. 100. - 100.
Train† 0.0362 0.0270 0.0297 - - 0.0264 27.2 59.4 18.0 - - 59.4 47.8 61.1 12.4 - - 64.5 100. 100. 100. - - 100.

A
dv

an
ce

d

Auditorium† 0.0374 0.0389 0.0395 - - 0.0378 1.4 1.2 0.8 - - 1.3 1.5 1.7 1.2 - - 1.6 100. 100. 100. - - 100.
Ballroom† 0.0365 0.0243 0.0347 0.0265 - 0.0264 26.8 35.7 7.1 36.9 - 25.7 46.5 50.1 7.0 54.6 - 42.4 98.5 100. 100. 100. - 100.
Courtroom 0.0353 0.0353 0.0367 - - 0.0291 61.4 51.7 1.4 - - 65.8 62.0 62.5 1.3 - - 67.1 99.5 100. 100. - - 100.
Museum† 0.0341 0.0360 0.0383 - - 0.0351 15.7 11.3 0.6 - - 11.9 15.6 13.1 0.5 - - 11.4 99.0 100. 100. - - 100.
Palace† 0.0124 0.0405 0.0233 - 0.0302 0.0142 45.9 2.7 3.3 - 31.7 42.1 44.1 1.7 3.1 - 26.2 49.2 87.0 100. 100. - 100. 100.
Temple† 0.0091 0.0404 0.0373 - 0.0358 0.0021 29.0 0.6 0.6 - 57.0 83.1 23.8 0.1 0.5 - 55.2 83.9 79.5 100. 100. - 100. 100.
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Barn GT 0.0216 - - 0.0002 0.0020 GT 55.6 - - 99.8 85.6 GT 56.1 - - 100. 52.6 GT 100. - - 100. 100.
Caterpillar GT 0.0053 - - - 0.0053 GT 95.6 - - - 92.3 GT 87.3 - - - 84.2 GT 100. - - - 100.
Church GT 0.0128 - - - 0.0139 GT 76.3 - - - 16.8 GT 90.5 - - - 11.6 GT 100. - - - 100.
Courthouse† GT 0.0155 - - - 0.0130 GT 45.0 - - - 9.9 GT 44.1 - - - 8.8 GT 100. - - - 100.
Ignatius GT 0.0003 0.0033 - 0.0001 0.0045 GT 99.9 70.0 - 99.9 60.1 GT 100. 62.5 - 100. 43.6 GT 100. 100. - 100. 100.
Meetingroom GT 0.0286 0.0087 - 0.0046 0.0046 GT 38.5 39.8 - 89.0 89.9 GT 39.3 26.3 - 84.1 92.6 GT 100. 100. - 100. 100.
Truck GT 0.0006 0.0039 - 0.0003 0.0002 GT 99.7 69.6 - 99.8 99.7 GT 100. 53.4 - 100. 100. GT 100. 100. - 100. 100.

In
te

rm
ed

ia
te

Family† GT 0.0162 - - - 0.0094 GT 44.6 - - - 25.9 GT 38.9 - - - 22.3 GT 100. - - - 100.
Francis† GT 0.0115 0.0039 - 0.0002 0.0051 GT 79.0 67.7 - 99.7 41.0 GT 57.4 57.6 - 100. 17.0 GT 100. 100. - 100. 100.
Horse† GT 0.0012 - - - 0.0148 GT 81.8 - - - 6.3 GT 68.2 - - - 6.4 GT 100. - - - 100.
Lighthouse† GT 0.0111 0.0260 - 0.0282 0.0038 GT 38.8 9.5 - 66.0 72.1 GT 30.6 4.8 - 66.3 50.8 GT 100. 100. - 100. 100.
M60† GT 0.0003 0.0258 - 0.0004 0.0003 GT 99.9 48.3 - 99.8 100. GT 100. 50.4 - 100. 100. GT 100. 100. - 100. 100.
Panther† GT 0.0003 0.0026 - 0.0003 0.0002 GT 99.5 77.6 - 99.1 99.5 GT 100. 100. - 100. 100. GT 100. 100. - 100. 100.
Playground† GT 0.0017 0.0042 - 0.0003 0.0006 GT 85.5 63.8 - 99.9 99.3 GT 82.7 49.1 - 100. 99.3 GT 100. 100. - 100. 100.
Train† GT 0.0216 0.0233 - 0.0293 0.0230 GT 62.5 29.2 - 41.8 15.8 GT 62.6 18.4 - 42.8 10.6 GT 100. 100. - 100. 100.

A
dv

an
ce

d

Auditorium† GT 0.0335 0.0341 - 0.0326 0.0326 GT 1.1 1.4 - 1.7 1.5 GT 1.6 1.3 - 1.7 1.7 GT 100. 100. - 100. 100.
Ballroom† GT 0.0196 0.0199 - 0.0199 0.0201 GT 43.2 16.7 - 44.4 29.6 GT 56.4 14.1 - 56.0 43.8 GT 100. 100. - 100. 100.
Courtroom GT 0.0280 0.0308 - 0.0276 0.0265 GT 54.1 3.6 - 66.3 69.1 GT 62.5 5.3 - 66.8 67.2 GT 100. 100. - 100. 100.
Museum† GT 0.0287 0.0275 - 0.0281 0.0290 GT 11.1 1.2 - 13.5 11.0 GT 13.5 0.8 - 14.8 12.3 GT 100. 100. - 100. 100.
Palace† GT 0.0276 - - 0.0198 0.0102 GT 3.9 - - 27.7 35.7 GT 3.1 - - 25.6 27.0 GT 100. - - 100. 100.
Temple† GT 0.0334 0.0271 - 0.0289 0.0030 GT 0.9 1.2 - 60.7 72.2 GT 0.4 0.5 - 55.5 80.7 GT 100. 100. - 100. 100.

Table 5. Detailed per-scene results on Tanks & Temples in terms of ATE, pose accuracy (RTA@5 and RRA@5) and registration rate
(Reg.). For easier readability, we color-code the results as a linear gradient between worst and best per-row result for that metric. Reg. is
color-coded with linear gradient between 0% and 100%. We mark missing results with - (not converged / runtime errors / ground truth).
Scenes that are part of the training set of MegaDepth (i.e. used to train the MASt3R checkpoint) are marked with a †.

ATE↓ RTA@5↑ RRA@5↑
Camera reparametrization

No 0.01445 56.0 52.5
Yes 0.01243 70.9 67.6

Kinematic chain
No 0.01675 52.2 50.0
Star 0.02013 42.0 39.2
MST 0.01600 64.4 62.1
H. clust. (sim) 0.01517 64.2 62.6
H. clust (#corr) 0.01243 70.9 67.6

Table 6. Effects of camera reparametrization and kinematic chain
on T&T-200.
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