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Abstract

Recent advancements in off-policy Reinforcement
Learning (RL) have significantly improved sam-
ple efficiency, primarily due to the incorpora-
tion of various forms of regularization that en-
able more gradient update steps than traditional
agents. However, many of these techniques have
been tested in limited settings, often on tasks
from single simulation benchmarks and against
well-known algorithms rather than a range of
regularization approaches. This limits our un-
derstanding of the specific mechanisms driving
RL improvements. To address this, we imple-
mented over 60 different off-policy agents, each
integrating established regularization techniques
from recent state-of-the-art algorithms. We tested
these agents across 14 diverse tasks from 2 sim-
ulation benchmarks, measuring training metrics
related to overestimation, overfitting, and plas-
ticity loss — issues that motivate the examined
regularization techniques. Our findings reveal that
while the effectiveness of a specific regularization
setup varies with the task, certain combinations
consistently demonstrate robust and superior per-
formance. Notably, a simple Soft Actor-Critic
agent, appropriately regularized, reliably finds
a better-performing policy within the training
regime, which previously was achieved mainly
through model-based approaches.
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1. Introduction
In recent years, substantial improvements have been made
in the domain of deep reinforcement learning, as evidenced
by breakthroughs such as mastering complex games like
Dota 2 (OpenAI et al., 2019), Go (Silver et al., 2017) and
achieving control over nuclear fusion plasma (Degrave et al.,
2022). In particular, off-policy RL has witnessed a surge
of approaches reporting state-of-the-art results (Li et al.,
2022; Hafner et al., 2023; Lee et al., 2023), including appli-
cation to real robots (Smith et al., 2022). In general, those
approaches build upon Soft Actor-Critic (SAC) algorithm
with increased number of gradient steps per environment
steps (Replay Ratio (RR)) used in conjunction with some
form of regularization that stabilizes the learning in high
RR setting (Janner et al., 2019; Chen et al., 2020; Hiraoka
et al., 2021; Nikishin et al., 2022; Li et al., 2022; D’Oro
et al., 2022; Cetin & Celiktutan, 2023). These approaches
for regularization encompass considerations of reducing
overfitting (Li et al., 2022) (network regularization), reduc-
ing critic overestimation (Cetin & Celiktutan, 2023) (critic

regularization) or reducing the rate of plasticity loss (Lee
et al., 2023) (plasticity regularization).

Despite significant advancements, the understanding of how
different regularization techniques synergistically improve
off-policy agent performance is still limited (Hiraoka et al.,
2021; Lee et al., 2023). Moreover, most methods are tested
in narrow contexts, mainly in locomotion or manipulation
tasks, often restricted to a single simulation benchmark (Fu-
jimoto et al., 2018; Haarnoja et al., 2018; Chen et al., 2020;
Moskovitz et al., 2021; D’Oro et al., 2022), leading to ques-
tions about their broad applicability and robustness. In this
study, our goal is to consolidate these lessons and address
the following research questions: Which regularization tech-

niques lead to robust performance improvements across

diverse tasks and agent designs? Can generic regulariza-

tion techniques outperform domain-specific RL techniques

that directly use the MDP structure?. We extend the scope
of prior research by examining over 60 design choices im-
plemented within the Soft Actor-Critic framework. We test a
diverse array of tasks, including both locomotion and manip-
ulation, within two simulation benchmarks and two replay
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ratio regimes. This comprehensive approach offers a deeper
understanding of the effectiveness of these regularization
techniques in various settings.

Our main result is a bitter lesson: across varied tasks, gen-
eral neural network regularizers significantly outperform
most RL-specific algorithmic improvements in terms of
agent performance. Specifically, we find general methods
that are motivated by stabilization of gradient-based learning
significantly outperform RL-specific algorithmic improve-
ments across a variety of environments. Such emphasis
on generality is in line with the celebrated “Bitter Lesson”
essay (Sutton, 2019). Notably, network regularization en-
ables agents to find effective policies on tasks previously
impossible for model-free agents, such as those in the dog
domain. Our findings also show that layer normalisation is
more effective in reducing overestimation than techniques
specifically designed for mitigating Q-value overestimation
in critic networks. Consequently, we show that replacing
the ubiquitous Clipped Double Q-learning with network
regularization techniques leads to significant performance
gains. Our research further explores the impact of over-
estimation, overfitting, and plasticity loss on agent perfor-
mance in a unified experimental setup. We examine the
correlation between these factors and agent performance,
showing a strong negative correlation for value overesti-
mation and agent plasticity metrics. These influences vary
significantly across environments, underscoring the complex
nature of their effects on learning. A key observation is the
environment-dependent performance of various methods.
Strategies excelling in locomotion tasks may falter in ma-
nipulation scenarios and vice versa. Comparisons between
experiments on the DeepMind Control Suite (Tassa et al.,
2018) and MetaWorld (Yu et al., 2019) demonstrate the ne-
cessity for diverse benchmarking in research, highlighting
the value of expansive experimental setups.

1. Our study presents an extensive empirical analysis of
various regularization techniques in off-policy RL. We
evaluate the effectiveness, robustness, and generality of
12 SAC design choices derived from recent literature,
examining their diverse interactions. This encompasses
testing 64 model designs across 14 tasks from two
benchmarks under two replay ratio regimes.

2. Our findings show that combining well-established
network regularization techniques with methods that
prevent plasticity loss effectively addresses the value
estimation problem, eliminating the need for critic
regularization. Specifically, we observe that in net-
work/plasticity regularized agents using critic regular-
ization often leads to significant performance degra-
dation. Leveraging these insights, we demonstrate
that integrating specific regularization methods into the
basic Soft Actor-Critic framework leads to state-of-the-

art performance in dog domain tasks for model-free
approaches.

3. Our study investigates the correlation between overesti-
mation, overfitting, and plasticity proxies, and their im-
pact on agent performance. We discover that interven-
tions aimed at one type of issue, such as full-parameter
resets, significantly affect proxies for issues other than
plasticity such as overestimation and overfitting, often
more than interventions specifically designed for those
other issues. This suggests that RL agents encounter a
range of complex problems that collectively affect the
learning process.

2. Background
We consider a Markov Decision Process (MDP) (Puterman,
2014; Sutton & Barto, 2018) which is described via a tuple
(S,A, r, p, �), where states S and actions A are continu-
ous, r(s, a) is the transition reward, p(s0|s, a) is a transition
mapping, p0 is the starting state distribution and � 2 (0, 1]
is the discount factor. Policy, denoted as ⇡(a|s) is a state-
conditioned action distribution. Maximum Entropy Rein-
forcement Learning (MaxEnt RL) objective (Ziebart et al.,
2008; Haarnoja et al., 2017) is to find a policy that maxi-
mizes the expected sum of discounted returns and policy en-
tropies, or equivalently expected initial state values accord-
ing to ⇡⇤ = argmaxEp0V

⇡(s0). The Q-value is defined
as Q⇡(s, a) = r(s, a) + �V ⇡(s0). State value is defined by
V ⇡(s) = E⇡(Q⇡(s, a)�↵ log ⇡(a|s)), where ↵ log ⇡(a|s)
is the maximum entropy term. In actor-critic, policy and Q-
value functions are represented by parameterized function
approximators (Silver et al., 2014). Policy parameters ✓ are
updated to maximize the value approximation at sampled
states s from an off-policy replay buffer D (Fujimoto et al.,
2018; Haarnoja et al., 2018):

✓⇤ = argmax
✓

E
D
Q�(s, a)� ↵ log ⇡✓(a|s), a ⇠ ⇡✓. (1)

The critic parameters � are updated by minimizing the
temporal-difference (Silver et al., 2014):

�⇤ = argmin
�

E
D

�
Q�(s, a)� r(s, a)� �V̄�(s

0)
�2
, (2)

where V̄�(s0) is the target network (Mnih et al., 2015).

2.1. Overestimation

Q-learning methods employing function approximation
have been observed to exhibit a bias toward overestima-
tion, a phenomenon critical to the training process (Thrun
& Schwartz, 2014; Fujimoto et al., 2018). Positive bias
stems from the policy being trained to locally maximize
action-value estimates, leading its actions to exploit poten-
tial model errors for higher scores. Modern actor-critic
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algorithms leverage a variety of countermeasures to overes-
timation of Q-value targets, with Clipped Double Q-learning
(CDQ) (Fujimoto et al., 2018) being most used by many
other algorithms (Haarnoja et al., 2018; Chen et al., 2020;
Hiraoka et al., 2021). In CDQ, the algorithm maintains two
critics and uses their minimum as an approximate Q-value
lower bound. The CDQ was generalized to the following
pessimistic objective (Ciosek et al., 2019; Moskovitz et al.,
2021; Cetin & Celiktutan, 2023):

Q�
�(s, a) = Qµ

�(s, a)� �Q�
�(s, a). (3)

We denote the level of pessimism as �, and the critic ensem-
ble mean and standard deviation as Qµ

� and Q�
� respectively.

In particular, for � = 1, the above rule is exactly equal to
the CDQ minimum (Ciosek et al., 2019; Cetin & Celiktutan,
2023). The success of pessimistic updates led to various
methods for adjusting � online. A recent approach, Gen-
eralized Pessimism Learning (GPL) (Cetin & Celiktutan,
2023), estimates the critic approximation error and modi-
fies � accordingly. A different strategy, Tactical Optimism
and Pessimism (TOP) (Moskovitz et al., 2021), adjusts pes-
simism independent of the estimated approximation error.
Specifically, TOP uses an external bandit controller to max-
imize online episodic rewards. Whereas this controller is
aligned with the RL objective, it only allows for discrete
values of pessimism.

2.2. Overfitting

Overfitting, while not commonly scrutinized in reinforce-
ment learning, has gained attention in recent discussions (Li
et al., 2022) as a phenomenon correlated with performance
decline in models characterized by a high ratio of updates
to data. To evaluate overfitting in agents, Li et al. (2022)
utilizes a validation dataset that consists of samples gath-
ered using the same policy as the canonical replay buffer.
The validation buffer is established to provide an unbiased
assessment of the critic error in experiences that were not
used in the learning. Although there are many strategies
to deal with overfitting in supervised learning, only a few
of them were applied in the context of RL. To this end, ap-
plication of Weight Decay (WD) (Schwarzer et al., 2023),
Layer Normalization (LN) (Ball et al., 2023) or Spectral
Normalization (SN) (Cetin & Celiktutan, 2023) was shown
to greatly effect the performance of the underlying agent.

2.3. Plasticity

Plasticity, in the context of models, refers to their ability to
learn new information. The concept of plasticity loss has
recently gained prominence in the deep learning community,
particularly in supervised learning (Achille et al., 2017; Ash
& Adams, 2020; Dohare et al., 2021) and RL (Nikishin et al.,
2022; Dohare et al., 2021; Lyle et al., 2023; Lee et al., 2023;

Kumar et al., 2023; Nikishin et al., 2023). Numerous hy-
potheses have been proposed regarding the sources of plas-
ticity loss, including dead or dormant units, rank collapse,
and divergence due to large weight magnitudes (Lyle et al.,
2022; Sokar et al., 2023; Kumar et al., 2020; Dohare et al.,
2021). However, none of these mechanisms alone is suffi-
cient to explain the phenomenon of plasticity loss. Whereas
the cause of plasticity loss remains to be discovered, various
approaches for regularizing the model plasticity have been
proposed. For example, full-parameter resets of actor-critic
modules were shown to greatly improve the agent’s ability
to learn (Nikishin et al., 2022; D’Oro et al., 2022). The
problem of plasticity was also tackled at the level of the
activation function with Concatenated ReLU (CRLU) (Ab-
bas et al., 2023) or the optimizer with the Sharpness-Aware
Minimization (SAM) (Foret et al., 2020).

3. Study Design
In this paper, we analyze the impact of various interven-
tions on SAC performance across seven DeepMind Control
Suite (Tassa et al., 2018) (DMC) tasks: acrobot-swingup,
hopper-hop, humanoid-walk, humanoid-run, dog-trot, dog-
run, quadruped-run and seven MetaWorld (Yu et al., 2019)
(MW) tasks: Hammer, Push, Sweep, Coffee-Push, Stick-
Pull, Reach, Hand-Insert. We chose a wide spectrum of
tasks, ranging from easy (acrobot-swingup, Reach) to barely
solvable (dog-run) for generic insights that are not overfitted
to only a specific group. We choose tasks that are not easily
solved by the baseline high replay SAC, as presented in
D’Oro et al. (2022) and Hansen et al. (2022), with added
dog tasks (which are generally unsolved in state-based rep-
resentation). Finally, following (Li et al., 2022), we conduct
experiments in low 2 and high replay regimes. Such experi-
mental design allows us to pinpoint if specific regularization
targets issues associated with high replay, or if it is univer-
sally applicable across varying replay regimes. Categorizing
them based on current state-of-the-art methods, we identify
three intervention groups:

• Critic Regularizations (CR),

– Clipped Double Q-learning (CDQ) (Fujimoto
et al., 2018),

– Tactical Optimism Pessimism (TOP) (Moskovitz
et al., 2021),

– Generalized Pessimism Learning (GPL) (Cetin &
Celiktutan, 2023),

• Network Regularizations (NR),

– Layer Norm (LN) (Ba et al., 2016),
– Spectral Norm (SN) (Miyato et al., 2018; Zhang

et al., 2018; Brock et al., 2018),
– Weight Decay (WD) (Loshchilov & Hutter, 2017),
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• Plasticity Regularizations (PR),

– Resets (Res) (Nikishin et al., 2022),
– Concatenated ReLU activations (CRLU) (Abbas

et al., 2023),
– Sharpness-Aware Minimization Optimizer

(SAM) (Foret et al., 2020).

To explore the interactions between interventions, we sys-
tematically run all possible combinations of methods across
groups, ensuring that methods from the same group are not
combined. Each configuration is evaluated on 10 seeds. In
the results analysis, we categorize marginalization into three
levels:

First-order marginalization combines all results for a spe-
cific intervention. For instance, the marginalized perfor-
mance of layer norm will be computed as the average per-
formance across all combinations with interventions from
other groups (in this example, Critic Regularizations and
Plasticity Regularizations).

Second-order marginalization involves evaluating the per-
formance of fixed pairs of methods from two groups and
marginalizing results from the third group.

Third-order results involve no intervention marginalization
and represent the performance of a specific combination,
including one method from each group. The only marginal-
ization is over all tested environments (we present these
results in Appendix C.1 due to space constraints). This cu-
mulative result provides insight into the overall impact of a
given intervention.

Furthermore, we conduct an analysis of various proxy
metrics associated with the problems of overestimation,
overfitting, and plasticity loss. For overestimation, we
evaluate the state-action critic approximation error, de-
noted as b�(s, a), is quantified as the disparity between
the critic output and the true on-policy Q-value accord-
ing to b�(s, a) = Q�(s, a)�Q⇡(s, a), where Q� denotes
the critic Q-value approximation and Q⇡ represents the on-
policy Q-value which we estimate via a Monte-Carlo rollout
with 5 samples. To calculate overfitting, we compare av-
erage TD errors on evaluation trajectories (which are not
used for learning) to average TD errors observed in training
according to o� = EDvTD�

EDTD�
, where o� denotes critic over-

fitting, Dv denotes validation data, and TD� denotes the
temporal difference loss. As such, the extent of overestima-
tion is then quantified by the ratio of validation TD error to
training TD error. We monitor plasticity loss by the rank
of penultimate layer representations (Kumar et al., 2020),
dormant neurons or dead units (Sokar et al., 2023), the L2
norm of weights (Nikishin et al., 2022; Lyle et al., 2023),
and gradient norm (Nikishin et al., 2022; Lyle et al., 2023)
as a proxy for plasticity loss.

4. Experiments
4.1. Combination of interventions – First-order

marginalization

Study description: First-order marginalization provides
insights into the robust impact of a given intervention on
model performance, irrespective of what other type of reg-
ularization it is paired with. To measure such robustness,
we compare the performance of the baseline SAC model
augmented with one specific regularization (e.g., SAC +
WD) to the performance of SAC augmented with this reg-
ularization paired with some other technique (e.g. SAC +
WD + Resets).

Figure 1. IQM performance of First-Order Marginalization. The
left column presents results for baseline SAC augmented with a sin-
gle regularization technique (and thus uses 10 seeds per task), and
the right column presents the aggregate performance of a specific
regularization technique when paired with other regularizations
(and thus uses 640 seeds per task). Results are presented for MW
(top row), DMC without Dog environments (middle row) and only
Dog-run and Dog-trot (bottom row) benchmarks. 14 tasks.

Results: Examining the plots in Figure 1 shows that net-
work and plasticity regularization techniques are generally
more effective than critic regularization – dark blue line
(!CR) on Robustness plots on MW and DMC (!DOC). We
observe these results for both simple models using one reg-
ularization technique and more complex agents leveraging
many regularizations at once. Most notably, avoiding the
use of critic regularization interventions (!CR) proves ad-
vantageous for both DMC and MW, especially if some other
type of regularization is used (such as layer norm or full-
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parameter resets). This result is somewhat surprising, as
critic regularization methods were designed specifically for
off-policy actor-critic agents, whereas the network and plas-
ticity regularization techniques are general. Notably, TOP
(Moskovitz et al., 2021) emerges as an exception, particu-
larly showcasing its effectiveness on the DMC benchmark.
Conversely, the GPL intervention exhibits the least robust
performance in both DMC and MW. Upon further analysis
of the impact of CDQL presence (see Section C.4), it be-
comes apparent that in certain environments, such as Hopper
Hop, the adverse effects of this intervention cannot be miti-
gated even with additional regularizations. Full-parameter
resets (Nikishin et al., 2022), tailored for high replay ratio
regimes, prove to be one of the most robust approaches in
this RR regime. Further analysis reveals discrepancies in
conclusions between benchmarks. Clearly, LN is the most
effective approach in the DMC Dog environments (bottom
row in Figure 1), but it also ranks among the top four in-
terventions in the remaining DMC environments. However,
it exhibits very poor performance on the MW benchmark.
Therefore, we find SN to be more robust, significantly aid-
ing the MW benchmark and providing moderate assistance
in the DMC scenarios.

Takeaways:
• Critic regularization methods exhibit limited

effectiveness in enhancing performance. When
using network or plasticity regularization,
critic regularization leads to reduced perfor-
mance.

• Periodical network resetting is the most robust
intervention across two benchmarks in a high
replay ratio regime, and highly surpasses other
plasticity regularization techniques in both ro-
bustness and performance.

• Layer norm is essential for Dog environments.

• When considering network regularization ap-
proaches, layer norm is generally recom-
mended for DMC, while spectral norm is more
effective for MW benchmarks. When consid-
ering a diverse range of tasks, we find spec-
tral norm to be more robust than layer norm.
Weight decay has generally low performance
when used alone with SAC.

4.2. Combination of interventions – Second-order
marginalization

Study description: This study delves into second-order
marginalization to pinpoint the most effective combinations.
Results are presented across various replay ratios (2 and 16)

and benchmarks (DMC or MW). Given the limited impact
of critic regularizations like CDQ or GPL in the first order
experiments, our focus is on discerning the most advanta-
geous combinations involving of regularization.

Figure 2. Second-order results marginalizing critic regularization
methods. On the x-axis, we have different types of plasticity
regularization, and each colour denotes network regularization.
For better readability, points within one plasticity regularization
are spaced slightly horizontally. Vertical lines indicate standard
error.

Results: On the DMC with RR=2 and RR=16 (top row
in Figure 2) a clear hierarchy of interventions is observed:
layer norm and right below it, spectral norm consistently out-
performs others in mean return, irrespective of the plasticity
regularization (x-axis). Notably, the combination of layer
norm and resets in RR=16 (middle and bottom-right plot in
Figure 2) demonstrates exceptional performance across all
critic regularization variations on DMC Dog and without
Dog environments. In contrast, the hierarchy of interven-
tions on the MW benchmark (top row in Figure 2) diverges
significantly from the DMC setup. Furthermore, a higher
replay ratio introduces shifts in training dynamics, as evi-
denced by SN transitioning from a lower position on RR=2
(bottom-left plot in Figure 2) to nearly the most versatile
intervention on RR=16 (bottom-right plot in Figure 2). The
results generally align with first-order marginalization find-
ings, emphasizing the positive impact of SN, as well as using
many different types of regularization at once in general.
Deeper analysis (see Appendix C.2) reveals that on MW,
indeed, the gradient norm in a higher RR regime is orders of
magnitude bigger. The finding that most contrasts with the
first-order experiments, is that we observe that weight decay
can actually yield significant performance benefits, under
the condition that it is paired with other specific methods,
namely full-parameter resets. In particular, we observe that
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this combination yields synergies surpassing using any of
these methods alone.

Takeaways:
• The DMC benchmark can be largely trivialized

by using high RR agents combined with layer
norm and full-parameter resets.

• Spectral normalization intervention ranks best
for the Meta World benchmark, but it’s not
universally applicable. Whereas weight decay
does not perform when used alone, it seems to
have high synergy with full-parameter resets.

• Resetting the network significantly outper-
forms other plasticity-inducing interventions
such as CRLU and SAM.

4.3. A closer look on Dog environment performance

Study description: In this study, we delve into the intrica-
cies of two challenging Dog tasks, Dog-Trot and Dog-Run,
included in our DMC setup. These environments present
considerable difficulties for model-free approaches relying
on proprioceptive states, making them of particular inter-
est within the research community. Due to the inherent
difficulty of these tasks, we conducted additional experi-
ments using the top three methods identified in Figure 23
(Appendix) for 4 million steps, akin to approaches used
in model-based (Hansen et al., 2022) or pixel-based stud-
ies (Ji et al., 2024). For the rest of the detailed experimental
information, please refer to Appendix A.

Figure 3. Mean return evolution across 4 million timesteps for Dog-
Run (top row) and Dog-Trot (bottom row) environments. Gray
plot depicts model-based agent performance. Each plot showcases
the top three combinations.

Results: Specific intervention combinations effectively
tackle the challenges posed by the Dog environment, as

depicted in Figure 3. Analyzing the top three approaches for
Dog-Run and Dog-Trot tasks reveals the prevalence of layer
norm in nearly all combinations. Additionally, each critic
regularization approach contributes to the leading group.
Notably, in scenarios with high replay ratios, resets emerge
as a crucial intervention. These observations are further
substantiated by the analysis of second-order marginaliza-
tion IQM plots (see 4). Indeed, layer norm without critic
regularization excels in RR=2, and layer norm with resets
outperforms all others convincingly. This achievement is
particularly notable as, to our best knowledge, no model-
free agent has previously find a better-performing policy
within the training regime the Dog environments using pro-
prioceptive states. Notably, there is a recent study(Ji et al.,
2024) where a model-free agent achieved comparable re-
sults on the Dog environments but using pixel-based inputs
instead. Additionally, our results demonstrate that while
a model-based approach on proprioceptive states (Hansen
et al., 2022) outperforms slightly, the above model-free
approach with simple regularization techniques achieves
performance very close to that of the model-based approach.
This suggests the efficacy and competitiveness of our ap-
proach in challenging environments.

Figure 4. IQM performance of the top six intervention pair combi-
nations based on 1 million steps experiments. The IQM is calcu-
lated based on the average of the last ten evaluation points in each
run, not the last evaluation point. Results come from 1 million
steps experiments. Top row: Dog-Run. Bottom row: Dog-Trot.

Takeaways:
• Well-established network regularization tech-

niques such as layer norm and spectral norm en-
able finding high-performing policies for Dog-
Trot and Dog-Run effectively.

• The choice of domain-specific RL critic regu-
larization has little significance in dog environ-
ments when layer norm and resetting interven-
tions are employed.
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4.4. Correlation of Overestimation, Overfitting and
Plasticity metrics with Performance

Study description: This study analyses the relationships
between Overestimation, Overfitting, Plasticity, and model
performance. Overestimation is quantified as an approx-
imation error, overfitting as the ratio of TD error on the
validation set to TD error on the training set. Expressing
Plasticity loss is challenging, so we utilize proxy metrics,
including the percentage of Dormant neurons (Sokar et al.,
2023), representations rank (Kumar et al., 2020), gradient
norm (Nikishin et al., 2022; Lyle et al., 2023), and parame-
ters norm (Nikishin et al., 2022; Lyle et al., 2023).

We employ a Spearman correlation matrix to scrutinize
these dependencies. This statistic is chosen because we
observe non-linear yet monotonic dependencies between
the mentioned metrics. We employ it on the data from
all performed experiments, i.e., form runs with different
combinations of interventions. Moreover, we do not have
a division into RR=2 and RR=16, only the results from
both setups are combined, and analyses are made on them.
Overestimation, and gradient norm, and parameters norm
are analyzed in a logarithmic scale for precision. We exclude
metric pairs where the p-value of correlation is above 5%
by whitening tiles in the correlation matrix.

Spearman correlation: In Figure 5, we investigate the
relations between plasticity loss, overestimation and overfit-
ting metrics and agents return, separately for every bench-
mark with special separation for Dog environments. No-
tably, overestimation exhibits the strongest correlation with
agent returns on both benchmarks, offering insights into the
findings of previous sections regarding the limited robust-
ness of critic regularization methods designed to minimize
overestimation. Interestingly, as shown in Figure 6, layer
norm and spectral norm effectively mitigate approximation
errors, outperforming CR methods. However, further in-
vestigation on the DMC benchmark (Figure 5) uncovers a
strong negative correlation between the percentage of dor-
mant neurons and performance, closely tied to the rank of
representations on the critic’s penultimate layer. What is
more, the overestimation is not the best predictor for Dog
environments where we observe the highest values of over-
estimation (Figure 5). We hypothesize that overestimation
becomes a good predictor of performance only when more
fundamental issues, such as plasticity, are mitigated, indicat-
ing a multifaceted learning problem in harder environments.

As an observation that supports this hypothesis, we refer to
the critic gradient norm, which exhibits the most monotonic
relation with the return in dog environments, as indicated by
Spearman correlation (Figure 5). Analysing Figure 10 one
can see, that Dog environments especially with high replay
ratio experience exploding gradients. The high gradient

Figure 5. Explanatory metrics correlations for three different
groups of environment, namely: MetaWorld, DMC Dog envi-
ronments, and DMC environments without Dog environments. It’s
important to observe that not only does the main explanatory met-
ric, gradient norm, vary for dog environments, but the remaining
DMC environments also exhibit a different correlation sign for this
metric.

norm directly points to high curvature of the loss landscape,
which, as indicated by (Lee et al., 2023), describes low input
plasticity. For this reason, layer norm primarily smoothens
the activation distribution and plays a critical role in mak-
ing SAC work in dog environments. Environments from
the MW benchmark also encounter challenges with high
curvature loss landscapes (as indicated by the Spearman cor-
relation between gradient norm and return). This suggests a
resemblance between MW and DMC dog environments.

Moreover, on the MW benchmark (Figure 5), the second-
best correlated metrics with performance are the critic gra-
dient norm and the critic parameters norm. This aligns
with the results from section 4.2, highlighting the significant
performance boost provided by spectral norm and weight
decay, particularly in the RR=16 setup. An in-depth analysis
of how RR increases the negative correlation of gradient
norm and return can be found in sections C.2 and C.5 of
Appendix.

Takeaways:
• There are distinctive correlations between plas-

ticity loss, overestimation, overfitting metrics,
and agent returns in various benchmark suites.
These underscore the importance of consider-
ing environment-specific factors when assess-
ing model performance and designing effective
regularization strategies.
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Figure 6. IQM overestimation in logarithmic scale. Each plot
presents sorted results. The IQM is calculated based on the average
of the last ten evaluation points in each run, not the last evaluation
point. Left Figure: DMC benchmark. Right Figure: MW bench-
mark. Colours indicate hierarchy on the plot, not specific names.

Figure 7. IQM gradient norm of first-order results. The IQM is
calculated based on the average of the last ten evaluation points in
each run, not the last evaluation point.

• Techniques like layer or spectral norm and re-
sets are particularly effective in mitigating over-
estimation also compared to methods specifi-
cally designed for that purpose.

• The negative correlation of the critic’s gradient
norm and return becomes more apparent in
challenging environments and mainly in a high
replay ratio regime.

5. Related Works
The literature on deep reinforcement learning has long ex-
plored various factors contributing to performance chal-
lenges, approaching the issue from different perspectives. A
notable study, akin to our pragmatic approach, investigates
the impact of diverse design choices in the training process
of on-policy methods (Andrychowicz et al., 2021).

In the realm of off-policy methods, numerous hypotheses
have been proposed regarding crucial factors. One key focus
is on addressing the overestimation problem, with attempts
to harness its potential benefits (Ciosek et al., 2019) and,
more prominently, to mitigate the phenomenon by introduc-
ing novel loss functions (Fujimoto et al., 2018; Moskovitz
et al., 2021; Cetin & Celiktutan, 2023).

Regularization schemes have proven effective in enhancing
deep reinforcement learning methods. Neural network reg-
ularizations, such as Spectral Norm (Gogianu et al., 2021;
Bjorck et al., 2021), Layer Norm (Bjorck et al., 2021; Ball
et al., 2023), or weight decay (Liu et al., 2020), have yielded
significant improvements in results. Notably, periodic re-
sets of critic weights proposed by (Nikishin et al., 2022)
constitute a strong baseline in robotics control. Several reg-
ularization schemes have been proposed to address the issue
of discarding knowledge caused by fully resetting the critic
network. Of particular interest is Shrink and Perturb (Ash
& Adams, 2020) and L2 Init (Kumar et al., 2023). In both
of these methods the benefit comes from the regularization
towards the distribution of ”freshly” initialized weights. A
concurrent work finds that using unit-ball normalization
allows for learning with a high-replay ratio without full-
parameter resets (Hussing et al., 2024). An ensemble ap-
proach was also suggested to address the challenge of de-
termining the optimal number of gradients per environment
step, where decisions are based on the validation TD er-
ror (Li et al., 2022).

6. Limitations
In this work, we found crucial choices that drive SAC effec-
tiveness in a wide range of control tasks from two popular
benchmarks. Through extensive experiments, we uncovered
perplexities concerning explanatory metrics correlations and
complex dynamics of overestimation, which is successfully
mitigated by widely used regularizations. Nevertheless, our
study has certain constraints. Our empirical evaluations
were limited to proprioceptive tasks on DMC and Meta-
World benchmarks and only for SAC method.

7. Conclusions
This study explored different common RL design choices,
as well as interactions thereof, evaluating their impact on

8
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agent learning. Specifically, we consider three types of
regularization families: critic regularization (motivated by
value overestimation); network regularization (motivated
by model overfitting); and plasticity regularization (moti-
vated by plasticity loss). Our analysis revealed that generic
network regularization methods such as layer normaliza-
tion, especially when paired with full-parameter resets, can
have a vastly greater impact on the final performance than
domain-specific RL approaches. To this end, the same net-
work regularization methods can lead to strong perform-
ing policies on domains previously solved by model-based
agents, such as the dog domain. Furthermore, we studied a
variety of metrics that were shown to co-occur with the de-
terioration of learning in low and high replay regimes. Our
analysis revealed the complex interactions of the considered
metrics with agent performance. Surprisingly, we found that
interventions motivated by a specific problem, for example,
overfitting, can have a pronounced impact on the metrics
associated with overestimation or plasticity. Finally, we
found that the effectiveness of considered critic, network,
and plasticity regularization techniques is not only highly
dependent on the simulation benchmark but also type of sim-
ulated task. The most prominent example is Clipped Double
Q-learning, a technique used in a majority of modern actor-
critic algorithms, which is effective in DMC locomotion
tasks, but leads to significant performance deterioration on
the MetaWorld manipulation tasks. To this end, we high-
lighted the need to test new algorithms on a diverse set of
tasks, preferably stemming from more than one suite.
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A. Details of experiments
Results reporting Interquartile mean (IQM) are based on 500 bootstrapping points as calculated by rliable package (Agarwal
et al., 2021). The final performance is defined as the average of the last 10 policy evaluations.

B. Architecture details
In all experiments, the Actor and Critic are represented by three-layer MLP networks, each containing 256 neurons in the
hidden layers, utilizing the ReLU activation function (except for the CReLU variant, which effectively doubles the number
of activations).

In the scenario involving Layer Norm, it is applied to each hidden layer (Li et al., 2022; Ball et al., 2023), while the spectral
norm is applied exclusively to the last hidden layer (Gogianu et al., 2021; Li et al., 2022). Weight decay is uniformly applied
across all layers (Li et al., 2022). It’s important to note that all network regularizations are exclusively applied to the Critic
network.

B.1. Hyperparameters

All hyperparameters are taken from original papers introducing the given intervention.

Table 1. Hyperparameter values used in the experiments.
HYPERPARAMETER NOTATION VALUE

JOINT

NETWORK SIZE NA (256, 256)
ACTION REPEAT NA 1

OPTIMIZER NA ADAM
LEARNING RATE NA 3e� 4

BATCH SIZE B 256
DISCOUNT � 0.99

INITIAL TEMPERATURE ↵0 1.0
INITIAL STEPS NA 10000

TARGET ENTROPY H
⇤

|A|/2
POLYAK WEIGHT ⌧ 0.005

TOP
PESSIMISM VALUES � {0, 1}

BANDIT LEARNING RATE NA 0.1

GPL
PESSIMISM LEARNING RATE NA 1e� 5

C. Further Experiments
C.1. Third-order marginalization

Examining the plots without marginalization (Figure 8) provides further insights into the conclusions drawn from the
previous experiment. Specifically, most combinations without critic regularization (red points) consistently perform well
across all setups. Additionally, the results for GPL (pink points) affirm the overall subpar performance of this method. On
the DMC with RR=2 plot (top-left in Figure 8), layer norm (points labeled ”L”) consistently outperforms others in mean
return, irrespective of the Plasticity regularization (x-axis) or Critic Regularization (color). Notably, the combination of layer
norm and resets in RR=16 (top-right plot in Figure 8) demonstrates exceptional performance across all critic regularization
variations.

For the MW benchmark with RR=16 (bottom-right plot in Figure 8), the results align with first-order marginalization findings,
highlighting the positive impact of Spectral Normalization. Particularly interesting is the role of Weight Decay, forming

12



Overestimation, Overfitting, and Plasticity in Reinforcement Learning

Figure 8. DMC (top) MW (bottom).

optimal combinations with the Reset method on RR=16 and consistently performing well across various combinations on
RR=2 (bottom-left plot in Figure 8).

In a scenario with a high replay ratio, the resets are the most important intervention. They work best in combination
with Layer norm, but other neural network regularization methods combined with resets are at the forefront regarding
performance in the rr=16 scenario (see the top of Figure 8). We present more results in Figures 22 and 23.

C.2. Gradient Norm Analysis

Drawing insights from the findings in section 4.2, where we highlighted the significance of spectral norm in enhancing
agent performance on the MW benchmark, we now delve deeper into the behavior of the critic’s gradient norm. In Figure 9,
one can compare orders of magnitude of IQM of gradient norm with respect to different replay ratio (RR) regimes and on
different benchmarks. Referring to results from section 4.2, Figure 9 underscores that the gradient norm on MetaWorld,
particularly in the RR=16 setup, exhibits orders of magnitude higher values compared to the DMC benchmark.

A similar phenomenon can be observed on the DMC benchmark, but the layer norm proves more robust in mitigating
exploding gradients than the Spectral Norm. Interestingly, training on very complex environments such as Dog causes
enormous gradient explosion, even in a small replay ratio regime 10.

C.3. Comparison of ReDO to other plasticity-inducing methods

The ReDO method, as proposed by Sokar et al. (Sokar et al., 2023), is a technique for inducing network plasticity. It shares
similarities with the full reset approach but involves more targeted interventions within the network. In particular, ReDo
does not reset the full network; it only resets weights connected to dormant neurons. Specifically, incoming weights to
dormant neurons are initialized as in full reset, but outgoing weights from dormant neurons are zeroed out, resulting in less
severe network output changes.

Figure 11 presents results from Figure2 updated with the ReDo method for both MetaWorld and DMC environments for
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Figure 9. IQM gradient norm of first-order results. The IQM is calculated based on the average of the last ten evaluation points in each
run, not the last evaluation point.

Figure 10. IQM gradient norm of first-order results. The IQM is calculated based on the average of the last ten evaluation points in each
run, not the last evaluation point.

a high replay ratio regime. ReDo does not perform as well as resets in the Metaworld and DMC suites. However, both
methods effectively reduce the critic gradient norm, overestimation and the number of dormant neurons for both Metaworld
and DMC without dog benchmarks, as shown in Figure 12. In dog environments, we observed that ReDo was unstable for
runs without SN or LN, and some runs crashed. We report results for the last ten timesteps before the crash for these runs.
Interestingly, all methods except SN and LN cannot reduce the critic gradient norm, as shown in the bottom right plot in
Figure 12.

Figure 11. Second-order results marginalizing critic regularization methods with ReDO.

C.4. Closer look on CDQL performance on Hopper and Quadruped environments

Figure 13 illustrates the outcomes of applying Clipped Double Q-learning (CDQL) (Haarnoja et al., 2018; Fujimoto et al.,
2018; Hansen et al., 2022), a widely used and straightforward critic regularization method, across various environments.
In the case of the hopper hop environment or some MW environments (bottom row), CDQL exhibits a detrimental effect
on performance, with additional regularization techniques such as resets or layer normalization failing to alleviate this
effect. Similarly, in the quadruped run task, CDQL demonstrates a comparable negative impact, although the application of
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Figure 12. IQM of performance, overestimation, dormant neurons, and gradient norm, of first-order results. The IQM is calculated based
on the average of the last ten evaluation points in each run, not the last evaluation point.

additional regularization methods successfully mitigates it.

C.5. Regression and Spearman correlation analysis

Deepening analysis from section 4.4, we investigate the coefficients of Ordinary Least Square regression for overestimation,
overfitting, dormant neurons and critic’s gradient norm with return. Except for dormant neurons, we take the symmetrical
logarithm of every metric. We perform regression fitting for every variable separately, which results in four different
regression analyses. As previously stated, because these relations are highly non-linear, however, often monotonic, goodness
of fit coefficients such as R2 for linear regression are low. Besides regression coefficients (�), we report a standard error of
regression (se), R2, p-value p in the plot legend. In the axis titles, the Spearman correlation and its p-value are shown.

In figures 14 and 15, we observe consistent negative coefficients, except for the Coffee environment for overestimation and
return. Interestingly, for the MetaWorld benchmark, most environments exhibit a symmetrical degree of overestimation and
underestimation as two distinct clusters of well-performing runs are mirrored by the Y axis. For the DMC environments, we
observe a much higher amount of runs in which overestimation is present.

For the gradient norm, we observe a higher value of this metric for runs with RR=16 both for DMC and MW benchmarks
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Figure 13. Examining the influence of CDQL on performance in the Hopper Hop and Quadruped Run environments within the DMC
benchmark (top row), as well as the Push, Coffee, and Hand environments within the MW benchmark (bottom row).

(Figures 16 and 17. There is consistency in coefficients for MW; however, in DMC, we observe that only four out of 7
environments exhibit negative signs of the coefficient. However, for most of the extremely high values of gradient norm, we
systematically observe low returns regardless of the environment.

Dormant neurons, presented in Figures 18 and 19, clearly correlate negatively with the return, especially for DMC
environments. However, there are cases, such as the Reach environment from MetaWorld, where a high percentage of
dormant neurons benefit the agent, probably because this particular environment is especially easy.

Overfitting is the metric that exhibits the highest variance in coefficient signs across environments and benchmarks. As
shown in Figures 20 and 21, the best-performing runs are located for low absolute values of overfitting. In addition, RR=16
clearly results in higher overfitting values.

Figure 14. Overestimation logarithm scatter plots with regression line for DMC environments.
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Figure 15. Overestimation logarithm scatter plots with regression line for MW environments.

Figure 16. Gradient norm logarithm scatter plots with regression line for DMC environments.

C.6. Image-based DeepMind Control

We test whether the results achieved on proprioceptive state representation transfer to image-based control. To this end, we
run 4 versions of the DrQ agent (Yarats et al., 2020):

1. Vanilla DrQ (DrQ)

2. DrQ with layer normalization on the critic network (DrQ + LN)

3. DrQ with full-parameter resets every 200k environment steps (DrQ + Res)

4. DrQ with both normalization on the critic network and full-parameter resets every 200k environment steps (DrQ + LN
+ Res)

We run these variations on 6 tasks from the DeepMind Control benchmark: Acrobot Swingup, Cheetah Run, Hopper Hop,
Humanoid Run, Humanoid Stand, and Humanoid Walk. We run the humanoid tasks for 3mln frames and the other tasks for
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Figure 17. Gradient norm logarithm scatter plots with regression line for MW environments.

Figure 18. Dormant neurons scatter plots with regression line for DMC environments.

1mln frames with a replay ratio of 1. We calculate the relationship between frames and environment steps according to the
methodology presented in Yarats et al. (2020). We present the results in the table below.

Unfortunately, the humanoid agents were mostly unable to achieve non-random policies in the budget of 3mln frames.
Interestingly, the proprioceptive results do not seem to directly transfer to image-based agents with a low-replay ratio. As
such, we believe the image-based benchmark requires further studies.

C.7. Best combinations of intervention performance plots

C.8. Other
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Figure 19. Dormant neurons scatter plots with regression line for MW environments.

Figure 20. Overfitting logarithm scatter plots with regression line for DMC environments.

Table 2. Final performance in image-based environments. 3 seeds per task.

DrQ DrQ + LN DrQ + Res DrQ + LN + Res
Acrobot Swingup 172.9± 22.1 87.6± 19.7 52.3± 11.2 88.8± 8.2
Cheetah Run 727.4± 7.3 680.0± 2.3 715.6± 7.1 653.9± 2.1
Hopper Hop 74.6± 34.9 116.3± 27.2 135.7± 24.1 167.3± 14.3
Humanoid Stand 7.8± 0.2 8.1± 0.2 7.5± 0.4 7.8± 0.4
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Figure 21. Overfitting logarithm scatter plots with regression line for MW environments.

Figure 22. Top performing configuration in the low replay regime. 10 seeds per task per algorithm.
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Figure 23. Top performing configuration in the high replay regime. 10 seeds per task per algorithm.

21



Overestimation, Overfitting, and Plasticity in Reinforcement Learning

Figure 24. Top performing configuration in the low (left) and high (right) replay regime. 10 seeds per task per algorithm.
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Figure 25. Spearman correlation matrix for explanatory metrics on DMC benchmark (left) and on MetaWorld benchmark (roght plot).
Blank spaces are correlations that do not meet the p-value.

Figure 26. Spearman correlation for different replay ratios.
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