
A Appendix

A.1 Proof of Proposition 3.2

First, we consider the solution of Eq. (9) for u(x) = kx. Applying Itô’s formula to log |x| yields:

d log |x| = 1

|x| ·
x

|x|dx− 1

2

1

x2
dx · dx

=

(
log |x| − k2

2

)
dt+ kdBt.

By letting y = log |x| − 1
2k

2, we obtain dy = ydt+ kdBt. Through applying Itô’s formula of two
dimensions to e−ty, we get

d(e−ty) = d(e−t)y + e−tdy + de−tdy

= −e−tydt+ e−tdy − e−tdtdy

= ke−tdBt,

which further implies

y(t) = et
(
y(0) + k

∫ t

0

e−sdBs

)
≜ y(0)e−t + ketη(t).

Here, the Gaussian process {η(t) =
∫ t

0
e−sdBs, t ≥ 0} is a martingale. Thus, from the property of

the martingale and Itô’s isometry formula, it follows that
Eη(t) = Eη(0) = 0,

Eη(t)2 = E
∫ t

0

e−2sds =
1− e−2t

2
.

Hence, we have y(t) ∼ N
(
y(0)et, k2

2 (e2t − 1)
)

, which further indicates that

log |x(t)| ∼ N
((

log |x(0)| − k2

2

)
et +

k2

2
,
k2

2

(
e2t − 1

))
.

For any k ∈ R, we choose x(0) such that log |x(0)| − k2

2 > 0. Thus, we have P(log |x(t)| > 0) > 0,
which contradicts the asymptotic stability condition:

lim
t→∞

x(t) = 0 a.s. ⇐⇒ lim
t→∞

log |x(t)| = −∞ a.s..

Second, for u(x) = 2x2, it is direct to validate that

x2[2x2 log x+ u(x)2]− 3

2
x2u(x)2 ≤ 0.

This thus meets the conditions with α = 1
2 in Theorem 2.3. Then, in light of this theorem, the zero

solution is of asymptotic attractiveness almost surely. Finally, for u(x) ≡ 0, direct calculations give a
result that the classic linear controller cannot globally stabilize the deterministic system. Therefore,
the proof is complete.

A.2 Validation of Example 3.4

On one hand, we select as V (x) = k∥x∥2 ≡ k(x2
1 + x2

2) with k > 0, an undetermined coefficient.
We thus get LV (x) = k(x2

1 − 2x1x2 − 2x2
2) and ∇V ⊤(x)g(x) = 2kx1x2. Notice that

lim inf
(x2

1+x2
2 )̸=0

x2
1x

2
2

(x2
1 + x2

2)
2
= 0.

So, to satisfy Condition (iii) in Theorem 2.2, we have to set c3 = 0. As for meeting Condition (ii),
letting x = (x, 0) gives LV = kx2 > 0, which indicates that, if there exists a number c2 such that
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LV (x) ≤ c2V (x), c2 is positive. Hence, c3 − 2c2 < 0, so the above form of V cannot guarantee the
exponential stability of the zero solution.

On the other hand, we set as V̂ (x) ≡ 5
2x

2
1 + x1x2 + x2

2, and then we obtain

LV̂ (x) ≤ −2

[
2x2

1 +
1

2
x2
2 +

1

2
(x1 + x2)

2

]
= −2V̂ (x).

As we choose c2 = −2 and c3 = 0, all the conditions in Theorem 2.2 are satisfied. Therefore,
the exponential stability of the zero solution is assured. This example particularly indicates that
regularization terms need delicate design and fine-tune in applications.

A.3 Proofs for Theorems

A.3.1 Proof of Theorem 4.1

We first present an estimation for the upper bound of E[τϵ]. Applying Itô’s formula to log ∥x∥ yields:
log ∥x∥ − log ∥x(0)∥

=

∫ t

0

( ⟨x(s), f(x(s))⟩
∥x∥2 − k2

2

)
ds+

∫ t

0

kdBs

≤
∫ t

0

(
L− k2

2

)
ds+

∫ t

0

kdBs

=

(
L− k2

2

)
t+ kBt.

Substitution of t with a stopping time τ gives

log ∥x(τ)∥ − log ∥x0∥ ≤
(
L− k2

2

)
τ + kBτ ,

which, after taking the expectation on both sides, yields:

E
[
log

∥x(τ)∥
∥x0∥

]
≤ E

[∫ τ

0

(
L− k2

2

)
ds

]
.

Notice that x(τϵ) = ϵ. Then, we have

log
ϵ

∥x0∥
= E

[
log

∥x(τϵ)∥
∥x0∥

]
≤
(
L− k2

2

)
E[τϵ].

From L− k2

2 < 0 and log ϵ
∥x0∥ < 0, it follows that

E[τϵ] ≤
2 log

(∥x0∥
ϵ

)
k2 − 2L

≜ Tϵ.

Next, by using the above results, we are in a position to provide an estimation of the energy E(τϵ, Tϵ).
To this end, an application of Itô’s formula yields:

∥x(t)∥2 − ∥x(0)∥2

=

∫ t

0

(
2⟨x(s), f(x(s))⟩+ k2∥x(s)∥2

)
ds

+

∫ t

0

2k2∥x(s)∥2dBs

≤
∫ t

0

(2L+ k2)∥x(s)∥2ds+
∫ t

0

2k2∥x(s)∥2dBs.

Thus, taking the expectation on both sides along the time interval [0, t ∧ τϵ] gives

E[∥x(t ∧ τϵ)∥2] ≤ ∥x0∥2 + E
∫ t∧τϵ

0

(2L+ k2)∥x(s)∥2ds

= ∥x0∥2+(2L+ k2)

∫ t

0

E[∥x(s)∥21{s<τϵ}]ds,
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which further implies

E[∥x(t)∥21{t<τϵ}] ≤ E[∥x(t ∧ τϵ)∥2]

≤∥x0∥2 + (2L+ k2)

∫ t

0

E[∥x(s)∥21{s<τϵ}]ds.

Now, applying Gronwall’s inequality, we get

E[∥x(t)∥21{t<τϵ}] ≤ ∥x0∥2e(2L+k2)t.

Finally, the energy is computed and estimated as follows:

E(τϵ, Tϵ) = E

(∫ τϵ∧Tϵ

0

k2∥x(s)∥2ds
)

= k2
∫ Tϵ

0

E[∥x(t)∥21{t<τϵ}]ds

≤ k2∥x0∥2
∫ Tϵ

0

e(2L+k2)sds

=
k2∥x0∥2
2L+ k2

[
exp(2L+ k2)Tϵ − 1

]

=
k2∥x0∥2
k2 + 2L

[
exp

(2(k2 + 2L) log

(∥x0∥22
ϵ

)
k2 − 2L

)
− 1
]
.

This therefore completes the proof of the whole theorem.

A.3.2 Proof of Theorem 4.2

First we prove the estimation for E[τε]. Applying Itô’s formula to log V (x) yields:

log V (x(t)) = log V (x0) +

∫ t

0

LV (x(s))

V (x(s)
ds+

∫ t

0

∇V (x(s)) · u(x(s))
V (x(s))

dBs

− 1

2

∫ t

0

∥∇V · u∥2
V 2

ds

≤ log(V (x0)) + c2t+

∫ t

0

∇V (x(s)) · u(x(s))
V (x(s))

dBs −
c3t

2
,

Substitution of t with a stopping time τ and taking expectation on both sides, we have

E[log V (x(τ))] ≤ E[log V (x0)] +
2c2 − c3

2
τ.

From ∥x(τε)∥ = ε < ∥x0∥ and c3 − 2c2 > 0, it follows that

E[τε] ≤
2 log(V (x0)/V (xτε))

c3 − 2c2
≤ min

∥x∥=ε

2 log(V (x0)/V (x))

c3 − 2c2
≤ 2 log(V (x0)/c1ε

p)

c3 − 2c2
≜ Tε.

Notice that NN control satisfies u(0) = 0, under the Lipschitz condition, we have ∥u(x)∥ ≤ ku∥x∥.
Then, similar to the procedure for the energy cost in A.3.1, we can get that

E[∥x(t)∥21{t<τϵ}] ≤ ∥x0∥2e(2L+k2
u)t,

E(τε, Tε) = E

(∫ τε∧Tε

0

∥u(x(s))∥2ds
)

≤ ku
2

∫ Tε

0

E[∥x(s)∥21{s<τϵ}]ds

≤ ku
2∥x0∥2

ku
2 + 2L

[
exp

(
2(ku

2 + 2L) log (V (x0)/c1ε
p))

c3 − 2c2

)
− 1

]
,

which completes the proof.
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A.3.3 Proof of Theorem 4.3

First we prove the estimation for E[τε]. Applying Itô’s formula to ∥x∥2 we have

∥x(t)∥2 = ∥x(0)∥2 +
∫ t

0

(2⟨x, f(x)⟩+ ∥u(x)∥2)ds+
∫ t

0

2⟨x,u(x)dBs⟩.

For α ∈ (0, 1), further using the fact that ∥x∥α = (∥x∥2)α/2 we have

∥x(t)∥α = ∥x(0)∥α +

∫ t

0

α

2
∥x∥α−4q(x)ds+

∫ t

0

α∥x∥α−2⟨x,u(x)dBs⟩,

q(x) = ∥x∥2(2⟨x, F (x)⟩+ ∥u(x)∥2F)− (2− α)∥x⊤u(x)∥2 ≤ 0,

max
∥x∥≥ε

q(x)

∥x∥4−α
≤ −δε.

Notice that ∥x(t)∥ ≥ ε, t ≤ τε, setting t as τε and taking expectation we have

εα ≤ ∥x0∥α − α

2
δεE[τε]

Then we have

E[τε] ≤
2(∥x0∥α − εα)

α · δε
≜ Tε.

The estimation of the energy cost is just the same as that in A.3.2, and here we omit it.

A.3.4 Discussions for Theorem 4.2,4.3

Convergence Time for ES From the conditions in Theorem 2.2 and the equivalent condition
(10),(11), the hyperparameter b for ES can be substantially regarded as

c3
c2

. Hence, when b > 2

we have c3 − 2c2 > 0, which corresponds to the exponential stability condition. This can be

also confirmed by the upper bound estimation
2 log(V (x0)/c1ε

p)

c3 − 2c2
≜ Tε in our Theorem 4.2, the

convergence time Tε decreases as c3− 2c2 get larger than zero, which means we should choose larger
b in the training. The Tε also decreases as the c1 and p increase, from the condition V (x) ≥ c1∥x∥p
in Theorem 2.2 and the truth that ∇(c1∥x∥p) = c1p∥x∥p−1∇(∥x∥), we can summarize that the
slope of V (x) can affect the convergence rate for ES. This inspire that we can design more steep
neural networks structure for V , such as multiply ∥x∥λ, λ > 0 to V or increase ε in V in ES(+Quad).

Convergence Time for AS From the upper bound estimation
2(∥x0∥α − εα)

α · δε
≜ Tε in Theorem 4.3,

the convergence time is indeed related to α. This parameter is not covered in the learning parameters,
so we can adjust it according to the practical requirements. Here, we study the influence of α with

fixed ε, that is, we consider the function h(α) =
aα − bα

α
, a > b, α ∈ (0, 1). The interesting thing is

that monotonicity of h(α) changes with the parameters a, b, as shown in Figure 10. This phenomenon
indicates that the minimal point for convergence time in AS should be selected according to the
parameter region of (∥x0∥, ε). The analytical or numerical forms of critical curve in this region need
further research in future work.

A.3.5 More Discussion of AS/ES

Understanding AS Loss We utilize the formula ∥x∥2(2⟨x, F (x)⟩ + ∥G(x)∥2F) − (2 −
α)∥x⊤G(x)∥2 ≜ q(x) in (3) to construct the AS loss. Here we explain this term in more de-
tail. The q(x) is derived from the chain derivative of ∥x∥α = (∥x∥2)α/2 according to Itô’s formula,
we then have d∥x∥α = α/2∥x∥α−4q(x)dt+ α∥x∥α−2∥x⊤G(x)∥dBt. The drift term is less than
zero when q(x) ≤ 0, which can guarantee the bounded existence and asymptotic stability of ∥x∥α
from the semi-martingale convergence theorem (Liptser & Shiryayev, 2012) .
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Figure 10: Plot for h(α) with different parameters combinations.

Computational Complexity The AS framework is computationally efficient because we only
need the tensor operation in the training process. The computational complexity of this procedure is
O(mn) for m data on n-D dynamics. The training for ES framework is not as efficient as AS. The
major reason is that we should compute the Hessian matrix of V to get LV and the computational
complexity of this operator is O(mn2).

A.4 Algorithms

We summarize the Algorithms of ES and AS as follows:

Algorithm 1: Exponential Stabilizer

Input: Data {xi}ni=1 sampled from µ(Ω), iteration step m, learning rate γ, training error δ,
coefficient samples f(xi) and g(xi), initial parameters θV (0),θu(0), and parameters ε used in
(6) and b used in (11).
Output: Controller uθu(xi) and Lyapunov function VθV (xi) in the form of (6) or (8).
for r = 0 to m− 1 do

Compute ∇V (xi), HV (xi), i = 1, · · · , n
Compute ES loss: L(θV (r),θu(r)) from (12)
θu(r+1) = θu(r)−γ ·∇θu

L(θV (r), θu(r)), θV (r+1) = θV (r)−γ ·∇θV
L(θV (r), θu(r))

▷ Update parameters
if L(θV (r + 1), θu(r + 1)) ≤ δ then

break

Algorithm 2: Asymptotic Stabilizer

Input: Data {xi}ni=1 sampled from µ(Ω), parameter α ∈ (0, 1) used in (13), and all other
parameters, m, γ, δ, f(xi), and g(xi), defined in the same manner as those in Algorithm 1.
Output: Controller uθu(xi).
for r = 0 to m− 1 do

Compute loss function: L(θu(r)) from (13)
θu(r + 1) = θu(r)− γ · ∇θuL(θu(r)) ▷ Update parameters
if L(θu(r + 1)) ≤ δ then

break

A.5 Experimental Configurations

In this section, we provide the detailed descriptions for the experimental configurations of the physical
examples in the main text. The computing device that we use for calculating our examples includes
a single i7-10870 CPU with 16GB memory, while the computational frameworks for our neural
stochastic control contain three typical NNs.

18



1. The ICNN V function is constructed as:

z1 = σ(W0x+ b0),

zi+1 = σ(Uizi +Wix+ bi), i = 1, · · · , k − 1,

p(x) ≡ zk,

V (x) = σ(p(x)− p(0)) + ε∥x∥2,
where σ is the smoothed ReLU function as defined in the main text, Wi ∈ Rhi×d, Ui ∈
(R+ ∪ {0})hi×hi−1 , x ∈ Rd, and, for simplicity, this ICNN function is denoted by
ICNN(h0, h1, · · · , hk−1);

2. The quadratic form V function is constructed as:

z1 = tanh(W0x+B1),

zi+1 = tanh(Wizi + bi), i = 1, · · · , k − 1,

Vθ(x) ≡ Wkzk,

V (x) = x⊤(εI + Vθ(x)
⊤Vθ(x))x.

where Wi ∈ Rhi+1×hi , and this quadratic function is denoted by
Quadratic(h0, h1, · · · , hk+1);

3. The neural control function (nonlinear version) is constructed as:

z1 = F(W0x+B1),

zi+1 = F(Wizi + bi), i = 1, · · · , k − 1,

NN(x) ≡ Wkzk,

u(x) = diag(x)NN(x),

where F(·) is the activation function, Wi ∈ Rhi+1×hi , and this control function is denoted
by Control(h0, h1, · · · , hk+1);
The neural control function (linear version) is set as u(x) = W1x.

A.5.1 Controlling Harmonic Linear Oscillator

Mathematically, the perturbed harmonic oscillator is written as:{
dx1 = x2dt,

dx2 =
(
−w2x1 − 2βx2

)
dt+ (ζ1x1 + ζ2x2) dBt.

The controlled harmonic linear oscillator with the random damping and the random restoring force is
written as:

dx1 = x2dt+ u1(x1, x2)dB(t),

dx2 = −
(
x1 + x2

)
dt+

[
− 3x1 + 2.15x2 + u2(x1, x2)

]
dB(t).

As introduced in the main text, we use three combinations of our neural control frameworks:

1. ES(+ICNN): ε = 10−3, ICNN(6, 6, 1), and Control(2, 6, 6, 2) with F(·) = ReLU and
b = 2.1,

2. ES(+Quadratic): ε = 10−2, Quadratic(2, 6, 2), and the controller is set as u(x) = W1x
with W1 ∈ R2×2 and b = 2.1, and

3. AS: Control(2, 6, 6, 2) with F(·) = ReLU and α = 0.75.

We train these NNs, respectively, for 500 iterations using the 500 data that are sampled from
U([−6, 6]2), and we depict their loss functions in Figure 11, respectively.

In the main text, we compare the performance of the three learning control functions using the
same initial value (0.3, 0.5) along the time interval [0, 4]. In Figure 12, we display the results along
the interval [0, 3], where we randomly select the initial values from U([−2, 2]2) and sample the
corresponding 20 trajectories using different neural controllers.
In comparison with existing methods, we use the above ES(+ICNN) control. For LQR controller, we
select Q = 20I2, R = I2 to stabilize the state to zero, the corresponding feedback control matrix
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Figure 11: The Loss functions in the training processes, respectively, for using the ES(+ICNN) (left),
the ES(+Quadratic) (middle), and the AS (right), respectively.

solved from the Riccati equation is K = ((4.45, 0.09)⊤, (0.09, 3.6)⊤). For both the HDSCLF and
BALSA method, there are three variables u1, u2, d to be solved by Quadratic Program (QP), where
u1, u2 are the control to be found and d is the relaxation parameter. We pick the objective function
as u2

1 + u2
2 + 10d2, and select control Lyapunov function V as the LQR solution K in HDSCLF,

V = 1
2x

⊤Px with A⊤P + PA = −N for some N > 0 as required in BALSA (Fan et al., 2020),
where A is the drift matrix. The solution of this Lyapunov function with N = ((2, 1)⊤, (1, 4)⊤) is
P = ((3, 1)⊤, (1, 3)⊤).
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Figure 12: The 20 trajectories with the initial values sampled from U([−2, 2]2). The trajectories of
the controlled system are displayed along the two time intervals: [0, 3.0] (bottom) and [2.4, 3.0] (top
middle & right). Here, the solid line and the shaded areas are the same as those defined in Figure 5.

A.5.2 Controlling Inverted Pendulum

Controlling the inverted pendulum is one of the classic nonlinear control problems (Anderson, 1989;
Huang & Huang, 2000), which is governed by ml2θ̈ = mgl sin θ − βθ̇. Here, m is the mass of the
pendulum, g is the gravitational acceleration, l is the pole length, and β is the friction coefficient.
Mathematically, the pendulum can be written as a system with two state variables: θ, the angle
deviating from the vertical position x = 0, and θ̇, the angular velocity. Denote the 2-D state variable
by x = (θ, θ̇). Then, we apply the AS articulated in Algorithm 2 to steer the system to the equilibrium
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and we compare the energy cost between linear control
u(x) = kx and our Asymptotic Stabilizer learning control
in Figure 4. We put more details and experiments in the
appendix
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Figure 4. Solutions of the Eq. (26) with u(x) = kx at initial
value x(0) = 20.0 under different k, for each k 20 trajectories
are sampled in time interval [0, 1]. (a) Average transformed final
position log(1 + x(1)) for each k, the solutions can be stabilized
to equilibrium point for k ≥ 5.6. (b) 20 sample trajectories in
[0, 0.5] for k = 6.0 with Mean Energy(ME) equals to 38418.
(c) 20 sample trajectories under learning control in [0, 0.15] with
ME = 1375, which is significantly lower than linear control.

5. Experiments
In this section we consider some problems with actual phys-
ical background that are not all direct equation stability
problems, but can be transformed into equivalent forms of
finding the stable control of the corresponding equations,
and some recent articles have partially solved these prob-
lems. So it can be used as a benchmark to compare with our
method with respect to convergence speed and computation
time. We refer to Appendix C for implementation details
and to Appendix D for additional experiments.

5.1. Harmonic Linear Oscillator

First, we consider harmonic linear oscillator ÿ + 2βẏ +
w2y = 0, where w is the natural frequency of oscillator,
β > 0 is the damping coefficient representing the strength of
external force on the vibrator. Although the original system
is exponentially stable, the perturbation system with random
damping and random restoring force

ÿ + (2β + ξ2(t))ẏ + (w2 + ξ1(t))y = 0, (27)

becomes unstable even if Eξ1(t) = Eξ2(t) = 0 (Arnold
et al., 1983). Now we use our algorithms to stabilize this
unstable random dynamics for w2 = 1, β = 0.5, k1 =
−3, k2 = 2.15 and we plot the results in Figure 11
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Figure 5. Harmonic Linear Oscillator

5.2. Inverted Pendulum

The inverted pendulum is a classic nonlinear control prob-
lem governed by the differential equation

ml2θ̈ = mgl sin θ − βθ̇, (28)

where m is the pendulum mass, g is the gravitational accel-
eration, l is the pole length, and β is the friction coefficient.
This system has two state variables x = (θ, θ̇), the angle θ
from the upright equilibrium x = 0 and angular velocity θ̇.
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Figure 6. Schematic diagram of inverted pendulum to show the
nonlinear dynamics (left). The angle components in the solutions
for of three initial points (θ, θ̇) = (−5, 5), (−1, 3), (3,−4) with
control and without control, the initial value are marked as ⋆
(middle). The corresponding orbits in phase space (right).

We hope that the inverted pendulum can remain upside
down, but this position corresponds to the unstable equi-
librium point x = 0 of the system. We illustrate this phe-
nomenon in Figure 6. We use the Asymptotic Stabilizer in
Algorithm 2 to stabilize the system (28) and show the results
in Figure 6.

−

Figure 13: A schematic diagram of the inverted pendulum system (left), the sampled trajectories of the angle θ
(middle), and the corresponding orbits in the phase space (right).

x = 0 (sustaining the pendulum inverted). The schematic diagram of the inverted pendulum system
and successful control results are shown in Figure 13. The sampled trajectories are initiated from
different angles and angular velocities [i.e., (θ(0), θ̇(0)) = (−5, 5), (−1, 3), (3, − 4)].

The controlled inverted pendulum equation is written as:

dx = ydt+ u1(x, y)dBt,

dy =
g

l
sinx− β

ml2
y + u2(x, y)dBt.

(16)

Here, we use the AS to design the neural stochastic controllers u1,2 to stabilize the system to the
inverted position. As such, we select α = 0.5 and Control(2, 6, 2) with F(·) = ReLU. We train the
NNs using the 1, 000 data sampled from U([−10, 10]2). A successful control has been shown in the
main text (Figure 13). We perform further specific experiments on this system in Appendix A.8.

A.5.3 Controlling Stuart-Landau Equation

The underlying system is written as Ż = (−25 + i + |Z|2)Z. Let Z = ρeiθ. Then, the original
system is transformed into ρ̇ = (ρ2 − 25)ρ and θ̇ = 1. Since ρ = 5 corresponds to the unstable limit
cycle, we use the transformation ρ̃ = ρ− 5 to shift it to the zero equilibrium, and then consider the
following controlled system:

dρ̃ = ρ̃(ρ̃+ 5)(ρ̃+ 10)dt+ u(ρ̃)dB(t).

Here, for constructing the AS, we use the nonlinear control function as Control(1, 10, 1) with F(·) =
Tanh and α = 0.5. Particularly, we train the NNs using the 3, 000 data sampled from U([−30, 30]).
We also sample 30 initial values from (ρ, θ) ∼ U([3, 10])× U([0, 6.28]) and numerically get their
solutions without and with neural stochastic control along the time interval [0, 0.2]. Then, we use the
constructed AS to stabilize the system successfully, as shown in the main text (Figure 7).

A.5.4 Synchronization of Stuart-Landau Equations

Here, we consider the n Stuart-Landau oscillators coupled in the form of

Żj = Zj − (1 + ic2)|Zj |2Zj − σ(1 + ic1)

n∑
k=1

LjkZk,
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where
∑n

k=1 Ljk = 0 for all j = 1, · · · , n. Using the coordinates Zj = ρje
iθj , we have

ρ̇j =ρj − ρ3j − σ

n∑
k=1

Ljkρk [cos(θk − θj)− c1 sin(θk − θj)] ,

θ̇j =− c2ρ
2
j − σ

n∑
k=1

Ljk
ρk
ρj

[c1 cos(θk − θj) + sin(θk − θj)] .

(17)

Let ρ̃j = ρj − 1 and notice that system (17) only depends on θk − θj for j, k = 1, · · · , n. Thus,
letting θ̃j = θj − θj+1 yields:

˙̃ρj = (ρ̃j + 1)− (ρ̃j + 1)3 − σ

n∑
k=1

Ljk(ρ̃k + 1)p(θk − θj),

˙̃
θj = −c2

[
(ρ̃j + 1)2 − (ρ̃j+1 + 1)2

]
− σ

n∑
k=1

[
Ljk

ρ̃k + 1

ρ̃j + 1
q(θk − θj)− Lj+1,k

ρ̃k + 1

ρ̃j+1 + 1
q(θk − θj)

]
,

(18)

where
p(θ) = cos θ − c1 sin θ, q(θ) = c1 cos θ + sin θ, (19)

θk − θj =


− θ̃j − · · · − ˜θk−1, k > j,

0, k = j,

θ̃k + · · ·+ ˜θj−1.

(20)

Hence, we successfully transform the original coupled system (17) with the states {ρj , θj , j =

1, · · · , n} into a new coupled system (18) with (18)-(20) and the states {ρ̃i, i = 1, · · · , n; θ̃j , j =
1, · · · , n − 1}. In particular, the synchronous manifold {ρj = 1, θ1 = · · · = θn} in the original
system (17) becomes the equilibrium of the transformed system (18), i.e., {ρ̃i = 0, θ̃j = 0}.

Now, we use the AS, the neural stochastic control, to stabilize this equilibrium of system (18) and
equivalently realize the synchronization in the original coupled system. For implementing numerical
experiment, we set c1 = −1.8, c2 = 4, σ = 0.01, and n = 20. We further set the Laplace matrix
L = (Ljk)n×n as

Ljk =


1− 1

n
, j = k,

− 1

n
, j ̸= k.

(21)

We construct the AS as Control(39, 80, 39) with F(·) = ReLU and α = 0.75. Particularly, we
sample 5, 000 points from

(ρ̃1, · · · , ρ̃20)× (θ̃1, · · · , θ̃19) ∼ U([0, 5]20)× U([−5, 5]19),

and get the information of the dynamics based on system (18) with (19) and (20). The training
process for the AS seems to be pretty efficient, as shown in Figure 14.
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Figure 14: The Loss function for training the AS, dropping to 1.23e-5 within only 30 iterations.
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As for generating the controlled trajectories for ρ, θ, we make the following descriptions.

First, we randomly select the initial values for {ρ̃i, θ̃j}n=20 (we denote θ̃20 as θ20) from (U [0, 5])20×
(U [−1, 1])20, and thus obtain the initial values for {ρj , θj}n=20 based on (20). Secondly, without
any control, we generate the trajectories using (17) and (18), respectively. Finally, after the neural
stochastic control is implemented, we use ρ = ρ̃+ 1 and (θ1, · · · , θ20)⊤ = A(θ̃1, · · · , θ̃19, θ20)⊤ to
get the controlled trajectories for ρ and θ, where

A =


1 1 · · · 1
0 1 · · · 1
...

...
...

...
0 0 · · · 1


20×20

.

A.5.5 Energy Cost of Control
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Figure 15: The convergence performance of different k selected from {2, 4, 6, 8, 10} and AS control.
The mean energy(ME) E(τ0.1, 1.0) are computed from 20 random seeds {4r + 1, r = 0, · · · , 19}

For the controlled nearly-linear SDE: dx = x log(1 + x)dt + u(x)dBt, x ∈ R. We construct the
AS as Control(1, 6, 1) with F(·) = ReLU and α = 0.9. Particularly, we sample 4, 000 points from
U([0, 50]) as the training data. For computing the energy cost, we sample 20 trajectories initiating
from the initial value x(0) = 20, using the linear control and the neural stochastic control of the AS
along the time interval [0, 1]. The random seeds are set as {4i + 1, i = 0, · · · , 19}. We compute
numerically the stopping time τϵ, as defined in Theorem 4.1 and with ϵ = 0.1, for each trajectory,
and further compute the integration of

∫ τϵ∧1

0
[u(x(t))]2dt along each trajectory. Finally, we set the

average of these integrations as an estimation of the energy cost for the respective control processes.
We further conduct comprehensive experiments for many different values of k and compare their
numerical performance to the proposed AS control method. The results are shown in Figure 15.
We can see that AS control significantly outperforms linear control in terms of energy cost and
convergence stability.

A.5.6 Data-Driven Pinning Control for Cell Fate Dynamics
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Figure 17: Pinning control for cell fate dynamics.

Indeed, our frameworks can be extended to the
model-free version via a combination with ex-
isting data reconstruction method. It should be
noted that the proposed methods only depend on
the samples of vector field in the learning stage
instead of the explicit formula of systems (see
Algorithm 1,2), implying that our frameworks
inherently include the model-free situation. To
be concrete, we show that our framework can combine with Neural ODEs (NODEs) (Chen et al.,
2018) to learn the control policy from time series data for the Cell Fate system (Sun et al., 2017; Laslo
et al., 2006), which describes the interaction between two suppressors during cellular differentiation
for neutrophil and macrophage cell fate choices. The system ẋ = f(x), x = (x1, ..., x6) has three
steady states: P1,2,3, where P2,3 correspond to different cell fates and are stable and P1 represents
a critical expression level connecting the two fates and is unstable. The network structure of this
6-D system is a treemap, where one root node x1 can stabilize itself under the original dynamic.
Hence, we choose root node x2 with maximum our degree and add pinning control on it to stabilize
the system to unstable state P1. The original trajectory that converges to P2 (left) and the controlled
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Figure 16: The sampled trajectories of the ESN (22) without and with the neural stochastic control
of the AS. The 50-D ESN (22) is component-wisely displayed along the time interval [0, 4] (the
most left column) and the controlled ESN is component-wisely displayed along [0, 0.05] (the second
column from the left). The remaining panels depict the controlled dynamics of x10,20,··· ,50, a part
of the components. Here, the solid line represents the average of the 10 realizations and the shaded
area corresponds to the region which the trajectories in all the realizations sweep through. The initial
values are set as x0

i = −2 + i−1
49 for i = 1, · · · , 50.

trajectory that converges to P1 (right) are shown in Figure 17. The original trajectory is used to train
the NODE to reconstruct the vector field f̂ , then we use the sample of f̂ as training data to learn our
stochastic pinning control. We provide experimental details in Appendix A.5.6. The results in this
section do not conflict with those in the Appendix A.9 because the 3-link pendulum does not has the
similar treemap structure and self-stabilizing nodes as the cell fate system.

The stem cell fate dynamic is written as:

ẋ1 = 0.5− ax1,

ẋ2 = 5x1/((1 + x1)(1 + x4
3))− bx2,

ẋ3 = 5x4/((1 + x4)(1 + x4
2))− cx3,

ẋ4 = 0.5/(1 + x4
2)− ax4,

ẋ5 = (x1x4/(1 + x1x4) + 4x3/(1 + x3))/(1 + x4
2)− ax5,

ẋ6 = (x1x4/(1 + x1x4) + 4x2/(1 + x2))/(1 + x4
3)− ax6.

We set a = b = c = 1, then this system has 3 equilibrium points P1, P2, P3, where only P1 is
unstable. Now we use data-driven method to find pinning control to stabilize P1. We use coordinate
transformations first to transform P1 to zero for simplicity.
The connection graph structure of this model is a treemap, where x1, x2 directly affect all the other
nodes. From the dynamic, x1 is exponential stable in itself, hence we can pin control the root node
x2 to stabilize the whole system.
For model reconstruction stage, we use NODE with (6, 50, 6) NN structure with F(·) = Tanh to fit
time series data D on interval [0, 15] initiated from (0.5,−0.9, 0.6,−0.6,−0.9, 0.5). We use standard
NODE method at https://github.com/rtqichen/torchdiffeq/tree/master/examples.
We sample the dynamic learned by NODE along D as the training data for AS. We learn pinning
control for this dynamic that only add control to x2, thus, we focus on stabilizing the sub-model for
x2 and treat other variables as parameters. We construct AS as Control(1, 6, 6, 1) with F(·) = ReLU
and α = 0.9.
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A.6 Additional Experiments

A.6.1 Controlling the Echo State Network

Here, we show that our proposed frameworks of neural stochastic control can perform well in
controlling high-dimensional dynamics. As such, we consider the Echo State Network (ESN), one of
the pioneering reservoir computing methods (Lukoševičius & Jaeger, 2009; Jaeger & Haas, 2004)
and having an appealing property of dynamical short-term memory capacity (Jaeger, 2007). The
reservoir states in the ESN are formulated as (Zhu et al., 2019):

ẋ = fres(Ax+ b), x ∈ Rn, (22)

where the connection weight matrix A is a random matrix representing the reservoir. The ESN is
asymptotically stable if the spectrum radius satisfies ρ(A) < 1; otherwise, it is unstable for ρ(A) > 1
(Jaeger, 2001).

Now, we use our stochastic neural control to stabilize the unstable equilibrium for the case where n =
50 and fres = Tanh or ReLU, and b = 0. Particularly, the AS is constructed as Control(50, 200, 50)
with F(·) = ReLU and α = 0.8. We train the parameters using the 5, 000 data sampled from
U([−10, 10]50). Also we sample 10 trajectories along time interval [0, 0.2] using the correspondingly
trained neural stochastic control, respectively. The controlling results are shown in Figure 16.

A.6.2 Controlling the Lorenz System

Figure 18: The chaotic dynamics of the Lorenz system (23), initiating from (3, 5, 6) on the time
interval [0, 40]. The 3-D orbits in the phase space (left) and the trajectories component-wisely
displayed (right).

Here, we consider the chaotic Lorenz system (Sparrow, 2012):

ẋ = 10(y − x), ẏ = x(28− z)− y,

ż = xy − 8

3
z,

(23)

which has three unstable equilibriums: P1 = (0, 0, 0), P2 = (6
√
2, 6

√
2, 27) and P3 =

(−6
√
2,−6

√
2, 27), as shown in Figure 18. Controlling chaos is always validated by using this

paradigmatic system and its controlled system (Yang et al., 1997, 2002; Ma et al., 2015). It is
noted that the equilibriums P2,3 are of the same type. So, a successful stabilization of P2 implies a
successful stabilization of P3. Thus, in what follows, we stabilize P1,2 using the neural stochastic
control of the ES in different configurations. Precisely, we apply, respectively,

1. ES(+ICNN): ε = 0.001, ICNN(12, 12, 12, 1), and Control(3, 10, 10, 3) with F(·) = ReLU
and b = 2.1, and

2. ES(+Quadratic): ε = 0.001, Quadratic(3, 12, 12, 3), and Control(3, 10, 10, 3) with F(·) =
ReLU and b = 2.1.

For stabilizing P1, we train these NNs for 200 epochs with the batch size 100 and the iterations
2, 000, using the 10, 000 data sampled from U([0, 10]3) along the vector field produced by system
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Figure 19: Controlling the Lorenz system (23) by using the neural stochastic control of the ES(+ICNN)
and the ES(+Quadratic), respectively. The system, initiating from either one of the three positions
Q1,2,3, is stabilized to P1 or P2.

(23). For stabilizing P2, we first use x̃ = x− 6
√
2, ỹ = y − 6

√
2, and z̃ = z − 27 to transform P2

to the zero solution of a new system, denoted by (x̃, ỹ, z̃). Then, we train the NNs for controlling
(x̃, ỹ, z̃) in the same manner as the training procedure for stabilizing P1. As for the initial values, we
select as Q1 = (9, 6, 8), Q2 = (3, 5, 6), and Q3 = (1, 9, 2). The controlling results using different
neural stochastic controllers are shown in Figure 19 and Table 2, respectively.

Table 2: The results, using the ES(+ICNN) and the ES(+Quadratic), are obtained through averaging
the corresponding quantities produced by 20 randomly-sampled trajectories. The quantities are
defined in the same manner as those in Table 1, where T = 20 and the thresholds for computing Ct
are set as 1e-10 (for P1) and 0.02 (for P2), respectively.

Tt Di Ct
ES(+ICNN): P1 283.251s 2.43e-45 1.776

ES(+Quadratic): P1 124.623s 4.77e-45 4.082
ES(+ICNN): P2 190.464s 1.16e-5 2.600

ES(+Quadratic): P2 44.196s 0.017 14.823

A.7 Combination with Deterministic Control

In this section, we consider different control combinations for the controlled dynamics dx =
[f(x) + uf (x)]dt+ [g(x) + ug(x)]dBt, that is, the deterministic control u = (uf ,0), the mixed
control u = (uf ,ug), the proposed stochastic control u = (0,ug). Similar to the proposed neural
stochastic control, we can find the neural deterministic control and mixed control with the same loss
functions in ES and AS. the results are shown in Figure 20. We can see that both mixed control and
stochastic control outperform deterministic control in terms of convergence rate and energy cost, this
illustrates the benefits of introducing the stochastic term in control. The mixed control may be more
efficient because it uses both stochastic and deterministic control simultaneously. By contrast, our
method allows using the stochastic term only to realize the stochastic stability while all the traditional
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methods merely use the deterministic control for stabilizing the stochastic systems. This difference
indicates that noise is regarded a positive factor in our stabilization, contrary to the common sense.
To the best of our knowledge, there are no existing methods integrating the pure noise control with
the neural networks. Therefore, our work indeed extends the existing methods non-trivially, which
can be seen as a solid step for treating noise as a beneficial part with provable stability guarantee
using neural networks.
Here, for all three kinds of neural controllers, we use AS Control(2,6,6,2) with α = 0.8 and
F(·) = ReLU, we train the NNs using the 1, 000 data sampled from U([−10, 10]2). We sample
10 trajectories along time interval [0, 0.5] using the correspondingly trained neural controllers,
respectively.
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Figure 20: Numerical performance of different control combinations in the inverted pendulum
experiment: deterministic control(Left), mixed control(Middle), stochastic control(Right), the mean
energy for control process E(τ0.1, 0.5) is computed from 10 random seeds {2i+ 1, i = 0, · · · , 9}.

A.8 Roles of Hyperparameters

Here, we investigate the role of the hyperparameter b in using the ES and the role of the hyperparameter
α in using the AS. The investigations are performed on the physical example, the inverted pendulum
system (16).

The role of b. We test the performances of the ES(+Quadratic) in the stabilization of system
(16) for different values of b. Here, the values of b are equally spaced in [1.0, 3.0]. We configure the
ES(+Qadratic) as Quadratic(2, 6, 2) with F(·) = Tanh and Control(2, 6, 6, 2) with F(·) = ReLU.
We train the NNs using 500 data sampled from U([−10, 10]). Furthermore, for each b and the
corresponding ES(+Qadratic), we sample 5 controlled trajectories along the time interval [0, 2].

In Figure 21, we show the average convergence position of the variable θ(t) over the 5 sampled
trajectories for a given b. The closer the position to zero, the better the neural stochastic controller
performs. Clearly, the controller does not perform very well as b is either large or small. Actually,
b can be regarded as an upper bound for the exponential decay rate of the solution. A smaller b
corresponds to a lower convergence rate, while a larger b, theoretically, can speed up the convergence.
However, in applications, it is hard to treat the case of the larger b because it requires more complex
structures of the NNs and more training data for finding the effective Lyapunov function and the
useful stochastic control function.

Through the simulations, we select five optimal values, {1.9, 2.0, 2.1, 2.2, 2.3}, for b and compare
their performances in training process and control process in details. The corresponding results are
displayed in Figure 22. Clearly, the best value for b is 2.1, and, at this value, the correspondingly-
constructed Lyapunov function V and the control function u have a property of the stronger convexity.
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Figure 21: The convergence positions of θ(t) in the controlled system (16) for different values of b
selected from {1.0, 1.1, · · · , 2.9}. Here in the simulations, the time for the convergence position is
set at t = 2, and the position for each b is obtained through averaging the quantities of the 5 sampled
trajectories.
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Figure 22: Training and control results of the controlled system (16) for the hyperparameter b in the
ES taking values from ∈ {1.9, 2.0, 2.1, 2.2, 2.3}, respectively. Here, depicted are the training losses
(top row), the averages of the variable θ on the 5 sample trajectories initiating from (3, 5) along the
time interval (second row), the constructed Lyapunov functions V (third row), and the constructed
control functions u (bottom row). The dashed lines in the panels in the third row correspond to the
contour lines of {V ≤ 0.05}.

The role of α. Next, we test the performances of the AS in the stabilization of system (16) for
different values of α, where the values of α are equally spaced in [0, 1]. To this end, we construct
the AS as Control(2, 6, 6, 2) with F(·) = ReLU. We sample 500 points from U([−10, 10]) as the
training data. For each α and the corresponding AS, we sample 10 controlled trajectories along the
time interval [0, 0.6]. We depict the average final position of the variable θ(t) over the 10 sampled
trajectories in Figure 23. Clearly, the control efficacy becomes better and better with an increase of α.

Moreover, through the simulations, we select seven optimal values,
{0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, for α. As clearly shown in Figure 24, the convexity of
the correspondingly-constructed control function u becomes stronger as the value of α increases.
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Figure 23: The convergence positions of θ(t) in the controlled system (16) for different values of
α selected from {0.05, 0.1, 0.15, · · · , 0.95}. Here in the simulations, the time for the convergence
position is set at t = 0.6, and the convergence position for each α is obtained through averaging the
quantities of the 10 sampled trajectories.
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Figure 24: Training and control results of the controlled system (16) for the hyperparameter α in
the AS taking values from {0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, respectively. Here, depicted are the
training losses (top row), the averages of the variables θ and θ̇ on the 10 sample trajectories initiating
from (3, 5) along the time interval (two middle rows), and the correspondingly-constructed control
functions u (bottom row).

A.9 Limitations

Here, we point out some limitations of the proposed frameworks. As we stabilize an n-D system with
its state as x = (x1, · · · , xn), the proposed controller requires each component xj (j = 1, · · · , n)
to be accessible for control. In fact, our Algorithms 1 and 2 sometimes could be successfully in
stabilization when taken into account is the complete control but the partial control (i.e., xi1 , · · · , xik
with 1 ≤ i1 < · · · < ik < n or ik = 1, some components of the state, are accessible for control).
However, we cannot guarantee the descent of the loss because of a lack of the stochastic stability
theory for the partial control.
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To illustrate it, we consider the 3-link planar pendulum. The 3-link pendulum system possesses 6
state variables (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3), which represent the 3 link angles and the 3 angle velocities.
Suppose that, for i = 1, 2, 3, each link has mass mi, length li, moments of inertia ii, and relative
position lci of the center of gravity. Thus, the controlled dynamics becomes:

dx = ydt+ u1dB1(t),

dy = M(x)−1[−N(x,y)y −Q(x)]dt+M(x)−1u2dB2(t),

where x = (θ1, θ2, θ3)
⊤, y = (θ̇1, θ̇2, θ̇3)

⊤, M,N ∈ R3×3, Q ∈ R3 with

Mij = aij cos(xj − xi), Nij = −aijyj sin(xj − xi), Qi = −bi sin(xi),

aii = Ii +mil
2
ci + l2i

∑3
k=i+1 mk, aij = aji = mj lilcj + lilj

∑3
k=j+1 mk,

bi = milci + li
∑3

k=i+1 mk.

Here, we, respectively, investigate the complete control (case 1) u = (u1,u2) and the partial
control (case 2) u = (0,u2) with AS control. We construct the AS as Control(6, 24, 24, 6) and
Control(6, 24, 24, 3) with F(·) = ReLU. We sample 1000 points from U([−6, 6]6) as the training
data. We present the results in Figure 25. We can see that the complete control performs well in
stabilizing 3-link pendulum systems, as guaranteed by the stochastic stability theory; nevertheless, the
loss using the partial control cannot converge to zero. Generally, the partial control is more practical
for utilization. Therefore, the stochastic theory assuring the efficacy of the partial control is urgently
needed.
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Figure 25: Dynamics of the state variables in the uncontrolled system (a) and in the controlled system
using the complete control (b), initiating from (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3)|t=0 ∼ N (0, I6×6). Logarithm
of the training loss in case 1 using the complete control (c) and in case 2 using the partial control (d).

Furthermore, the neural auxiliary functions can easily satisfy the soft constraint/constraints in
Theorems 2.2,2.3 due to the flexible structures of NNs and large amounts of adjustable parameters.
However, we cannot guarantee the sufficient conditions are totally satisfied in the whole space because
we have not solved the hard constraints optimization directly as opposed to the other existing QP
or SOS based methods (Sarkar et al., 2020; Fan et al., 2020; Tan & Packard, 2004). Although we
pay strictness for flexibility, our neural controller can be efficient in the control process due to the
trained feedback form in advance, while the other methods solve the hard constrained optimization
for each state at each time step in the control process. Hence, we can trade off between practicability
and strictness according to the specific problems.

A.10 More Details on Related Work

Benefits of Stochastic Component The stochastic stability theory have been systematically and
fruitfully achieved in the past several decades Mao (1991, 1994a). The stochastic stability criteria
often use the Lyapunov-like conditions Mao (2007), which even includes the degenerated case of the
stability in ODEs. Most of the established criteria regard the noise as a negative effect impacting
the stability; however, there are still some advances on the positive effect of stochasticity in the
stabilization of the dynamical systems. For example, the environmental Brownian noise can suppress
the explosion of the population dynamics Mao et al. (2002), a certain amount of noise can suppress
the exponential growth of SDEs to the polynomial growth or more general growth form Deng et al.
(2008); Caraballo et al. (2003), and the multiplicative noise can stabilize and destabilize nonlinear or
hybrid differential equations (Appleby et al., 2008; Mao et al., 2007). These, therefore, motivate us to
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develop only neural stochastic control to stabilize different sorts of dynamical systems in this article.
Moreover, the stochastic stability theory has been further generalized to the other systems, such as the
stochastic difference equations Appleby et al. (2006), the stochastic functional differential equations
Appleby (2003), the linear PDEs with Stratonovich’s noise Caraballo & Robinson (2004), and the
Markov switched stochastic differential equations Wang & Zhu (2017). All these generalizations
could provide the directions for further investigations on neural stochastic control policies.

Robustness of NODE Inspired by the residual neural networks (He et al., 2016), the neural
ODE (Chen et al., 2018) method was established to model the continuous-time dynamical system
by approximating the original dynamics of this system with trainable layers. Recently, many
researchers have conducted studies on robustness and adaptability of neural ODEs. In (Yan et al.,
2019), the authors explored the intrinsic robustness of neural ODEs via the translation invariance of
time-invariant system, and propose TisODE to improve the robustness of deep networks. In (Xie
et al., 2019), the authors designed a special filter with feature denoising property that can remove the
perturbation’s pattern from feature maps, which can also be combined the NODE method to improve
the robustness.

Generate CLFs In this paper, we use neural networks to find the auxiliary functions with soft
stability guarantee, while the existing work just use the hard constrained optimization to generate
the auxiliary functions, i.e. CLFs. In (Tan & Packard, 2004), the authors propose to use the sum
of squares optimization to generate a polynomial CLF for deterministic controls. This process is
not using gradient descent with a soft loss function but is rather solving a constrained optimization
(SDP) to generate the CLF itself. In (Parrilo, 2000), the method of polynomial approximations for the
dynamics and the search of SOS as Lyapunov functions through SDP is given systematically. Further,
(Leong et al., 2016) provides some methods for generating a CLF for stochastic systems using the
Hamilton-Jacobi-Bellman formulation.
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