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1 THE ARCHITECTURE OF NETWORKS
We show the architecture of our networks in Fig. A, Fig. B, Fig. C,
Fig. D, and Fig. E. Specifically, Convk-x is the convolution layer
with k kernel size, x output channels, 1 stride, 1 padding. ResBlock-
x is the ResNet block [3] with x output channels. We present the
details of ResBlock-x in Fig. F. SiLU is the silu function. GroupNorm-
x is the group normalization with x groups. The scale factor of
DownSample and UpSample is 2. Attention is the attention block.
FC-x is the fully connected layer with x output channels.

2 DIFFUSION MODEL
A diffusion model consists of two opposite processes: the forward
process and the reverse process. Given the latent representation
I0 ∼ ? (I0) as the data, the forward process adds the controlled
Gaussian noise n to I0 for ) times:

@(I) |I0) =
)∏
C=1

@(IC |IC−1), (1)

@(IC |IC−1) = # (IC ;
√
UCIC−1, VC � ), (2)

where UC = 1 − VC , and VC is the predefined variance. In contrast,
the reverse process denoises I) to I0:

p) (I0 |I) ) =
)∏
C=1

p) (IC−1 |IC ), (3)

p) (IC−1 |IC ) = # (IC−1; -) (IC , C), VC � ) . (4)

According to the method in DDPM [4], we reparameterize -) (IC , C)
as:

-) (IC , C) =
1

√
UC

(
IC −

VC√
1 − ŪC

&) (IC , C)
)
, (5)

IC =
√
ŪCI0 +

√
1 − ŪC& , ŪC =

C∏
8=1

U8 , (6)

where & ∼ N(0, 1) is the noise. In the cycle of the forward process
and the reverse process, the noise &) (IC , C) is the only unknown
value. Thus, we predict &) (IC , C) by a neural network parameterized
as \ to complete the cycle.

We train the network &) with:

L3< = EI,C,n∼N(0,1) | |& − &) (IC , C) | |1 . (7)

In the forward process, we add the noise & to I0 for getting IC as
shown in Eq. (6), and train the network &) to fit & . After training,
our U-Net denoises I) ∼ N(0, 1) to I0 in the reverse process.
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Figure A: Our VAE network for 64 resolution.

3 METRICS
Chamfer distance (CD) measures the similarity between two

point clouds. The CD is formulated as:

�� (�, �) =
∑
0∈�

min
1∈�

| |0 − 1 | |22

+
∑
1∈�

min
0∈�

| |0 − 1 | |22,
(8)

where � and � are generated point clouds and reference point
clouds.

Earth mover’s distance (EMD) is a metric of dissimilarity
between two distributions and can be also used to measure the
similarity between two point clouds:

�"� (�, �) = min
q :�→�

∑
0∈�

| |0 − q (0) | |2, (9)

where q is the bijection between � and �.
Light field descriptor (LFD) [1, 2, 5] utilize silhouette images

rendered from 20 camera poses to measure the structure similarity
between two shapes.
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Figure B: Our VAE network for 128 resolution.

Jensen-shannon divergence (JSD) is calculated between two
marginal point distribution of � and �:

�(� (%- , %. ) =
1
2
� ! (%- | |")

+1
2
� ! (%. | |"),

(10)

where %- and %. are marginal distributions of points in the gener-
ated point clouds � and the reference point clouds � respectively.
To approximate, we discretize the point cloud space into 283 voxels
and assign each point to one of %- and %. .

Coverage (COV) measures the diversity of generated dataset -
in comparison to the reference dataset . . For each G ∈ - , it finds a
nearest neighbor ~ ∈ . as a match. COV is the fraction of matched
~ in the reference dataset . :

�$+ (-,. ) =

�����{argmin
~∈.

� (G,~) |G ∈ - }
�����

|. | , (11)

where � (·, ·) is a distance function, such as CD, EMD, or LFD.
Minimummatching distance (MMD) measures the quality

of - referred to . . For each ~ ∈ . , it finds the nearest neighbor G
in - and records � (G,~). MMD is the mean of those distances:

""� (-,. ) = 1
|. |

∑
~∈.

argmin
G∈-

� (G,~) (12)
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Figure C: Our diffusion model for 64 and 128 resolution.
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Figure D: Our vertex refiner (U-Net) for 64 resolution.

1-nearest neighbor accuracy (1-NNA) [6] measures the simi-
larity between two distributions:

1-##�(-,. ) =
∑
G∈- I(=G ∈ - )
|- | + |. |

+
∑
~∈. I(=~ ∈ . )
|- | + |. | ,

(13)
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Figure E: Our vertex refiner (U-Net) for 128 resolution.
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Figure F: The architecture of our ResNet Block.

where =G is the nearest neighbor of G in - ∪ . − {G} and I(·) is
a indicator function. For example, if =G ∈ - , I(=G ∈ - ) = 1. If
=G ∉ - , I(=G ∈ - ) = 0. Ideally, if - and . are sampled from the
same distribution, the 1-NNA value should be 50%. The closer the
1-NNA value is to 50%, the more similar - and . are.

4 GENUDCWITHOUT U-NET
We present the pipeline of GenUDC without U-Net in Fig. G. In
GenUDC without U-Net, we remove the vertex refiner (U-Net) and
concatenate the face part F and the vertex partV together to train
the latent diffusion model.
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Figure G: The pipeline differences between GenUDC and
GenUDC without U-Net.

L
A

S
-D

if
fu

si
o
n

O
u

rs

Figure H: Qualitative evaluation of shape generation in 1283

resolution.

5 MORE VISUAL SAMPLES OF GENUDC
We present visual samples of 128 resolution in Fig. H. Both methods
are visually good. It is difficult to distinguish which method is
better according to those visual samples. However, Tab. 3 of the
main paper proves that our variety and distribution are better than
LAS-Diffusion [7].
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