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1 THE ARCHITECTURE OF NETWORKS

We show the architecture of our networks in Fig. A, Fig. B, Fig. C,
Fig. D, and Fig. E. Specifically, Convk-x is the convolution layer
with k kernel size, x output channels, 1 stride, 1 padding. ResBlock-
x is the ResNet block [3] with x output channels. We present the
details of ResBlock-x in Fig. F. SiLU is the silu function. GroupNorm-
x is the group normalization with x groups. The scale factor of
DownSample and UpSample is 2. Attention is the attention block.
FC-x is the fully connected layer with x output channels.

2 DIFFUSION MODEL

A diffusion model consists of two opposite processes: the forward
process and the reverse process. Given the latent representation
z9 ~ p(zo) as the data, the forward process adds the controlled
Gaussian noise € to zq for T times:

T

q(zrlz0) = [ [ a(atlze-1), (1)
t=1

q(ztlze-1) = N(ze; Varze-1, Be), (2)

where a; = 1 — f;, and f; is the predefined variance. In contrast,
the reverse process denoises zT to zo:

T

polzolzr) = [ | potzi-ilz0), 3)
t=1

Po(zi-1lzt) = N(z-13 o (21, 1), Bi]). @

According to the method in DDPM [4], we reparameterize pg(z;,t)
as:

potent) = = (20~ Lzcoten). ©)

t
zr = Varzo + V1 - are, dtZl_[ai, (6)
i=1

where € ~ N(0, 1) is the noise. In the cycle of the forward process
and the reverse process, the noise €g(z;, t) is the only unknown
value. Thus, we predict €g(z;, t) by a neural network parameterized
as 0 to complete the cycle.

We train the network eg with:

Lim =Bzt e n(o1)]l€ — €9(ze, 1)1 (7)

In the forward process, we add the noise € to z¢ for getting z; as
shown in Eq. (6), and train the network €y to fit €. After training,
our U-Net denoises zr ~ N(0, 1) to z¢ in the reverse process.
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Figure A: Our VAE network for 64 resolution.

3 METRICS

Chamfer distance (CD) measures the similarity between two
point clouds. The CD is formulated as:

CD(A,B) = in||a - b||?
(4.B)= ) min|la= bl
acA

®)

+ min ||a - b| |3
beB as

where A and B are generated point clouds and reference point
clouds.

Earth mover’s distance (EMD) is a metric of dissimilarity
between two distributions and can be also used to measure the
similarity between two point clouds:

EMD(A,B) = ¢3133a;4||a ~$(a)ll2s )

where ¢ is the bijection between A and B.

Light field descriptor (LFD) [1, 2, 5] utilize silhouette images
rendered from 20 camera poses to measure the structure similarity
between two shapes.
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Figure B: Our VAE network for 128 resolution.

Jensen-shannon divergence (JSD) is calculated between two
marginal point distribution of A and B:

1
JSD(Px, Py) =5DKL(PX||M)
1 (10)
+5DKL(PY||M),

where Py and Py are marginal distributions of points in the gener-
ated point clouds A and the reference point clouds B respectively.
To approximate, we discretize the point cloud space into 28% voxels
and assign each point to one of Px and Py.

Coverage (COV) measures the diversity of generated dataset X
in comparison to the reference dataset Y. For each x € X, it finds a
nearest neighbor y € Y as a match. COV is the fraction of matched
y in the reference dataset Y:

{argmin D(x,y)|x € X}

yey
COV(X,Y) =

, (11)

Y|

where D(-, ) is a distance function, such as CD, EMD, or LFD.
Minimum matching distance (MMD) measures the quality

of X referred to Y. For each y € Y, it finds the nearest neighbor x

in X and records D(x, y). MMD is the mean of those distances:

MMD(X,Y) = |—11/| Z arg min D(x, y) (12)

yEY xeX
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Figure C: Our diffusion model for 64 and 128 resolution.

Figure D: Our vertex refiner (U-Net) for 64 resolution.

1-nearest neighbor accuracy (1-NNA) [6] measures the simi-
larity between two distributions:

(13)
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Figure F: The architecture of our ResNet Block.

where ny is the nearest neighbor of x in X UY — {x} and I(-) is
a indicator function. For example, if ny € X, I(ny € X) = 1. If
ny ¢ X,I(nx € X) = 0. Ideally, if X and Y are sampled from the
same distribution, the 1-NNA value should be 50%. The closer the
1-NNA value is to 50%, the more similar X and Y are.

4 GENUDC WITHOUT U-NET

We present the pipeline of GenUDC without U-Net in Fig. G. In
GenUDC without U-Net, we remove the vertex refiner (U-Net) and
concatenate the face part ¥ and the vertex part V together to train
the latent diffusion model.
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Figure G: The pipeline differences between GenUDC and
GenUDC without U-Net.
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Figure H: Qualitative evaluation of shape generation in 1283
resolution.

5 MORE VISUAL SAMPLES OF GENUDC

We present visual samples of 128 resolution in Fig. H. Both methods
are visually good. It is difficult to distinguish which method is
better according to those visual samples. However, Tab. 3 of the
main paper proves that our variety and distribution are better than
LAS-Diffusion [7].
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