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ABSTRACT

Understanding complex three-dimensional (3D) structures of graphs is essential
for accurately modeling various properties, yet many existing approaches struggle
with fully capturing the intricate spatial relationships and symmetries inherent
in such systems, especially in large-scale, dynamic molecular datasets. These
methods often must balance trade-offs between expressiveness and computational
efficiency, limiting their scalability. To address this gap, we propose a novel
Geometric Tensor Network (GotenNet) that effectively models the geometric
intricacies of 3D graphs while ensuring strict equivariance under the Euclidean
group E(3). Our approach directly tackles the expressiveness-efficiency trade-off by
leveraging effective geometric tensor representations without relying on irreducible
representations or Clebsch-Gordan transforms, thereby reducing computational
overhead. We introduce a unified structural embedding, incorporating geometry-
aware tensor attention and hierarchical tensor refinement that iteratively updates
edge representations through inner product operations on high-degree steerable
features, allowing for flexible and efficient representations for various tasks. We
evaluated models on QM9, rMD17, MD22, and Molecule3D datasets, where the
proposed model consistently outperforms state-of-the-art methods in both scalar
and high-degree property predictions, demonstrating exceptional robustness across
diverse datasets, and establishes GotenNet as a versatile and scalable framework
for 3D equivariant Graph Neural Networks.

1 INTRODUCTION
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Figure 1: Comparison of GotenNet and
baseline models on the QM9 dataset.
The x-axis shows the logarithmic MAE
across all targets, while the y-axis
shows the standardized MAE. Lower
values on both axes indicate better per-
formance. Points marked as S, B, and
L represent small, base, and large varia-
tions of the GotenNet, respectively.

Accurately modeling 3D molecular systems is increasingly
crucial in areas such as drug discovery (Chen et al., 2020;
Jing et al., 2021; Nguyen et al., 2021; Huang et al., 2020;
Aykent & Xia, 2022; Yang et al., 2022), materials sci-
ence (Reiser et al., 2022; Pablo-García et al., 2023; Polat
et al., 2025), and structural biology (Zhang et al., 2021;
Xia & Ku, 2021; Zhang et al., 2022). These tasks require a
precise understanding of the spatial configurations and sym-
metries inherent in molecular structures, as these factors
are fundamental to predicting molecular properties. While
predicting scalar molecular properties, such as energy and
stability, is challenging, predicting molecular forces is par-
ticularly difficult due to the vector nature of forces and their
dependence on local geometric environments (Klicpera
et al., 2021; Liao & Smidt, 2023; Wang et al., 2024; 2023b;
Du et al., 2023). Traditional graph neural networks (GNNs),
while effective for general graph-structured data, face diffi-
culties in handling the geometric and topological complexi-
ties of 3D molecular systems, where achieving equivariance
remains a significant challenge (Thomas et al., 2018; Sator-
ras et al., 2021; Jing et al., 2021; Aykent & Xia, 2023).
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Recent advances in equivariant neural networks have led to two distinct approaches (Han et al., 2024):
scalarization-based models and high-degree steerable models. Scalarization-based models (Satorras
et al., 2021; Zhang & Zhao, 2021; Schütt et al., 2021; Thölke & De Fabritiis, 2022; Aykent & Xia,
2023; Du et al., 2023) operate by projecting 3D geometric information into scalar features before
reconstruction, offering computational efficiency and scalability for large-scale applications. However,
this projection process may limit expressiveness in capturing complex geometric patterns, particularly
in scenarios requiring precise understanding of spatial relationships and symmetries. On the other
hand, high-degree steerable models (Batzner et al., 2022; Batatia et al., 2022b; Musaelian et al., 2023;
Batatia et al., 2022a; Qiao et al., 2022; Liao & Smidt, 2023; Liao et al., 2024) achieve impressive
performance through irreducible representations (irreps) and Clebsch-Gordan (CG) transforms,
enabling direct manipulation of geometric features in higher-resolution representation spaces. Despite
their theoretical rigor and strong performance, these models incur significant computational overhead
due to their reliance on complex tensor operations (Cen et al., 2024; Liao & Smidt, 2023; Liao et al.,
2024). This fundamental dichotomy between computational efficiency and geometric expressiveness
presents a critical challenge in the field: how to achieve both qualities while maintaining strong
performance across diverse molecular properties.

Fundamental breakthroughs in theoretical understanding have revealed promising directions for
addressing this challenge. Rather than relying on explicit CG coefficients, recent advances have
illuminated how inner product operations can effectively capture similar geometric relationships (Cen
et al., 2024) while being computationally more tractable. This insight suggests the potential for more
efficient architectures that maintain the expressiveness of high-degree representations without the
computational burden of explicit CG transforms. However, translating this theoretical understanding
into practical architectures remains challenging – it requires not only a novel formulation of geometric
operations but also careful consideration of how to maintain numerical stability and computational
efficiency at scale. The challenge is evident in existing models’ inability to bridge the gap between
scalarization-based and high-degree steerable approaches while maintaining practical applicability.
Most current architectures (Han et al., 2024; Wang et al., 2024; Liao & Smidt, 2023; Liao et al., 2024)
either compromise on expressiveness for efficiency or forfeit computational tractability for geometric
accuracy, leaving a clear divide between models optimized for scalar property prediction and those
designed for force field calculations, with few achieving strong performance in both domains.

To address these challenges, we propose a novel framework, the Geometric Tensor Network (Goten-
Net). Our approach focuses on addressing the trade-off between expressiveness and efficiency. First,
we introduce a spherical-scalarization model with an efficient representation and embedding strategy
designed specifically with geometric tensors, eliminating the need for irreps and CG transforms,
thereby reducing computational complexity without sacrificing the expressiveness required for mod-
eling intricate 3D structures. Second, we present geometry-aware tensor attention and hierarchical
tensor refinement mechanisms. These mechanisms enhance transformer-based architectures by
refining edge representations through high-degree steerable features, enabling the self-attention mech-
anism to leverage refined geometric relationships in determining node interactions. This refinement
process enriches the attention weights with granular geometric information, allowing more precise
modeling of spatial relationships in molecular structures. These innovations allow the model to
represent molecular properties across multiple scales, adapting to both broad patterns and fine-grained
molecular details. As shown in Figure 1, our model consistently outperforms the baselines on the
QM9 dataset, excelling in both standard MAE and log MAE metrics. This highlights GotenNet’
ability to maintain accuracy for large-scale properties while ensuring precision for smaller-scale ones,
resulting in strong overall performance across diverse molecular properties.

Through rigorous evaluations on benchmark datasets—QM9, Molecule3D, rMD17, and MD22—our
approach consistently outperforms state-of-the-art methods, even in its smallest configuration, estab-
lishing GotenNet as a versatile and scalable framework for future developments in 3D equivariant
graph neural networks. The demonstrated robustness in predicting both scalar and higher-degree
tensor properties highlights its broad potential for applications in fields such as drug discovery,
materials science, and molecular dynamics simulations.
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2 RELATED WORK

The field of machine learning for molecular representation learning has seen significant advancements
in recent years (Gasteiger et al., 2020b; Liu et al., 2022; Gasteiger et al., 2020a; Wang et al., 2022; Liao
& Smidt, 2023; Liao et al., 2024), especially for the development of graph neural networks (GNNs)
to predict quantum mechanical properties and simulate molecular dynamics. These approaches can
be broadly categorized into two main groups: invariant GNNs and equivariant GNNs.

2.1 INVARIANT GNNS

Invariant GNNs focus on extracting rotation and translation invariant features from molecular
graphs (Schütt et al., 2017; Xie & Grossman, 2018; Unke & Meuwly, 2019; Gasteiger et al., 2020b;a;
Klicpera et al., 2021; Liu et al., 2022; Wang et al., 2022). DimeNet (Gasteiger et al., 2020b) intro-
duced the concept of directional message passing, embedding messages between atoms instead of
atoms themselves. This approach allowed the incorporation of angular information while maintaining
rotational equivariance. GemNet (Klicpera et al., 2021) extended this idea by incorporating dihedral
angles, and SphereNet (Liu et al., 2022) efficiently integrated torsion information in the message
passing scheme. ComENet (Wang et al., 2022) built upon these approaches, introducing a novel
message passing scheme that operates within 1-hop neighborhoods and achieves global and local
completeness in incorporating 3D information.

2.2 EQUIVARIANT GNNS

Equivariant GNNs, on the other hand, directly model rotational equivariance and translational
invariance in their architectures (Thomas et al., 2018; Kondor et al., 2018; Schütt et al., 2021; Jing
et al., 2021; Thölke & De Fabritiis, 2022; Aykent & Xia, 2022; Le et al., 2022; Du et al., 2022; 2023;
Aykent & Xia, 2023; Wang et al., 2023b; 2024). Current equivariant GNNs can be divided into two
primary approaches based on their feature processing strategies (Han et al., 2024): scalarization-based
models and high-degree steerable models. Scalarization-based models focus on deriving invariant
scalar features from 3D coordinates and then reconstruct directional information for equivariant
updates (Han et al., 2024; Satorras et al., 2021). Several models have successfully implemented this
strategy: PaiNN (Schütt et al., 2021) incorporated both scalar and vectorial features in its message
passing framework, LEFTNet (Du et al., 2023) developed local frame-based representations with
structural encodings, and TorchMD-NET (Thölke & De Fabritiis, 2022) introduced an equivariant
transformer architecture that processes scalar and vector features separately.

High-degree steerable models leverage high-degree representations and CG tensor products for
molecular modeling (Batzner et al., 2022; Batatia et al., 2022b; Qiao et al., 2022; Batatia et al.,
2022a; Musaelian et al., 2023; Liao & Smidt, 2023; Liao et al., 2024). SE(3)-Transformer (Fuchs
et al., 2020) pioneered this direction by introducing attention mechanisms with high-degree steerable
features, through computational limitations arose from tensor product operations. Subsequent
works like NequIP (Batzner et al., 2022) and MACE (Batatia et al., 2022b) introduced approaches
using CG coefficients for equivariance, while Allegro (Musaelian et al., 2023) introduced a local
equivariant architecture using iterated tensor products. Equiformer (Liao & Smidt, 2023) introduced
SE(3) equivariance into Transformers through depth-wise tensor products and MLP-based attention
mechanisms. Building on this work, EquiformerV2 (Liao et al., 2024) enhanced computational
efficiency by incorporating eSCN (Passaro & Zitnick, 2023), although its Fibonacci grid sampling
approach incurs an O(L3) computational overhead in achieving quasi-equivariance. While these
methods show impressive performance, their computational overhead remains significant.

Recent approaches have explored alternative methods to capture geometric information without
relying on tensor products and CG coefficients, offering computationally efficient solutions. ViSNet
(Wang et al., 2024) linked inner products and Legendre polynomials via vector-scalar interactive
message passing, through focusing on the first-degree steerable features. SO3KRATES (Frank et al.,
2024) demonstrated that certain applications of CG coefficients are equivalent to inner products of
high-degree steerable features, achieving notable performance in property prediction tasks through
their equivariant transformer architecture. HEGNN (Cen et al., 2024) further developed these concepts
by introducing a scalarization approach using inner products to incorporate high-degree steerable
features. This approach proved capable of capturing complete angular information between edge pairs
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Figure 2: Architecture of GotenNet. The overall framework (a) includes an embedding, an interaction
module, and a decoder; (b) shows the geometry-aware tensor attention (GATA); (c) illustrates the
hierarchical tensor refinement (HTR); and (d) presents the node scalar feature initialization component,
which is part of the structure embedding module. In the figure, + denotes addition, · denotes dot
product, ⊕ denotes aggregation, (·, ·) denotes concatenation, ◦ denotes element-wise (Hadamard)
product with broadcasting when tensor shapes are different, LN denotes layer normalization, φ
denotes the radial basis functions, and γ denotes differentiable functions such as MLPs.

and demonstrating enhanced model robustness in dynamics tasks. Our work advances this direction by
introducing geometry-aware tensor attention, which employs a concise formulation of inner product
operations combined with hierarchical refinement mechanisms. GotenNet represents a significant
advancement in bridging the critical gap between scalarization-based and high-degree steerable
models. The proposed spherical-scalarization model, GotenNet, achieves superior performance in
real-world molecular property prediction and force field calculations across diverse datasets.

3 GOTENNET

In this section, we present the key components of GotenNet. Our network maintains and updates two
types of node features (invariant and steerable) and edge features (invariant) throughout its operations.
We first introduce an efficient initialization scheme (Sec. 3.2) that embeds geometric tensors without
requiring irreps or CG transforms, significantly reducing computational complexity. The network then
processes these representations through three main mechanisms: (1) a degree-wise attention-based
message passing layer (Sec. 3.3) that updates both invariant and steerable features while preserving
equivariance, (2) a high-degree edge refinement layer (Sec. 3.4) that updates edge features across
degrees with inner products of steerable features, and (3) a node-wise feed-forward refinement layer
(Sec. 3.5) that further processes both types of node features. This architecture enables accurate and
scalable predictions while maintaining geometric consistency throughout the network.

3.1 EQUIVARIANT GEOMETRIC TENSOR REPRESENTATIONS

In our model, we distinguish between edge scalar features and edge tensor representations, employing
spherical harmonics to initialize the latter. The edge tensor representation r̃

(l)
ij is initialized based on

the relative positions p⃗i and p⃗j of nodes i and j, capturing spatial information from rank 0 to Lmax.
Specifically, r̃ij = {r̃(0), r̃(1), . . . , r̃(Lmax)}, where each r̃(l) represents l-degree spherical harmonic
functions. The components of r̃ij follow a hierarchical structure of increasing geometric complexity.
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At the most basic level, r̃(0)ij = ∥p⃗i − p⃗j∥ captures the scalar distance between nodes, providing

rotation and translation invariant information. The first-degree component r̃(1)ij = (p⃗i−p⃗j)/∥p⃗i−p⃗j∥
encodes directional information, introducing rotational equivariance. For l ≥ 2, each r̃

(l)
ij comprises

(2l + 1) functions derived from spherical harmonics of degree l, where the degree determines the
transformation behavior under rotations, and the parity of l determines the behavior under inversion.
These functions are chosen to capture complex spatial relationships and rotational symmetries inherent
in molecular structures. Leveraging the inherent normalization property of spherical harmonics, each
r̃(l) for l ≥ 1 is naturally normalized, ensuring consistent scaling across different representations.

We denote the geometric node tensors into two types of features: scalar features h ∈ Rdne invariant
under transformations, and high-degree steerable features X̃(l) ∈ R(1+2l)×dne whose transformations
depend on their degree l where dne denotes node embedding dimension. We denote steerable features
with a tilde, ·̃, where feature of degree l is represented by 1 + 2l components. These representations
are initialized and updated through message passing phases using the edge tensor representation
r̃ij and edge scalar features tij as input. The notation X̃ without a specified degree l refers to the
collection of features with degrees from 1 to Lmax. This initialization strategy enables our model to
effectively capture, process, and propagate complex structural information.

Our initialization and feature design ensure equivariance throughout the network. A geometric tensor
field maps 3D points to tensor quantities that transform equivariantly under geometric transformations,
combining both invariant scalars and steerable features. Each layer of GotenNet processes these tensor
fields through equivariant operations while preserving E(3) transformations, with the final layer
producing either equivariant geometric features or invariant representations as required by the task.
This composition of equivariant operations ensures that the entire network maintains equivariance,
with complete proofs provided in the Appendices A, B, and C.

3.2 UNIFIED STRUCTURAL EMBEDDING: INTEGRATING CONTENT AND GEOMETRY

Our approach introduces a unified structure embedding that captures intrinsic atomic properties and
relational information through an integrated node-edge interaction mechanism. By employing a
dual representation strategy, we incorporate local geometric structure through node-edge interaction.
This allows the model to simultaneously process both semantic and geometric information, enabling
efficient message passing for both nodes and edges.

Node Scalar Feature Initialization. Node scalar features are obtained through a two-step process
involving message passing and representation updates. Node information is aggregated as:

mi =
∑

j∈N (i)

zjAnbr ◦
(
φ(r̃

(0)
ij )Wndp ◦ ϕ(r̃(0)ij )

)
, (1)

where z ∈ R|Z| denotes the one-hot encoding of the atomic number, ◦ denotes element-wise product,
and Anbr ∈ R|Z|×dne is a learnable embedding matrix for neighbor atoms with maximum atomic
number |Z|. The basis functions φ(r̃(0)ij ) encode the distance between nodes i and j, which are then

projected through Wndp. A cutoff function ϕ(r̃
(0)
ij ) is applied to modulate the influence of distant

neighbors. It is important to note that the ◦ operation applies standard broadcasting rules when the
shapes of the two operands are not identical. Specifically, if the tensors have mismatched shapes,
the tensor with fewer dimensions or smaller size in a dimension is automatically expanded to match
the shape of the other tensor before the element-wise multiplication. For example, in Equation (1),
consider the shapes: (φ(r̃(0)ij )Wndp) ∈ Rdne and ϕ(r̃

(0)
ij ) ∈ R1. Here, ϕ(r̃(0)ij ) is broadcast along

the first dimension to conform to the shape of (φ(r̃(0)ij )Wndp) before the element-wise product is
computed. Consequently, the aggregated node information, mi, is produced with shape Rdne .

The initial node scalar feature is defined as:

hi,init = σ
(
LN
(
(ziAna,mi)Wnrd

))
Wnru. (2)

Here, Ana ∈ R|Z|×dne is a learnable embedding matrix for node atoms, σ denotes a non-linear activa-
tion function, and (·, ·) denotes concatenation operation. The concatenated node atom embedding and
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aggregated neighbor information undergo a series of transformations: node representation projections
(Wnrd, Wnru), and layer normalization (LN).

Edge Scalar Feature Initialization. To effectively model interactions, edge scalar features are
computed by combining node features with distance-based edge attributes:

tij,init = (hi,init + hj,init) ◦
(
φ(r̃(0)ij)Werp

)
. (3)

Edge attributes tij ∈ Rded are processed through projection matrix Werp, enabling the integration of
node-level features and spatial relationships. This formulation captures complex interactions between
nodes while maintaining equivariance under molecular transformations.

High-degree Steerable Feature Initialization. The high-degree steerable features X̃ initialized
during initial interaction layer with the following formulation:

{o(l)
ij,init}

Lmax

l=1 = split
(

seaij + (tij,initWrs,init) ◦ γs(hj,init) ◦ ϕ(r̃(0)ij ), dne

)
,

X̃
(l)
i,init =

⊕
j∈N (i)

(
o
(l)
ij,init ◦ r̃

(l)
ij

)
,

(4)

where seaij is self-attention with geometric encoding, Wrs,init ∈ Rded×dne is a learnable weight
matrix, γs : Rdne → RLmax×dne is a differentiable function, and the split function decomposes the
input tensor into dne-dimensional segments. These segments are used as different coefficients for
each l-degree steerable features.

⊕
denotes a permutation-invariant aggregation function.

3.3 GEOMETRY-AWARE TENSOR ATTENTION

We introduce a novel module called , which enhances the attention mechanism in graph neural
networks by incorporating spatial information. GATA captures the geometric relationships between
nodes to improve attention-driven message passing.

The GATA module combines self-attention with geometric encoding to generate rich node interaction
representations. We compute the query (q), key (k), and value (v) representations:

qi = hiWq, kj = hjWk, vj = γv(hj), (5)

where Wq,Wk ∈ Rdne×dne are learnable weight matrices, and γv : Rdne → RS·dne is a differentiable
function (e.g., MLP). The S variable introduced to generate different coefficients for each degree of
steerable features and is defined as 1+ 2×Lmax. The attention coefficients αij between nodes i and
j using the dot product of the query vector qi and a geometry-infused key vector, which is obtained
via an element-wise product of kj and a transformed edge embedding:

seaij =
exp(αij)∑

k∈N (i) exp(αik)
vj , where αij = qi

(
kj ◦ σk(tijWre

)
)T. (6)

Here, σk denotes a non-linear activation function, and Wre ∈ Rded×dne is a learnable weight
matrix that transforms the edge scalar features. To incorporate spatial and directional information,
we augment the attention mechanism with geometric encoding. The GATA operation combines
self-attention with geometric features and is then split into S components:

os
ij , {o

d,(l)
ij }

Lmax

l=1 , {ot,(l)
ij }

Lmax

l=1 = split(seaij + (tijWrs) ◦ γs(hj) ◦ ϕ(r̃(0)ij ), dne), (7)

where Wrs ∈ Rded×(S·dne) is a learnable weight matrix, γs : Rdne → RS·dne is a differentiable
function, and the split function decomposes the input tensor into dne-dimensional segments. We
define ∆hi and ∆X̃ as the residues, which are calculated by:

∆hi =
⊕

j∈N (i)

(os
ij), ∆X̃

(l)
i =

⊕
j∈N (i)

(
o
d,(l)
ij ◦ r̃(l)ij + o

t,(l)
ij ◦ X̃(l)

j

)
. (8)

Here, each degree l ∈ [1, Lmax] contributes its own component of steerable features weighted by
their respective coefficients od,(l)

ij and o
t,(l)
ij . Finally, representations are updated using residues with:

hi ← hi +∆hi, X̃
(l)
i ← X̃

(l)
i +∆X̃

(l)
i , (9)

By infusing geometric information into the attention mechanism, GATA allows the model to better
capture spatial dependencies and fine-grained node interactions, leading to improved performance in
molecular property predictions, as demonstrated in Section 4.
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3.4 HIERARCHICAL TENSOR REFINEMENT

The Hierarchical Tensor Refinement (HTR) component processes graph-structured data through
multi-scale analysis and layer-wise refinement. High-degree steerable features are projected to query
and key representations using degree-specific SO(3)-equivariant linear transformation (Deng et al.,
2021; Du et al., 2023; Wang et al., 2024) as shown in Equation (10):

ẼQ
(l)

i = X̃
(l)
i Wvq, ẼK

(l)

j = X̃
(l)
j W

(l)
vk , for l ∈ {1, . . . , Lmax}, (10)

where Wvq,W
(l)
vk ∈ Rded×dxpd are tensor query and key projection matrices, respectively. Here,

Wvq is a shared projection matrix across degrees, while W
(l)
vk is degree-specific. To preserve

equivariance, uniform weights are applied across spatial dimensions. These projections aggregate
angular and magnitude information between nodes across tensor degrees, defined as:

wij = AggLmax

l=1

(
(ẼQ

(l)

i )⊤ẼK
(l)

j

)
, (11)

where wij ∈ Rdxpd represents the aggregated similarity between nodes i and j, and AggLmax

l=1 denotes
an denotes the aggregation over high-degree steerable features. The aggregated information refines
edge representations through a residual connection:

tij ← tij +∆tij , ∆tij = γw(wij) ◦ γt(tij), (12)

where γw : Rdxpd → Rded and γt : Rded → Rded are differentiable functions. In some cases, dxpd is
set larger than ded for richer intermediate representations.

3.5 EQUIVARIANT FEED-FORWARD (EQFF) NETWORKS

The EQFF blocks, employed after GATA, facilitates efficient channel-wise interaction while maintain-
ing equivariance. By design, the module separates scalar and high-degree steerable features, allowing
for specialized processing of each feature type before combining them with non-linear mappings:

EQFF(h, X̃(l)) =
((

h+m1

)
,
(
X̃(l) + (m2 ◦ X̃(l)Wvu)

))
,

where m1,m2 = split2

(
γm
(
||X̃(l)Wvu||2,h

))
.

(13)

Here γm denote differentiable functions such as MLPs, Wvu denotes learnable weight matrices,
(·, ·) denotes concatenation, and || · ||2 denotes L2 norm. The EQFF module operates on the tensor
representations while separating the scalar and high-degree steerable features and combining them
through element-wise operations. The use of γm enables the model to learn complex non-linear
mappings, enhancing its expressiveness (Ramachandran et al., 2017; Elfwing et al., 2018).

4 EXPERIMENTS

In this section, we compare the performance of GotenNet with other state-of-the-art methods. Experi-
ments were conducted with an NVIDIA A100 GPU with 80GB video memory, 512GB RAM, and
an AMD EPYC 7713P CPU. We evaluated the models on QM9, rMD17, MD22, and Molecule3D
datasets. The best results are bolded and the second best are underlined. Additional details on
hyperparameters and scalability, as well as additional experiments, can be found in the Appendix E.

4.1 QM9 DATASET

Dataset. The proposed method is evaluated against a comprehensive set of baselines using the QM9
dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). These baselines include Cormorant
(Anderson et al., 2019), ClofNet (Du et al., 2022), NMP (Gilmer et al., 2017), EGNN (Satorras
et al., 2021), SEGNN (Brandstetter et al., 2022), PaiNN (Schütt et al., 2021), DimeNet++ (Gasteiger
et al., 2020a), ComENet (Wang et al., 2022), SphereNet (Liu et al., 2022), LEFTNet (Du et al.,
2023), EQGAT (Le et al., 2022), ET (Thölke & De Fabritiis, 2022), HDGNN (An et al., 2024),
Geoformer (Wang et al., 2023a), Equiformer (Liao & Smidt, 2023), SaVeNet (Aykent & Xia, 2023),
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Table 1: Performance comparisons on QM9 dataset. † denotes using different data partitions.

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE std. log
Units ma3

0 meV meV meV mD mcal
mol K meV meV ma2

0 meV meV meV % -

DimeNet++† 44 32.6 24.6 19.5 29.7 23 7.56 6.53 331 6.28 6.32 1.21 0.98 -5.67
SphereNet† 46 31.1 22.8 18.9 24.5 22 7.78 6.33 268 6.36 6.26 1.12 0.91 -5.73
LEFTNet 48 40 24 18 12 23 7 6 109 7 6 1.33 0.91 -5.82
EQGAT 53 32 20 16 11 24 23 24 382 25 25 2.00 0.86 -5.28
ET 59 36.1 20.3 17.5 11 26 7.62 6.16 33 6.38 6.15 1.84 0.84 -5.90
HDGNN† 46 32 18 16 17 23 11 10 342 8.12 8.34 1.21 0.80 -5.64
Geoformer 40 33.8 18.4 15.4 10 22 6.13 4.39 28 4.41 4.43 1.28 0.75 -6.12
Equiformer 46 30 15.4 14.7 12 23 7.63 6.63 251 6.74 6.59 1.26 0.70 -5.82
SaVeNet-B† 39 24.8 18.4 16.3 9.3 23 6.64 5.43 58 5.48 5.43 1.18 0.69 -6.04
EquiformerV2 47 29.0 14.4 13.3 9.9 23 7.57 6.22 186 6.49 6.17 1.47 0.67 -5.87

GotenNetS 33 21.2 16.9 13.9 7.5 20 5.50 3.70 29 3.67 3.71 1.09 0.60 -6.29
GotenNetB 32 20.5 15.2 13.0 7.2 19 5.19 3.44 27 3.49 3.43 1.09 0.56 -6.35
GotenNetL 28 19.8 13.4 12.2 6.7 19 4.98 3.30 24 3.41 3.37 1.08 0.52 -6.41

EquiformerV2 (Liao et al., 2024), Transformer-M (Luo et al., 2022), GeoSSL-DDM (Liu et al., 2023),
3D-EMGP (Jiao et al., 2023), Coord (Zaidi et al., 2023), Frad (Ni et al., 2024a), SliDe (Ni et al.,
2024b) and DenoiseVAE (Liu et al., 2025). Table 1 presents only the ten baseline methods with the
lowest std. MAEs, while the complete comparison is provided in Appendix I Table 9.

Model Performance and Size Scaling Analysis. We evaluate three model variants - small (S), base
(B), and large (L) - to analyze both performance and scaling behavior, with detailed specifications in
Appendix E. As shown in Table 1, even our smallest variant GotenNetS outperforms baseline methods
on nine out of twelve targets while surpassing baselines on std. MAE and log MAE. GotenNetB
demonstrates further improvements, achieving best performance on eleven targets and significantly
improving aggregated metrics, reducing standard MAE by over 16% and log MAE by 3% compared
to the best baseline results. The largest variant GotenNetL achieves state-of-the-art performance
across all metrics, although the relative improvement decreases compared to GotenNetB , which
suggests that dataset size may become a limiting factor for larger models. To investigate scaling to
larger datasets, we conduct experiments in Section 4.2 on the Molecule3D dataset, which contains
more than 3 million molecules - an order of magnitude larger than QM9. These results establish
GotenNet as the new state-of-the-art while revealing important insights about model scaling behavior.

Table 2: Performance comparisons on Molecule3D
dataset.

Split Random Scaffold
Task µ εHOMO εLUMO ∆ε std. log ∆ε

GIN-Virtual .0882 .0692 .0632 .1036 .0592 -2.87 .2371
SchNet .0532 .0275 .0265 .0428 .0263 -3.66 .1511
DimeNet++ .0293 .0240 .0190 .0306 .0188 -4.01 .1214
SphereNet .0288 .0239 .0183 .0301 .0184 -4.03 .1182
ComENet .0345 .0288 .0252 .0326 .0220 -3.84 .1273
PaiNN .0196 .0263 .0197 .0307 .0182 -4.08 .1208
ET .0223 .0199 .0194 .0303 .0170 -4.13 .1282
LEFTNet .0151 .0183 .0157 .0275 .0145 -4.32 .1317
SaVeNet-L .0136 .0159 .0143 .0239 .0128 -4.44 .1082
Geoformer - - - .0202 - - .1135

GotenNet .0103 .0108 .0112 .0165 .0103 -4.65 .1002
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Figure 3: Comparison of training latency
of the models with respect to node count
on the Molecule3D dataset.

4.2 MOLECULE3D DATASET

Dataset. We further evaluate our model on the Molecule3D dataset (Xu et al., 2021). This dataset
contains over 29×more graphs than QM9, with approximately 1.6× and 1.9× increases in the average
number of nodes and edges per graph, providing an ideal benchmark for both model performance and
computational scaling. We compare against diverse baseline models, including GIN-Virtual (Wang
et al., 2022), SchNet (Schütt et al., 2017), DimeNet++ (Gasteiger et al., 2020a), SphereNet (Liu et al.,
2022), ComENet (Wang et al., 2022), PaiNN (Schütt et al., 2021), ET (Thölke & De Fabritiis, 2022),
LEFTNet (Du et al., 2023), SaVeNet (Aykent & Xia, 2023), and Geoformer (Wang et al., 2023a).
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Table 3: Comprehensive comparison of various molecular modeling methods on MD22 dataset.
The results are reported in MAE of energy (kcal/mol) and forces (kcal/mol/Å) denoted as E and F,
respectively. |G| denotes the size of the graphs in terms of node count.

Molecule |G| sGDML ET Allegro MACE Equiformer ViSNet QuinNet E-LSRM V-LSRM SO3KRATES GotenNetS GotenNetB

Tetrapeptide 42 E 0.3902 0.1121 0.1019 0.0620 0.0828 0.0796 0.0840 0.0780 0.0654 0.337 0.0589 0.0505
F 0.7968 0.1879 0.1068 0.0876 0.0804 0.0972 0.0681 0.0887 0.0902 0.244 0.0719 0.0567

DHA 56 E 1.3117 0.1205 0.1153 0.1317 0.1788 0.1526 0.1200 0.0878 0.0873 0.379 0.0640 0.0575
F 0.7474 0.1209 0.0732 0.0646 0.0506 0.0668 0.0515 0.0534 0.0598 0.242 0.0496 0.0421

Stachyose 87 E 4.0497 0.1393 0.2485 0.1244 0.1404 0.1283 0.2300 0.1252 0.1055 0.442 0.0751 0.0673
F 0.6744 0.1921 0.0971 0.0876 0.0635 0.0869 0.0543 0.0632 0.0767 0.435 0.0512 0.0427

AT-AT 60 E 0.7235 0.1120 0.1428 0.1093 0.1309 0.1688 0.1400 0.1007 0.0772 0.178 0.0640 0.0544
F 0.6911 0.2036 0.0952 0.0992 0.0960 0.1070 0.0687 0.0881 0.0781 0.216 0.0632 0.0478

AT-AT-CG-CG 118 E 1.3885 0.2072 0.3933 0.1578 0.1510 0.1995 0.3800 0.1335 0.1135 0.345 0.0964 0.0923
F 0.7028 0.3259 0.1280 0.1153 0.1252 0.1563 0.1273 0.1065 0.1063 0.332 0.0824 0.0744

Buckyball
catcher 148 E 1.1962 0.5188 0.5258 - 0.3978 0.4421 0.5624 - 0.4220 0.381 0.3432 0.3032

F 0.6820 0.3318 0.0887 - 0.1114 0.1335 0.1091 - 0.1026 0.237 0.0838 0.0789
Double-walled
nanotube 370 E 4.0122 1.4732 2.2097 - 1.1945 1.0339 1.8130 - 1.8230 0.993 0.9993 0.6641

F 0.5231 1.0031 0.3428 - 0.2747 0.3959 0.2473 - 0.3391 0.727 0.2464 0.1888

Model Performance on Large-Scale Data. As shown in Table 2, GotenNet maintains its superior
performance even on this larger Molecule3D dataset, achieving the lowest errors across all tasks,
including µ, εHOMO, εLUMO, and ∆ε. Notably, GotenNet surpasses the previous best model, SaVeNet-
L, by a significant margin of 24% in µ and more than 32% in εHOMO. The best log error of -4.65 in
the random split further demonstrates the model’s robustness on larger datasets.

Computational Efficiency Analysis. Beyond performance metrics, scaling to larger datasets requires
efficient handling of increased graph sizes. We analyze computational efficiency by measuring
training time across varying node counts (10-140 nodes per graph). Figure 3 compares GotenNet with
competitive attention-based baselines including Geoformer (Wang et al., 2023a), Equiformer (Liao &
Smidt, 2023), and EquiformerV2 (Liao et al., 2024). Full experimental setup details are provided
in Appendix G. The x-axis shows the node count, while the y-axis shows the training time per
batch in milliseconds. The results show GotenNet maintains efficient scaling at higher node counts,
while baseline methods like Geoformer, despite strong performance on smaller graphs, become
computationally intensive due to their dense O(n2) representations. Both GotenNetS and GotenNetB
variants maintain consistent efficiency across all node counts, demonstrating their suitability for
large-scale applications where computational overhead is critical.

4.3 MD22 DATASET

Dataset. The MD22 dataset (Chmiela et al., 2023) contains molecular dynamics trajectories for
seven systems, with atom counts from 42 to 370, across four biomolecule and supramolecule classes.
It presents challenges in system size, flexibility, and nonlocality, making it a key benchmark for
scalability and accuracy in molecular force field models. Following the data splits from (Chmiela
et al., 2023), we evaluate GotenNet against several baselines, including sDGML (Chmiela et al.,
2018), ET (Thölke & De Fabritiis, 2022), Allegro (Musaelian et al., 2023), MACE (Batatia et al.,
2022b), Equiformer (Liao & Smidt, 2023), ViSNet (Wang et al., 2024), QuinNet (Wang et al., 2023b),
SO3KRATES (Frank et al., 2024), and LSRM (Li et al., 2024) along with its variants E-LSRM
(Equiformer-LSRM) and V-LSRM (ViSNet-LSRM).

Results. The MD22 dataset poses significant challenges due to its wide range of molecule sizes,
requiring accurate predictions of both energy and forces. We show results of MD22 dataset in Table
3. Our proposed model, GotenNet, consistently outperforms state-of-the-art methods across all
evaluated molecules, demonstrating superior performance in both energy and force predictions.

For molecules such as Tetrapeptide and AT-AT, GotenNet achieves notable reductions in energy errors,
with improvements of 18.6% and 29.5% over the previous best models, respectively. Simultaneously,
force prediction errors are reduced by up to 30.4%, underscoring GotenNet’s balanced performance
across both metrics. In more complex cases, such as the Buckyball catcher and Double-walled
nanotube, GotenNet sets new benchmarks, reducing energy errors by over 35% and force errors by
up to 31.3%. These results highlight the robustness and versatility of GotenNet in handling diverse
molecular structures, establishing it as a leading model in both energy and force prediction.
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4.4 RMD17 DATASET

Dataset. The rMD17 dataset (Christensen & Von Lilienfeld, 2020) is a revised version of the MD17
benchmark, featuring 10 small organic molecules with 100,000 conformations per molecule. It serves
as a key benchmark for evaluating machine learning models’ ability to predict molecular energies
and forces across diverse conformations. We follow the standard split (Christensen & Von Lilienfeld,
2020) of 950 training, 50 validation, and the remaining conformations for testing. The results are
averaged over five predefined splits to ensure robust evaluation.

Table 4: The table presents MAE for energy (kcal/mol) and forces (kcal/mol/Å) on the rMD17 dataset.

Molecule NequIP ACE UNiTE Allegro BOTNet MACE TensorNet GotenNet

Aspirin E 0.0530 0.1407 0.0553 0.0530 0.0530 0.0507 0.0553 0.0358
F 0.1891 0.4128 0.1753 0.1683 0.1960 0.1522 0.2052 0.1306

Azobenzene E 0.0161 0.0830 0.0254 0.0277 0.0161 0.0277 0.0161 0.0121
F 0.0669 0.2514 0.0969 0.0600 0.0761 0.0692 0.0715 0.0483

Benzene E 0.0009 0.0009 0.0016 0.0069 0.0007 0.0092 0.0005 0.0005
F 0.0069 0.0115 0.0168 0.0046 0.0069 0.0069 0.0069 0.0047

Ethanol E 0.0092 0.0277 0.0143 0.0092 0.0092 0.0092 0.0115 0.0071
F 0.0646 0.1683 0.0853 0.0484 0.0738 0.0484 0.0807 0.0482

Malonaldehyde E 0.0184 0.0392 0.0254 0.0138 0.0184 0.0184 0.0184 0.0129
F 0.1176 0.2560 0.1522 0.0830 0.1338 0.0945 0.1245 0.0830

Naphthalene E 0.0208 0.0208 0.0106 0.0046 0.0046 0.0115 0.0046 0.0039
F 0.0300 0.1176 0.0600 0.0208 0.0415 0.0369 0.0369 0.0240

Paracetamol E 0.0323 0.0922 0.0438 0.0346 0.0300 0.0300 0.0300 0.0212
F 0.1361 0.2929 0.1637 0.1130 0.1338 0.1107 0.1361 0.0928

Salicylic acid E 0.0161 0.0415 0.0168 0.0208 0.0184 0.0208 0.0184 0.0141
F 0.0922 0.2145 0.0876 0.0669 0.0992 0.0715 0.1061 0.0703

Toluene E 0.0069 0.0254 0.0104 0.0092 0.0092 0.0115 0.0069 0.0044
F 0.0369 0.1499 0.0577 0.0415 0.0438 0.0346 0.0392 0.0261

Uracil E 0.0092 0.0254 0.0134 0.0138 0.0092 0.0115 0.0092 0.0064
F 0.0715 0.1522 0.0876 0.0415 0.0738 0.0484 0.0715 0.0417

Results. As shown in Table 4, GotenNet outperforms other models in 80% of tasks and ranks second
in the remaining, excelling in both energy and force predictions. GotenNet sets new benchmarks for
molecules such as Aspirin, Azobenzene, Ethanol, Paracetamol, and Toluene, demonstrating balanced
improvements across energy and force predictions. These results highlight GotenNet’s robustness and
its ability to accurately model molecular properties, outperforming prior methods on rMD17 dataset.

4.5 ABLATION STUDY
Table 5: Ablation study on QM9 dataset.

# L Lmax SE SEA GE HTR std log

4 2 ✓ ✓ ✓ ✓ 0.67 -6.21
6 1 ✓ ✓ ✓ ✓ 0.68 -6.17
6 2 ✗ ✓ ✓ ✓ 0.67 -6.17
6 2 ✓ ✗ ✓ ✓ 0.65 -6.23
6 2 ✓ ✓ ✗ ✓ 0.83 -5.96
6 2 ✓ ✓ ✓ ✗ 0.64 -6.20
6 2 ✓ ✓ ✓ ✓ 0.61 -6.26

12 2 ✓ ✓ ✓ ✓ 0.56 -6.34

Table 5 presents the results of the ablation study, high-
lighting the impact of various components on the per-
formance of GotenNet. The inclusion of structural
embedding (SE), self-attention (SEA), geometric en-
coding (GE), and HTR generally leads to improved
results, as shown in rows 1, 7, and 8, where the model
achieves the lowest std MAE and log MAE. The re-
moval of any one of these components results in a
significant degradation in performance, particularly
in the cases without geometric encoding (row 4) or reducing Lmax (row 2). The full model with 12
layers (row 8) achieves the best performance, with the lowest std MAE of 0.56 and log MAE of -6.34.
This demonstrates the combined effectiveness of all components for model scalability.

5 CONCLUSION

We presented GotenNet, a framework for modeling 3D molecular structures that strikes a balance
between expressiveness and efficiency by integrating geometric tensor representations with innovative
components, including unified structure embedding, geometry-aware tensor attention, and hierarchical
tensor refinement. GotenNet consistently outperforms state-of-the-art methods across four benchmark
datasets. It also demonstrates scalability and computational efficiency, making it highly suitable
for large-scale molecular systems. These results establish GotenNet as a versatile and powerful
framework for 3D equivariant graph neural networks. Future work could further enhance its scalability
to larger molecular systems and explore applications in molecular dynamics and materials science.
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APPENDIX

A PROOF: EQUIVARIANCE OF GEOMETRIC TENSOR

Equivariance of Geometric Tensor: Let T : M → T be a geometric tensor field, and g ∈ E(3) be
an element of the Euclidean group. Then T is equivariant under g if:

(g · T )(p) = ρ(g)T (g−1 · p)

where ρ is a representation of E(3) on the space of tensors T .

Proof. To prove the equivariance of the geometric tensor field, we start by recalling the definition of
equivariance. A tensor field T : M → T is equivariant under the group action of g ∈ E(3) if, for all
points p ∈M ,

T (g · p) = ρ(g)T (p),

where ρ(g) is a representation of the group element g on the space T .

Now, consider the action of the group element g ∈ E(3) on T . By the definition of the group action
of g on the tensor field T , we have:

(g · T )(p) = T (g−1 · p).

Next, we apply the representation ρ(g) to the transformed tensor T (g−1 · p). By the equivariance
condition, we require that:

(g · T )(p) = ρ(g)T (g−1 · p).
This completes the proof, as we have shown that the transformed tensor field g · T is related to the
original tensor field T by the representation ρ(g), satisfying the equivariance condition.

B PROOF: GOTENNET PRESERVE THE EQUIVARIANCE PROPERTY

Proof. We will prove that layer operations in GotenNet preserve the equivariance property of geo-
metric tensor fields under the action of the Euclidean group E(3). To this end we will prove that each
component used in GotenNet preserves the invariance/equivariance properties.

First we will prove that the initial node and edge representations are invariant under the action of
the Euclidean group E(3). We’ll consider each component separately. The node embedding process
consists of two main steps: message passing and representation update. We’ll show that both steps
are invariant under E(3). The message passing equation in node embedding is:

mi =
∑

j∈N (i)

zjAnbr ◦
(
φ(r̃(0)ij)Wndp ◦ ϕ(r̃(0)ij)

)
.

Under the action of g ∈ E(3) zj is invariant as it’s an atomic number. r̃ij,init is invariant as it’s the
distance between nodes i and j. N (i) is invariant as the set of neighbors doesn’t change under rigid
transformations. Therefore, mi is invariant under E(3). The node representation update is defined
as:

hi,init =

(
σ
(
LN
(
(ziAna,mi)Wnrd

)))
Wnru.

Here, zi is invariant, mi is invariant (as shown above), and all other operations (concatenation, linear
transformations, layer normalization, and activation) are invariant. Thus, hi is invariant under E(3).
The node embedding is followed by edge embedding and the initial edge representation is computed
as:

tij,init = (hi,init + hj,init) ◦
(
φ(r̃(0)ij)Werp

)
.

We’ve already shown that hinit is invariant. The distance rij,init is also invariant under E(3). The
operations φ, and linear transformations are all invariant. Therefore, tij,init is invariant under E(3).
Thus, we have shown that both the initial node representations hi,init and edge representations tij,init
are invariant under the action of the Euclidean group E(3).
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After the initialization step the next module is GATA. Therefore, we will prove that the GATA module
and the subsequent operations in the interaction layer preserve equivariance under the action of the
Euclidean group E(3). The query, key, and value Computation as defined in Equation (5), we have:

qi = hiWq, kj = hjWk, vj = γv(hj),

hi and hj are scalar (0-degree steerable features) representations, which are invariant under E(3).
The linear transformations Wq and Wk, and the function γv, preserve this invariance. Thus, qi, kj ,
and vj are invariant under E(3). The attention coefficients are defined in Equation (6), the attention
coefficient αij is computed as:

αij = qi
(
kj ◦ σk(tijWre

)
)T .

We’ve shown that qi and kj are invariant. tij is an edge embedding, which is invariant under E(3).
The operations σk, ◦, and matrix multiplication preserve invariance. Therefore, αij is invariant under
E(3). The self-attention operation in Equation (6) defined as:

seaij =
exp(αij)∑

k∈N (i) exp(αik)
vj .

Since αij and vj are invariant, and the softmax operation preserves invariance, seaij is invariant
under E(3). Geometric Encoding defined in Equation (7), we have:

os
ij , {o

d,(l)
ij }

Lmax

l=1 , {ot,(l)
ij }

Lmax

l=1 = split(seaij + (tijWrs) ◦ γs(hj) ◦ ϕ(r̃(0)ij ), dne).

seaij , tij , hj , and r̃
(0)
ij are all invariant under E(3). The operations Wrs, γs, ϕ, ◦, and split preserve

this invariance. Therefore, os
ij , {od,(l)

ij }
Lmax

l=1 and {ot,(l)
ij }

Lmax

l=1 are invariant under E(3). Finally, node
tensor representation updated with Equation (8), we have:

∆hi =
⊕

j∈N (i)

(os
ij), ∆X̃

(l)
i =

⊕
j∈N (i)

(
o
d,(l)
ij ◦ r̃(l)ij + o

t,(l)
ij ◦ X̃(l)

j

)
.

Here, hi, os
ij , {od,(l)

ij }
Lmax

l=1 and {ot,(l)
ij }

Lmax

l=1 are invariant under E(3). Specifically, {od,(l)
ij }Lmax

l=1

and {ot,(l)
ij }

Lmax

l=1 are sets of invariant coefficients, where for each degree l of steerable features,

we have distinct invariant scalars od,(l)
ij and o

t,(l)
ij . r̃(l)ij and X̃j are high-degree steerable features

that transform equivariantly under E(3). The ◦ operation between invariant scalars and equivariant
tensors preserves equivariance. Specifically, since ◦ multiplies the same invariant values over the
spatial dimension of the high-degree tensors, this operation preserves equivariance. To see this, let
g ∈ E(3) be a transformation, s be an invariant scalar, and T be an equivariant tensor. Then:

g(s ◦ T ) = g(sT ) = sg(T ) = s ◦ g(T ).

This shows that the ◦ operation commutes with the group action, preserving equivariance. The
permutation-invariant aggregation function

⊕
(such as summation or averaging) preserves equivari-

ance because it operates independently on each degree of the tensor, maintaining their transformation
properties under E(3). Therefore, the scalar ∆hi remains invariant, while the high-degree steerable
features X̃(l) transform equivariantly under E(3). Thus, we have shown that the interaction layer
preserves the equivariance of the input representations under the action of the Euclidean group E(3).
Thus, we have shown that the interaction layer preserves the equivariance of the input representations
under the action of the Euclidean group E(3).

Next, we will prove that the HTR component preserves equivariance under the action of the Euclidean
group E(3). We’ll consider each operation in the HTR component. Tensor projections as defined in
Equation (10), we have:

ẼQ
(l)

i = X̃
(l)
i Wvq, ẼK

(l)

j = X̃
(l)
j W

(l)
vk , for l ∈ {1, . . . , Lmax},

X̃
(l)
i and X̃

(l)
j are high-degree tensors that transform equivariantly under E(3). The projection

matrices Wvq and W
(l)
vk apply uniform weights across the spatial dimensions for each representation
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dimension. This uniform application preserves equivariance because it commutes with the action of
E(3). Let g ∈ E(3) be a transformation:

g(X̃
(l)
i Wvq) = (g(X̃

(l)
i ))(Wvq) = (g(X̃

(l)
i Wvq)).

The same holds for ẼK
(l)

j . Therefore, ẼQ
(l)

i and ẼK
(l)

j transform equivariantly under E(3).
Aggregation of angular and magnitude information from Equation (11), we have:

wij = AggLmax

l=1

(
(ẼQ

(l)

i )⊤ẼK
(l)

j

)
.

The operation (ẼQ
(l)

i )⊤ẼK
(l)

j is an inner product between equivariant tensors. Crucially, both

ẼQ
(l)

i and ẼK
(l)

j are subject to the same global rotation and translation under the action of E(3).
Let g ∈ E(3) be a transformation. Then:

(g(ẼQ
(l)

i ))⊤g(ẼK
(l)

j ) = (D(l)(r) · ẼQ
(l)

i )⊤(D(l)(r) · ẼK
(l)

j )

= (ẼQ
(l)

i )⊤(D(l)(r))⊤D(l)(r) · ẼK
(l)

j

= (ẼQ
(l)

i )⊤ẼK
(l)

j · ηl.

Here, D(l)(r) represents the Wigner D-matrix of degree l, which is the appropriate representation
for the transformation of spherical tensors under rotations. The matrix D(l)(r) is unitary, meaning
(D(l)(r))⊤D(l)(r) = I . The factor ηl = ±1 accounts for the parity transformation, where η = −1
for improper rotations and η = 1 for proper rotations, with the exponent l determining the overall
sign based on the spherical harmonic degree. This demonstrates that the inner product transforms
covariantly under the full O(3) symmetry group, with the parity factor properly accounting for
improper rotations. The aggregation

⊕
over these covariant scalars preserves the transformation

properties, ensuring that wij transforms appropriately under both rotations and inversions. The edge
representation update is given by:

tij ← tij +∆tij , ∆tij = γw(wij) ◦ γt(tij),
wij is invariant, as shown in the previous step, and tij is an edge embedding, which is also invariant
under E(3). Since both wij and tij are invariant, the application of the differentiable functions γw
and γt preserves this invariance. Moreover, the Hadamard product of invariant quantities is itself
invariant. Hence, we have

g(∆tij) = g(γw(wij) ◦ γt(tij)) = γw(wij) ◦ γt(tij) = ∆tij

Thus, ∆tij is invariant under E(3). Thus, we have shown that the Hierarchical Tensor Refinement
component preserves the equivariance of the input representations under the action of the Euclidean
group E(3). The high-degree tensors transform equivariantly, while the scalar quantities and edge
embeddings remain invariant.

Finally, we will prove that the EQFF (Equivariant Feed-Forward) blocks preserve equivariance under
the action of the Euclidean group E(3). Consider each operation in the EQFF component as described
in Equation (13). The input scalars h is invariant under E(3) as it represents scalar features, while
X̃ transforms equivariantly under E(3) as it represents high-degree steerable features. Next, we
examine the computation of m1 and m2:

m1,m2 = split2(γm(||X̃(l)Wvu||2,h)).

The operation X̃(l)Wvu preserves equivariance as it applies the same linear transformation across all
spatial dimensions. The L2 norm of this equivariant tensor field, ||X̃(l)Wvu||2, is invariant under
E(3). To see this, let g ∈ E(3) be a transformation. Then ||g(X̃(l)Wvu)||2 = ||R · (X̃(l)Wvu)||2 =

||X̃(l)Wvu||2, where R is the rotation matrix corresponding to g. The translation component doesn’t
affect the norm. The concatenation (||X̃(l)Wvu||2,h) is of two invariant quantities, resulting in
an invariant vector. As γm is applied to an invariant input, its output is also invariant. Finally,
splitting this invariant vector results in invariant components m1 and m2. Now, we analyze the
EQFF operation:

EQFF(h, X̃(l)) =
((

h+m1

)
,
(
X̃(l) + (m2 ◦ X̃(l)Wvu)

))
.
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The term h+m1 is a sum of two invariant quantities, resulting in an invariant scalar. The operation
m2 ◦X̃(l)Wvu preserves equivariance because m2 is an invariant scalar and X̃(l)Wvu is equivariant.
The element-wise product of an invariant scalar with an equivariant tensor is equivariant. Conse-
quently, X̃(l) + (m2 ◦ X̃(l)Wvu) is a sum of two equivariant tensors, resulting in an equivariant
tensor. Hence, EQFF returns tuple of updated representations for scalar and high-degree steerable
features.

Thus, we have shown that the EQFF operation preserves the equivariance of the input representations
under the action of the Euclidean group E(3). The scalar part remains invariant, while the high-degree
steerable features transform equivariantly.

Hence, we have shown that each major component of the GotenNet architecture preserves the
equivariance property under the action of the Euclidean group E(3). The initial node and edge
embeddings are invariant under E(3). The GATA module, including its self-attention mechanism and
geometric encoding, maintains the invariance of scalar quantities and the equivariance of high-degree
steerable tensors. The Hierarchical Tensor Refinement (HTR) component preserves equivariance in its
tensor projections and ensures that edge updates remain invariant. Finally, the EQFF blocks maintain
the overall equivariance structure by preserving the invariance of scalar parts and the equivariance of
high-degree steerable features. In each of these components, we have demonstrated how the various
operations interact with the group action of E(3) to preserve the required invariance and equivariance
properties.

C PROOF: EQUIVARIANCE OF GOTENNET

Equivariance of GotenNet: If all layers of GotenNet are equivariant, then the entire network is
equivariant.

Proof. We will prove this by induction on the number of layers in the network.

Base Case (Layer 1): Let T 1 : M → T 1 represent the output of the first layer of the network. Since
the first layer is equivariant by assumption, we have that for all g ∈ E(3),

(g · T 1)(p) = ρ(g)T 1(g−1 · p).

Thus, the first layer preserves equivariance.

Inductive Step: Assume that the output of layer l, denoted by T l, is equivariant. That is, for all
g ∈ E(3),

(g · T l)(p) = ρ(g)T l(g−1 · p).
We need to show that layer l + 1, denoted by T l+1, is also equivariant. Let Φl+1 represent the
operation of the (l + 1)-th layer. Then T l+1 = Φl+1 ◦ T l. Since the (l + 1)-th layer is also assumed
to be equivariant, we have:

(g · T l+1)(p) = ρ(g)T l+1(g−1 · p).

The equivariance of T l+1 follows from the equivariance of T l and Φl+1, as the composition of
equivariant functions is also equivariant. Explicitly:

(g · T l+1)(p) = (g · (Φl+1 ◦ T l))(p)

= Φl+1((g · T l)(p))

= Φl+1(ρ(g)T l(g−1 · p))
= ρ(g)Φl+1(T l(g−1 · p))
= ρ(g)T l+1(g−1 · p)

Hence, by the principle of mathematical induction, we have shown that if all individual layers in
the GotenNet are equivariant, then for any number of layers, the final output of the network, being
the composition of these equivariant layers, is also equivariant. This result relies on the property
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that the composition of equivariant functions is itself equivariant. Specifically, we have shown that
T l+1 = Φl+1◦T l, and the equivariance of both Φl+1 and T l ensures the equivariance of T l+1. Hence,
the entire network is equivariant. This theorem, combined with the previous proof of component-wise
equivariance (see Appendix B), establishes the overall equivariance of the GotenNet architecture,
ensuring its consistency under Euclidean transformations of the input space.

D REPRODUCIBILITY STATEMENT

The details on components of the architecture, hyper-parameters, and model variations are outlined
in Section E. The code used to reproduce the experiments is available. All datasets used in this
study are publicly available; the access instructions will be included in the source code. We have
included information on the computational resources used for our experiments, including hardware
specifications and software versions, to facilitate reproducibility of our results.

Table 6: Hyper-parameters for the datasets GotenNet compared against the baselines. The parameters
are for GotenNetB if multiple variations exists.

Hyper-parameters QM9 Molecule3D MD22 rMD17

Optimizer AdamW AdamW AdamW AdamW
Learning rate scheduling Linear warmup with reduce on plateau
Warmup steps 10,000 5,000 1,000 1,000
Maximum learning rate [6e−5, 1e−4] 1e−4 [4e−5, 1e−4] 2e−4
Learning rate decay 0.8 0.8 0.8 0.8
Learning rate patience 15 5 30 30
Loss function MSE L1 MSE MSE
Gradient clipping 10 - 5 10
Batch size 32 256 4 4
Number of epochs 1,000 300 3,000 3,000
Weight decay 0.01 0.01 0.01 0.01
Dropout rate 0.1 0.1 0.1 0.1
Node dimension (dne) 256 384 [256, 384] 192
Edge dimension (ded) 256 384 [256, 384] 192
Edge refinement dimension (dxpd) 256 384 768 768
Lmax 2 2 2 2
Number of Layers 6 12 [6, 8] 12
Number of RBFs 64 32 32 32
Number of Attention Heads 8 8 8 8
Cutoff radius 5.0 5.0 [4.0, 5.0] 5.0

E TRAINING DETAILS AND HYPER-PARAMETERS

Table 6 presents the comprehensive set of hyper-parameters employed in our experiments across
various datasets. These parameters were carefully selected to optimize model performance and ensure
fair comparisons with baseline methods. For the GotenNet architecture, we primarily report the
parameters for the base (GotenNetB) variation where multiple model sizes exist. The optimization
process utilized the AdamW optimizer across all datasets, coupled with a linear warmup strategy
and learning rate reduction on plateau. This adaptive learning rate approach allows for more stable
training and improved convergence. Furthermore, spherical harmonics were computed using the e3nn
(Geiger & Smidt, 2022) library.

The learning rates were fine-tuned for each dataset, with QM9 and MD22 employing a range of
maximum learning rates to account for the diverse nature of their target properties. Molecule3D
and rMD17 datasets, on the other hand, used fixed maximum learning rates of 1e−4 and 2e−4,
respectively. To mitigate overfitting and promote generalization, we implemented weight decay (0.01)
and dropout (0.1) consistently across all datasets. The choice of loss function varied, with mean
squared error (MSE) being the predominant choice, except for Molecule3D, which utilized the L1
loss.
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Table 7: Performance comparisons of GotenNet variations on QM9 dataset.

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE std. log
Units ma3

0 meV meV meV mD mcal
mol K meV meV ma2

0 meV meV meV % -

GotenNetŜ 37 25.4 18.4 15.7 7.5 21 5.67 4.17 33 3.97 3.89 1.16 0.67 -6.21
GotenNetS 33 21.2 16.9 13.9 7.5 20 5.50 3.70 29 3.67 3.71 1.09 0.60 -6.29
% Improvement 10.8 16.5 8.2 11.5 0.0 4.8 3.0 11.3 12.1 7.6 4.6 6.0 10.5 1.3

GotenNetB̂ 33 23.0 16.4 14.4 7.8 20 5.42 3.74 32 3.76 3.76 1.10 0.61 -6.26
GotenNetB 32 20.5 15.2 13.0 7.2 19 5.19 3.44 27 3.49 3.43 1.09 0.56 -6.35
% Improvement 3.0 10.9 7.3 9.7 7.7 5.0 4.2 8.0 15.6 7.2 8.8 0.9 8.2 1.4

GotenNetL̂ 30 20.7 14.3 13.3 7.7 19 5.27 3.47 25 3.58 3.67 1.08 0.56 -6.34
GotenNetL 28 19.8 13.4 12.2 6.7 19 4.98 3.30 24 3.41 3.37 1.08 0.52 -6.41
% Improvement 6.7 4.4 6.3 8.3 13.0 0.0 5.5 4.9 4.0 4.8 8.2 0.0 7.1 1.1

The model architecture parameters, such as dne, ded, and dxpd, were adjusted based on the complexity
of the dataset and the specific prediction tasks. For instance, MD22 and rMD17 datasets, which
involve more complex molecular dynamics simulations, employed larger edge refinement dimensions
(768) compared to QM9 and Molecule3D (256 and 384, respectively). The number of layers in the
model also varied, with Molecule3D and rMD17 using deeper architectures (12 layers) compared to
QM9 and MD22 (6 layers for the base model).

It is worth noting that for QM9, we experimented with different model sizes by varying the number
of layers (4, 6, and 12 for S, B, and L variations, respectively). Similarly, for MD22, we explored a
more compact model variation by reducing the number of layers to 4 and halving the representation
dimensions. These variations allow us to investigate the trade-offs between model complexity and
performance across different molecular property prediction tasks.

The consistent use of 8 attention heads and a Lmax of 2 across all datasets suggests that these
parameters provide a good balance between computational efficiency and model expressiveness
for a wide range of molecular modeling tasks. The cutoff radius, predominantly set at 5.0 Å (with
some variations in MD22), was chosen to capture relevant atomic interactions while maintaining
computational feasibility.

F ABLATION STUDY: SHARED AND INDIVIDUAL COEFFICIENTS

In this section, we investigate the impact of using shared coefficients for spherical harmonics as
compared to learning individual coefficients for each degree. Table 7 presents a comprehensive
performance comparison on the QM9 dataset for the two configurations. Variants denoted with a hat
(e.g., GotenNetŜ , GotenNetB̂ , GotenNetL̂) utilize shared coefficients across all degrees, whereas the
corresponding non-hat variants (e.g., GotenNetS , GotenNetB , GotenNetL) learn separate coefficients
for each spherical harmonic degree.

The results indicate that the models with individual coefficients consistently yield lower error
metrics across several tasks. For instance, the GotenNetS variant outperforms its shared-coefficient
counterpart in terms of α, ∆ε, and molecular orbital energies, with similar trends observed for the
base and large model configurations. This suggests that allowing independent coefficient learning
provides greater expressiveness in capturing geometric nuances.

However, it is important to note that the increased flexibility of individual coefficients comes at
the cost of a higher number of parameters. In resource-constrained settings, the shared coefficient
approach may offer a favorable trade-off between model complexity and performance. Overall, these
findings highlight the need to balance expressiveness and computational efficiency when selecting
the appropriate configuration for a given application.

G EFFICIENCY EXPERIMENT DETAILS

The efficiency experiments are conducted by sampling graphs from the Molecule3D dataset. Using
a real-world dataset provides realistic neighborhoods for the nodes computed with a radius graph,
which is more beneficial than using a synthetic dataset. The graph sampling process involves selecting
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Table 8: Computational complexity comparison of different methods. Training and inference
latency are measured with batch size of 128 samples. Training time is reported in GPU days
(min/avg/max/limit). Time per epoch is in seconds. Latency measurements are in milliseconds. Best
results are in bold.

Model Batch Time per Training Time (GPU days) Training Inference Trainable Std. Log
Size Epoch (s) min avg max limit Latency Latency Parameters MAE MAE

Equiformer 128 425 1.48 1.48 1.48 1.48 421 150 3.5M 0.70 -5.82
EquiformerV2 64 821 2.85 2.85 2.85 2.65 918 341 11.2M 0.67 -5.87
EquiformerV2 48 847 2.94 2.94 2.94 2.65 918 341 11.2M 0.67 -5.87
Geoformer 32 436 - - - 5.05 759 264 50.6M 0.75 -6.12

GotenNetŜ 32 117 0.41 0.75 1.34 1.35 80 37 6.1M 0.67 -6.21
GotenNetB̂ 32 180 0.75 1.15 1.92 2.08 120 56 9.2M 0.61 -6.26
GotenNetL̂ 32 291 1.37 1.87 2.33 3.37 244 112 18.3M 0.56 -6.34

graphs with a predetermined node count. If no graph is available for a given node count, we sample
the larger graphs with the closest node count and subsample the nodes to satisfy the node limitation.
If the number of graphs is less than desired, we oversample the graphs for experimentation.

After creating a dataset for each node count, we conduct experiments by first warming up the models
without timing for 5,000 steps. Then, we start timing the forward and backward passes for the
subsequent 5,000 steps. The final values are obtained by averaging the timings over the total number
of steps. It is important to note that the timings are measured per batch. Each batch consists of a fixed
number of graphs, and the reported timings represent the average time taken to process a single batch
during the training process.

This experimental setup ensures a fair comparison of the scalability properties of GotenNet and the
baseline models, providing insights into their efficiency in handling graphs of varying sizes. By
measuring the training time per batch, we can accurately assess how the computational overhead
scales with increasing graph sizes, independent of the number of epochs or the total dataset size.

H COMPUTATIONAL COMPLEXITY ANALYSIS

We present a comprehensive analysis of computational efficiency across state-of-the-art models,
examining training requirements, inference speed, and model complexity. Here, we analyze the
performance of GotenNet under a shared-coefficient paradigm for the spherical harmonic outputs
{od

ij}
Lmax

l=1 and {ot
ij}

Lmax

l=1 (denoted as GotenNet(̂·) in Section F), highlighting its computational
efficiency and effectiveness. Table 8 compares these metrics across different architectures under
standardized conditions.

Our analysis reveals several key insights about computational efficiency across models. First, training
protocols show significant variation across architectures - from Equiformer’s relatively lightweight
approach to Geoformer’s more intensive requirements. Equiformer (Liao & Smidt, 2023) and
EquiformerV2 (Liao et al., 2024) employ 300 epochs with batch sizes of 128 and 48/64 respectively,
requiring 1.48 and 2.85/2.94 GPU days for completion. Geoformer (Wang et al., 2023a) utilizes a
batch size of 32 for up to 600 epochs with early stopping, theoretically requiring 5.05 GPU days for
full training. This variation reflects different trade-offs between computational demands and model
expressiveness.

GotenNet demonstrates superior efficiency across multiple metrics. The smallest variant, GotenNetS ,
achieves competitive performance with just 6.1M parameters while requiring minimal computational
resources (0.75 GPU days average training time). This efficiency extends to both training and
inference latencies, with GotenNetS achieving the lowest latencies in both categories (80ms and
37ms respectively).

Notably, even as model capacity increases, GotenNet maintains its efficiency advantages. GotenNetL
(18.3M parameters) demonstrates remarkable scalability, requiring only 1.87 GPU days average
training time while achieving 42% faster inference and 25% faster training compared to the closest
competitor, Equiformer.
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These results demonstrate that GotenNet’s architectural innovations - particularly its efficient handling
of geometric tensor representations - translate to practical advantages across all operational metrics.
The consistent performance improvements across model scales suggest that GotenNet’s approach to
balancing expressiveness and efficiency is fundamentally sound, making it particularly suitable for
real-world applications where computational resources are constrained.

I COMPREHENSIVE PERFORMANCE COMPARISON ON QM9 DATASET

Table 9 provides a comprehensive comparison of the performance of various baseline models against
our proposed GotenNet on the QM9 dataset. This extended table includes a full list of baseline
methods, offering a detailed assessment across all molecular property prediction tasks. The results
showcase how GotenNet consistently surpasses existing models in both energy and force predictions,
further highlighting its robustness and scalability. By including a wider range of baseline comparisons
in this appendix, we aim to give a clearer view of GotenNet’s advantages in different metrics and
provide a more exhaustive evaluation for the QM9 dataset.

Table 9: Performance comparisons on QM9 dataset. † denotes using different data partitions.

Task α ∆ε εHOMO εLUMO µ Cν G H R2 U U0 ZPVE std. log
Units ma3

0 meV meV meV mD mcal
mol K meV meV ma2

0 meV meV meV % -

Invariant models

Cormorant 85 61 34 38 38 26 20 21 961 21 22 2.03 2.14 -4.75
NMP 92 69 43 38 30 40 19 17 180 20 20 1.50 1.78 -5.08
DimeNet++† 44 32.6 24.6 19.5 29.7 23 7.56 6.53 331 6.28 6.32 1.21 0.98 -5.67
ComENet† 45 32.4 23.1 19.8 24.5 22 7.98 6.86 259 6.82 6.69 1.20 0.93 -5.69
SphereNet† 46 31.1 22.8 18.9 24.5 22 7.78 6.33 268 6.36 6.26 1.12 0.91 -5.73

Scalarization-based models

ClofNet 63 53 33 25 40 27 9 9 610 9 8 1.23 1.37 -5.37
EGNN 71 48 29 25 29 31 12 12 106 12 11 1.55 1.23 -5.43
PaiNN† 45 45.7 27.6 20.4 12.0 24 7.35 5.98 66 5.83 5.85 1.28 1.01 -5.85
LEFTNet 48 40 24 18 12 23 7 6 109 7 6 1.33 0.91 -5.82
EQGAT 53 32 20 16 11 24 23 24 382 25 25 2.00 0.86 -5.28
ET 59 36.1 20.3 17.5 11 26 7.62 6.16 33 6.38 6.15 1.84 0.84 -5.90
Geoformer 40 33.8 18.4 15.4 10 22 6.13 4.39 28 4.41 4.43 1.28 0.75 -6.12
SaVeNet-B† 39 24.8 18.4 16.3 9.3 23 6.64 5.43 58 5.48 5.43 1.18 0.69 -6.04

High-degree steerable models

SEGNN 60 42 24 21 23 31 15 16 660 13 15 1.62 1.08 -5.27
HDGNN† 46 32 18 16 17 23 11 10 342 8.12 8.34 1.21 0.80 -5.64
Equiformer 46 30 15.4 14.7 12 23 7.63 6.63 251 6.74 6.59 1.26 0.70 -5.82
EquiformerV2 47 29.0 14.4 13.3 9.9 23 7.57 6.22 186 6.49 6.17 1.47 0.67 -5.87

Pre-trained models

SE(3)-DDM 46 40.2 23.5 19.5 15 24 7.65 7.09 122 6.99 6.92 1.31 0.93 -5.76
3D-EMGP 57 37.1 21.3 18.2 20 26 9.30 8.70 92 8.60 8.60 1.38 0.92 -5.68
Transformer-M 41 27.4 17.5 16.2 37 22 9.63 9.39 75 9.41 9.37 1.18 0.86 -5.74
Coord 52 31.8 17.7 14.3 12 20 6.91 6.45 450 6.11 6.57 1.71 0.76 -5.75
Frad(VRN) 42 27.7 17.9 13.8 11 21 6.03 6.01 354 5.35 5.41 1.63 0.71 -5.85
Frad(RN) 37 27.8 15.3 13.7 10 20 6.19 5.55 342 5.62 5.33 1.42 0.66 -5.91
DenoiseVAE 65 26.0 14.2 11.9 7.9 15 5.35 4.19 62 4.03 4.31 1.03 0.61 -6.18
SliDe 37 26.2 13.6 12.3 8.7 19 5.37 4.26 341 4.29 4.28 1.52 0.60 -6.02

Spherical-scalarization models

GotenNetS 33 21.2 16.9 13.9 7.5 20 5.50 3.70 29 3.67 3.71 1.09 0.60 -6.29
GotenNetB 32 20.5 15.2 13.0 7.2 19 5.19 3.44 27 3.49 3.43 1.09 0.56 -6.35
GotenNetL 28 19.8 13.4 12.2 6.7 19 4.98 3.30 24 3.41 3.37 1.08 0.52 -6.41

J MD22 VISUALIZATIONS

Figure 4 visualizes the mean absolute errors (MAE) for energy and forces across molecules in the
MD22 dataset. The x-axis represents the energy error (kcal/mol), and the y-axis denotes the force
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error (kcal/mol/Å). Each point corresponds to a model, with performance improving as the point
approaches the origin (0,0), where lower values indicate better performance for both metrics. Our
proposed GotenNet consistently outperforms the baseline models, achieving the best performance
across all molecules, as evidenced by its closer proximity to the origin compared to competing
methods.
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Figure 4: Mean absolute error of the molecules for energy and forces.

K RMD17 VISUALIZATIONS

Figure 5 presents the MAE for energy and force predictions across nine molecules in the rMD17
dataset, including Aspirin, Azobenzene, Benzene, Ethanol, Malonaldehyde, Naphthalene, Paraceta-
mol, Uracil, and Toluene. The x-axis represents energy error (mkcal/mol), and the y-axis denotes
force error (mkcal/mol/Å). Each point corresponds to a model’s performance on a specific molecule,
where better performance is indicated by proximity to the origin (0,0) — reflecting lower errors in
both metrics. Our proposed GotenNet demonstrates consistent superiority over baseline models,
achieving the lowest errors across all nine molecules, as evidenced by its closer alignment with the
origin compared to other methods.

L FUTURE WORK AND EXTENSIONS

While GotenNet has demonstrated strong performance in molecular property prediction, several
promising directions exist for future research and extensions. The architecture can naturally extend to
other spatial data where geometric relationships significantly influence node interactions, such as point
cloud processing, protein structure analysis, and dynamic molecular simulations. These applications
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Figure 5: Mean absolute error of the molecules on rMD17 dataset for energy and forces.

share the fundamental requirement of processing geometric relationships while preserving symmetries,
making them natural candidates for our framework. From an architectural perspective, the model
could be enhanced through the incorporation of scale equivariance, exploration of higher-order
features beyond second degree, and development of sparse implementations for larger systems.
Memory efficiency improvements could also enable applications to even larger-scale systems. On
the theoretical front, future work could focus on developing formal analyses of the expressiveness-
efficiency trade-off, understanding generalization properties of geometric tensor representations.
These potential extensions maintain GotenNet’s core principle of balancing expressiveness and
efficiency while broadening its applicability across different domains of geometric deep learning.
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