
Published as a conference paper at ICLR 2025

Bonsai: Gradient-free Graph Condensation for
Node Classification

Mridul Gupta1∗ Samyak Jain2∗ Vansh Ramani2 Hariprasad Kodamana1,3,4 Sayan Ranu1,2

1Yardi School of Artificial Intelligence 2Department of Computer Science
3Department of Chemical Engineering

Indian Institute of Technology Delhi, New Delhi, 110016, India
4Indian Institute of Technology Delhi, Abu Dhabi, Zayed City, Abu Dhabi, UAE

{mridul.gupta@scai,cs5200667@,cs5230804@,kodamana@,sayanranu@cse}.iitd.ac.in

Abstract
Graph condensation has emerged as a promising avenue to enable scalable training
of Gnns by compressing the training dataset while preserving essential graph
characteristics. Our study uncovers significant shortcomings in current graph
condensation techniques. First, the majority of the algorithms paradoxically
require training on the full dataset to perform condensation. Second, due to
their gradient-emulating approach, these methods require fresh condensation for
any change in hyper-parameters or Gnn architecture, limiting their flexibility
and reusability. To address these challenges, we present Bonsai, a novel graph
condensation method empowered by the observation that computation trees form
the fundamental processing units of message-passing Gnns. Bonsai condenses
datasets by encoding a careful selection of exemplar trees that maximize the
representation of all computation trees in the training set. This unique approach
imparts Bonsai as the first linear-time, model-agnostic graph condensation
algorithm for node classification that outperforms existing baselines across 7
real-world datasets on accuracy, while being 22 times faster on average. Bonsai
is grounded in rigorous mathematical guarantees on the adopted approximation
strategies, making it robust to Gnn architectures, datasets, and parameters.

1 Introduction and Related Works
Graph Neural Networks (Gnns) have shown remarkable success in various predictive tasks on graph
data such as node classification and link prediction (Veličković et al., 2018; Kipf & Welling, 2017;
Hamilton et al., 2017; Nishad et al., 2021), modeling physical systems (Bhattoo et al., 2022; Thanga-
muthu et al., 2022; Bishnoi et al., 2023; 2024), and spatio-temporal data (Jain et al., 2021; Gupta et al.,
2023). However, real-world graphs often contain millions of nodes and edges making the training
pipeline slow and computationally demanding (Hu et al., 2021). This limitation hinders their adop-
tion in resource-constrained environments (Miao et al., 2021) and applications dealing with massive
datasets (Hu et al., 2021). Graph condensation (also called graph distillation) has emerged as a
promising way to bypass this bottleneck (Jin et al., 2021; Liu et al., 2024a;b; Zheng et al., 2023).
The objective in graph condensation is to synthesize a significantly smaller condensed data set that
retains the essential information of the original data. By training Gnns on these condensed datasets,
we can achieve comparable performance while reducing computational overhead and storage costs.
This makes Gnns more accessible and practical for a wider range of applications, including those
with limited computational resources and large-scale datasets. In this work, we study the problem of
graph condensation for node classification.

1.1 Existing works and their Limitations

Table 1 presents existing graph condensation algorithms proposed for node classification and their
characterization across various dimensions. We omit listing DosCond (Jin et al., 2022), Mi-
rage (Gupta et al., 2024), and KiDD (Xu et al., 2023) in Table 1 since they are designed for graph
classification, whereas we focus on node classification.

*Denotes equal contribution.

1

Published as a conference paper at ICLR 2025

Table 1: Characterization of existing graph condensation algorithms. Cells shaded in Red indicate
the presence of an undesirable property, while Green represents their absence.

Algorithm Requires training
Gnn on full-dataset

Condenses to a fully-
connected graph¹

Model-specific
condensation

GCond (Jin et al., 2021) X X X
Sgdd (Yang et al., 2023) X X X
Sfgc (Zheng et al., 2023) X X X
GC-Sntk (Wang et al., 2024) X 7 7
Exgc (Fang et al., 2024) X X X
Geom (Zhang et al., 2024) X 7 X
Gdem (Liu et al., 2024a) 7 X 7
Gcsr (Liu et al., 2024b) X X X
Bonsai 7 7 7

• Full Gnn training is a pre-requisite: The fundamental requirement of data condensation is that it
should require less computational resources and time than training on the full dataset. However, this
basic premise is violated by majority of the techniques (See Table 1) since they adopt a design where
training the target Gnn on the full trainset is a prerequisite to condensation. These algorithms adopt
a gradient-dependent optimization framework. They first train a Gnn on the full trainset and extract
gradients of model parameters over epochs. The condensation process is formulated as an optimiza-
tion problem to create a condensed dataset that replicates the gradient trajectory observed in the
original training set. This need for full dataset training for condensation contradicts its fundamental
premise, which we address in our work.
• Node compression vs. Edge complexity: In a message-passing Gnn, the computation cost of
each forward pass is O(|E|), where E denotes the set of edges. Consequently, the computational
effectiveness of graph condensation is primarily determined by the reduction in edge count between
the original and condensed graphs, rather than node count alone. However, current graph condensa-
tion algorithms (see Table 1) quantify the condensation ratio based on the node count. This creates
a fundamental disconnect between the metric used to evaluate compression (node count) and the
computational goal of reducing O(|E|), which directly governs training and inference time. Conse-
quently, this misalignment can lead to a condensed graph that is less efficient than the original.
• Model-specific condensation: Gradients of model weights are influenced by the specific Gnn
architecture and hyper-parameters (e.g., number of layers, hidden dimensions, etc.). Consequently,
any architectural change, such as switching from a Gcn (Kipf &Welling, 2017) to a Gat (Veličković
et al., 2018), or hyper-parameter adjustments, necessitates a new round of condensation.

1.2 Contributions

To address the limitations outlined in Table 1, we present Bonsai².

• Gradient-free condensation: Instead of replicating the gradient trajectory, Bonsai emulates the
distribution of input data processed by message-passing Gnns. By shifting the computation task to
the pre-learning phase, Bonsai achieves independence from hyper-parameters and model archi-
tectures as long as it adheres to a message-passing Gnn framework like Gat, Gcn, GraphSage,
Gin, etc. Moreover, this addresses a critical limitation of existing graph condensation algorithms
that necessitates training on the entire training dataset.

• Novel algorithm design: Bonsai is empowered by the observation that any message-passing Gnn
decomposes a graph ofn nodes inton rooted computation trees. Furthermore, topologically similar
computation trees generate similar embeddings regardless of the Gnn being used (Xu et al., 2019;
Togninalli et al., 2019). Bonsai exploits this observation to identify a small subset of diverse com-
putation trees, called exemplars, that are located in dense regions and thereby representative of the
full set. Hence, the induced subgraph spanned by the exemplars forms an effective condensed set.

• Empirical evaluation: We perform rigorous benchmarking incorporating state-of-the-art graph
condensation algorithms on 7 real-world datasets containing up to hundreds of millions of edges.
Our analysis establishes that Bonsai (1) achieves higher prediction accuracy, (2) produces at
least 7-times faster condensation times despite being CPU-bound in contrast to GPU-bound
condensation of baselines, and (3) exhibits superior robustness to Gnn architectures and datasets.

¹Some algorithms sparsify the fully-connected graph based on edge weights. But this sparsification process
requires training on the fully connected graph itself to identify the pruning threshold.

²Inspired by the art of Bonsai, which transforms large trees into miniature forms while preserving their
essence, our graph condensation algorithm gracefully prunes redundant computation trees, creating a condensed
graph that is significantly smaller yet maintains comparable performance.

2

Published as a conference paper at ICLR 2025

2 Problem Formulation and Preliminaries

Definition 1 (Graph). G = (V, E ,X) denotes a graph over a finite, non-empty node set V and edge
set E = {(u, v) | u, v ∈ V}. X ∈ R|V|×|F | denotes node attributes encoded using F -dimensional
feature vectors. We denote the attributes of node v as xv .
Two graphs are identical if they are isomorphic to each other.
Definition 2 (Graph Isomorphism). Graph G1 is isomorphic to graph G2 if there exists a bijective
mapping between their node sets that preserves both edge connectivity and node features. Specif-
ically, G1 is isomorphic to G2 ⇐⇒ ∃f : V1 → V2 such that: (1) f is a bijection, (2) xv =
xf(v), where v ∈ V1, f(v) ∈ V2 and (3) (u, v) ∈ E1 if and only if (f(u), f(v)) ∈ E2.
The problem of graph condensation for node classification is defined as follows.
Problem 1 (Graph Condensation). Given train and validation graphs, Gtr and Gval, respectively,
and a memory budget b in bytes, synthesize a graph Gs from Gtr within the budget, while minimizing
the error gap between Gs and Gtr on the validation set, i.e., minimize {|εGs − εGtr |}. εG represents
the node classification error on the validation set when trained on graph G.

2.1 Computation structure of Gnns

Gnns operate through an iterative process of information exchange between nodes. Let xv ∈ R|F |
represent the initial feature vector of node v ∈ V . The propagation mechanism proceeds as follows:

Initialization: Set h0
v = xv,∀v ∈ V.

Message creation: In layer `, collect and aggregate messages for each neighbor.
m`

v(u) = Message`(h`−1
u ,h`−1

v), ∀u ∈ Nv = {u | (u, v) ∈ E}
m`

v = Aggregate`({{m`
v(u) : u ∈ Nv}})

Update embedding: h`
v = Update`(h`−1

v ,m`
v)

Figure 1: The figure depicts the construction
of computation trees for nodes v1 and v11 in
the sample graph, at depth L = 2. Node col-
ors indicate their labels. Despite being distant
from each other in the graph and embedded
in non-isomorphic L-hop neighborhoods, v1
and v11 have isomorphic computation trees.

Here, Message`, Aggregate`, and Update` may
be predefined operations (e.g., mean pooling) or
learnable neural networks. {{·}} denotes a multiset.
This process repeats for L layers, yielding the final
node representations hL

v .

A computation tree describes how information prop-
agates through the graph during the neural network’s
operation (Xu et al., 2019).
Definition 3 (Computation Tree). Given a graph
G = (V, E ,X), a node v ∈ V and the number of
layers L in the Gnn, the computation tree TL

v rooted
at v is constructed as follows:
• Enumerate all paths of length L (including those
with repeated vertices) starting from v.

• Merge these paths into a tree structure where:
1. The root is always v, and
2. Two nodes from different paths are merged if: (i) They are at the same depth in their respective

paths, and (ii) All their ancestors in the paths have already been merged.

Fig. 1 illustrates the idea of a computation tree with an example.

Properties of computation trees: We now highlight two key properties of computation trees,
formally established in Xu et al. (2019), that form the core of our algorithm design. These properties
hold regardless of the underlying message-passing Gnn (Gcn, Gat, GraphSage, Gin, etc.).
Property 1 (Sufficiency). In an L-layered Gnn, the computation tree T L

v is sufficient to compute
node embedding hL

v , ∀v ∈ V . Hence, given a graph G = (V, E ,X), we may treat it as a (multi)set
of computation trees T = {T L

v | ∀v ∈ V}. Clearly, |T| = |V|.
Property 2 (Equivalence). If T L

v is isomorphic to T L
u , then hL

v = hL
u since the expressive power of

a message-passing Gnn is upper bounded by the Weisfeiler-Lehman test (1-WL) (Xu et al., 2019).

3

Published as a conference paper at ICLR 2025

(a) GCN (b) GIN (c) GAT
Figure 2: Pearson correlations between the L2 distances of node pairs in the Gnn embedding space
and the unsupervised embeddings derived from the WL-kernel, computed for pairs with a specific
distance threshold in the WL-space (x-axis).

Motivatedwith the above observations, we explore a relaxation of the Equivalence property: do nodes
rooted at topologically similar computation trees generate similar node embeddings? To explore this
hypothesis, we need a method to quantify the distance between computation trees. Given that the
Equivalence property is derived from the 1-WL test, the Weisfeiler-Lehman kernel (Togninalli et al.,
2019) presents itself as the natural choice for this distance metric.
Definition 4 (Weisfeiler-Lehman (WL) Kernel (Togninalli et al., 2019)). Given graph G =
(V, E ,X), WL-kernel constructs unsupervised embeddings over each node in the graph via a
message-passing aggregation. Like in Gnns, the initial embedding a0v in layer 0 is initialized to
xv . Subsequently, the embeddings in any layer ` is defined as:

a`(v) =
1

2

a`−1v +
1

deg(v)
∑

u∈N (v)

w((v, u)) · a`−1u

 (1)

Here,N (v) denotes the neighbors of v, deg(v) = |N (v)| and w((v, u)) = 1 for unweighted graphs.

By emulating the samemessage-passing framework employed byGnns, the unsupervised embedding
aLv jointly encapsulates the topology and node attributes within the computation tree T L

v . Hence, the
distance between two computation trees T L

v and T L
u is defined to be:

d
(
T L
v , T L

v

)
=

∥∥aLv − aLu
∥∥
2

(2)

While we use the L2 norm, one may use other distance functions over vectors as well. The following
corollary follows from the Eq. 2.
Corollary 1. If T L

v is isomorphic to T L
u , then aLv = aLu .

Hypothesis 1 (Relaxed Equivalence). If T L
v ∼ T L

u , then aLv ∼ aLu , and, therefore hL
v ∼ hL

u irre-
spective of the specific message-passing architecture employed.

To test our hypothesis, in Fig. 2, we examine all node pairs within a specified distance threshold
based on the Weisfeiler-Lehman (WL) kernel. We then analyze the correlation between their un-
supervised WL-distance and the L2 distance between their Gnn embeddings. The results reveal
a compelling trend: as we decrease the distance threshold, we observe a strengthening correlation
between WL-distance and Gnn embedding distance. This pattern supports our hypothesis, indicat-
ing that computation trees that are proximate in the WL-space also exhibit proximity in the Gnn
embedding space.

3 Bonsai: Proposed Methodology
Table 2: Correlation be-
tweenWL-embedding sim-
ilarities and training gradi-
ents.

Dataset Correlation p-value
Cora 0.74 ≈ 0
Citeseer 0.83 ≈ 0
Pubmed 0.38 0.02
Reddit 0.42 ≈ 0

Fig. 3 presents the pipeline of Bonsai, which is founded on the follow-
ing logical progression:
1. Similar computation trees produce similar Gnn embeddings (Hy-

potheses 1).
2. Similar Gnn embeddings generate comparable outputs, resulting in

similar impacts on the loss function and, consequently, on the gra-
dients Table 2 presents empirical data supporting this relationship,
showing statistically significant correlations (p < 0.05) between
WL-embedding similarities and training gradients.

4

Published as a conference paper at ICLR 2025

Figure 3: Pipeline of the proposed algorithm for graph condensation using a toy example is displayed.
We use L = 1 and k = 2 for this example.

Building on this reasoning, Bonsai aims to identify a set of b exemplar computation trees that opti-
mally represent the full training set¹. These exemplars are selected based on two critical criteria:

• Representativeness: Each exemplar should be similar to a large number of other computation
trees from the input training set, ensuring it captures common structural patterns. We quantify the
representative power of a computation tree using the idea of reverse k nearest neighbors (§ 3.1).
Specifically, if tree T1 is among the k-NN of tree T2 for a small k, this indicates these two trees are
similar in WL-embedding. Hence, we seek to include those trees in the condensed set that reside
in the k-NN of lots of other trees. Consequently, if these trees are selected, their Gnn embeddings
are also likely similar to their k-NN neighbors from the WL space. As a result, they can effectively
approximate the Gnn embeddings of the filtered-out nodes. Since similar Gnn embeddings lead
to similar gradients (Table 2), we minimize the information lost from nodes that are filtered out.

• Diversity: The set of exemplars should be diverse, maximizing the coverage of different structural
patterns present in the original graph (§ 3.2). To achieve this objective, we develop a greedy tree
selection algorithm (Alg. 1), which begins with the reverse k-NN set and iteratively selects the
computation tree that appears in the k-NN sets of the maximum number of currently uncovered
trees. This approach ensures two key properties:
1. It systematically captures trees that are centrally located within the graph’s embedding space.
2. It progressively selects trees that provide maximum coverage of the remaining, yet-unselected

computation trees.

By prioritizing trees with the highest marginal impact on uncovered trees, our method naturally cre-
ates a diverse subset that comprehensively represents the original graph’s structural and computa-
tional characteristics. The induced subgraph spanned by these exemplar trees forms the initial con-
densed set. This initial version undergoes further refinement through an iterative process of edge
sparsification and enrichment to reduce O(|E|) complexity of Gnns.

3.1 Quantifying Representativeness through Reverse k-NN

Utilizing Sufficiency (Property 1), we decompose the input graph G = (V, E ,X) into a set of |V|
computation trees T and then embed them into a feature space using WL-kernel (See Fig. 3). We
now identify representative exemplars by analyzing this space.

The k nearest neighbors of a computation tree T L
v ∈ T, denoted as k-NN(T L

v), are its k nearest
computations trees from T in the WL-kernel space (Def. 4).
Definition 5 (Reverse k-NN and Representative Power). The reverse k-NN of T L

v denotes the set of
trees that contains T L

v in their k-NNs. Formally, Rev-k-NN(T L
v) =

{
T L
u | T L

v ∈ k-NN
(
T L
u

)}
. The

representative power of T L
v is:

Π
(
T L
v

)
=

∣∣Rev-k-NN(T L
v)

∣∣
|T|

(3)

¹We overload the notation for the budget by denoting the number of exemplar trees that fit within the input
budget constraint (Recall Problem. 1) as b.

5

Published as a conference paper at ICLR 2025

If T L
v ∈ k-NN(T L

u) for a small k, it suggests that hL
v ∼ hL

u (Hypothesis 1). Consequently, a high
Π
(
T L
v

)
indicates that T L

v frequently appears in the k-NN lists of many other trees and is therefore
positioned in a dense region capturing shared characteristics across many trees. Hence, it serves as
a strong candidate of being an exemplar.

3.1.1 Sampling for Scalable Computation of Reverse k-NN
Computing k-NN for each tree consumes O(n log k) ≈ O(n) time (since k � n), where n = |V|.
Since |T| = n, computing k-NN for all trees consumes O(n2) time. Hence, computing reverse
k-NN for all trees consumes O(n2) time as well, which may be prohibitively expensive for graphs
containing millions of nodes. To address this challenge, we employ a sampling technique that offers
a provable approximation guarantee on accuracy. This is achieved as follows. Let us sample z � n
trees uniformly at random from T, which we denote as S. Now, we compute the k-NN of only trees in
S, which incurs O(zn) computation cost. We next approximate reverse k-NN of all trees in T based
only on S. Specifically, ˜Rev-k-NN

(
T L
v

)
=

{
T L
u ∈ S | T L

v ∈ k-NN
(
T L
u

)}
. The approximated

representative power is therefore:

Π̃
(
T L
v

)
=

∣∣∣ ˜Rev-k-NN(T L
v)

∣∣∣
|S|

(4)

The sample size z balances the trade-off between accuracy and computational efficiency. By applying
Chernoff bounds, we demonstrate in Lemma 1 that z can be precisely determined tomaintain the error
within a specified error threshold θ, with a confidence level of 1− δ.
Lemma 1. Given a desirable error upper bound θ and a confidence interval of 1− δ, if we sample
at least z =

ln
(
2
δ

)
(2+θ)

θ2 trees in S, then for any T L
v ∈ T:

P (
∣∣∣Π̃(T L

v)−Π
(
T L
v

)∣∣∣ ≤ θ) ≥ 1− δ (5)

Proof. For the formal proof, see App. A.1. Lemma 1 induces the following positive implications.
• The number of samples needed is independent of the size of T.
• Because z grows logarithmically with ln(2δ), even a small sample size provides high confidence.
Hence, the computation cost of Rev-k-NN reduces to O(n) since z � n.

3.2 Coverage Maximization

We aim to find the set of exemplar computation trees with the maximum representative power.
Definition 6 (The exemplars). Let the representative power of a set of trees A be denoted by:

Π(A) =

∣∣∣∣∣∣
⋃
∀T L

v ∈A

Rev-k-NN
(
T L
v

)∣∣∣∣∣∣
/

|T| (6)

Then, given the set of computation trees T and the budget b, we seek to identify the subset of compu-
tations trees, termed exemplars, A∗, by maximizing the following objective:

A∗ = max
∀A⊆T,|A|=b

Π(A) (7)

For brevity of discourse, we proceed assuming the true reverse k-NN set.

Algorithm 1 The greedy approach
Require: Graph G, budget b, Rev−k−NN

(
T L
v

)
Ensure: solution set A, |A| = b
1: A← ∅
2: while size(A) ≤ b (within budget) do
3: T L

v∗ ← arg maxT L
v ∈T\A{Π(A ∪ {T L

v }) −
Π(A)}

4: A← A ∪ {T L
v∗}

5: Return A

Theorem 1. Maximizing the representative power of ex-
emplars (Eq. 7) is NP-hard.

Proof. App. A.2 presents the formal proof by reducing to
the Set Cover problem (Cormen et al., 2009). �

Fortunately, Eq. 6 ismonotone and submodular, which al-
lows the greedy hill-climbing algorithm (Alg. 1) to ap-
proximate Eq. 7 within a provable error bound.
Theorem 2. The exemplars, Agreedy , selected by Alg. 1
provides an 1− 1/e approximation, i.e., Π(Agreedy) ≥

(
1− 1

e

)
Π(A∗).

6

Published as a conference paper at ICLR 2025

Proof. App. A.3 presents the proofs of monotonicity and submodularity of Π(A). For monotonic
and submodular functions, greedy selection provides 1− 1/e approximation (Feige, 1998). �.

Alg. 1 begins with the reverse k-NN set of each computation tree as input. It then iteratively selects
trees based on theirmarginal cardinality - specifically, choosing the tree that appears in the k-NN sets
of the largest number of yet-uncovered trees (lines 3-4). A tree is considered uncovered if none of its
k-nearest neighbors have been selected for the condensed set. This focus on marginal contribution
naturally promotes diversity. Consider two similar trees, T1 and T2, both with high reverse k-NN
cardinality. Due to the transitivity of distance functions, these trees likely share many of the same
neighbors in their reverse k-NN sets. Consequently, if T1 is selected, T2’s marginal cardinality sig-
nificantly decreases despite its high initial reverse k-NN cardinality, preventing redundant selection
of similar trees.

We further enhance the efficiency of Alg. 1 by exploiting the property of monotonically decreasing
marginal gains in submodular optimization (Leskovec et al., 2007).

Initial condensed graph: The initial condensed graph Gs = (Vs, Es,Xs) is formed by
extracting the induced subgraph spanned by the exemplar computation trees, i.e., Vs ={
u | ∃T L

v ∈ Agreedy, u ∈ NL(v)
}
, Es = {(u, v) | u ∈ Vs, v ∈ Vs} and Xs = {xv) | v ∈ Vs}. Set

NL(v) contains nodes within L hops from v.

Sparsification and Enrichment: In the final step, we seek to sparsify the graph induced by the
exemplar trees. Furthermore, in the additional space created due to sparsfication, we include more
exemplar trees, resulting in further magnification of the representative power. Further details of our
implementation is provided in App. A.4.

3.3 Properties of Bonsai

Complexity analysis: The computation complexity of Bonsai isO(|V|+ |E|) (details in App. A.5).

CPU-bound and Parallelizable: Bonsai does not involve learning any parameters through
gradient descent or its variants. Hence, the entire process is CPU-bound. Furthermore, all steps are
embarrassingly parallelizable leading condensation of datasets with hundreds of millions of edges
within minutes.

Independence from model-architecture and hyper-parameters: Unlike majority of existing
condensation algorithms that require knowledge of the Gnn architecture and all training hyper-
parameters, Bonsai only requires approximate knowledge of the number of layers L.

4 Experiments

In this section, we benchmark Bonsai and establish:
• Superior accuracy: Bonsai consistently outperforms existing baselines in terms of accuracy
across various compression factors, datasets, and Gnn architectures.

• Enhanced computation and energy efficiency: On average, Bonsai is at least 7 times faster and
17 times more energy efficient than the state-of-the-art baselines.

• Increased robustness: Unlike existing methods that require tuning condensation-specific hyper-
parameters for each combination of Gnn architecture, dataset, and compression ratio, Bonsai
achieves superior performance using a single set of parameters across all scenarios.

Our implementation is available at https://github.com/idea-iitd/Bonsai.

4.1 Experimental Setup
Table 3: Datasets.

Dataset # Nodes # Edges # Classes # Features
Cora (Kipf & Welling, 2017) 2,708 10,556 7 1,433
Citeseer (Kipf & Welling, 2017) 3,327 9,104 6 3,703
Pubmed (Kipf & Welling, 2017) 19,717 88,648 3 500
Flickr (Zeng et al., 2020) 89,250 899,756 7 500
Ogbn-arxiv (Hu et al., 2021) 169,343 2,315,598 40 128
Reddit (Hamilton et al., 2017) 232,965 23,213,838 41 602
MAG240M (Hu et al., 2021) 1,398,159 26,434,726 153 768

The specifics of our experimental
setup, including hardware and
software environment, and hyper-
parameters are detailed in App. B.
For the baseline algorithms, we
use the code shared by their respective authors. We conduct each experiment 5 times and report the
means and standard deviations.

Datasets: Table 3 lists the benchmark datasets used.

7

https://github.com/idea-iitd/Bonsai

Published as a conference paper at ICLR 2025

Table 4: Accuracy achieved by the various baselines on benchmark datasets across various com-
pression ratios over byte consumption (denoted as Sr(%)), on the Gcn architecture. The best and the
second-best accuracies in each row are highlighted by dark and lighter shades of Green, respectively.
OOT indicates the scenario where the algorithm failed to condense within 5 hours.

Dataset Sr(%) Random Herding GCond GDEM GCSR EXGC GCSNTK GEOM Bonsai Full
0.5 39.90±1.46 45.61±0.01 77.30±0.30 57.49±6.87 74.83±0.75 34.87±0.83 77.85±0.76 33.76±0.96 83.95±0.39

Cora 1 27.75±2.05 52.07±0.00 77.30±0.31 69.32±4.71 77.56±0.74 35.24±0.60 67.52±0.77 33.02±0.92 85.76±0.24 88.56±0.18
3 52.26±1.69 67.60±0.00 81.73±0.48 81.70±3.10 77.20±0.48 35.42±0.77 75.64±0.82 54.80±1.89 86.38±0.22

0.5 33.90±2.16 22.82±0.00 74.17±0.68 70.05±2.40 67.03±0.61 23.42±0.98 69.82±0.68 24.92±0.89 77.00±0.15
CiteSeer 1 44.90±2.32 49.10±0.02 77.62±0.71 72.48±2.13 74.77±0.78 23.67±1.00 69.22±0.71 28.03±0.81 77.03±0.33 78.53±0.15

3 44.50±1.27 67.69±0.01 77.02±0.22 76.20±0.55 77.27±0.28 25.07±0.92 64.26±0.53 33.48±0.83 75.89±0.26

0.5 62.58±0.25 78.29±0.00 80.63±1.20 80.72±0.92 79.43±0.25 45.77±0.73 53.04±1.99 OOT 87.27±0.03
Pubmed 1 79.19±0.09 78.59±0.00 79.92±0.00 80.80±1.07 79.11±0.15 46.24±0.43 62.81±1.32 OOT 87.08±0.04 87.22±0.00

3 82.50±0.09 78.09±0.00 77.00±0.15 81.07±0.90 79.94±0.16 47.62±0.67 67.72±2.01 OOT 87.64±0.09

0.5 44.78±0.00 47.98±0.01 44.06±1.05 46.25±1.02 46.41±0.00 45.47±0.85 31.49±0.75 OOT 48.73±0.27
Flickr 1 44.21±0.03 46.72±0.01 39.88±5.60 46.99±1.38 OOT (5 hrs) 45.97±0.82 42.50±0.99 OOT 49.05±0.17 50.93±0.17

3 46.56±0.01 46.54±0.01 46.04±1.88 47.35±0.98 OOT 48.44±0.65 36.58±0.82 OOT 49.66±0.27

0.5 42.01±0.01 53.37±0.00 52.63±0.63 54.73±0.66 OOT 60.66±1.66 61.55±1.17 OOT 58.49±0.17
Ogbn-arxiv 1 49.27±0.64 54.91±0.00 53.49±0.63 51.45±1.14 OOT 61.73±1.43 62.31±0.88 OOT 58.35±0.09 68.97±0.10

3 51.11±0.19 57.28±0.00 53.01±0.64 53.37±1.04 OOT 62.96±1.33 56.38±0.79 OOT 64.31±0.06

0.5 36.00±4.09 81.72±0.63 38.94±0.79 90.51±0.55 OOT 78.47±0.52 37.15±1.51 OOT 80.33±0.46
Reddit 1 38.55±2.00 83.48±0.83 43.98±0.35 90.63±0.84 OOT 81.69±1.12 38.87±2.00 OOT 85.65±0.08 92.14±0.04

3 44.97±2.97 88.51±0.13 48.78±0.83 85.75±0.80 OOT OOM 47.48±1.98 OOT 88.90±0.07

0.5 34.43±0.11 36.18±0.10 OOT OOM OOT OOM OOT OOT 52.33±0.05
MAG240M 1 37.93±0.08 37.29±0.06 OOT OOM OOT OOM OOT OOT 52.58±0.33 69.95±3.52

3 42.96±0.43 37.98±0.09 OOT OOM OOT OOM OOT OOT 53.39±0.07

Baselines: Table 1 lists all the graph condensation algorithms for node classification. We omit
Sfgc (Zheng et al., 2023) and Sgdd (Yang et al., 2023) as baselines since both Gdem and Gcsr
have been shown to outperform them. Among non-neural, baselines, we compare with selecting the
induced subgraph spanned by a random selection of nodes, and Herding (Welling, 2009).
Metrics: Prediction quality is measured through Accuracy on the test set, i.e., the percentage of
correct predictions. Compression ratio is quantified as Sr = size of condensed dataset in bytes

size of full data set in bytes .

4.2 Prediction Accuracy

Table 4 presents the accuracies obtained by Bonsai and the baselines on Gcn. Bonsai achieves
the best accuracy in 12 out of 18 scenarios, with substantial improvements (≥ 5%) over the second-
best performer in several cases. This demonstrates that the unsupervised gradient-agnostic approach
adopted byBonsai does not come at the cost of accuracy. Gdem emerges as the second best perfomer.
Gcsr fails to complete in the two largest datasets of Ogbn-arxiv and Reddit, since it trains on the
entire dataset 100 times to condense, which exceeds 5 hours. Geom is even slower since it trains on
full train set 200 times. All baselines except Random and Herding failed to finish within 5 hours on
MAG240M.

4.3 Cross-architecture Generalization

Gdem and Bonsai are both model-agnostic, meaning their condensed datasets are independent of
the downstream Gnn architecture used. In contrast, GCond and Gcsr produce architecture-specific
condensation datasets, requiring separate training for each architecture. This distinction raises two
important questions: First, how well do the condensed datasets generated by Gdem and Bonsai gen-
eralize across different architectures? Second, if we apply the condensation datasets produced by
GCond and Gcsr for Gcn to other architectures, how significantly does it impact performance? We
explore these questions in Table 5.

Consistent with the earlier trend, Bonsai continues to outperform all baselines. We further observe
that the performance gap between Bonsai and the baselines is wider in Gat and Gin compared to
Gcn (Table 4). For GCond and Gcsr, this wider gap is not surprising since they are trained on
the gradients of Gcn, which are expected to differ from those of Gin and Gat. Gin uses a Sum-
Pool aggregation, while Gat employs attention to effectively dampen unimportant edges, with a
potentially different eigen spectrum - the property that Gdem attempts to preserve. The approach
of Bonsai, on the other hand, aligns more directly with the computational structure of Gnns. It
focuses on analyzing the input space of computation trees and aims to represent as much of this
space as possible within the given budget.

8

Published as a conference paper at ICLR 2025

Table 5: Accuracies achieved by the various baselines on Gat and Gin.
Dataset % Gnn Random Herding GCond GDEM GCSR Bonsai Full

0.5 Gat 41.44±1.73 33.80±0.07 13.21±1.99 63.91±5.91 15.09±6.19 75.42±1.61
1 Gat 42.73±1.03 46.09±0.86 35.24±0.00 73.49±2.64 37.60±1.34 78.67±0.89 85.70±0.09

Cora 3 Gat 60.22±0.67 56.75±0.45 35.24±0.00 75.28±4.86 36.72±0.81 80.66±0.80

0.5 Gin 49.04±0.50 34.39±1.03 14.13±6.80 63.65±7.11 76.05±0.44 85.42±0.74
1 Gin 50.48±0.85 33.80±2.42 33.91±1.23 75.92±4.24 60.70±4.44 84.80±0.41 86.62±0.28
3 Gin 59.52±0.88 36.35±0.59 31.70±4.97 59.59±7.95 51.62±5.00 85.42±0.53

0.5 Gat 42.76±0.35 36.04±0.46 21.47±0.00 69.86±2.28 21.92±0.76 68.56±0.57
1 Gat 46.19±1.38 52.07±0.11 21.47±0.00 23.87±3.05 21.50±0.06 69.43±0.82 77.48±0.75

CiteSeer 3 Gat 61.65±0.51 65.17±0.00 21.26±0.22 22.90±1.20 21.50±0.06 69.94±1.15

0.5 Gin 44.86±0.43 22.97±0.30 21.47±0.00 67.69±3.28 50.66±1.17 71.80±0.26
1 Gin 47.90±0.65 39.67±0.82 19.49±1.09 67.64±4.45 64.74±1.88 72.16±0.60 75.45±0.23
3 Gin 61.83±0.68 60.48±0.26 18.65±2.56 48.65±8.17 59.95±9.07 70.51±0.54

0.5 Gat 77.73±0.12 75.44±0.02 37.49±4.01 80.06±1.16 38.29±8.13 85.66±0.38
1 Gat 78.85±0.09 76.64±0.02 41.55±3.18 80.75±0.47 40.47±0.00 85.88±0.28 86.33±0.08

PubMed 3 Gat 82.84±0.11 78.48±0.03 37.77±3.61 65.08±9.53 40.27±0.20 85.62±0.36

0.5 Gin 77.45±0.14 48.48±1.33 30.91±4.57 78.78±0.91 36.88±12.06 84.32±0.33
1 Gin 78.43±0.22 62.22±0.13 32.84±6.27 78.72±0.95 33.75±5.58 85.57±0.26 84.66±0.05
3 Gin 80.56±0.17 45.40±0.46 36.11±3.47 81.08±0.99 32.01±6.77 85.66±0.23

0.5 Gat 43.64±0.99 36.50±13.22 40.24±3.20 25.43±10.37 28.03±6.60 48.22±3.60
1 Gat 43.56±1.06 36.34±1.14 40.85±1.08 18.44±9.42 OOT 45.62±1.85 51.42±0.07

Flickr 3 Gat 45.71±1.87 42.70±1.17 41.51±9.81 25.83±11.39 OOT 47.80±2.06

0.5 Gin 42.67±0.83 39.98±7.21 13.65±7.54 14.10±5.68 05.92±1.01 44.97±2.23
1 Gin 42.90±0.76 41.87±4.52 16.65±6.55 19.44±9.68 OOT 44.90±0.88 45.37±0.57
3 Gin 19.63±4.21 43.72±3.26 24.25±14.43 20.97±6.64 OOT 45.04±1.94

4.4 Condensation Efficiency

Table. 6 presents the time consumed by Bonsai and other baselines. We note that while Bonsai is
CPU-bound, all other algorithms are GPU-bound. Despite being CPU-bound, Bonsai, on average,
is more than 7-times faster than the fastest baseline Exgc. In addition, all baselines require training
on the full dataset. This algorithm design shows up in the running times where the condensation
time is higher than the full dataset training time, negating the very purpose of graph condensation.
More worryingly, the condensation process of all algorithms, except Bonsai, have higher carbon
emissions than training on the full dataset (See Table 8 in Appendix).

Table 6: Condensation times of various methods in seconds at 0.5%. Condensation times that are
higher than training on the full dataset itself are highlighted in red. The fastest condensation time for
each dataset is highlighted in green.

Dataset GCond Gdem Gcsr Exgc GC-Sntk Geom Bonsai Full
Cora 2738 105 5260 34.87 82 12996 2.60 24.97
Citeseer 2712 167 6636 34.51 124 15763 2.75 24.87
Pubmed 2567 530 1319 114.96 117 OOT 24.24 51.06
Flickr 1935 3405 17445 243.28 612 OOT 118.23 180.08
Ogbn-arxiv 14474 569 OOT 1594.83 12218 OOT 298.64 524.67
Reddit 30112 20098 OOT 6903.47 29211 OOT 1170.64 2425.68

Component-wise analysis: We discuss the individual time consumption by each component ofBon-
sai in App. B.4.1.

4.5 Ablation Study and Impact of Parameters

Fig. 4 presents an ablation study comparing Bonsai against three variants: (i) Bonsai-PPR, which
omits the use of Personalized PageRank, (ii) Bonsai-Rev-k-NN, which substitutes the Rev-k-NN-
based coverage maximization with random exemplar selection, but performs PPR, (iii) and random
that does not do either PPR or Rev-k-NN. Before analyzing the trends, we emphasize an important
distinction between Bonsai-Rev-k-NN and Random. While in Bonsai-Rev-k-NN, we randomly add
computation trees till the condensation budget is exhausted, in Random, we iteratively add random
nodes, till their induced subgraph exhausts the budget. Consequently, Random covers more diverse
nodes with partial local neighborhood information, while Bonsai-Rev-k-NN selects a smaller node
set with complete L-hop topology, enabling precise Gnn embedding computation.

Several important insights emerge from this experiment. Random performs significantly worse than
Bonsai, demonstrating that the condensed graph’s information content substantially exceeds that of
an equally sized subgraph induced by random node selection. This finding, consistent with the trend
observed in Table 4, underscores the effectiveness of Bonsai over random sampling.

9

Published as a conference paper at ICLR 2025

(a) 0.5% (b) 1% (c) 3%
Figure 4: Ablation study of Bonsai.

Second, removal of either Rev-k-NN or PPR result in significant drops across most datasets, indi-
cating both play important and complementary roles. While Rev-k-NN identifies the exemplars that
are important, PPR sparsifies the graph making space for more exemplars to be added. Interestingly,
the relative impact of these components varies with dataset compression and size. At higher com-
pression rates (such as 0.5%), removing Rev-k-NN leads to higher drop in accuracy across most
datasets. However, this trend reverses as the condensed dataset size increases. Closer examination
reveals that higher-ranked exemplars typically have higher degrees in their L-hop neighborhoods.
When the memory budget is constrained, high-ranked exemplars are often skipped because their
L-hop neighborhoods exceed the available memory. This limitation diminishes as the budget in-
creases. Consequently, at higher budgets, edge density increases, making graph sparsification (via
PPR) increasingly critical. This explains why PPR becomes more important at higher budgets or in
inherently dense graphs like Reddit.

Finally, we discuss the performance comparison of Random with Bonsai-Rev-k-NN. This is an
interesting comparison since both represent two distinct mechanisms of random selection. In most
cases, Bonsai-Rev-k-NN achieves a higher accuracy indicating that obtaining fullL-hop topological
information for a smaller set of nodes leads to better results than partial L-hop information over a
broader set of nodes.

Impact of Parameters: We analyze the impact of sampling size and k on Rev-k-NN in App. B.4.2.

5 Conclusions and Future Works

In this work, we have developed Bonsai, a novel graph condensation method that addresses criti-
cal limitations in existing approaches. By leveraging the fundamental role of computation trees in
message-passing Gnns, Bonsai achieves superior performance in node classification tasks across
multiple real-world datasets. Our method stands out as the first linear-time, model-agnostic graph
condensation algorithm, offering significant improvements in both accuracy and computational ef-
ficiency. Bonsai’s unique approach of encoding exemplar trees that maximize representation of
the full training set’s computation trees has proven to be highly effective. This strategy not only
overcomes the paradoxical requirement of training on full datasets for condensation but also elim-
inates the need for repeated condensation when changing hyper-parameters or Gnn architectures.
Furthermore, Bonsai achieves substantial size reduction without resorting to fully-connected, edge-
weighted graphs, thereby reducing computational demands. In contrast to baselines, Bonsai is com-
pletely CPU-bound, resulting in at least 17-times lower carbon emissions, making it a more environ-
mentally friendly option. These features collectively position Bonsai as a significant advancement
in the field of graph condensation, offering both performance benefits and sustainability advantages.

Limitations and Future Works: While existing research on graph condensation has primarily fo-
cused on node and graph classification tasks, Gnns have demonstrated their versatility across a
broader spectrum of applications. In our future work, we aim to expand the scope of graph con-
densation by developing task-agnostic data condensation algorithms.

Reproducibility Statement

To support the reproducibility of our work, we provide several resources in the paper and its supple-
mentary materials. The source code of our models and algorithms is available at https://github.com/
idea-iitd/Bonsai, which also includes details of how to train the baseline models in different settings.
All theoretical results and assumptions are detailed in the Appendix A, ensuring clarity in our claims.
Full experimental settings are documented in Appendix B.

10

https://github.com/idea-iitd/Bonsai
https://github.com/idea-iitd/Bonsai

Published as a conference paper at ICLR 2025

Acknowledgements

We acknowledge the Yardi School of AI, IIT Delhi for supporting this research. This work was
partially supported by the CSE Research Acceleration Fund of IIT Delhi. Sayan Ranu acknowledges
the Nick McKeown Chair position endowment. Hariprasad Kodamana acknowledges IIT Delhi Abu
Dhabi for partial support of this research. Samyak Jain acknowledges the generous grant received
from Microsoft Research India to sponsor his travel to ICLR 2025; and Hudson River Trading LLC
for funding his work on the project.

References
Ravinder Bhattoo, Sayan Ranu, and NM Krishnan. Learning articulated rigid body dynamics

with lagrangian graph neural network. Advances in Neural Information Processing Systems, 35:
29789–29800, 2022. (Cited on p. 1←↩)

Suresh Bishnoi, Ravinder Bhattoo, Sayan Ranu, and NM Krishnan. Enhancing the inductive biases
of graph neural ode for modeling dynamical systems. ICLR, 2023. (Cited on p. 1←↩)

Suresh Bishnoi, Jayadeva Jayadeva, Sayan Ranu, and N M Anoop Krishnan. BroGNet: Momentum-
conserving graph neural stochastic differential equation for learning brownian dynamics. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=2iGiSHmeAN. (Cited on p. 1←↩)

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN 0262033844. (Cited on pp. 6
and 15←↩)

Junfeng Fang, Xinglin Li, Yongduo Sui, Yuan Gao, Guibin Zhang, Kun Wang, Xiang Wang, and
Xiangnan He. Exgc: Bridging efficiency and explainability in graph condensation. In Proceed-
ings of the ACM Web Conference 2024, WWW ’24, pp. 721–732, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400701719. doi: 10.1145/3589334.3645551.
URL https://doi.org/10.1145/3589334.3645551. (Cited on p. 2←↩)

Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998. (Cited
on p. 7←↩)

Mridul Gupta, Hariprasad Kodamana, and Sayan Ranu. FRIGATE: Frugal spatio-temporal forecast-
ing on road networks. In 29th SIGKDD Conference on Knowledge Discovery and Data Mining,
2023. URL https://openreview.net/forum?id=2cTw2M47L1. (Cited on p. 1←↩)

Mridul Gupta, Sahil Manchanda, Hariprasad Kodamana, and Sayan Ranu. Mirage: Model-agnostic
graph distillation for graph classification. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=78iGZdqxYY. (Cited on p. 1←↩)

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964. (Cited on pp. 1 and 7←↩)

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc:
A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021.
(Cited on pp. 1 and 7←↩)

Jayant Jain, Vrittika Bagadia, Sahil Manchanda, and Sayan Ranu. Neuromlr: Robust & reliable
route recommendation on road networks. Advances in Neural Information Processing Systems,
34:22070–22082, 2021. (Cited on p. 1←↩)

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensa-
tion for graph neural networks. In International Conference on Learning Representations, 2021.
(Cited on pp. 1 and 2←↩)

11

https://openreview.net/forum?id=2iGiSHmeAN
https://openreview.net/forum?id=2iGiSHmeAN
https://doi.org/10.1145/3589334.3645551
https://openreview.net/forum?id=2cTw2M47L1
https://openreview.net/forum?id=78iGZdqxYY

Published as a conference paper at ICLR 2025

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 720–730, 2022. (Cited on p. 1←↩)

ThomasNKipf andMaxWelling. Semi-supervised classification with graph convolutional networks.
ICLR, 2017. (Cited on pp. 1, 2, and 7←↩)

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the
carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019. (Cited on p. 19
←↩)

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and Natalie
Glance. Cost-effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 420–429, 2007. (Cited
on p. 7←↩)

Yang Liu, Deyu Bo, and Chuan Shi. Graph distillation with eigenbasis matching. In Forty-first
International Conference on Machine Learning, 2024a. URL https://openreview.net/forum?id=
DYN66IJCI9. (Cited on pp. 1 and 2←↩)

Zhanyu Liu, Chaolv Zeng, and Guanjie Zheng. Graph data condensation via self-expressive graph
structure reconstruction. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’24, pp. 1992–2002, 2024b. (Cited on pp. 1 and 2←↩)

Peter A. Lofgren, Siddhartha Banerjee, Ashish Goel, and C. Seshadhri. Fast-ppr: scaling personal-
ized pagerank estimation for large graphs. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, pp. 1436–1445, 2014. (Cited
on p. 17←↩)

WeiWei Miao, Zeng Zeng, Mingxuan Zhang, Siping Quan, Zhen Zhang, Shihao Li, Li Zhang,
and Qi Sun. Workload prediction in edge computing based on graph neural network. In 2021
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Com-
puting, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BD-
Cloud/SocialCom/SustainCom), pp. 1663–1666, 2021. doi: 10.1109/ISPA-BDCloud-SocialCom-
SustainCom52081.2021.00223. (Cited on p. 1←↩)

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
1995. (Cited on p. 14←↩)

Sunil Nishad, Shubhangi Agarwal, Arnab Bhattacharya, and Sayan Ranu. Graphreach: Position-
aware graph neural network using reachability estimations. IJCAI, 2021. (Cited on p. 1←↩)

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Citation Rank-
ing: Bringing Order to the Web. Technical report, 1998. (Cited on p. 16←↩)

Abishek Thangamuthu, Gunjan Kumar, Suresh Bishnoi, Ravinder Bhattoo, NMKrishnan, and Sayan
Ranu. Unravelling the performance of physics-informed graph neural networks for dynamical
systems. In Advances in Neural Information Processing Systems, 2022. (Cited on p. 1←↩)

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler–lehman graph kernels. In Advances in Neural Information Processing Sys-
tems 32 (NeurIPS), pp. 6436–6446. 2019. (Cited on pp. 2 and 4←↩)

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ. (Cited on pp. 1 and 2←↩)

Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast graph condensation with
structure-based neural tangent kernel. In Proceedings of the ACM Web Conference 2024,
WWW ’24, pp. 4439–4448, New York, NY, USA, 2024. Association for Computing Machin-
ery. ISBN 9798400701719. doi: 10.1145/3589334.3645694. URL https://doi.org/10.1145/
3589334.3645694. (Cited on p. 2←↩)

12

https://openreview.net/forum?id=DYN66IJCI9
https://openreview.net/forum?id=DYN66IJCI9
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1145/3589334.3645694
https://doi.org/10.1145/3589334.3645694

Published as a conference paper at ICLR 2025

Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 1121–1128, 2009. (Cited on p. 8←↩)

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neu-
ral networks? In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryGs6iA5Km. (Cited on pp. 2 and 3←↩)

Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, and Hang-
hang Tong. Kernel ridge regression-based graph dataset distillation. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’23, pp. 2850–2861,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701030. doi:
10.1145/3580305.3599398. URL https://doi.org/10.1145/3580305.3599398. (Cited on p. 1←↩)

Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and Jianxin
Li. Does graph distillation see like vision dataset counterpart? In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
VqIWgUVsXc. (Cited on pp. 2 and 8←↩)

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
SAINT: Graph sampling based inductive learning method. In International Conference on Learn-
ing Representations, 2020. URL https://openreview.net/forum?id=BJe8pkHFwS. (Cited on p. 7
←↩)

Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin,
and Yang You. Navigating complexity: Toward lossless graph condensation via expanding
window matching. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=gE7qZurGH3. (Cited on p. 2←↩)

Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=XkcufOcgUc. (Cited on pp. 1, 2, and 8←↩)

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1145/3580305.3599398
https://openreview.net/forum?id=VqIWgUVsXc
https://openreview.net/forum?id=VqIWgUVsXc
https://openreview.net/forum?id=BJe8pkHFwS
https://openreview.net/forum?id=gE7qZurGH3
https://openreview.net/forum?id=XkcufOcgUc
https://openreview.net/forum?id=XkcufOcgUc

Published as a conference paper at ICLR 2025

A Appendix

A.1 Proof. of Theorem 1.

Recall the notation that S ⊆ T denotes the subset of trees from which the representative power of all
trees in T is being estimated. Let |S| = z.

Corresponding to each T L
u ∈ S, let us define an indicator random variable Xv

u denoting whether
T L
v ∈ k-NN(T L

u). Therefore, we have:

Xv =
∑
∀T L

u ∈S

Xv
u = zΠ̃

(
T L
v

)
(8)

Since each tree in S is sampled uniformly at random from T, we have E(Xv) = zΠ
(
T L
v

)
. We

also note that Xv ∼ Binomial(z,Π
(
T L
v

)
). Given any ε ≥ 0, from Chernoff bounds (Motwani &

Raghavan, 1995), we have:

Upper tail bound:

P
(
Xv ≥ (1 + ε)zΠ

(
T L
v

))
≤ exp

(
− ε2

2 + ε
zΠ

(
T L
v

))
(9)

Lower tail bound:

P
(
Xv ≤ (1− ε)zΠ

(
T L
v

))
≤ exp

(
−ε2

2
zΠ

(
T L
v

))
(10)

Combining the upper and tail bounds, we obtain:

P
(∣∣Xv − zΠ

(
T L
v

)∣∣ ≥ εzΠ
(
T L
v

))
≤ 2 exp

(
− ε2

2 + ε
zΠ

(
T L
v

))
(11)

⇔ P
(∣∣∣zΠ̃(T L

v)− zΠ
(
T L
v

)∣∣∣ ≥ εzΠ
(
T L
v

))
≤ 2 exp

(
− ε2

2 + ε
zΠ

(
T L
v

))
(12)

⇔ P
(∣∣∣Π̃(T L

v)−Π
(
T L
v

)∣∣∣ ≥ εΠ
(
T L
v

))
≤ 2 exp

(
− ε2

2 + ε
zΠ

(
T L
v

))
(13)

Plugging θ from Eq. 5 in Eq. 13, we obtain θ = εΠ
(
T L
v

)
. Hence,

P
(∣∣∣Π̃(T L

v)−Π
(
T L
v

)∣∣∣ ≥ θ
)
≤ 2 exp

−

(
θ

Π(T L
v)

)2

2 + θ
Π(T L

v)

zΠ
(
T L
v

) (14)

≤ 2 exp
(
− θ2

2Π (T L
v) + θ

z

)
(15)

For any T L
v ∈ T, Π

(
T L
v

)
≤ 1. Thus,

P
(∣∣∣Π̃(T L

v)−Π
(
T L
v

)∣∣∣ ≥ θ
)
≤ 2 exp

(
− θ2

2 + θ
z

)
(16)

14

Published as a conference paper at ICLR 2025

Now, if we want a confidence interval of 1− δ (as stated in Eq. 5), we have:

δ ≥ 2 exp
(
− θ2

2 + θ
z

)
(17)

⇔ δ

2
≥ exp

(
− θ2

2 + θ
z

)
(18)

⇔ ln
δ

2
≥ − θ2

2 + θ
z (19)

⇔ ln
2

δ
≤ θ2

2 + θ
z (20)

⇔ ln
2

δ
≤ θ2

2 + θ
z (21)

⇔ z ≥
ln
(
2
δ

)
(2 + θ)

θ2
(22)

Hence, if we sample at least ln
(
2
δ

)
(2+θ)

θ2 trees in S, then for any T L
v ∈ T:

Π̃(T L
v) ∈ [Π

(
T L
v

)
− θ,Π

(
T L
v

)
+ θ] with probability at least 1− δ. � (23)

A.2 NP-hardness: Proof of Theorem 1

Proof. To establish NP-hardness of our proposed problem we reduce it to the classical Set Cover
problem (Cormen et al., 2009).
Definition 7 (Set Cover). Given a budget b and a collection of subsets S = {S1, · · · , Sm} from
a universe of items U = {u1, · · · , un}, i.e., ∀Si ∈ S, Si ⊆ U , the Set Cover problem seeks to
determine whether there exists a subset S ′ ⊆ S such that |S ′| = b and it covers all items in the
universe, i.e., |

⋃
∀Si∈S′ Si| = U .

We show that given any instance of a Set Cover problem 〈S, U〉, b, it can be mapped to the problem
of maximizing the representative power (Eq. 7).

Given an instance of the Set Cover problem, we construct a database of computation trees T =
TU ∪ TS . For each uj ∈ U , we add a computation tree Tuj ∈ TU . For each Si ∈ S , we add a tree
TSi ∈ TS . If an item uj ∈ Si, then we have Tuj ∈ Rev-k-NN(TSi) (equivalently TSi ∈ k-NN(Tuj)).

With this construction, we can state that there exists a Set Cover of size b if and only if there exists a
solution set A ⊆ T such that Π(A) = |TU |

|T| . �

A.3 Proofs of Monotonicity, Submodularity

Theorem 3 (Monotonicity). ∀A′ ⊇ A, Π(A′)−Π(A) ≥ 0, whereA andA′ are sets of computation
trees.

Proof. Since the denominator in Π(A) is constant, it suffices to prove that the numerator is mono-
tonic. This reduces to establishing that:∣∣∣∣∣∣

⋃
∀T L

v ∈A′

Rev-k-NN
(
T L
v

)∣∣∣∣∣∣ ≥
∣∣∣∣∣∣

⋃
∀T L

v ∈A

Rev-k-NN
(
T L
v

)∣∣∣∣∣∣ (24)

This inequality holds true because the union operation is a monotonic function. As A′ is a superset
of A, the union over A′ will always include at least as many elements as the union over A.

Theorem 4 (Submodularity). ∀A′ ⊇ A, Π(A′ ∪ {T })− Π(A′) ≤ Π(A ∪ {T })− Π(A), where A
and A′ are sets of computation trees and T is a computation tree.

Proof by Contradiction. Let us assume
∃A′ ⊇ A, Π(A′ ∪ {T })−Π(A′) > Π(A ∪ {T })−Π(A) (25)

15

Published as a conference paper at ICLR 2025

Figure 5: Distribution of PPR scores against node ranks.

Eq. 25 implies:

Rev-k-NN(T) \
⋃
∀T ′∈A′

Rev-k-NN (T ′) ⊇ Rev-k-NN(T) \
⋃
∀T ′∈A

Rev-k-NN (T ′) (26)

=⇒ A ⊇ A′, which is a contradiction. �

A.4 Sparsification through Personalized PageRank (PPR)

Let VS be the node set in the initial condensed graph, which can be partitioned into two disjoint
subsets: Vroot and Vego, where Vroot = {v | ∃T L

v ∈ A}, the root nodes, that serve as the root node
of some exemplar in Agreedy , and Vego = VS \ Vroot, the ego nodes, that are included because they
fall within the L-hop neighborhood of a root node. We propose to employ Personalized PageRank
(PPR) (Page et al., 1998) with teleportation only to root nodes to identify and prune ego nodes with
minimal impact on the root node embeddings. Starting with timestamp t = 0, we proceed as follows:

1. Compute the PPR distribution πt for t ≥ 0 defined by:

πt = (1− β)Aπt−1 + βe (27)

where: π0[i] = 1
|VS | for all i, e[i] = 1

|Vroot| if vi ∈ Vroot, otherwise 0, A is the normalized
adjacency matrix, β is the teleportation probability.

2. Obtain the PPR vector π after convergence where πt = πt−1.
3. Sort the nodes in π by their PPR scores in descending order such that ∀i, π[i− 1] ≥ π[i].
4. Define the knee point iknee as:

iknee = argmax
i

{π[i+ 1] + π[i− 1]− 2 · π[i]} (28)

5. Prune all ego nodes with PPR scores below π[iknee].
6. Use the freed-up space to include additional exemplar trees using Algorithm 1.
7. Repeat steps 1–6 iteratively until iknee ≥ θ, where θ is a threshold setting the minimum number

of nodes to be removed.
The rationale for this pruning process can be outlined as follows. The PPR distribution πt iteratively
updates based on the transition matrix A and teleportation vector e. Given that π0 is initialized
uniformly and e assigns higher probabilities to root nodes, πt converges to a distribution where
nodes more connected to root nodes have higher scores (See Fig. 5 in Appendix). After convergence,
the vector π represents the steady-state probabilities of nodes in the graph. Sorting π by descending
scores ensures that nodes with the highest influence on root nodes are prioritized. The knee point
iknee is identified as the maximum curvature in the sorted PPR scores. This point is where the rate
of change in scores shifts most significantly, indicating a transition between nodes of high and low
influence. Nodes with PPR scores below π[iknee] have minimal impact on root node embeddings
and removing these nodes and edges incident on them effectively sparsifies the graph without
substantial loss of information. Additional exemplar trees can then be incorporated into the available
space using the greedy algorithm as given by Algorithm 1.

16

Published as a conference paper at ICLR 2025

A.5 Complexity Analysis

For this analysis, we assume |V| = n and |E| = m. In sync with Fig. 3, the computation structure of
Bonsai can be decomposed into four components.

1. Embed trees into WL-space: This operation requires a pass through each twice, and is identical
to the message-pass structure of a Gnn. Hence, the computation cost is bounded to O(m). A
crucial distinction from a Gnn is that it does not require back-propagation and hence is fully
CPU-bound.

2. Rev-k-NN: As discussed in § 3.1.1, computing Rev-k-NN consumes O(n) time with sampling.
3. Coverage Maximization: Each iteration in Alg. 1, iterates over all nodes (trees) in the graph (T)

that have not yet been added to the set of exemplars. For each node (equivalently, tree rooted at
this node), we compute its marginal gain (line 3 in Alg. 1), which is bounded by the sample size
z, since the cardinality of a Rev-k-NN set is bounded by the number of trees sampled for Rev-k-
NN computation ((§ 3.1.1)). Since z � n, the complexity per iteration is O(zn) ≈ O(n). The
number of iterations is bounded by the size of the condensation budget, which we typically set to
less than 3% of the full dataset and hence has negligible impact on the complexity.

4. PPR: PPR can be computed in linear time (Lofgren et al., 2014). Since the size of the condensed
set is at most the full graph, this bounds the cost of PPT to O(n).

Combining all these components, the cost of Bonsai is bounded by O(n+m).

B Experimental Setup

Across all datasets, except MAG240M, we maintain a train-validation-test split ratio of 60 : 20 : 20.
In MAG240M, we use a ratio of 80:10:10.

B.1 Hardware Configuration

All experiments were conducted on a high-performance computing system with the following spec-
ifications:

• CPU: 96 logical cores
• RAM: 512 GB
• GPU: NVIDIA A100-PCIE-40GB

B.2 Software Configuration

The software environment for our experiments was configured as follows:

• Operating System: Linux (Ubuntu 20.04.4 LTS (GNU/Linux 5.4.0-124-generic x86_64)))
• PyTorch Version: 1.13.1+cu117
• CUDA Version: 11.7
• PyTorch Geometric Version: 2.3.1

B.3 Additional Experimental Parameters

• Number of layers in evaluation models: 2 (with Relu in between) for Gcn, Gat, and Gin. The
Mlp used in Gin is a simple linear transform with a bias defined by the following equation WX+b
where X is the input design matrix.

• Value of k in Rev-k-NN: 5
• Hyper-parameters Baselines: We use the config files shared by the authors. We note that the
benchmark datasets are common between our experiments and those used in the baselines.

B.4 Additional Experiments

B.4.1 Running time analysis of Bonsai

Fig. 7 presents the time consumed by the various components within Bonsai. We observe that most
of the time is spent in PPR computation, except in Reddit, where Rev-k-NN is a dominant contributor.

17

Published as a conference paper at ICLR 2025

Table 7: Component-wise analysis of Bonsai’s running times in seconds.

Dataset WL Rev-k-NN Greedy PPR Full

Cora 0.87 0.05 0.005 1.68 2.60
Citeseer 0.97 0.07 0.005 1.71 2.75
Pubmed 8.89 1.39 0.030 13.93 24.24
Reddit 682.80 293.15 0.696 193.99 1170.64

This trend can be explained by the high density of Reddit, where the average degree is 100 in contrast
to < 5 in the other networks.

(a) Impact of sampling size on
Accuracy

(b) Impact of sampling size on
time

(c) Effect of varying k in the
Rev-k-NN in Bonsai.

Figure 6: Impact of k in Rev-k-NN and sampling size for Rev-k-NN approximation on the perfor-
mance of Bonsai.

B.4.2 Impact of Parameters on Bonsai

Bonsai has two parameters, both related to the computation of Rev-k-NN. The value of k in Rev-k-
NN and the sample size to accurately approximate the representative power.

Fig. 6a and Fig. 6b present the impact of sample size on accuracy and time, respectively. As expected,
the general trend shows that increasing the sample size leads to higher accuracy and longer running
times. However, we note that the increase in accuracy is minor. This observation is consistent with
Lemma 1, which states that a small sample size is sufficient to achieve a high-quality approximation.

Fig. 6c presents the impact of k on accuracy. While the performance is generally stable against k,
the peak accuracy is typically achieved when k is set to 5.

B.5 Additional Training Times

Fig. 7 presents the training times on condensed datasets in Cora, Citeseer, Pubmed, and Reddit at
0.5% size. Figs. 8 and 9 presents the training times on condensed datasets in Cora, Citeseer, Pubmed,
Flickr, Ogbn-arxiv, and Reddit at 1%, and 3% sizes. Bonsai is faster on all architectures. The
gap between Bonsai and the baselines increase with increase in condensed dataset size. This is
more pronounced in larger datasets like Flickr, Ogbn-arxiv, and Reddit because the number of edges
is O(|V |2) for the baselines and forward pass through Gnns is usually O(|E|). Additionally, the
condensed dataset created by GCond and Gdem for Reddit at 3% size cannot be used to train basic
PyTorch Geometric models for Gat and Gin, resulting in out-of-memory (OOM) errors because the
backward pass graph maintained by PyTorch is larger.

B.6 Carbon Emissions

18

Published as a conference paper at ICLR 2025

(a) Cora (b) Citeseer

(c) Pubmed (d) Reddit

Figure 7: Comparing time required to train models on datasets condensed by GCond, Gdem, Bon-
sai, and Gcsr at 0.5% of Cora, Citeseer, Pubmed, and Reddit. Note that there is no condensed dataset
for Reddit output by Gcsr due to OOT.

Table 8: Estimated CO2 emissions from condensation of various methods in seconds at 0.5%. Emis-
sions that are higher than training on the full dataset itself are highlighted in red. The least emission
from condensation for each dataset is highlighted in green. CO2 emissions are computed as 10.8kg
per 100 hours for Nvidia A100 GPU and 4.32kg per 100 hours for 10 CPUs of Intel Xeon Gold
6248 (Lacoste et al., 2019).

Dataset GCond Gdem Gcsr Exgc GC-Sntk Geom Bonsai Full
Cora 82.14 3.15 157.80 1.05 2.46 389.88 0.03 0.75
Citeseer 81.36 5.01 199.08 1.03 3.72 472.89 0.03 0.75
Pubmed 77.01 15.90 39.57 3.45 3.51 ≥540.00 0.3 1.53
Flickr 58.05 102.15 523.35 7.30 18.36 ≥540.00 1.42 5.40
Ogbn-arxiv 434.22 17.07 ≥540.00 46.49 366.54 ≥540.00 4.18 15.74
Reddit 903.36 602.94 ≥540.00 207.10 876.33 ≥540.00 17.34 72.77

19

Published as a conference paper at ICLR 2025

(a) Cora (b) Citeseer

(c) Pubmed (d) Flickr

(e) Ogbn-arxiv (f) Reddit

Figure 8: Comparing time required to train models on datasets condensed by GCond, Gdem, Bon-
sai, and Gcsr at 1% of Cora, Citeseer, Pubmed, Flickr, Ogbn-arxiv, and Reddit. Note that there is
no condensed dataset for Flickr, Ogbn-arxiv, Reddit output by Gcsr due to OOT.

20

Published as a conference paper at ICLR 2025

(a) Cora (b) Citeseer

(c) Pubmed (d) Flickr

(e) Ogbn-arxiv (f) Reddit

Figure 9: Comparing time required to train models on datasets condensed by GCond, Gdem, Bon-
sai, and Gcsr at 3% of Cora, Citeseer, Pubmed, Flickr, Ogbn-arxiv, and Reddit. Note that there
is no condensed dataset for Flickr, Ogbn-arxiv, Reddit output by Gcsr due to OOT; and condensed
datasets produced by GCond and Gdem for Reddit cannot train on standard 2-layered PyTorch Ge-
ometric Gat and Gin due to OOM.

21

	Introduction and Related Works
	Existing works and their Limitations
	Contributions

	Problem Formulation and Preliminaries
	Computation structure of Gnns

	Bonsai: Proposed Methodology
	Quantifying Representativeness through Reverse k-NN
	Sampling for Scalable Computation of Reverse k-NN

	Coverage Maximization
	Properties of Bonsai

	Experiments
	Experimental Setup
	Prediction Accuracy
	Cross-architecture Generalization
	Condensation Efficiency
	Ablation Study and Impact of Parameters

	Conclusions and Future Works
	Appendix
	Proof. of Theorem 1.
	NP-hardness: Proof of Theorem 1
	Proofs of Monotonicity, Submodularity
	Sparsification through Personalized PageRank (PPR)
	Complexity Analysis

	Experimental Setup
	Hardware Configuration
	Software Configuration
	Additional Experimental Parameters
	Additional Experiments
	Running time analysis of Bonsai
	Impact of Parameters on Bonsai

	Additional Training Times
	Carbon Emissions

