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Abstract

Learning-to-communicate (LTC) in partially observable environments has gained in-
creasing attention in deep multi-agent reinforcement learning, where the control and
communication strategies are jointly learned. On the other hand, the impact of commu-
nication has been extensively studied in control theory, through the lens of information
structures (ISs). In this paper, we seek to formalize and better understand LTC by bridg-
ing these two lines of work. To this end, we formalize LTC in decentralized partially
observable Markov decision processes (Dec-POMDPs), and classify LTCs based on the
ISs. We first show that non-classical LTCs are computationally intractable, and thus
focus on quasi-classical (QC) LTCs. We then propose a series of conditions for QC
LTCs, violating which can cause computational hardness in general. Further, we de-
velop provable planning and learning algorithms for QC LTCs, and show that examples
of QC LTCs satisfying the above conditions can be solved without computationally in-
tractable oracles. Along the way, we also establish some relationship between (strictly)
QC IS and the condition of having strategy-independent CIB beliefs (SI-CIB), as well
as solving general Dec-POMDPs beyond those with SI-CIB, the only known condition
that enables planning/learning in Dec-POMDPs without computationally intractable or-
acles, which may be of independent interest.

1 Introduction

Learning-to-communicate (LTC) has emerged and gained traction in the area of (deep) multi-agent
reinforcement learning (MARL) (Foerster et al., 2016; Sukhbaatar et al., 2016; Jiang & Lu, 2018).
Unlike classical MARL, which aims to learn a control strategy that minimizes the expected accumu-
lated costs, LTC seeks to jointly minimize over both the control and the communication strategies
of all the agents, as a way to mitigate the challenges due to the agents’ partial observability of the
environment. Despite the promising empirical successes, theoretical understandings of LTC remain
largely underexplored.

On the other hand, in control theory, a rich literature has investigated the role of communication
in decentralized/networked control (Tatikonda & Mitter, 2004; Nair et al., 2007; Xiao et al., 2005;
Yüksel, 2013), inspiring us to examine LTCs from such a principled and rigorous perspective. Most
of these studies, however, focused on linear systems, and did not explore the computational or
sample complexity guarantees when the system knowledge is not (fully) known. A few recent
studies (Sudhakara et al., 2021; Kartik et al., 2022) started to explore the settings with general
discrete spaces, with special communication protocols and state transition dynamics.

More broadly, (the design of) communication strategy dictates the information structure (IS) of the
control system, which characterizes who knows what and when (Witsenhausen, 1971). IS and its
impact on the optimization tractability, especially for linear systems, have been extensively studied
in decentralized control, see (Yüksel & Başar, 2023) for comprehensive overviews. In this work,
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we seek a more principled understanding of LTCs through the lens of information structures, with a
focus on the computational and sample complexities of the problem.

Specifically, we formalize LTCs in the general framework of decentralized partially observable
Markov decision processes (Dec-POMDPs) (Bernstein et al., 2002), as in the empirical works (Foer-
ster et al., 2016; Sukhbaatar et al., 2016; Jiang & Lu, 2018). We detail our contributions as follows.

Contributions. (i) We formalize learning-to-communicate in Dec-POMDPs under the common-
information-based framework (Nayyar et al., 2013b;a; Liu & Zhang, 2023), allowing historical in-
formation sharing. (ii) We classify LTCs through the lens of information structure, according to the
ISs before additional information sharing. We then show that LTCs with non-classical (Mahajan
et al., 2012) baseline IS is computationally intractable. (iii) Given the hardness, we thus focus on
quasi-classical (QC) LTCs, and propose a series of conditions under which LTCs preserve the QC
IS after sharing, while violating which can cause computational hardness in general. (iv) We pro-
pose both planning and learning algorithms for QC LTCs, by reformulating them as Dec-POMDPs
with strategy-independent (SI) common-information-based beliefs (SI-CIB) (Nayyar et al., 2013a;
Liu & Zhang, 2023), with quasi-polynomial time and sample complexities. Along the way, we also
establish some relationship between (strictly) quasi-classical ((s)QC) ISs and the SI-CIB condition
in the framework of (Nayyar et al., 2013a), as well as solving general Dec-POMDPs beyond those
with SI-CIBs, the only known condition that enables planning/learning in Dec-POMDPs without
computationally intractable, which may be of independent interest.

2 Preliminaries

2.1 Learning-to-Communicate

For n > 1 agents, a Learning-to-Communicate problem can be depicted by a tuple L =
⟨H,S, {Ai,h}i∈[n],h∈[H], {Oi,h}i∈[n],h∈[H], {Mi,h}i∈[n],h∈[H],T,O, µ1, {Rh}h∈[H], {Kh}h∈[H]⟩,
where H denotes the length of each episode, and other components are introduced as follows.

Decision-making components We use S to denote the state space, and Ai,h to denote the control
action space of agent i at timestep h ∈ [H]. We denote by sh ∈ S the state and by ai,h the
control action of agent i at timestep h. We use ah := (a1,h, · · · , an,h) ∈ Ah :=

∏
i∈[n]Ai,h to

denote the joint control action for all the n agents at timestep h. We denote by T = {Th}h∈[H] the
collection of state transition kernels, where sh+1 ∼ Th(· | sh, ah) ∈ ∆(S) at timestep h. We use
µ1 ∈ ∆(S) to denote the initial state distribution. We denote by Oi,h the observation space and by
oi,h ∈ Oi,h the observation of agent i at timestep h. We use oh := (o1,h, o2,h, · · · , on,h) ∈ Oh :=
O1,h × O2,h × · · ·On,h to denote the joint observation of all the n agents at timestep h. We use
O = {Oh}h∈[H] to denote the collection of emission functions, where oh ∼ Oh(· | sh) ∈ ∆(Oh) at
timestep h and state sh ∈ S . Also, we denote by Oi,h(· | sh) the emission for agent i, the marginal
distribution of oi,h given Oh(· | sh) for all sh ∈ S. At each timestep h, agents will receive a common
reward rh = Rh(sh, ah), whereRh : S ×Ah → [0, 1] denotes the reward function.

Communication components In addition to reward-driven decision-making, agents also need to
decide and learn (what) to communicate with others. At timestep h, agents share part of their infor-
mation zh ∈ Zh with other agents, where Zh denotes the collection of all possible shared informa-
tion at timestep h. Here we consider a general setting where the shared information zh may con-
tain two parts, the baseline-sharing part zbh that comes from some existing sharing protocol among
agents, and the additional-sharing part zai,h for each agent i that comes from explicit communication
to be decided/learned, with the joint additional-sharing information zah := ∪ni=1z

a
i,h. This general

setting covers those considered in most empirical works on LTC (Foerster et al., 2016; Sukhbaatar
et al., 2016; Jiang & Lu, 2018), with a void baseline sharing part. We kept the baseline sharing
since our focus is on the finite-time and sample tractability of LTC, for which a certain amount of
information sharing is known to be necessary (Liu & Zhang, 2023). Note that zh = zbh ∪ zah and
zbh ∩ zah = ∅. The shared information is part of the historical observations and (both control and
communication) actions. We denote by Zb

h,Za
h , and Za

i,h the collections of all zbh, zah, and zai,h.
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At timestep h, the common information among all the agents is thus defined as the union of all the
shared information so far: ch− = ∪h−1

t=1 zt ∪ zbh, and ch+ = ∪ht=1zt, where ch− and ch+ denote the
(accumulated) common information before and after additional sharing, respectively. Hence, the
private information of agent i at time h before and after additional sharing is defined accordingly as
pi,h− = {oi,1, ai,1, · · · , ai,h−1, oi,h}\ch− , pi,h+ = {oi,1, ai,1 · · · , ai,h−1, oi,h}\ch+ , respectively.
We denote by ph− := (p1,h− , · · · , pn,h−) the joint private information before additional sharing, by
ph+ := (p1,h+ , · · · , pn,h+) the joint private information after additional sharing, at timestep h. We
then denote by τi,h− = pi,h− ∪ ch− , τi,h+ = pi,h+ ∪ ch+ the information available to agent i at
timestep h, before and after additional sharing, respectively, with τh− = ph−∪ch− , τh+ = ph+∪ch+

denoting the associated joint information. We use Ch− , Ch+ ,Pi,h− ,Pi,h+ ,Ph− ,
Ph+ , Ti,h− , Ti,h+ , Th− , Th+ to denote, respectively, the corresponding collections of all possible
ch− , ch+ , pi,h− , pi,h+ , ph− , ph+ , τi,h− , τi,h+ , τh− , τh+ .

We use mi,h to denote the communication action of agent i at timestep h, and it will determine what
information zai,h she will share, through the way specified later. We denote by Mi,h the space of
mi,h, and by mh := (m1,h, · · · ,mn,h) ∈Mh :=M1,h×· · ·Mn,h the joint communication action
of all the agents. Kh : Za

h → [0, 1] denotes the communication cost function, and κh = Kh(z
a
h)

denotes the incurred communication cost at timestep h, due to additional sharing.

System evolution The system’s evolution alternates between the communication and control steps.

Communication step: At each timestep h, each agent i observes oi,h and may share part of her pri-
vate information via baseline sharing, receives the baseline sharing of information from others, and
forms pi,h− and ch− . Then, each agent i chooses her communication action, which determines the
additional sharing of information, receives the additional-sharing of information from others, forms
pi,h+ and ch+ , and incurs some communication cost κh. Formally, the evolution of the information
is formalized as follows, which, unless otherwise noted, will be assumed throughout the paper.

Assumption 2.1 (Information evolution). For each h ∈ [H],

(a) (Baseline sharing). zbh+1 = χh+1(ph+ , ah, oh+1) for some fixed transformation χh+1;

(b) (Additional sharing). For each agent i ∈ [n], zai,h = ϕi,h(pi,h− ,mi,h) for some function ϕi,h,
given communication action mi,h, and mi,h ∈ zai,h; and the joint sharing zah := ∪i∈[n]z

a
i,h is

thus generated by zah = ϕh(ph− ,mh), for some function ϕh;

(c) (Private information before sharing). For each agent i ∈ [n], pi,(h+1)− =
ξi,h+1(pi,h+ , ai,h, oi,h+1) for some fixed transformation ξi,h+1, and the joint private informa-
tion thus evolves as p(h+1)− = ξh+1(ph+ , ah, oh+1) for some fixed transformation ξh+1;

(d) (Private information after sharing). For each agent i ∈ [n], pi,h+ = pi,h−\zai,h;

(e) (Full memory). For each agent i ∈ [n], τi,h− ⊆ τi,h+ ⊆ τi,(h+1)− , and oi,h ∈ τi,h− .

Note that as fixed transformations (e.g., χh and ξi,h above), they are not affected by the realized
values of the random variables, but dictate some pre-defined transformation of the input random
variables. See (Nayyar et al., 2013b;a) and §B in (Liu & Zhang, 2023) for common examples of
baseline sharing that admit such fixed transformations when there is no additional sharing, and
examples in §A on how they are extended in the LTC setting. It should not be confused with
some general function (e.g., ϕi,h above), which may depend on the realized values of the input
random variables. (a) and (c) on baseline sharing follow from those in (Nayyar et al., 2013a; Liu
& Zhang, 2023); (b) and (d) on additional sharing dictate how the communication action affects
the sharing based on private information. For example, a common choice of (Mi,h, ϕi,h) is that
Mi,h = {0, 1}|pi,h− | , for any pi,h− ∈ Pi,h− and mi,h ∈ Mi,h, ϕi,h(pi,h− ,mi,h) consists of the
k-th element (k ∈ [|pi,h− |]) of pi,h− if and only if the k-th element of mi,h is 1. As mi,h (depicting
what to share) will be known given zai,h (what has been shared), mi,h is thus also modeled as being
shared, i.e., mi,h ∈ zai,h. This is also consistent with the models in (Sudhakara et al., 2021; Kartik
et al., 2022) on control/communication joint optimization. (e) means that the agent has full memory
of the information she has in the past and at present. We emphasize that this is closely related,
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but different from the common notion of perfect recall (Kuhn, 1953), where the agent has to recall
all her own past actions. Condition (e), in contrast, relaxes the memorization of the actions, but
includes the instantaneous observation oi,h. This condition is satisfied by the models and examples
in (Mahajan et al., 2012; Nayyar et al., 2013b;a; Liu & Zhang, 2023). See also §A for more examples
that satisfy this assumption.

Decision-making step: After the communication, each agent i chooses her control action ai,h, re-
ceives a reward rh, and the joint action ah drives the state to sh+1 ∼ Th(· | sh, ah).

Strategies and solution concept At timestep h, each agent i has two strategies, a control strat-
egy and a communication strategy. We define a control strategy as gai,h : Ti,h+ → Ai,h and a
communication strategy as gmi,h : Ti,h− → Mi,h. We denote by gah = (ga1,h, · · · , gan,h) the joint
control strategy and by gmh = (gm1,h, · · · , gmn,h) the joint communication strategy. We denote by
Gai,h,Gmi,h,Gah,Gmh the corresponding spaces of gai,h, g

m
i,h, g

a
h, g

m
h , respectively.

The objective of the agents in the LTC problem is to maximize the expected accumulated sum of
the reward and the negative communication cost from timestep h = 1 to H: JL(g

a
1:H , gm1:H) :=

EL

[∑H
h=1(rh − κh)

∣∣∣∣ ga1:H , gm1:H

]
, where the expectation EL is taken over all the randomness in

the system evolution, given the strategies (ga1:H , gm1:H). With this objective, for any ϵ ≥ 0, we can
define the solution concept of ϵ-team optimum for L as follows.
Definition 2.2 (ϵ-team optimum). We call a joint strategy (ga1:H , gm1:H) an ϵ-team optimal strategy
of the LTC L if maxg̃a

1:H∈Ga
1:H ,g̃m

1:H∈Gm
1:H

JL(g̃
a
1:H , g̃m1:H)− JL(g

a
1:H , gm1:H) ≤ ϵ.

2.2 Information Structures of LTC

In decentralized stochastic control, the notion of information structure (Witsenhausen, 1975; Maha-
jan et al., 2012) captures who knows what and when as the system evolves. In LTC, as the additional
sharing via communication will also affect the IS and is not determined beforehand, when we dis-
cuss the IS of an LTC problem, we will refer to that of the problem with only baseline sharing. In
particular, an LTC L without additional sharing is essentially a Dec-POMDP (with potential base-
line information sharing), as defined in §E for completeness. We call a Dec-POMDP induced by L
as the problem without additional sharing, (as defined in F.3).

(Strictly) quasi-classical ISs are important subclasses of ISs, which were first introduced for decen-
tralized stochastic control (Witsenhausen, 1975; Mahajan & Yüksel, 2010; Yüksel & Başar, 2023)
(see the instantiation for Dec-POMDPs in §F.2). An IS that is not QC is non-classical (Mahajan
et al., 2012; Yüksel & Başar, 2023). We extend such a categorization to LTC problems as follows.
Definition 2.3 ((Strictly) quasi-classical LTC). We call an LTC L (strictly) quasi-classical if the
Dec-POMDP induced by L (cf. Definition F.3) is (strictly) quasi-classical. Namely, each agent in
the intrinsic model of DL knows the information (and the actions) of the agents who influence her,
either directly or indirectly.

Note that intrinsic model (defined in F.3) is oftentimes used for discussing information structure,
where each agent only acts once throughout the problem evolution, and the same agent in the state-
space model at different timesteps is now treated as different agents.

3 Structural Assumptions and Hardness
It is known that computing an (approximate) team-optimum in Dec-POMDPs, which are LTCs with-
out information-sharing, is NEXP-hard (Bernstein et al., 2002). The hardness cannot be fully cir-
cumvented even when agents are allowed to share information: even if agents share all the informa-
tion, the LTC problem becomes a Partially Observable Markov Decision Process (POMDP), which
is known to be PSPACE-hard (Papadimitriou & Tsitsiklis, 1987; Lusena et al., 2001). Hence,
additional assumptions are necessary to make LTCs computationally tractable. We introduce several
such assumptions and their justifications below, whose proofs can be found in §B.
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Recently, (Golowich et al., 2023) showed that observable POMDPs, a class of POMDPs with rela-
tively informative observations, allow quasi-polynomial time algorithms to solve. Such a condition
was then generalized to the joint emission function of Dec-POMDPs in (Liu & Zhang, 2023) . As
solving LTCs is at least as hard as solving the Dec-POMDPs considered in (Liu & Zhang, 2023) ,
we first also make such an observability assumption, to avoid computationally intractable oracles.
Assumption 3.1 (γ-observability (Golowich et al., 2023)). There exists a γ > 0 such that ∀h ∈ [H],
the emission Oh satisfies that ∀b1, b2 ∈ ∆(S),

∥∥O⊤
h b1 −O⊤

h b2
∥∥
1
≥ γ

∥∥b1 − b2
∥∥
1
.

However, Assumption 3.1 is not enough when it comes to LTC, if the baseline sharing IS is not
favorable, in particular, non-classical (Mahajan et al., 2012). The hardness persists even under a
few additional assumptions to be introduced later (as shown in Lemma B.3).

Hence, we will focus on the quasi-classical LTCs hereafter. Indeed, QC is also known to be critical
for efficiently solving continuous-space and linear decentralized control (Ho et al., 1972; Lamperski
& Lessard, 2015). However, in our discrete setting, even QC LTCs may not be computationally
tractable: the additional sharing may break the QC IS, and introduce computational hardness. We
formalize this intuition with the following discussions on when QC may break, and computational
hardness results to justify the associated assumptions.

Firstly, QC may break by additional sharing, if an agent influences others (only) via such sharing,
while others cannot fully access the information used for determining the communication action.
Indeed, the general communication-strategy space in §2.1 allows the dependence on agents’ private
information, making this case possible. We show that this causes computational hardness in general.

To avoid this hardness, we thus focus on communication strategies that only condition on the com-
mon information. Intuitively, this assumption is not unreasonable, as it means that which historical
information to share is determined by what has been shared (in the common information). Note that,
this does not lose the generality in the sense that the private information pi,h− can still be shared.
It only means that the communication action is not determined based on pi,h− , and the additional
sharing is still dictated by zai,h = ϕi,h(pi,h− ,mi,h) (cf. Assumption 2.1), depending on pi,h− .
Assumption 3.2 (Common-information-based communication strategy). The communication
strategies take common information as input, with the following form:

∀i ∈ [n], h ∈ [H], gmi,h : Ch− → Mi,h. (3.1)

Secondly, QC may break by additional sharing if it makes an agent influence others(’ available
information) by sharing her control actions, while these other agents were not influenced by the
agent in the baseline sharing, and thus did not have to access the available information that the agent
decided her control actions upon. We make the following two assumptions to avoid the related
pessimistic cases, followed by the hardness results when they are missing. The common idea behind
the hardness results in both Lemmas B.5 and B.6 exactly follows from this insight.

Specifically, in some special cases, the action of some agents may not influence the state transition.
Such actions are thus useless in terms of decision-making, when there is no information sharing.
However, if they were deemed non-influential, but shared via additional sharing, then QC may break
for the LTC problem. We thus make the following assumption, followed by a justification result.
Assumption 3.3 (Control-useless action is not used). For each i ∈ [n], h ∈ [H], if agent i’s ac-
tion ai,h does not influence the state sh+1, namely, ∀sh ∈ S, ah ∈ Ah, a

′
i,h ∈ Ai,h, a

′
i,h ̸=

ai,h,Th(· | sh, ah) = Th(· | sh, (a′i,h, a−i,h)). Then, ∀h′ > h, ai,h /∈ τh′− and ai,h /∈ τh′+ .

Note that other than the justification above based on computational hardness, Assumption 3.3 has
been implicitly made in the IS examples in the literature when there are uncontrolled state dynamics,
see e.g., (Nayyar et al., 2013a; Liu & Zhang, 2023). Moreover, we emphasize that for common cases
where actions do affect the state transition, this assumption becomes not necessary.

Other than not influencing state transition, an action may also be non-influential if the emission
functions of other agents are degenerate: they cannot sense the influence from previous agents’
actions. We thus make the following assumption on the emissions, followed by a justification result.



Reinforcement Learning Journal 2025

Assumption 3.4 (Other agents’ emissions are non-degenerate). For ∀h ∈ [H], i ∈ [n], O−i,h satis-
fies ∀b1, b2 ∈ ∆(S), b1 ̸= b2, O⊤

−i,hb1 ̸= O⊤
−i,hb2.

Finally, for both the baseline and additional sharing protocols, we follow the convention in the
series of works on partial history/information sharing (Nayyar et al., 2013b;a; Liu & Zhang, 2023;
Sudhakara et al., 2021; Kartik et al., 2022) that, if an agent shares, she will share the information
with all other agents. We make it more formally as follows.
Assumption 3.5. ∀i1, i2 ∈ [n], h1, h2 ∈ [H], i1 ̸= i2, h1 < h2, if σ(oi1,h1

) ⊆ σ(τi2,h−
2
), then

σ(oi1,h1
) ⊆ σ(ch−

2
), and if σ(ai1,h1

) ⊆ σ(τi2,h−
2
), then σ(ai1,h1

) ⊆ σ(ch−
2
); if σ(oi1,h1

) ⊆
σ(τi2,h+

2
), then σ(oi1,h1

) ⊆ σ(ch+
2
), and if σ(ai1,h1

) ⊆ σ(τi2,h+
2
), then σ(ai1,h1

) ⊆ σ(ch+
2
).

As will be shown later (cf. Theorem 4.1), LTCs under Assumptions 3.2, 3.3, 3.4, and 3.5 can
indeed preserve the QC/sQC information structure after additional sharing, making it possible for
the overall LTC to be computationally tractable, as we will show next. Some more examples that
satisfy these assumptions can also be found in §A.

4 Solving LTC Problems Provably

We now study how to solve LTC provably, via either planning (with model knowledge) or learning
(without model knowledge). Proofs of the results can be found in §C.

4.1 An Equivalent Dec-POMDP

Given any H-steps LTC L, we can reformulate it as an 2H-steps Dec-POMDP DL such that L and
DL are equivalent. The elements in the odd timestep 2h− 1 of DL is constructed from elements of
communication step (h−) in L, and the elements in the even timestep 2h of DL is constructed from
decision-making step (h+) in L. We defer the formal reformulation in §C.1. The Dec-POMDP DL
inherits the QC IS from L, formally stated as follows.
Theorem 4.1 (Preserving (s)QC). If L is (s)QC and satisfies Assumptions 3.2, 3.3, 3.4, and 3.5,
then the reformulated Dec-POMDP DL is also (s)QC.

4.2 Strict Expansion of DL

Despite being QC/sQC, it is not clear if one can solve DL without computationally intractable ora-
cles. Note that, to the best of our knowledge, the only known finite-time computational complexity
results for planning in such decentralized control models were in (Liu & Zhang, 2023), which were
established under the strategy independence assumption (Nayyar et al., 2013a) on the common-
information-based beliefs (Nayyar et al., 2013b;a). This SI assumption was shown critical for com-
putation (Liu & Zhang, 2023) – it eliminates the need to enumerate the past strategies in dynamic
programming, which would otherwise be prohibitively large. Thus, we need to connect QC/sQC to
SI-CIB for tractable computation.

Interestingly, under certain conditions, one can connect QC with SI-CIB for the reformulated Dec-
POMDP DL. As the first step, we will expand the QC DL by adding the actions of the agents who
influence the later agents in the intrinsic model of DL to the shared information. We denote the
strictly expanded Dec-POMDP as D†

L. We replace the˜notation in DL by the˘notation in D†
L. The

horizon, states, actions, observations, transitions, and reward functions remain the same, but the sets
of information p̆h, c̆h, τ̆h, p̆i,h, τ̆i,h are different: for any h ∈ [H̃], i ∈ [n]

c̆h = c̃h ∪ {ãj,t | j ∈ [n], t < h, σ(τ̃j,t) ⊆ σ(c̃h)}, p̆i,h = p̃i,h\{ãi,t | t < h, σ(τ̃i,t) ⊆ σ(c̃h)}.
(4.1)

It is not hard to verify that D†
L is sQC (as shown in Lemma C.3). Also, as shown below, a benefit

of obtaining an sQC D†
L is that, it is SI-CIB (as shown in Theorem C.5), making it possible to be

solved without computationally intractable oracles as in (Liu & Zhang, 2023). Furthermore, we can
get the solution of DL by solving D†

L (as shown in Theorem C.4).
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4.3 Refinement of D†
L

Despite of being SI, D†
L is still not eligible for applying the results in (Liu & Zhang, 2023): the

information evolution rules of D†
L break those in (Nayyar et al., 2013a; Liu & Zhang, 2023). To

address this issue, we propose to further refine the D†
L to obtain a Dec-POMDP D′

L, which satisfies
the information evolution rules. We replace the ˘ notation in D†

L by the¯notation in D′
L. The

elements in D′
L remain the same as those in D†

L, except that the private information at odd steps is
now refined as pi,2t−1 = pi,t−\c̆2t−1.

The new Dec-POMDP D′
L is not equivalent to D†

L in general, since it enlarges the strategy space
at the odd timesteps. However, if we define new strategy spaces in D′

L as Gi,2t−1 : C2t−1 →
Ai,2t−1,Gi,2t : T i,2t → Ai,2t for each t ∈ [H], i ∈ [n], and thus define Gh to be the associated joint
space, then solving D†

L is equivalent to finding a best-in-class team-optimal strategy of D′
L within

space G1:H , as shown below.

Theorem 4.2. Let D†
L be an sQC Dec-POMDP generated from L after reformulation and strict

expansion, and D′
L be the refinement of D†

L as above. Then, finding the optimal strategy in D†
L is

equivalent to finding the optimal strategy of D′
L in the space G1:H , and D′

L satisfies the information
evolution rule. Furthermore, D′

L has SI-CIB with respect to the strategy spaces G1:H , i.e., for any
h ∈ [H], sh ∈ S, ph ∈ Ph, ch ∈ Ch, g1:h−1, g

′
1:h−1 ∈ G1:h−1, it holds that

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | ch, g′1:h−1). (4.2)

4.4 Planning in QC LTC with Quasi-polynomial Time

Now we focus on how to solve the SI-CIB Dec-POMDP D′
L computationally tractably, which has

been studied in (Liu & Zhang, 2023). Given any such a Dec-POMDPD′
L, (Liu & Zhang, 2023) pro-

posed to construct an (ϵr, ϵz)-expected-approximate common information modelM through finite
memory (as defined in §C.6), when D′

L is γ-observable. ϵr and ϵz here denote the approximation
errors for rewards and transitions, respectively, for which we defer a detailed introduction to §C.6).

Hence, we can leverage the approaches in (Liu & Zhang, 2023) to find the optimal strategy g∗
1:H

by
finding an optimal prescriptions γ∗

1:H
under each possible ĉ1:H with backward induction over the

timesteps h = H, · · · , 1. Meanwhile, it is worth mentioning that at each step h ∈ [H], it requires
maximizing the Q-value functions (as defined in §C.6) as follows(

ĝ∗1,h(· | ĉh, ·), · · · , ĝ∗n,h(· | ĉh, ·)
)
← argmax

γh

Q∗,M
h (ĉh, γh). (4.3)

Note that solving Eq. (4.3) is NP-hard in general (Tsitsiklis & Athans, 1985). Hence, the guarantee
for the algorithms in (Liu & Zhang, 2023) also relies on the tractability of the one-step team-decision
problem (Tsitsiklis & Athans, 1985). Note that this assumption is minimal for the computational
tractability of finding a team-optimum in Dec-POMDPs/LTCs, since otherwise, even the H = 1 case
is intractable (Tsitsiklis & Athans, 1985). That said, the structural results so far still hold without
this assumption, and the hardness results in §3 still hold even with this assumption.
Assumption 4.3 (One-step tractability). Eq. (4.3) can be solved in polynomial time.

Assumption 4.3 is satisfied for several classes of Dec-POMDPs with information sharing (Liu &
Zhang, 2023), which could result from structures of either the decision-making components of the
model, or the information structures. We also include several such structural conditions in §G for
completeness. With this assumption, we can obtain a planning algorithm with quasi-polynomial
time complexity (cf. §C.7), and also shown in the Fig. 6 in §J.

4.5 LTC with Quasi-polynomial Time and Samples

Based on the previous results on planning, we are ready to solve the learning problem without
model knowledge with both time and sample complexity guarantees. Now, one can only sample
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from L, making it difficult to obtain an SI D′
L from L as before. Fortunately, the reformulation

step (§4.1) does not change the system dynamics, but only maps the information to different random
variables; the expansion step (§4.2) only requires agents to share more actions with each other,
without changing the input and output of the environment; the refinement step (§4.3) only recovers
the private information the agents had in the original L. Therefore, we can treat the samples from L
as the samples from D′

L. This way, we can utilize similar algorithmic ideas in (Liu & Zhang, 2023)
to develop the learning algorithm for LTC problems.

Specifically, we construct an (ϵr, ϵz)-expected approximate common information model that de-
pends on some given a strategy g1:H that generates the data for such a construction, which we
denote by M̃(g1:H), and thus denote (ϵr, ϵz) as (ϵr(M̃(g1:H)), ϵz(M̃(g1:H))). For such a model,
one could simulate and sample by running the strategy g1:H in the true model D′

L. The choice of
g1:H will be carefully specified to ensure M̃(g1:H) to be a good approximation of D′

L. Then one
can learn an empirical estimator M̂(g1:H) of M̃(g1:H) by sampling under g1:H and solving the
planning problem in M̂(g1:H). Meanwhile, the sample complexity analysis of such an algorithm
will depend on the notion of length for the approximate common information, denoted as L̂. We de-
fer the formal introduction for M̃(g1:H), L̂, and corresponding algorithm to §C. Finally, we present
our main results for learning in the LTC problem.

Theorem 4.4. Given any QC LTC problem L satisfying Assumptions 3.1, 3.2, 3.3, and 3.4,
we can construct an SI-CIB Dec-POMDP problem D′

L such that the following holds. Given
a strategy g1:H , M̃(g1:H) satisfying Assumption 4.3, and L̂, where each gh is a complete
strategy with gh

h−L̂:h
= Unif(A) for h ∈ [H], we define the statistical error for estimat-

ing M̃(g1:H) as ϵapx(g
1:H , L̂). Then, there exists an algorithm that can learn an ϵ-team-

optimal strategy for L with probability at least 1 − δ1, using a sample complexity N0 =
poly(maxh∈[H] |Ph|,maxh∈[H] |Ĉh|, H,maxh∈[H] |Ah|,maxh∈[H] |Oh|) log(1/δ1), where ϵ :=

poly(ϵapx, ϵr(M̃(g1:H)), ϵz(M̃(g1:H)). Specifically, if L has the baseline sharing protocols as in
§A, there exists an algorithm that learns an ϵ-team optimal strategy forLwith both quasi-polynomial
time and sample complexities.

5 Solving General QC Dec-POMDPs

In §4, we developed a pipeline for solving a special class of QC Dec-POMDPs generated by LTCs,
without computationally intractable oracles. In fact, the pipeline can be extended to solving general
QC Dec-POMDPs, which thus advances the results in (Liu & Zhang, 2023) that can only address
SI-CIB Dec-POMDPs, a result of independent interest. Without much confusion given the context,
we will adapt the notation of LTC to studying general Dec-POMDPs: we set h+ = h− = h and
void the additional sharing protocol. We extend the results to general QC Dec-POMDPs as follows.

Theorem 5.1. Consider a Dec-POMDP D that satisfies Assumptions 2.1 (e). If D is sQC and
satisfies Assumptions 3.3, 3.4, and 3.5, then it has SI-CIB. Meanwhile, if D has SI-CIB and perfect
recall, then it is sQC (up to null sets).

Perfect recall here (Kuhn, 1953) means that the agents will never forget their own past information
and actions (as formally defined in §D). Note that Assumption 2.1 (e) is similar but different from
perfect recall: it is implied by the latter with oi,h ∈ τi,h. Also, Assumptions 3.3, 3.4, and 3.5 were
made for LTCs, and here we meant to impose them for Dec-POMDPs with h+ = h− = h. Finally,
by sQC up to null sets, we meant that if agent (i1, h1) influences agent (i2, h2) in the intrinsic
model of the Dec-POMDP, then under any strategy g1:H , σ(τ i1,h1) ⊆ σ(τ i2,h2) except the null sets
generated by g1:H , where we add ¯ for all the notation in the Dec-POMDP. Given Theorem 5.1
and the results in §4, we illustrate the relationship between LTCs and Dec-POMDPs with different
assumptions and ISs in Fig. 1 in §H, which may be of independent interest.
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A Examples of QC LTC

In this section, we introduce 8 examples of QC LTC problems, and 4 of them are extended from
the information structures of the baseline sharing protocol considered in the literature (Nayyar et al.,
2013a; Liu & Zhang, 2023). It can be shown that LTC with any of these 8 examples as baseline
sharing is QC.

• Example 1: One-step delayed information sharing: At timestep h ∈ [H], agents will share all
the action-observation history in the private information until timestep h − 1. Namely, for any
h ∈ [H], i ∈ [n], ch− = c(h−1)+ ∪ {oh−1, ah−1} and pi,h− = {oi,h}.

• Example 2: State controlled by one controller with asymmetric delayed information shar-
ing: The state dynamics and reward are controlled by only one agent (without loss of gener-
ality, agent 1), i.e., Th(· | sh = Sh, a1,h = A1,h, a−1,h = A1,h) = Th(· | sh = Sh, a1,h =
A1,h, a−1,h = A′

−1,h), Rh(· | sh = Sh, a1,h = A1,h, a−1,h = A−1,h) = Rh(· | sh = Sh, a1,h =
A1,h, a−1,h = A′

−1,h) for all Sh ∈ S, A1,h ∈ A1,h, A−1,h ∈ A−1,h, A
′
−1,h ∈ A−1,h.

Agent 1 will share all of her information immediately, while others will share their informa-
tion with a delay of d ≥ 1 timesteps in the baseline sharing. Namely, for any h ∈ [H], i ̸= 1,
ch− = c(h−1)+ ∪ {a1,h−1, o1,h, o−1,h−d}, p1,h− = ∅, pi,h− = pi,(h−1)+ ∪ {oi,h}\{oi,h−d}.

• Example 3: Information sharing with one-directional-one-step-delay: For convenience, we
assume there are 2 agents, and this example can be readily generalized to the multi-agent case.
In this case, agent 1 will share the information immediately, while agent 2 will share information
with one-step delay. Namely, c1− = {o1,1}, p1,1− = ∅, p2,1− = {o2,1}; for any h ≥ 2, i ∈
[n], ch− = c(h−1)+ ∪ {o1,h, o2,h−1, ah}, p1,h− = ∅, p2,h− = {o2,h}.

• Example 4: Uncontrolled state process: The state transition does not depend on the action of
agents, i.e., Th(· | sh = Sh, ah = Ah) = Th(· | sh = Sh, ah = A′

h) for any sh ∈ S, a′h, ah ∈ Ah.
All agents will share their information with a delay of d ≥ 1. For any h ∈ [H], i ∈ [n], ch− =
c(h−1)+ ∪ {oh−d}, pi,h− = pi,(h−1)+ ∪ {oi,h}\{oi,h−d}.

• Example 5: One-step delayed observation sharing: At timestep h, h ∈ [H], each agent has
access to observations of all agents until timestep h− 1 and her present observation. Namely, for
any h ∈ [H], i ∈ [n], ch− = c(h−1)+ ∪ {oh−1} and pi,h− = {oi,h}.

• Example 6: One-step delayed observation and two-step delayed control sharing: At timestep
h, h ∈ [H], each agent will share the observations history until timestep h− 1 and actions history
until timestep h − 2 from the private information. Namely, for any h ∈ [H], i ∈ [n], ch− =
c(h−1)+ ∪ {oh−1, ah−2}, pi,h− = {oi,h, ai,h−1}.

• Example 7: State controlled by one controller with asymmetric delayed observation sharing:
The state dynamics and reward are controlled by only one agent (i.e., system dynamics are the
same as Example 2). Agent 1 will share all of her observations immediately, while others will
share their observations with a delay of d ≥ 1 timesteps in baseline sharing. Namely, for any h ∈
[H], i ̸= 1, ch− = c(h−1)+ ∪ {o1,h, o−1,h−d}, p1,h− = ∅, pi,h− = pi,(h−1)+ ∪ {oi,h}\{oi,h−d}.

• Example 8: State controlled by one controller with asymmetric delayed observation and
two-step delayed action sharing: The state dynamics and reward are controlled by only one
agent (i.e., system dynamics are the same as Example 2). At timestep h, h ∈ [H], agent 1 will
share all of her observations immediately and her actions history until timestep h−2, while others
will share their observations with a delay of d ≥ 1. Namely, for any h ∈ [H], i ̸= 1, ch− =
c(h−1)+ ∪ {o1,h, a1,h−2, o−1,h−d}, p1,h− = {a1,h−1}, pi,h− = pi,(h−1)+ ∪ {oi,h}\{oi,h−d}.
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In fact, the first 4 examples are all sQC LTC problems, while the other 4 examples are QC but not
sQC problems, as shown in the following lemma.

Lemma A.1. Given an LTC problem L. If the baseline sharing of L is one of the first 4 examples
above, then L is sQC. If the baseline sharing of L is one of the last 4 examples above, then L is QC
but not sQC.

Proof. Let DL denote the Dec-POMDP induced by L (cf. F.3). We prove this lemma case by case.
For convenience, we use ˙ in the notation for the elements in DL.

• Example 1: The information in DL evolves as ∀h ∈ [H], i ∈ [n], ċh = {ȯ1:h−1, ȧ1:h−1}
and ṗi,h = {ȯi,h}. Then, for any i1, i2 ∈ [n], h1, h2 ∈ [H], h1 < h2, τ̇i1,h1

=
{ȯ1:h1−1, ȧ1:h1−1, ȯi1,h1

} ⊆ ċh1+1 ⊆ ċh2
⊆ τ̇i2,h2

, and ȧi1,h1
⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
. There-

fore, we have σ(τ̇i1,h1) ⊆ σ(τ̇i2,h2), and thus L is sQC.

• Example 2: The information in DL evolves as ∀h ∈ [H], i ̸= 1, ċh =
{ȧ1,1:h−1, ȯ1,1:h−1, ȯ−1,1:h−d}, ṗ1,h = ∅, ṗi,h = {oi,h−d+1:h}. Then, for any i1, i2 ∈
[n], h1, h2 ∈ [H], h1 < h2. If i1 ̸= 1, then agent (i1, h1) will not influence agent (i2, h2).
If i1 = 1, then τ̇i1,h1

= {ȯ1,1:h1
, ȧ1,1:h1−1, ȯ−1,1:h1−d} ⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
, and

ȧi1,h1 ⊆ ċh1+1 ⊆ ċh2 ⊆ τ̇i2,h2 . Therefore, we have σ(τ̇i1,h1) ⊆ σ(τ̇i2,h2) if agent (i1, h1)
influences agent (i2, h2), and thus L is sQC.

• Example 3: The information in DL evolves as ∀h ∈ [H], ċh = {ȯ1:h−1, ȧ1:h−1, ȯ1,h} and ṗ1,h =
∅, ṗ2,h = {ȯi,h}. Then, for any i1, i2 ∈ [n], h1, h2 ∈ [H], h1 < h2, ȧi1,h1

⊆ ċh1+1 ⊆ ċh2
⊆

τ̇i2,h2
. If i1 = 1, then τ̇i1,h1

= {ȯ1:h1−1, ȧ1:h1−1, ȯ1,h1
} ⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
. If i1 = 2, then

τ̇i1,h1 = {ȯ1:h1 , ȧ1:h1−1} ⊆ ċh1+1 ⊆ ċh2 ⊆ τ̇i2,h2 . Therefore, we have σ(τ̇i1,h1) ⊆ σ(τ̇i2,h2),
and thus L is sQC.

• Example 4: Since in DL, for any i1, i2 ∈ [n], h1, h2 ∈ [H], agent (i1, h1) does not influence
agent (i2, h2), then L is sQC.

• Example 5: The information in DL evolves as ∀h ∈ [H], i ∈ [n], ċh = {ȯ1:h−1} and ṗi,h =
{ȯi,h}. Then, for any i1, i2 ∈ [n], h1, h2 ∈ [H], h1 < h2, τ̇i1,h1

= {ȯ1:h1−1, ȯi1,h1
} ⊆ ċh1+1 ⊆

ċh2 ⊆ τ̇i2,h2 . However, agent (1, 1) may influence agent (1, 2) but σ(ȧ1,1) ⊈ σ(τ̇1,2). Hence, L
is QC but not sQC.

• Example 6: The information in DL evolves as ∀h ∈ [H], i ∈ [n], ċh = {ȯ1:h−1, ȧ1:h−2}
and ṗi,h = {ȯi,h, ȧi,h−1}. Then, for any i1, i2 ∈ [n], h1, h2 ∈ [H], h1 < h2, τ̇i1,h1

=
{ȯ1:h1−1, ȧ1:h1−2, ȯi1,h1

, ȧi1,h1−1} ⊆ ċh1+1 ⊆ ċh2
⊆ τ̇i2,h2

, and ȧi1,h1
⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
.

However, agent (1, 1) may influence agent (2, 2) but σ(ȧ1,1) ⊈ σ(τ̇2,2). Hence, L is QC but not
sQC.

• Example 7: The information in DL evolves as ∀h ∈ [H], i ̸= 1, ċh =
{ȯ1,1:h−1, ȯ−1,1:h−d}, ṗ1,h = ∅, ṗi,h = {oi,h−d+1:h}. Then, for any i1, i2 ∈ [n], h1, h2 ∈
[H], h1 < h2. If i1 ̸= 1, then agent (i1, h1) will not influence agent (i2, h2). If i1 = 1, then
τ̇i1,h1

= {ȯ1,1:h1
, ȯ−1,1:h1−d} ⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
. Therefore, we have σ(τ̇i1,h1

) ⊆
σ(τ̇i2,h2) if agent (i1, h1) influences agent (i2, h2). However, agent (1, 1) may influence agent
(1, 2) but σ(ȧ1,1) ⊈ σ(τ̇1,2). Hence, L is QC but not sQC.

• Example 8: The information in DL evolves as ∀h ∈ [H], i ̸= 1, ċh =
{ȯ1,1:h−1, ȧ1,1:h−2, ȯ−1,1:h−d}, ṗ1,h = {ȧ1,h−1}, ṗi,h = {oi,h−d+1:h}. Then, for any i1, i2 ∈
[n], h1, h2 ∈ [H], h1 < h2. If i1 ̸= 1, then agent (i1, h1) will not influence agent (i2, h2). If
i1 = 1, then τ̇i1,h1

= {ȯ1,1:h1
, ȧ1,h1−1, ȯ−1,1:h1−d} ⊆ ċh1+1 ⊆ ċh2

⊆ τ̇i2,h2
. Therefore, we

have σ(τ̇i1,h1) ⊆ σ(τ̇i2,h2) if agent (i1, h1) influences agent (i2, h2). However, agent (1, 1) may
influence agent (2, 2) but σ(ȧ1,1) ⊈ σ(τ̇2,2). Hence, L is QC but not sQC.

This completes the proof.
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B Deferred Details of §3

Remark B.1. In the following proofs, for clarity, we use O,A,M,C, P,T to denote the realiza-
tions of random variables o, a,m, c, p, τ with the same subscripts.

As a preliminary, we first have the following lemma.

Lemma B.2. Given any QC LTC L, its induced Dec-POMDP DL and any i1, i2 ∈ [n], h1, h2 ∈
[H]. If agent (i1, h1) influences agent (i2, h2) in the intrinsic model of DL, then for the random
variables τi1,h−

1
, τi2,h−

2
in L, we have σ(τi1,h−

1
) ⊆ σ(τi2,h−

2
). Moreover, if L is sQC, then for

random variables ai1,h1
, τi2,h−

2
in L, we have σ(ai1,h1

) ⊆ σ(τi2,h−
2
).

Proof. We denote by τ̇i1,h1
, τ̇i2,h2

the information of agent (i1, h1), (i2, h2) in the problem DL.
From the definition of DL being QC, if agent (i1, h1) influences agent (i2, h2), then σ(τ̇i1,h1) ⊆
σ(τ̇i2,h2). Since for any h ∈ [H], i ∈ [n], τ̇i,h is the information of agent (i, h) without additional
sharing, then we know that τi,h−\τ̇i,h ⊆ ∪h−1

t=1 z
a
t , τi,h+\τ̇i,h ⊆ ∪ht=1z

a
t . Therefore, we know that

σ(τi1,h−
1
\τ̇i1,h1

) ⊆ σ(∪h−1
t=1 z

a
t ) ⊆ σ(ch−

1
) ⊆ σ(ch−

2
) ⊆ σ(τi2,h−

2
). Also, we know σ(τ̇i1,h1

) ⊆
σ(τ̇i2,h2

) ⊆ σ(τi2,h−
2
). Thus, we can conclude that σ(τi1,h−

1
) ⊆ σ(τi2,h−

2
). Moreover, if L is sQC,

then from the the definition of DL being sQC and agent (i1, h1) influences agent (i2, h2) in DL, it
holds that σ(ai1,h1

) ⊆ σ(τ̇i2,h2
) ⊆ σ(τi2,h−

2
).

B.1 Hardness results

Lemma B.3 (Non-classical LTCs are hard). For non-classical LTCs under Assumption 3.1, 3.2, 3.3,
3.4, and 4.3, finding an ϵ

H -team optimum is PSPACE-hard.

Lemma B.4 (QC LTCs with full-history-dependent communication strategies are hard). For QC
LTCs under Assumption 3.1, together with Assumptions 3.3, 3.4, and 4.3, computing a team-
optimum in the general space of (Ga1:H ,Gm1:H) with Gmi,h := {gmi,h : Ti,h− →Mi,h} is NP-hard.

Lemma B.5 (QC LTCs without Assumption 3.3 are hard). For QC LTCs under Assumptions 3.1,
3.2, 3.4 and 4.3, finding a team-optimum is still NP-hard.

Lemma B.6 (QC LTCs without Assumption 3.4 are hard). For QC LTCs under Assumption 3.1,
3.2, 3.3, and 4.3, finding an ϵ/H-team optimum is still PSPACE-hard.

B.2 Proof of Lemma B.3

Proof. We first have the following proposition on the hardness of solving POMDPs.

Proposition B.7. There exists an ϵ > 0, such that computing an ϵ-additive optimal strategy in
POMDPs is PSPACE-hard.

One can adapt the proof of (Lusena et al., 2001, Theorem 4.11), which proved the
PSPACE-hardness of computing an ϵ-relative optimal strategy in POMDPs, to obtain such a
result for an ϵ-additive one. In particular, any ϵ-additive optimal strategy in the POMDP constructed
in the proof of Theorem 4.11 therein is also an ϵ-relative optimal strategy.

Now we proceed with the proof of Lemma B.3 based on the Proposition B.7. Given any POMDP
P = (SP ,AP ,OP , {OP

h }h∈[HP ], {TP
h }h∈[HP ], {RP

h }h∈[HP ], µ
P
1 ), we can construct an LTC L as

follows:

• Number of agents: n = 3; length of episode: H = 2HP .

• Underlying state space: S = SP × [2]. For any s ∈ S, we can split s = (s1, s2), where
s1 ∈ SP , s2 ∈ [2]. Intial state distribution: ∀s ∈ S, µ1(s) = µP

1 (s
1)/2.

• Control action space: For any h ∈ [H],A1,h = AP ,A2,h = [2],A3,h = {∅}.
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• Transition functions: For any h ∈ [H − 1], sh, sh+1 ∈ S, ah ∈ Ah, if h = 2t − 1
with t ∈ [HP ],Th(sh+1 | sh, ah) = TP

t (s
1
h+1 | s1h, a1,h)1[s2h+1 = s2h]; if h = 2t with

t ∈ [HP − 1],Th(sh+1 | sh, ah) = 1[s1h+1 = s1h, s
2
h+1 = a2,h].

• Observation space: For any h ∈ [H], if h = 2t−1 with t ∈ [HP ],O1,h = OP
t ,O2,h = O3,h = S;

if h = 2t with t ∈ [HP ], O1,h = [2],O2,h = O3,h = S.

• Emission matrix: For any h ∈ [H], if h = 2t−1 with t ∈ [HP ],∀oh ∈ Oh, sh ∈ S,Oh(oh | sh) =
OP

h (o1,h | s1h)1[o2,h = o3,h = sh]; if h = 2t with t ∈ [HP ],∀oh ∈ Oh, sh ∈ S,Oh(oh | sh) =
1[o1,h = s1h, o2,h = o3,h = sh].

• The baseline sharing: null.

• The communication action space: For any h ∈ [H],M1,h = M2,h = {0, 1}2h−1,M3,h =
{0, 1}h. For any i ∈ [2], pi,h− ∈ Pi,h− , ϕi,h(pi,h− ,mi,h) = {oi,k | k ≤ h, (2k −
1)-th digit of pi,h− is 1 and oi,k ∈ pi,h−} ∪ {ai,k | k ≤ h, 2k-th digit of pi,h− is 1 and ai,k ∈
pi,h−} ∪ {mi,h}. For agent 3, p3,h− ∈ P3,h− , ϕ3,h(p3,h− ,m3,h) = {o3,k | k ≤
h, k-th digit of p3,h− is 1 and o3,k ∈ p3,h−} ∪ {m3,h}.

• Reward function: For any h ∈ [H], i ∈ [3], sh ∈ S, ah ∈ Ah, if h = 2t − 1 with
t ∈ [HP ],Rh(sh, ah) = RP

t (s
1
h, a1,h)/H; if h = 2t with t ∈ [HP ],Rh(sh, ah) = 1[a2,h = 1].

• Communication cost function: For any h ∈ [H], zah ∈ Za
h ,Kh(z

a
h) = 1[zah ̸= {mh}]. It means

that the communication cost is 1 unless there is no additional sharing.

• We restrict the communication strategy only to use ch as input. And for any t ∈ [H − 1], we
remove a3,t in τh for any h > t.

We first verify that such a construction satisfies Assumptions 3.1, 3.2, 3.3, 3.4, and 4.3.

• L satisfies Assumption 3.1, 3.4 because both agent 2 and agent 3 have individual γ-observability.
That is, for any b1, b2 ∈ ∆(S), i = 2, 3, we have

||O⊤
i,h(b1 − b2)||1 =

∑
oi,h∈Oh

|
∑
sh∈S

(b1(sh)− b2(sh))Oi,h(oi,h | sh)|

=
∑

oi,h∈Oh

|
∑
sh∈S

(b1(sh)− b2(sh))1[oi,h = sh]|

=
∑

oi,h∈Oh

|b1(oi,h)− b2(oi,h)| = ||b1 − b2||1.

• L satisfies Assumption 3.2 because we restrict communication strategy can only use ch as input.

• L satisfies Assumption 3.3 since only a3,t, t ∈ [H − 1] do not influence underlying state, and we
remove a3,t from τh for any h > t.

• L satisfies Assumption 4.3 since it satisfies the Turn-based structures condition in §G, with
ct(2t− 1) = 1, ct(2t) = 2 for any t ∈ [HP ].

In this LTC problem L, agent 2 will always choose ai,2t = 1 at even steps to obtain r2h = 1.
And there will be no additional sharing since any additional sharing at timestep h will incur a com-
munication cost κh = 1 > max

∑HP

t=1R2t−1(s2t−1, a2t−1), and thus it cannot achieve optimum.
Therefore, state s2h, h ∈ [H] are dummy states, and agents 2, 3 are dummy agents. Then, any
(ga,∗1:H , gm,∗

1:H ) being an ϵ
H -team optimal strategy of L will directly give an ϵ-team-optimal strategy of

P as {ga,∗1,2t−1}h∈[HP ]. From Proposition B.7, we can complete the proof.

B.3 Proof of Lemma B.4

Proof. We prove this result by showing a reduction from the Team Decision problem (Tsitsiklis &
Athans, 1985).
Definition B.8 (Team decision problem (TDP)). Given finite sets Y1, Y2, U1, U2, a rational proba-
bility mass function p : Y1 × Y2 → Q, and an integer cost function c : Y1 × Y2 × U1 × U2 → N,
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find decision rules γi : Yi → Ui, i = 1, 2 that minimize the expected cost

J(γ1, γ2) =
∑

y1∈Y1,y2∈Y2

c(y1, y2, γ1(y1), γ2(y2))p(y1, y2). (B.1)

We show the NP-hardness of solving LTC from the problem TDP. Given any TDP T D =
(Ỹ1, Ỹ2, Ũ1, Ũ2, c̃, p̃, J̃) with |Ũ1| = |Ũ2| = 2, let Ũ1 = {1, 2}, Ũ2 = {1, 2}, then we can con-
struct an H = 4 and 2-agent LTC L with two parameters n1 ∈ N, α1 ∈ R, α2 ∈ (0, 1) (to be
specified later) such that:

• Number of agents: n = 2; length of episode: H = 4.

• Underlying state: S = [2]4. For each s1 ∈ S, we can split s1 into 4 parts as s1 = (s11, s
2
1, s

3
1, s

4
1),

where s11, s
2
1, s

3
1, s

4
1 ∈ [2]. Similarly, s2, s3, s4 ∈ S can be split in the same way.

• Initial state distribution: ∀s1 ∈ S, µ1(s1) =
1
16 .

• Control action space: For the first 2 timesteps, ∀i = 1, 2,Ai,1 = Ai,2 = {∅}; for h = 3,A1,3 =
[2],A2,3 = {∅}; for h = 4,A2,4 = [2],A1,4 = {∅}.

• Transition: ∀s ∈ S, a1 ∈ A1, a2 ∈ A2, a3 ∈ A3,T1(s | s, a1) = T2(s | s, a2) = T3(s | s, a3) =
1. Note that under the transition dynamics above, s1 = s2 = s3 = s4 always holds, for any
s1 ∈ S.

• Observation space: O1,1 = O2,1 = O1,2 = O2,2 = [2]×S ,O1,3 = Ỹ1×S,O2,3 = Ỹ2×S,O1,4 =
O2,4 = S; For each i ∈ [2], h ∈ [2], oi,h ∈ Oi,h, we can split oi,h into 2 parts as oi,h = (o1i,h, o

2
i,h),

where o1i,h ∈ [2], o2i,h ∈ S. For each i ∈ [n], oi,3 ∈ Oi,3, similarly, we can split oi,3 into 2 parts as
oi,3 = (o1i,3, o

2
i,3), where o1i,3 ∈ Ỹi, o

2
i,3 ∈ S.

• The baseline sharing is null.

• Communication action space: For i ∈ [2], h ∈ {1, 2, 4},Mi,h = {0, 1}h,Mi,3 = {1, 2};
For each i ∈ [2], ϕi,h is defined as ∀h ∈ {1, 2, 4}, ϕi,h(pi,h− ,mi,h) = {oi,k | k ≤
h, k-th digit of mi,h is 1 and oi,k ∈ pi,h−}; For h = 3, if mi,3 = 1, then ϕi,h(pi,3− ,mi,3) =
{oi,1, oi,3,mi,3}; if mi,3 = 2, then ϕi,h(pi,h− ,mi,3) = {oi,2, oi,3,mi,3}.

• Emission matrix: For any i ∈ [2], h ∈ [2], sh ∈ S, oi,h ∈ Oi,h,Oh(oh | sh) = Π2
i=1Oi,h(oi,h | sh)

and Oi,h(oi,h | sh) is defined as:

Oi,h(oi,h | sh) =


1−α2

16 o1i,h = si+2h−2
h , o2i,h ̸= sh

1−α2

16 + α2 o1i,h = si+2h−2
h , o2i,h = sh

0 o.w.
.

For i ∈ [2], s3 ∈ S, o3 ∈ O3,O3(o3 | s3) = O1
3(o

1
3 | s3)O2

3(o
2
3 | s3),O2

3 = Π2
i=1O2

i,3(o
2
i,3 | s3) is

defined as:

O1
3(o

1
3 | s3) = p̃(o11,3, o

1
2,3)

O2
i,3(o

2
3 | s3) =

{
1−α2

16 o2i,3 ̸= s3
1−α2

16 + α2 o2i,3 = s3
.

And for i ∈ [2], s4 ∈ S, oi,4 ∈ Oi,4,O4(o4 | sh) = Π2
i=1Oi,4(oi,4 | s4) and Oi,4(oi,4 | s4) is

defined as:

Oi,4(oi,4 | s4) =

{
1−α2

16 oi,4 ̸= s4
1−α2

16 + α2 oi,4 = s4
.

Such an emission matrix means that for each h ∈ [2] and i ∈ [2], agent i will accurately observe
part of the underlying state si+2h−2

h and vaguely observe the whole underlying state sh. For h =
4, i ∈ [2], agent i can only vaguely observe the whole underlying state sh. Such design is to make
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the problem satisfying Assumption 3.1. The reward functions are defined as:

R1(s1, a1) = R2(s2, a2) = 0, ∀s1, s2 ∈ S, a1 ∈ A1, a2 ∈ A2;

R3(s3, a3) =

{
1 if a1,3 = s23 or a1,3 = s43
0 o.w.

;

R4(s4, a4) =

{
1 if a2,4 = s14 or a2,4 = s34
0 o.w.

.

The communication cost functions are defined as:

∀h ∈ {1, 2, 4}, zah ∈ Za
h ,Kh(z

a
h) = 1 if zah ̸= {m1,h,m2,h} else 0;

K3(z
a
3 ) =


c̃(o11,3, o

1
2,3, 1, 1)/α1 if {o1,1, o2,1} ⊆ za3 and {o1,2, o2,2} ∩ za3 = ∅

c̃(o11,3, o
1
2,3, 2, 1)/α1 if {o1,2, o2,1} ⊆ za3 and {o1,1, o2,2} ∩ za3 = ∅

c̃(o11,3, o
1
2,3, 1, 2)/α1 if {o1,1, o2,2} ⊆ za3 and {o1,2, o2,1} ∩ za3 = ∅

c̃(o11,3, o
1
2,3, 2, 2)/α1 if {o1,2, o2,2} ⊆ za3 and {o1,1, o2,1} ∩ za3 = ∅

.

Let α0 = maxy1,y2,u1,u2
c̃(y1, y2, u1, u2), and set α1 = 2α0. Under such a construction, L satisfies

the following conditions:

• Problem L is QC: For ∀i1, i2 ∈ [2], h1, h2 ∈ [4], agent (i1, h1) does not influence (i2, h2) because
agent (i1, h1) cannot influence the observation of agent (i2, h2), and baseline sharing is null.

• Problem L satisfies Assumptions 3.1 and 3.4: We prove this by showing that each agent i ∈ [2]
satisfies γ-observability. For ∀i ∈ [2], h ∈ [2], b1, b2 ∈ ∆(S), let

||O⊤
i,h(b1 − b2)||1 =

∑
o1i,h∈[2]

∑
o2i,h∈S

|
∑
sh∈S

(b1(sh)− b2(sh))Oi,h((o
1
i,h, o

2
i,h) | sh)|

≥
∑

o2i,h∈S

|
∑

o1i,h∈[2]

∑
sh∈S

(b1(sh)− b2(sh))Oi,h((o
1
i,h, o

2
i,h) | sh)|

=
∑

o2i,h∈S

|
∑
sh∈S

∑
o1i,h∈[2]

(b1(sh)− b2(sh))1[o
1
i,h = si+2h−2

h ](
1− α2

16
+ α21[o

2
i,h = sh])|

=
∑

o2i,h∈S

|
∑
sh∈S

(b1(sh)− b2(sh))(
1− α2

16
+ α21[o

2
i,h = sh])|

=
∑

o2i,h∈S

|1− α2

16
(
∑
sh∈S

(b1(sh)− b2(sh))) + α2(b1(o
2
i,h)− b2(o

2
i,h))|

=
∑

o2i,h∈S

α2|b1(o2i,h)− b2(o
2
i,h)| = α2||b1 − b2||1.

For ∀i ∈ [2], h = 3, 4, the proof is similar, by replacing o1i,h ∈ [2] with o1i,h ∈ Ỹi for h = 3 and
replacing the space o1i,h ∈ [2] with ∅ for h = 4.

• Problem L satisfies Assumption 3.3, because control actions a1:4 does not influence underlying
states and we restrict the communication and control strategies do not use them as input.

• Problem L satisfies Assumption 4.3 since it satisfies the Turn-based structures condition in §G,
with ct(1) = ct(2) = ct(3) = 1, ct(4) = 2.

We will show as follows that computing a team-optimal strategy can give us a team-optimal strategy
in T D. Given (ga,∗1:4 , g

m,∗
1:4 ) to be a team optimal strategy of L, firstly it will have no additional shar-

ing at timesteps h = 1, 2, 4, namely, for h = 1, 2, 4,P(zah ̸= {m1,h,m2,h} | ga,∗1:4 , g
m,∗
1:4 ) = 1,

since any additional sharing at timesteps h = 1, 2, 4 will incur a cost as high as 1, and can-
not achieve the optimum. Also, for the additional sharing at timestep h = 3, agent i will
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definitely share oi,3 and choose to share oi,1 or oi,2. Then ∀τ1,3+ ∈ T1,3+ , ga,∗1,3 (τ1,3+) ={
o2,1 if o2,1 ∈ τ1,3+

o2,2 if o2,2 ∈ τ1,3+
and ∀τ2,4+ ∈ T2,4+ , ga,∗2,4 (τ2,4+) =

{
o1,1 if o1,1 ∈ τ2,4+

o1,2 if o1,2 ∈ τ2,4+
, since such ac-

tion can achieve the optimal reward r3 = r4 = 1. Therefore, JL(g
a,∗
1:H , gm,∗

1:H ) = E[
∑4

h=1 rh −
κh | ga,∗1:H , gm,∗

1:H ] = 2 − E[κ3 | ga,∗1:H , gm,∗
1:H ] = 2 − E[c̃(o11,3, o12,3,m1,3,m2,3)], where m1,3 =

gm,∗
1,3 ({o1,1, o1,2, o1,3}). Since κ3 is independent of o1,1, o1,2, o

1
1,3, o1,1, o1,2, o11,3 are useless in-

formation for agent 1 to choose m1,3 and minimize the κ. Therefore, not using them in gm,∗
1,3

does not lose any optimality. Hence, we can consider the gm,∗
1,3 that only has o11,3 as input.

In the same way, we consider the gm,∗
2,3 that has o12,3 as input. Therefore, JL(g

a,∗
1:H , gm,∗

1:H ) =

2−
∑

o11,3,o
2
1,3,m1,3,m2,3

c̃(o11,3,o
1
2,3,m1,3,m2,3

α1
gm,∗
1,3 (m1,3 | o11,3)g

m,∗
2,3 (m2,3 | o12,3)p̃(o11,3, o12,3). Then we

can construct γ1 = gm,∗
1,3 , γ2 = gm,∗

2,3 , which minimize J̃ . Therefore, we can conclude that computing
a team optimal strategy of L can give us a team optimal strategy of T D. From the NP-hardness
of the TDP problem (Tsitsiklis & Athans, 1985), we complete our proof.

B.4 Proof of Lemma B.5

Proof of Lemma B.5. We prove this result by showing a reduction from the Team Decision problem.
Given any TDP T D = (Ỹ1, Ỹ2, Ũ1, Ũ2, c̃, p̃, J̃) with |Ũ1| = |Ũ2| = 2, let Ũ1 = {1, 2}, Ũ2 = {1, 2},
then we can construct an H = 5 and 2 agents LTC L as follows:

• Underlying state: S = [2]4. For each s1 ∈ S, we can split s1 into 4 parts as s1 = (s11, s
2
1, s

3
1, s

4
1),

where s11, s
2
1, s

3
1, s

4
1 ∈ [2]. Similarly, s2, s3, s4, s5 ∈ S can be split in the same way.

• Initial state distribution: ∀s1 ∈ S, µ1(s1) =
1
16 .

• Control action space: For ∀i = 1, 2, for h = 1, 2, Ai,1 = Ai,2 = {∅}; For h = 3, Ai,3 =
{(0, x), (x, 0) |x ∈ [2]}; We can write ai,3 = (a1i,3, a

2
i,3), a

1
i,3, a

2
i,3 ∈ {0, 1, 2}. For h = 4,A1,4 =

[2],A2,4 = {∅}; For h = 5,A2,5 = [2],A1,5 = {∅}.
• Transition: ∀s ∈ S, a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, a4 ∈ A4,T1(s | s, a1) = T2(s | s, a2) =
T3(s | s, a3) = T4(s | s, a4) = 1. Note that under the transition dynamics above, s1 = s2 = s3 =
s4 = s5 always holds, for any s1 ∈ S.

• Observation space: O1,1 = O2,1 = O1,2 = O2,2 = [2]×S ,O1,3 = Ỹ1×S,O2,3 = Ỹ2×S,O1,4 =
O2,4 = O1,5 = O2,5 = S; For each i ∈ [2], h ∈ [2], oi,h ∈ Oi,h, we can split oi,h into 2 parts as
oi,h = (o1i,h, o

2
i,h), where o1i,h ∈ [2], o2i,h ∈ S. For each i ∈ [2], oi,3 ∈ Oi,3, similarly, we can split

oi,3 into 2 parts as oi,3 = (o1i,3, o
2
i,3), where o1i,3 ∈ Ỹi, o

2
i,3 ∈ S.

• The baseline sharing is null.

• Communication action space: For i ∈ [2], h ∈ {1, 2, 3, 5},Mi,h = {0, 1}2h−1 and ϕi,h is
defined as ϕi,h(pi,h− ,mi,h) = {oi,k ∈ pi,h− | k ≤ h, (2k − 1)th digit of mi,h is 1} ∪ {ai,k ∈
pi,h− | k ≤ h − 1, 2kth digit of mi,h is 1} ∪ {mi,h}; For h = 4,Mi,4 = {1, 2}, ϕi,h(pi,h− , 1) =
{oi,3,mi,h}, ϕi,h(pi,h− , 2) = {oi,3, ai,3,mi,h}.

• Emission matrix: For any i ∈ [2], h ∈ [2], sh ∈ S, oi,h ∈ Oi,h,Oh(oh | sh) = Π2
i=1Oi,h(oi,h | sh)

and Oi,h(oi,h | sh) is defined as:

Oi,h(oi,h | sh) =


1−α2

16 o1i,h = si+2h−2
h , o2i,h ̸= sh

1−α2

16 + α2 o1i,h = si+2h−2
h , o2i,h = sh

0 o.w.
.
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For i ∈ [2], s3 ∈ S, o3 ∈ O3,O3(o3 | s3) = O1
3(o

1
3 | s3)O2

3(o
2
3 | s3),O2

3 = Π2
i=1O2

i,3(o
2
i,3 | s3) is

defined as:

O1
3(o

1
3 | s3) = p̃(o11,3, o

1
2,3)

O2
i,3(o

2
3 | s3) =

{
1−α2

16 o2i,3 ̸= s3
1−α2

16 + α2 o2i,3 = s3
.

And for i ∈ [2], h = 4 or 5, sh ∈ S, oi,h ∈ Oi,h,Oh(oh | sh) = Π2
i=1Oi,h(oi,h | sh) and

Oi,h(oi,h | sh) is defined as:

Oi,h(oi,h | sh) =

{
1−α2

16 oi,h ̸= sh
1−α2

16 + α2 oi,h = sh
.

• Reward functions:

R1(s1, a1) = R2(s2, a2) = R3(s3, a3) = 0, ∀s1, s2, s3 ∈ S, a1 ∈ A1, a2 ∈ A2, a3 ∈ A3;

R4(s4, a4) =

{
1 if a1,4 = s24 or a1,4 = s44
0 o.w.

;

R5(s5, a5) =

{
1 if a2,5 = s15 or a2,5 = s35
0 o.w.

.

• Communication cost functions:

∀h ∈ {1, 2, 3, 5}, zah ∈ Za
h ,Kh(z

a
h) = 1 if zah ̸= {m1,h,m2,h} else 0;

K4(z
a
4 ) =



c̃(o11,3, o
1
2,3, 1, 1)/α1 if a1,3, a2,3 ∈ za3 , a

1
1,3 = 0, a12,3 = 0

c̃(o11,3, o
1
2,3, 2, 1)/α1 if a1,3, a2,3 ∈ za3 , a

2
1,3 = 0, a12,3 = 0

c̃(o11,3, o
1
2,3, 1, 2)/α1 if a1,3, a2,3 ∈ za3 , a

1
1,3 = 0, a22,3 = 0

c̃(o11,3, o
1
2,3, 2, 2)/α1 if a1,3, a2,3 ∈ za3 , a

2
1,3 = 0, a22,3 = 0

1 o.w.

;

Let α0 = maxy1,y2,u1,u2
c̃(y1, y2, u1, u2), set α1 = 2α0, and restrict agents to decide their commu-

nication strategy only based on their common information. Under such a construction, L satisfies
the following conditions:

• Problem L is QC: For ∀i1, i2 ∈ [2], h1, h2 ∈ [4], agent (i1, h1) does not influence (i2, h2) because
agent (i1, h1) cannot influence the observation of agent (i2, h2), and the baseline sharing is null.
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• Problem L satisfies Assumptions 3.1 and 3.4: We prove this by showing that each agent i ∈ [2]
satisfies γ-observability. For ∀i ∈ [2], h ∈ [2], b1, b2 ∈ ∆(S), let

||O⊤
i,h(b1 − b2)||1 =

∑
o1i,h∈[2]

∑
o2i,h∈S

|
∑
sh∈S

(b1(sh)− b2(sh))Oi,h((o
1
i,h, o

2
i,h) | sh)|

≥
∑

o2i,h∈S

|
∑

o1i,h∈[2]

∑
sh∈S

(b1(sh)− b2(sh))Oi,h((o
1
i,h, o

2
i,h) | sh)|

=
∑

o2i,h∈S

|
∑
sh∈S

∑
o1i,h∈[2]

(b1(sh)− b2(sh))1[o
1
i,h = si+2h−2

h ](
1− α2

16
+ α21[o

2
i,h = sh])|

=
∑

o2i,h∈S

|
∑
sh∈S

(b1(sh)− b2(sh))(
1− α2

16
+ α21[o

2
i,h = sh])|

=
∑

o2i,h∈S

|1− α2

16
(
∑
sh∈S

(b1(sh)− b2(sh))) + α2(b1(o
2
i,h)− b2(o

2
i,h))|

=
∑

o2i,h∈S

α2|b1(o2i,h)− b2(o
2
i,h)| = α2||b1 − b2||1.

For ∀i ∈ [2], h = 3, 4, the proof is similar, by replacing o1i,h ∈ [2] with o1i,h ∈ Ỹi for h = 3 and
replacing the space o1i,h ∈ [2] with {∅} for h = 4, 5.

• Problem L satisfies Assumption 3.2 since we restrict agents to decide their communication strate-
gies only based on common information.

• Problem L satisfies Assumption 4.3 since it satisfies the Turn-based structures condition in §G,
with ct(1) = ct(2) = ct(3) = ct(4) = 1, ct(5) = 2.

Now, we show that any team optimal strategy of L will give us the decision rules γ1, γ2 solving T D.
Let (ga,∗1:5 , g

m,∗
1:5 ) be a team optimal strategy. First, ∀τi,4− ∈ Ti,4− , gm,∗

i,4 (τi,4−) = 2, otherwise it will
have communication cost κi,3 = 1, and can cannot achieve the team optimum. Define ga1:5, g

m
1:5 as

∀τi,3+ ∈ Ti,3+ , gai,3+(τi,3+) =

{
(o1i,1, 0) if ai,3 = ga,∗i,3+(τi,3+), a

1
i,3 = 0

(0, o1i,2) o.w.

∀τ1,4+ ∈ T1,4+ , ga1,4+(τ1,4+) =

{
a12,4 if a12,4 ̸= 0

a22,4 o.w.

gm1:5 = gm,∗
1:5 , ga1:2 = ga,∗1:2 , g

a
4:5 = ga,∗4:5 .

Then, JL(ga1:5, g
m
1:5) − JL(g

a,∗
1:5 , g

m,∗
1:5 ) ≥ 0. Hence (ga1:5, g

m
1:5) is a team optimal strategy. Then,

JL(g
a
1:5, g

m
1:5) = 2 − E[κ4 | ga1:5, gm1:5] = 2 − E[κ4 | ga3 ], where ga3 minimizes κ4. Note that τi,3+ =

{oi,1, oi,2, oi,3}. Since κ4 is independent of oi,1, oi,2, o2i,3, they are useless information for agent
i to choose ai,3 and minimize κ4. Therefore, only using o1i,3 to determine ai,3 does not lose any
optimality, and we can consider ga,∗1,3 that has only o1i,3 as input. In the same way, we consider ga,∗2,3

that has only o1i,3 as input. Then, we can construct γ1 = ga,∗1,3 , γ2 = ga,∗2,3 as decision rules that
minimize J̃ . Therefore, we can conclude that computing a team optimal strategy of L can give us a
team optimal strategy of T D. From the NP-hardness of the TDP problem (Tsitsiklis & Athans,
1985), we complete our proof.

B.5 Proof of Lemma B.6

Proof. We prove this by showing a reduction from the hardness of finding an ϵ-optimal strategy in
POMDP. Given any POMDP P = (SP ,AP ,OP , {OP

h }h∈[HP ], {TP
h }h∈[HP ], {RP

h }h∈[HP ], µ
P
1 ),

we can construct a LTC L with 2 agents as follows:
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• Number of agents: n = 2; length of episode: H = HP .

• S = SP ,∀s ∈ S.

• Initial state distribution: ∀s1 ∈ S, µ1(s1) = µP
1 (s1).

• Control action space: ∀h ∈ [H], A1,h = AP
h ,A2,h = {∅}.

• Transition: ∀sh, sh+1 ∈ S, ah ∈ Ah,Th(sh+1 | sh, ah) = TP
h (sh+1 | sh, a1,h).

• Observation space: ∀h ∈ [H],O1,h = OP ,O2,h = S.

• Emission matrix: For any h ∈ [H],∀oh ∈ Oh, sh ∈ S, Oh(oh | sh) = OP
h (o1,h | sh)1[o2,h = sh].

• Reward functions: For any h ∈ [H], i ∈ [2], sh ∈ S, ah ∈ Ah,Rh(sh, ah) = RP(sh, a1,h)/H .

• The baseline sharing: For any h ∈ [H], zbh = {o1,h, a1,h−1}.
• Communication action space: For any h ∈ [H],M1,h = {∅},M2,h = {0, 1}h. For any
p1,h− ∈ P1,h− , p2,h− ∈ P2,h− ,mh ∈ Mh, ϕ1,h(p1,h− ,m1,h) = {m1,h}, ϕ2,h(p2,h− ,m2,h) =
{o2,k | k-th digit of p2,h− is 1 and o2,k ∈ pi,h−} ∪ {m2,h}.

• Communication cost functions: For any h ∈ [H], zah ∈ Za
h ,Kh(z

a
h) = 1[zah ̸= {mh}]. It means

the communication cost is 1 unless there is no additional sharing.

• We restrict that the communication strategy can only use ch as input, and remove a2,t in τh for
any h > t.

We first verify that L is QC and satisfies Assumptions 3.1, 3.2, 3.3, and 4.3.

• L is QC: For any ∀h1 < h2 ≤ H , agent (2, h1) does not influence agent (1, h2) under baseline
sharing since agent (2, h1) does not influence s1h,∀h ∈ [H], then does not influence o1,h,∀h ∈
[H], and thus not influencing agent (1, h1). For any ∀h1 < h2 ≤ H , under baseline sharing,
p1,h− = ∅. Then σ(τ1,h−

1
) ⊆ σ(ch−

1
) ⊆ σ(ch−

2
) ⊆ σ(τ2,h−

2
).

• L satisfies Assumption 3.1: For any h ∈ [H], b1, b2 ∈ ∆(S), Oh satisfies

||O⊤
h (b1 − b2)||1 =

∑
o1,h∈OP

∑
o2,h∈S

|
∑
sh∈S

(b1(sh)− b2(sh))Oh((o1,h, o2,h) | sh)|

≥
∑

o2,h∈S
|

∑
o1,h∈OP

∑
sh∈S

(b1(sh)− b2(sh))O1,h(o1,h | sh)O2,h(o2,h | sh)|

=
∑

o2,h∈S
|
∑
sh∈S

(b1(sh)− b2(sh))O2,h(o2,h | sh)
∑

o1,h∈OP

O1,h(o1,h | sh)|

=
∑

o2,h∈S
|
∑
sh∈S

(b1(sh)− b2(sh))1[o2,h = sh]

=
∑

o2,h∈S
|b1(o2,h)− b2(o2,h)| = ||b1 − b2||1.

• L satisfies Assumption 3.2: For any h ∈ [H], we restrict that each agent decides mi,h based on
ch.

• L satisfies Assumption 3.3: For any h ∈ [H], a2,h does not influence sh+1, and it is removed from
τ .

• L satisfies Assumption 4.3 since it satisfies the Turn-based structures condition in §G, with
ct(h) = 1 for any h ∈ [H].

Agent 2 will share nothing through additional sharing, otherwise it will suffer the communication
cost κh = 1 > max

∑H
h=1Rh(sh, ah) and cannot achieve optimum. Hence, Agent 2 is the dummy

player. Therefore, any (ga,∗1:H , gm,∗
1:H ) be an ϵ/H-team optimal strategy of L will directly gives the

ϵ-optimal of P as {ga,∗1,1:H}h∈[H]. From Proposition B.7, we can complete our proof.
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C Deferred Details of §4

C.1 Reformulation of L

Given an LTC problem L, we can reformulate it as a Dec-POMDP DL defined as
⟨H̃, S̃, {Ãi,h}i∈[n],h∈[H̃], {Õi,h}i∈[n],h∈[H̃], T̃, Õ, µ̃1, {R̃h}h∈[H̃]⟩ as follows

H̃ = 2H, S̃ = S, s̃2h−1 = s̃2h = sh, Ãi,2h−1 =Mi,h, Ãi,2h = Ai,h, ãi,2h−1 = mi,h,

ãi,2h = ai,h, Õi,2h−1 = Oi,h, Õi,2h = {∅}, õi,2h−1 = oi,h, õi,2h = ∅,

T̃2h−1(s̃2h | s̃2h−1, ã2h−1) = 1[s̃2h = s̃2h−1], T̃2h(s̃2h+1 | s̃2h, ã2h) = Th(s̃2h+1 | s̃2h, ã2h),

µ̃1 = µ1, R̃2h−1 = −Kh, R̃2h = Rh, p̃i,2h−1 = pi,h− , p̃i,2h = pi,h+ , c̃2h−1 = ch− ,

c̃2h = ch+ , z̃2h−1 = zbh, z̃2h = zah, τ̃i,2h−1 = ch− , τ̃i,2h = τi,h+ ,
(C.1)

Note that, at the odd timestep 2h− 1, we set τ̃i,2h−1 = ch− under Assumption 3.2, i.e., in DL, each
agent only uses the common information so far for decision-making at timestep 2h−1. Correspond-
ingly, for any h ∈ [H̃], i ∈ [n], we denote by g̃i,h, g̃h the (joint) strategy and by G̃i,h, G̃h the (joint)

strategy spaces. Similarly, the objective of DL is defined as JDL(g̃1:H̃) = EDL [
∑H̃

h=1 r̃h | g̃1:H̃ ].
Essentially, this reformulation splits the H-step decision-making and communication procedure into
a 2H-step one. A similar splitting of the timesteps was also used in Sudhakara et al. (2021); Kartik
et al. (2022). In comparison, we consider a more general setting, where the state is not decoupled,
and agents are allowed to share the observations and actions at the previous timesteps, due to the
generality of our LTC formulation. The equivalence between L and DL is more formally stated as
follows.

Proposition C.1 (Equivalence between L and DL). Let DL be the reformulated Dec-POMDP from
L, then the solutions of the two problems are equivalent, in the sense that ∀gm1:H ∈ Gm1:H , ga1:H ∈
Ga1:H , i ∈ [n], let g̃1:H̃ = (gm1 , ga1 , · · · , gmH , gaH), then JDL(g̃1:H̃) = JL(g

m
1:H , ga1:H). Also, ∀g̃1:H̃ ∈

G̃1:H̃ , i ∈ [n], let gm1:H = (g̃1, g̃3, · · · , g̃H̃−1), g
a
1:H = (g̃2, g̃4, · · · , g̃H̃), then JL(g

m
1:H , ga1:H) =

JDL(g̃1:H̃).

C.2 Proof of Theorem 4.1

Proof. We prove the following lemma first.

Lemma C.2. Let theL be the QC LTC problem satisfying Assumptions 3.3, 3.4, and 3.5, andDL be
the reformulated Dec-POMDP. Then for i1, i2 ∈ [n], t1, t2 ∈ [H], if agent (i1, 2t1) influences agent
(i2, 2t2) in DL, then σ(τi1,t−1

) ⊆ σ(τi2,t−2
) in L. Moreover, if L is sQC, then σ(ai1,t1) ⊆ σ(τi2,t−2

).

Proof. We prove this by cases.

• If ai1,t1 influences the underlying state st1+1, then from Assumption 3.4, agent (i1, t1) influences
o−i1,t1+1, so there must exist i3 ̸= i1, such that agent (i1, t1) influences oi3,t1+1. From part (e) of
Assumption 2.1 and t1 < t2, we know oi3,t1+1 ∈ τi3,(t1+1)− ⊆ τi3,t−2

even under no additional

sharing, and then we get agent (i1, t1) influences agent (i3, t2) in DL (the Dec-POMDP induced
by L). From Lemma B.2, it holds that σ(τi1,t−1 ) ⊆ σ(τi3,t−2

). From Assumption 3.5 and i3 ̸= i1,
we know σ(τi1,t−1

) ⊆ σ(ct−2
) ⊆ σ(τi2,t−2

). (Similarly, if L is sQC, we have σ(ai1,t1) ⊆ σ(τi3,t−2
)

from Assumption 3.5, and σ(ai1,t1) ⊆ σ(ct−2
) ⊆ σ(τi2,t−2

) from Assumption 3.5).

• If ai1,t1 does not influence st1+1, from Assumption 3.3, ∀t > t1, ai1,t1 /∈ τt− and ai1,t1 /∈ τt+ .
Then in DL, agent (i1, 2t1) does not influence τ̃i,2t1+1,∀i ∈ [n], hence it does not influence
ãi,2t1+1,∀i ∈ [n]. Then it does not influence z̃2t1+1, and further does not influence τ̃i,2t1+2 and
ãi,2t1+2,∀i ∈ [n]. From induction, we know agent (i1, 2t1) does not influence agent (i2, 2t2),
which leads to a contradiction.
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This completes the proof of this lemma.

We now go back to prove the theorem. Firstly, we prove the QC cases. To show DL is QC, we need
to prove ∀i1, i2 ∈ [n], h1, h2 ∈ [H̃], if agent (i1, h1) influences agent (i2, h2) with h1 < h2, then
σ(τ̃i1,h1

) ⊆ σ(τ̃i2,h2
), where we use τ̃i,h to denote the available information of agent (i, h) in DL.

We prove this by considering the following cases:

1. If h1 = 2t1 − 1 with t1 ∈ [H], by the construction of DL and Assumption 3.2, we have τ̃i1,h1
=

c̃h1
= ct−1

⊆ τ̃i2,h2
, since common information accumulates over time by definition, and will

always be included in the available information τ̃i,h in later steps. Thus, σ(τ̃i1,h1
) ⊆ σ(τ̃i2,h2

).

2. If h1 = 2t1, h2 = 2t2 with t1, t2 ∈ [H], then τ̃i1,h1 = τi1,t+1
= τi1,t−1

∪ zat1 by definition.
Consider agent (i1, t1) and (i2, t2) in L. From Lemma C.2, we know σ(τi1,t−1

) ⊆ σ(τi2,t−2
) ⊆

σ(τi2,t+2
) . Also, zat1 ⊆ ct+1

⊆ ct+2
⊆ τi2,t+2

= τ̃i2,h2
by the accumulation of ch+ over time. Thus,

we have σ(τ̃i1,h1
) ⊆ σ(τ̃i2,h2

).

3. If h1 = 2t1, h2 = 2t2 − 1, t1, t2 ∈ [H], then τ̃i2,h2
= c̃h2

, then ∃i3 ∈ [n], i3 ̸= i1, τ̃i2,h2
⊆

c̃h2+1 ⊆ τ̃i3,h2+1. From agent (i1, h1) influences (i2, h2), we know agent (i1, h1) also influences
agent (i3, h2 + 1) in DL, hence agent (i1, t1) influences agent (i2, t2) in L. Since L is QC,
we know σ(τi1,t−1

) ⊆ σ(τi3,t−2
). From Assumption 3.5 and i1 ̸= i3, we know σ(τ̃i1,h1

) =

σ(τi1,t−1
) ⊆ σ(ct−2

) = σ(τ̃i2,h2
).

Second, we prove the sQC case. In DL, for ∀i1, i2 ∈ [n], h1, h2 ∈ [H̃], agent (i1, h1) influences
(i2, h2). From the proof above, we know σ(τ̃i1,h1

) ⊆ σ(τ̃i2,h2
). We only need to prove σ(ãi1,h1

) ⊆
σ(τ̃i2,h2

).

1. If h1 = 2t1 − 1 with t1 ∈ [H], then we know ãi1,h1
= mi1,t. From Assumption 2.1, we know

that mi1,t ⊆ zai1,t. Then we get σ(ãi1,h1
) ⊆ σ(z̃i1,h1+1) ⊆ σ(c̃h2

) ⊆ σ(τ̃i2,h2
).

2. If h1 = 2t1, h2 = 2t2 with t1, t2 ∈ [H], then from Lemma C.2, we know that σ(ãi1,h1) ⊆
σ(τ̃i2,h2).

3. If h1 = 2t1, h2 = 2t2 − 1, t1, t2 ∈ [H], then τ̃i2,h2
= c̃h2

, then ∃i3 ∈ [n], i3 ̸= i1, τ̃i2,h2
⊆

c̃h2+1 ⊆ τ̃i3,h2+1. From agent (i1, h1) influences (i2, h2), we know agent (i1, h1) also influences
agent (i3, h2 + 1) in DL, hence agent (i1, t1) influences agent (i2, t2) in L. Since L is sQC,
we know σ(ai1,t−1

) ⊆ σ(τi3,t−2
). From Assumption 3.5 and i1 ̸= i3, we know σ(ãi1,h1) =

σ(ai1,t1) ⊆ σ(ct−2
) = σ(τ̃i2,h2

).

This completes the proof.

Lemma C.3. If DL is QC, then D†
L is sQC.

C.3 Proof of Lemma C.3

Proof. From the construction of D†
L, since D†

L requires agent to share more than DL, it is easy to
observe the fact that ∀h ∈ [H̃], i ∈ [n], c̃h ⊆ c̆h, τ̃i,h ⊆ τ̆i,h.
Let i1, i2 ∈ [n], h1, h2 ∈ [H̃], h1 < h2, and agent (i1, h1) influences agent (i2, h2) in D†

L.

• If h1 = 2t1 − 1 with t1 ∈ [H], then h1 is communication step. So τ̆i1,h1
= c̆h1

⊆ c̆h2
, and

ãi1,h1 = mi1,t1 ⊆ c̆h1+1 ⊆ c̆h2 from Assumption 2.1. Therefore, we have σ(τ̆i1,h1)∪σ(ăi1,h1) ⊆
σ(c̆h1) ⊆ σ(τ̆i2,h2).

• If h1 = 2t1, h2 = 2t2 − 1 with t1, t2 ∈ [H], then τ̆i2,h2
= c̆h2

. If agent (i1, h1) does not
influence (i2, h2) inDL, but agent (i1, h1) influences (i2, h2) inD†

L, then it means ăi1,h1
∈ τ̆i2,h2

but ãi1,h1
/∈ τ̃i2,h2

. This can only happen when σ(τ̃i1,h1
) ⊆ σ(c̃h2

) ⊆ σ(c̆h2
), and ãi1,h1

⊆
c̆h2 . Also, from the construction of D†

L, we know that τ̆i1,h1\τ̃i1,h1 ⊆ c̆h1 . Therefore, we have
σ(τ̆i1,h1) ∪ σ(ãi1,h1) ⊆ σ(c̆h2) ⊆ σ(τ̆i2,h2).
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If agent (i1, h1) influences (i2, h2) inDL, then from QC ofDL, we know that σ(τ̃i1,h1
) ⊆ σ(c̃h2

),
then from the construction of D†

L, we have ãi1,h1
∈ c̆h2

. Still, we have τ̆i1,h1
\τ̃i1,h1

⊆ c̆h1
.

Therefore, σ(τ̆i1,h1) ∪ σ(ãi1,h1) ⊆ σ(τ̆i2,h2).

• If h1 = 2t1, h2 = 2t2 with t1, t2 ∈ [H]. If agent (i1, h1) does not influence (i2, h2) in DL,
then it means sharing ãi1,h1

leads to the influence. Then, σ(τ̃i1,h1
) ⊆ σ(c̃h2

) ⊆ σ(c̆h2
), and

ãi1,h1
⊆ c̆h2

. We can conclude σ(τ̆i1,h1
) ∪ σ(ãi1,h1

) ⊆ σ(c̆h2
) ⊆ σ(τ̆i2,h2

).

Now we consider the case that agent (i1, h1) influences (i2, h2) in DL. If i1 ̸= i2, then we have
τ̃i1,h1

⊆ τ̃i2,h2
. From Assumption 3.5, and i1 ̸= i2, we know τ̃i1,h1

⊆ c̃h2
. Then, from the

construction of D†
L, we have ãi1,h1

⊆ c̆h2
. Finally, we have σ(τ̆i1,h1

) ∪ σ(ãi1,h1
) ⊆ σ(τ̆i2,h2

).

If i1 = i2, then from the perfect recall of L, we know that τ̃i1,h1
∪ ãi1,h1

⊆ τ̃i2,h2
. From

τ̆i1,h1
\τ̃i1,h1

⊆ c̆h1
, we conclude σ(τ̆i1,h1

) ∪ σ(ãi1,h1
) ⊆ σ(τ̆i2,h2

).

This completes the proof.

Theorem C.4. Let DL be the QC Dec-POMDP reformulated from a QC LTC L, and D†
L be the

sQC expansion of DL. Then, for any ϵ-team-optimal strategy ğ∗
1:H̆

of D†
L, there exists a function φ

such that g̃∗
1:H̃

= φ(ğ∗
1:H̆

,DL) is an ϵ-team-optimal strategy of DL, with JDL(g̃
∗
1:H̃

) = JD†
L
(ğ∗

1:H̆
).

C.4 Proof of Theorem C.4

Proof. We firstly prove that given any strategy ğ1:H and g̃1:H = φ(ğ1:H ,DL), JD†
L
(ğ1:H) =

JDL(g̃1:H), where the function φ is shown in Algorithm 3. Since D†
L only changes what to

share, τ̃h = τ̆h always hold. Then, for any i ∈ [n], h ∈ [H̃], τ̃h ∈ T̃h, let τ̃i,h, τ̆i,h be the
corresponding information of agent i in DL,D†

L, respectively. From Algorithm 3, we know that
g̃i,h(τ̃i,h) = ği,h(τ̆i,h). This is because, for any ãj,t ∈ τ̆i,h\τ̃i,h, j ∈ [n], t < h, there must holds
that σ(τ̃j,t) ⊆ σ(c̃i,h). Therefore, we can always recover ãj,t from τ̆i,h and g̃i,h. As a result, we can
have JD†

L
(ğ1:H) = JDL(g̃1:H).

Since D†
L has larger strategy spaces, i.e., maxg̃

1:H̃
∈G̃

1:H̃
JDL(g̃1:H̃) ≤ maxğ1:H̆∈Ğ1:H̆

JD†
L
(ğ1:H̆).

Let ğ∗
1:H̆

be the strategy satisfying JD†
L
(ğ∗

1:H̆
) ≥ maxğ1:H̆∈Ğ1:H̆

JD†
L
(ğ1:H̆) − ϵ. Then, we have

JDL(φ(ğ
∗
1:H̆

,DL)) = JD†
L
(ğ∗

1:H̆
) ≥ maxğ1:H̆∈Ğ1:H̆

JD†
L
(ğ1:H̆)−ϵ ≥ maxg̃

1:H̃
∈G̃

1:H̃
JDL(g̃1:H̃)−ϵ.

Then φ(ğ∗
1:H̆

,DL) is an ϵ-team optimal strategy of DL.

Theorem C.5. Let D†
L be an sQC Dec-POMDP generated from L after reformulation and strict

expansion, then D†
L has strategy-independent common-information-based beliefs (Nayyar et al.,

2013a; Liu & Zhang, 2023). More formally, for any h ∈ [H̆], any two different joint strategies
ğ1:h−1 and ğ′1:h−1, and any common information c̆h that can be reached under strategy ğ1:h−1, for
any joint private information p̆h ∈ P̆h and state s̆h ∈ S̆,

PD†
L

h (s̆h, p̆h | c̆h, ğ1:h−1) = PD†
L

h (s̆h, p̆h | c̆h, ğ′1:h−1). (C.2)

C.5 Proof of Theorem C.5

Proof. To prove that D†
L has SI-CIB, it is sufficient to prove that for any h = 2, · · · , H̆ , fix

any h1 ∈ [h − 1], i1 ∈ [n], and for any ğ1:h−1 ∈ Ğ1:h−1, ğ
′
i1,h1

∈ Ği1,h1
, let ğ′h1

:=
(ğ1,h1

, · · · , ği1,h1
, · · · , ğn,h1

) and ğ′1:h−1 := (ğ1, · · · , ğ′h1
, · · · , ğh−1), the following holds

P(s̆h, p̆h | c̆h, ğ1:h−1) = P(s̆h, p̆h | c̆h, ğ′1:h−1). (C.3)

We prove this case-by-case as follows:

1. If there exists some i3 ̸= i1 such that σ(τ̆i1,h1
) ⊆ σ(τ̆i3,h), σ(ăi1,h1

) ⊆ σ(τ̆i3,h), then from
Assumption 3.5, we know that σ(τ̆i1,h1

) ⊆ σ(c̆h), σ(ăi1,h1
) ⊆ σ(c̆h). Therefore, there exist
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deterministic functions α1, α2 such that τ̆i1,h1
= α1(c̆h), ăi1,h1

= α2(c̆h), and further it holds
that

P(s̆h, p̆h | c̆h, ğ1:h−1) = P(s̆h, p̆h |α1(c̆h), α2(c̆h), c̆h, ğ1:h−1)

= P(s̆h, p̆h | τ̆i1,h1 , ăi1,h1 , c̆h, ğ1:h−1) = P(s̆h, p̆h | τ̆i1,h1 , ăi1,h1 , c̆h, ğ
′
1:h−1).

The last equality is due to the fact that the input and output of ği1,h1
are τ̆ ′i1,h1

and ă′i1,h1
, respec-

tively.

2. If there does not exist any i2 ̸= i1 such that σ(τ̆i1,h1
) ⊈ σ(τ̆i2,h) or σ(ăi1,h1

) ⊈ σ(τ̆i2,h), then
agent (i1, h1) does not influence agent (i2, h) for any i2 ̸= i1 in D†

L because D†
L is sQC, and

h1 = 2k1 with k1 ∈ [n]. (If h1 is odd, then τ̆i1,h1
= c̆h1

⊆ c̆h ⊆ τ̆i2,h, and ăi1,h1
= m

i1,
h1+1

2
∈

zah1+1
2

= z̆h1+1 ⊆ c̆h based on Assumption 2.1(b), which leads to a contradiction.) Now, we

claim that agent (i1, h1) does not influence state s̆h, and does not influences τ̆i1,h, and prove this
case-by-case as below:

(a) If h = 2k−1, k ∈ [n], then p̆h = ∅. If agent (i1, h1) influences s̆h inD†
L, then agent (i1, h1)

influences s̃h in DL (because strict expansion does not change system dynamics). From
Assumption 3.4, we know that she also influences õ−i1,h. Then there exists i3 ̸= i1 such
that agent (i1, h1) influences õi3,h inDL. From Assumption 2.1 (e), it holds õi3,h ∈ τ̃i3,h+1.
Therefore, agent (i1, h1) influences agent (i3, h+1) in the problem DL. From Lemma C.2,
we know σ(τi1,k−

1
) ⊆ σ(τi3,k−) in L. Furthermore, from Assumption 3.5 and i3 ̸= i1,

it holds σ(τi1,k−
1
) ⊆ σ(ck−). Also, from the reformulation, it holds τ̃i1,h1

= τi1,k+
1

=

τi1,k−
1
∪ zak1

and zak1
= z̃h1

⊆ c̃h. Then, we have σ(τ̃i1,h1
) ⊆ σ(c̃h) = σ(τ̃i3,h). Based

on the strict expansion from DL to D†
L, we can get τ̆i1,h1\τ̃i1,h1 ⊆ c̆i1,h1 ⊆ τ̆i3,h, and

ăi1,h1 ∈ c̆h. Then, it holds that σ(τ̆i1,h1) ⊆ σ(τ̆i3,h), σ(ăi1,h1) ⊆ σ(τ̆i3,h), which leads
to contradition of σ(τ̆i1,h1

) ⊈ σ(τ̆i2,h) or σ(ăi1,h1
) ⊈ σ(τ̆i2,h). Hence, we know agent

(i1, h1) does not influence state s̆h. Additionally, for any i2 ̸= i1, since agent (i1, h1) does
not influences agent (i2, h), and τ̆i1,h = c̆h = τ̆i2,h, then we know that agent (i1, h1) does
not influence τ̆i1,h.

(b) If h = 2k, k ∈ [n]. If agent (i1, h1) influences s̆h1+1, then from Assumption 3.4, agent
(i1, h1) influences ŏ−i1,h1+1, and then there exists i3 ̸= i1 such that agent (i1, h1) influence
ŏi3,h1+1. Howver, from Assumption 2.1 (e), we know that ŏi3,h1+1 ∈ τ̆i3,h, which means
agent (i1, h1) influences agent (i3, h) and leads to a contradiction. Therefore, we know that
agent (i1, h1) does not influence s̆h1+1, and further does not influence s̆h. Also, from the
Assumption 3.3, ăi1,h1 /∈ τ̆i1,h′ ,∀h′ > h1, and agent (i1, h1) does not influence s̆h1+1.
This means she does not influence any element in τ̆i1,h1+1. Therefore, agent (i1, h1) does
not influence τ̆i1,h1+1, and hence does not influence ăi1,h1+1. In the same way, we know
that agent (i1, h1) does not τ̆i1,h′ and ăi1,h′ for any h′ > h1. Finally, we conclude that agent
(i1, h1) does not influence τ̆i1,h/

Therefore, we know agent (i1, h1) does not influence s̆h, and does not influence τ̆i,h,∀i ∈ [n].

P(s̆h, p̆h | c̆h, ğ1:h−1) = P(s̆h, p̆h, c̆h | c̆h, ğ1:h−1) = P(s̆h, τ̆h | c̆h, ğ1:h−1)

= P(s̆h, {τ̆i,h}i∈[n] | c̆h, ğ1:h−1) = P(s̆h, {τ̆i,h}i∈[n] | c̆h, ğ′1:H) = P(s̆h, p̆h | c̆h, ğ′1:h−1).

This completes the proof.

C.6 Proof of Theorem 4.2

Proof. Firstly, from the construction of D′
L and strategy space G1:H , we know that for any h ∈

[H], i ∈ [n], C2h−1 = C̆2h−1,Ai,2h−1 = Ăi,2h−1, T i,2h = T̆i,2h,Ai,2h = Ăi,2h. Therefore,
G1:H = Ğ1:H̆ , and finding a team optimal strategy of D′

L in the strategy space G1:H is equivalent to
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finding a team-optimum of D†
L in the strategy space Ğ1:H̆ .

Secondly, we will prove that the Dec-POMDP D′
L satisfies the information evolution rules in the

theorem. For each t ∈ [H], we define the random variable p̂i,2t−1 = pi,t− , p̂2t−1 = pt− . Recall
that in the reformulation, p̃i,2t−1 = ∅ rather than pi,t− . Then, from the 2H-reformulation and
Assumption 2.1, it holds that, for any i ∈ [n], h ∈ [H], if h = 2t− 1 with t ∈ [2 : H]

z̃h = χt(p̃h−1, ãh−1, õh), p̂i,h = ξi,t(p̃i,h−1, ãi,h−1, õi,h);

if h = 2t with t ∈ [H], then

z̃h = ϕt(p̂h−1, ãh−1), p̃i,h = p̂i,h−1\ϕi,t(p̂i,h−1, ãi,h−1),

where χt, ξi,t are fixed transformations and ϕh, ϕi,h are additional-sharing functions. Then, we can
construct the {χh+1}h∈[H], {ξi,h+1}i∈[n],h∈[H] accordingly as follows:

• If h = 2t − 1 with t ∈ [H], for any ph−1, ah−1, oh, since ph−1 = p̆h−1 from construc-
tion of D′

L, we can select a p̃h−1 that p̆h−1 can be generated from p̃h−1 through expansion
(such p̃h−1 might not be unique). Then, define χh(ph−1, ah−1, oh) = χt(p̃h−1, ah−1, oh) ∪
{aj,h1

| j ∈ [n], h1 < h, aj,h1
∈ ph−1, σ(τ̃j,h1

) ⊆ σ(c̃h)}\(p̃h−1\ph−1). Since χt is a
fixed transformation and we remove the p̃h−1\ph−1 part from zh, the value χh(ph−1, ah−1, oh)
is the same no matter what p̃h−1 we select, and thus such χh is well-defined. Similarly,
we can define ξi,h(pi,h−1, ai,h−1, oi,h−1) = ξi,t(p̃i,h−1, ai,h−1, oi,h)\{ai,h1

|h1 < h, ai,h1
∈

pi,h−1, σ(τ̃i,h1
) ⊆ σ(c̃h)}\(p̃i,h−1\pi,h−1).

• If h = 2t with t ∈ [H], for any ph−1, ah−1, from the construction of D′
L, we can select a p̂h−1

that ph−1 can be generated from p̂h−1 = pt− through expansion (such p̂h−1 might not be unique).
Also, it holds that oh = ∅, then define χh(ph−1, ah−1, oh) = ϕt(p̂h−1, ah−1) ∪ {aj,h1 | j ∈
[n], h1 < h, aj,h1 ∈ ph−1, σ(τ̃j,h1) ⊆ σ(c̃h)}\(p̂h−1\ph−1). Still, since ϕt is the addition-
sharing function, which part of p̂h−1 to share only depends on ah−1, and not depends on the
value of p̂h−1, and we remove the p̂h−1\ph−1 part from zh, the value of χh(ph−1, ah−1, oh)
is the same no matter what p̂h−1 we select, and thus such χh is well-defined. Similarly, we
can define ξi,h(pi,h−1, ai,h−1, oi,h−1) = pi,h−1\{ai,h1

|h1 < h, ai,h1
∈ pi,h−1, σ(τ̃i,h1

) ⊆
σ(c̃h)}\ϕi,t(p̂i,h−1, ai,h−1).

Therefore, the common and private information of D′
L satisfies that

ch+1 = ch ∪ zh+1, zh+1 = χh+1(ph, ah, oh+1)

for each i ∈ [n], pi,h+1 = ξi,h+1(pi,h, ai,h, oi,h+1),

with some functions {χh+1}h∈[H], {ξi,h+1}i∈[n],h∈[H].
Thirdly, we prove that such a Dec-POMDP D′

L is SI with respect to the strategy space G1:H . This is
equivalent to that for any h ∈ [2 : H], sh ∈ S, ph ∈ Ph, ch ∈ Ch, i1 ∈ [n], h1 < h, g1:h−1, g

′
i1,h1

∈
Gi1:h1

, let g′1:h−1 = (g1,1, · · · , gi1−1,h1
, g′i1,h1

, · · · , gn,h−1), it holds that

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | ch, g′1:h−1). (C.4)

We prove this case by case. If h = 2t with t ∈ [H], then from the result of Theorem C.5, it holds
that

PD′
L

h (sh, ph | ch, g1:h−1) = PD†
L

h (sh, ph | ch, g1:h−1)

= PD†
L

h (sh, ph | ch, g′1:h−1) = PD′
L

h (sh, ph | ch, g′1:h−1).

If h = 2t − 1 with t ∈ [H], and h1 = 2t1 − 1 with t1 ∈ [H], which means that ah1
corresponds

to the communication action in previously L. Then it holds that ch1
⊆ ch, ai1,h1

= m
i1,

h1+1
2
∈ ch,

then

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | ch1 , ai1,h1 , ch, g1:h−1)

= PD′
L

h (sh, ph | ch1
, ai1,h1

, ch, g1:h−1\gi1,h1
) = PD′

L
h (sh, ph | ch, g′1:h−1),
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where the second equality is because the input and output of gi1,h1
are ch1

and ai1,h1
.

If h = 2t − 1 with t ∈ [H], and h1 = 2t1 with t1 ∈ [H], which means that h1 is in the control
timestep, then if agent (i1, h1) influences the underlying state sh1+1, then from Assumption 3.4, we
know that there exists i2 ̸= i1 that, agent (i1, t1) influences oi2,t, and thus influences agent (i2, t)
in problem L even there is no additional sharing. From QC of L and Assumption 3.5, we know that
σ(τi1,t−1

) ⊆ σ(τi2,t−) ⊆ σ(ct). Also, from τi1,t−\τi1,t+1 ⊆ ct+ , we get σ(τi1,t+1 ) ⊆ σ(ct). After
reformulation, we have σ(τ̃i1,h1

) ⊆ σ(c̃h). From the definition of strict expansion in Eq. (4.1), we
have ai1,h1

∈ ch, and σ(τ i1,h1
) ⊆ σ(ch). Then, we conclude

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | τ i1,h1
, ai1,h1

, ch, g1:h−1)

= PD′
L

h (sh, ph | τ i1,h1 , ai1,h1 , ch, g1:h−1\gi1,h1
) = PD′

L
h (sh, ph | ch, g′1:h−1),

where the second equal sign is because the input and output of gi1,h1
are τ i1,h1

and ai1,h1
.

If agent (i1, h1) does not influence the underlying state sh1+1, then from Assumption 3.3, ai1,h1
/∈

τh2
for any h2 > h1. Then, agent (i1, h1) will not influence sh and ph. Then, it directly holds that

PD′
L

h (sh, ph | ch, g1:h−1) = PD′
L

h (sh, ph | ch, g′1:h−1),

which completes the proof.

C.7 Important Definitions of SI Dec-POMDP

Given a Dec-POMDP SI D′
L obtained from L after reformulation, strict expansion and refinement.

In this part, we only need to discuss how to solve this D′
L. Recall that we use ¯ for the notation of

the elements and quantities in D′
L.

First, we define the following quantities.

Definition C.6 (Value function). For each i ∈ [n] and h ∈ [H], given common information ch and
strategy g1:H , the value function conditioned on the common information is defined as:

V
g,D′

L
h (ch) := ED′

L
g [

H∑
h′=h

Rh′(sh′ , ah′ , ph′) | ch], (C.5)

where Rh′ takes sh′ , ah′ , ph′ as input, since after reformulation, the reward may come from com-
munication cost, which is a function of ph′ and ah′ .

Definition C.7 (Prescription and Q-Value function). Prescription is an important concept in the
common-information-based framework (Nayyar et al., 2013b;a). The prescription of agent i at
the timestep h is defined as γi,h : Pi,h → Ai,h. We use γh to denote the joint prescription and
Γi,h,Γh to denote the prescription space. The prescriptions are the marginalization of strategy gh,
i.e., γi,h(· | pi,h) = gi,h(· | ch, pi,h). Then we can define the Q-value function as

Q
g,D′

L
h (ch, γh) := ED′

L
g

 H∑
h′=h

Rh′(s′h, a
′
h, p

′
h) | ch, γh

 . (C.6)

Remark C.8. In this paper, for any Dec-POMDP D′
L generated by an L after reformulation, strict

expansion, and refinement, we only consider the strategy spaces at odd timesteps as Gi,2t−1 :
C2t−1 → Ai,2t−1 and aim to find the optimal strategy in these classes. Therefore, we define the
prescription spaces at odd timesteps as ∀h ∈ [H], i ∈ [n],Γi,2h−1 = Ai,2h−1,Γ2h−1 = A2h−1.

Definition C.9 (Expected approximate common information model). We define an expected ap-
proximate common information model of D′

L as

M :=
(
{Ĉh}h∈[H], {ϕ̂h}h∈[H], {P

M,z
h }h∈[H],Γ, {R̂

M
h }h∈[H]

)
, (C.7)
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where Γ is the joint prescription space, Ĉh is the space of approximate common information at
step h. PM,z

h : Ĉh × Γh → ∆(Zh+1) gives the probability of zh+1 under ĉh and γh. R̂M
h :

Ĉh × Γh → [0, 1] gives the reward at timestep h given ĉh and γh. Then, we call that M is an
(ϵr(M), ϵz(M))-expected-approximate common information model ofD′

L with some compression
function Compressh such that ĉh =Compressh(ch) satisfies the following:

• There exists a transformation function ϕ̂h such that

ĉh = ϕ̂h(ĉh−1, zh), (C.8)

where zh = ch\ch−1 in D′
L.

• For any g1:h−1 and any prescription γh ∈ Γh, it holds that

ED′
L

a1:h−1,o1:h∼g1:h−1
|ED′

L [Rh(sh, ah, ph) | ch, γh]− R̂M
h (ĉh, γh)| ≤ ϵr(M). (C.9)

• For any g1:h−1 and any prescription γh ∈ Γh, it holds that

ED′
L

a1:h−1,o1:h∼g1:h−1
||PD′

L
h (· | ch, γh)− PM,z

h (· | ĉh, γh)||1 ≤ ϵz(M). (C.10)

Definition C.10 (Value function under M). Given an Dec-POMDP D′
Land its expected approxi-

mate common information modelM. For any strategy g1:H ∈ G1:H , h ∈ [H], we define the value
function as

V
g1:H ,M
h (ch) =R̂M

h (Compressh(ch), {gj,h(· | ch, ·)}j∈[n])

+ EM[V
g1:H ,M
h (ch+1) |Compressh(ch), {gj,h(· | ch, ·)}j∈[n]].

(C.11)

Definition C.11 (Model-belief consistency). We say the expected approximate common informa-
tion model M is consistent with some belief {PM,c

h (sh, ph | ĉh)}h∈[H] if it satisfies the following
for all i ∈ [n], h ∈ [H]:

PM,z
h (zh+1 | ĉh, γh) =

∑
sh,ph,ah,oh+1:

χh+1(ph,ah,oh+1)=zh+1

(C.12)

(
PM,c
h (sh, ph | ĉh)1[ah = γh(ph)]

∑
sh+1

Th(sh+1 | sh, ah)]Oh+1(oh+1 | sh+1)
)
, (C.13)

R̂M
h (ĉh, γh) =

∑
sh,ph,ah

PM,c
h (sh, ph | ĉh)1[ah = γh(ph)]Rh(sh, ah). (C.14)

Definition C.12 (Strategy-dependent approximate common information model). Given a model M̃
(as in Definition C.9) and H joint strategies g1:H , where each gh ∈ G1:H for h ∈ [H], we say M̃
is a strategy-dependent expected approximate common information model, denoted as M̃(π1:H), if

it is consistent with the strategy-dependent belief {Pπh,D′
L

h (sh, ph | ĉh)}h∈[H] (as per C.11). we say
M̃ is a strategy-dependent expected approximate common information model, denoted as M̃(g1:H),

if it is consistent with the strategy-dependent belief {Pgh,D′
L

h (sh, ph | ĉh)}h∈[H] (as per C.11).

Definition C.13 (Length of approximate common information). Given the compression func-
tions {Compressh}h∈[H+1], we define the integer L̂ > 0 as the minimum length such that
there exists a mapping f̂h : Amax{1,h−L̂}:h−1 × Omax{1,h−L̂+1},h → Ĉh such that for

each h ∈ [H + 1] and joint history {o1:h, a1:h−1}, we have f̂h(xh) = ĉh, where xh =
{amax{h−L̂,1}, omax{h−L̂,1}+1, · · · , ah−1, oh}.
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C.8 Main Results for Planning in QC LTC

Finally, we provide the formal guarantees for planning in QC LTC.

Theorem C.14. Given any QC LTC problem L satisfying Assumptions 3.1, 3.2, 3.3, 3.4, and 4.3,
we can construct an SI Dec-POMDP problem D′

L such that for any ϵ > 0, solving an ϵ-team op-
timal strategy in D′

L can give us an ϵ-team optimal strategy of L, and the following holds. Fix
ϵr, ϵz > 0 and given any (ϵr, ϵz)-expected-approximate common information modelM for D′

L that
is consistent with some given approximate belief {PM,c

h (sh, ph | ĉh)}h∈[H], Algorithm 1 can com-

pute a (2Hϵr +H
2
ϵz)-team optimal strategy for the original LTC problem L with time complexity

maxh∈[H] |Ĉh| · poly(|S|, |Ah|, |Ph|, H). In particular, for fixed ϵ > 0, if L has any one of base-
line sharing protocols as in §A, one can construct aM and apply Algorithm 1 to compute an ϵ-team
optimal strategy for L in quasi-polynomial time.

Proof. We divide the proof into the following three Parts.

Part I: Given any QC LTC problem L satisfying Assumptions 3.1, 3.2, 3.3, and 3.4, we can
construct an SI Dec-POMDP problem D′

L such that finding an ϵ-team optimal strategy can give us
an ϵ-team optimal strategy of L, as shown in Algorithm 1.
We can construct a Dec-POMDP D′

L from L through Algorithm 1. From Proposition C.1 and
Theorems C.4, C.5. We know that D′

L is SI and an ϵ-team-optimal strategy of D′
L can give us an

ϵ-team optimal strategy of L.

Part II: Given any ϵ-expected-approximate common information model M of the Dec-POMDP
D′

L, there exists an algorithm, Algorithm 6, that can output an ϵ-team optimal strategy of D′
L.

First, we need to prove that solving M can get the ϵ-team optimal strategy of D′
L. We prove the

following 2 lemmas first.

Lemma C.15. For any strategy g1:H , and h ∈ [H], we have

ED′
L

g1:H
[|V g1:H ,D′

L
h (ch)− V

g1:H ,M
h (ch)|] ≤ (H − h+ 1)ϵr +

(H − h+ 1)(H − h)

2
ϵz. (C.15)

Proof. We prove it by induction. For h = H + 1, we have V
g1:H ,D′

L
h (ch) = V

g1:H ,M
h (ch) = 0.

For the step h ≤ H , we have

ED′
L

g1:H
[|V g1:H ,D′

L
h (ch)− V

g1:H ,M
h (ch)|]

≤ED′
L

g1:H

[
|EDL [Rh(sh, ah, ph) | ch, {gj,h(· | ch, ·)}j∈[n]]− R̂M

h (ĉh, {gj,h(· | ch, ·)}j∈[n])|
]

+ ED′
L

g1:H

[
|E

zh+1∼P
D′

L
h (· | ch,{gj,h(· | ch,·)}j∈[n])

[V
g1:H ,D′

L
h (ch ∪ zh+1)]

− Ezh+1∼PM,z
h (· | ĉh,{gj,h(· | ch,·)}j∈[n])

[V
g1:H ,M
h (ch ∪ zh+1)]|

]
≤ϵr + (H − h)ED′

L
a1:h−1,o1:h∼g1:h−1

||PD′
L

h (· | ch, γh)− PM,z
h (· | ĉh, γh)||1

+ ED′
L

a1:h−1,o1:h∼g1:h−1

[
|V g1:H ,D′

L
h+1 (ch+1)− V

g1:H ,M
h+1 (ch+1)|

]
≤ϵr + (H − h)ϵz + (H − h)ϵr +

(H − h)(H − h− 1)

2
ϵz

≤(H − h+ 1)ϵr +
(H − h)(H − h+ 1)

2
ϵz.

The proof mainly follows from the proof of Lemma 2 in (Liu & Zhang, 2023). But the dif-
ference is that D′

L may not satisfy Assumption 2.1. In the third line of this proof, we had
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zh+1 ∼ PD′
L

h (· | ch, {gj,h(· | ch, ·)}j∈[n]), where zh+1 is generated as

PD′
L

h (zh+1 | ch, γh) =
∑

sh∈S,ph∈Ph

PD′
L

h (sh, ph | ch)

∑
sh+1∈S,oh+1∈Oh+1

Th+1(sh+1 | sh, γh(ph))Oh+1(oh+1 | sh+1)1[χh+1(ph, γh(ph), oh+1)],

with γh = {gj,h(· | ch, ·)}j∈[n].

Lemma C.16. Let ĝ∗
1:H

be the strategy output by Algorithm 6, then for any h ∈ [H], ch ∈
Ch, g1:H ∈ G1:H , it holds that

V
g1:H ,M
h (ch) ≤ V

ĝ∗
1:H

,M
h (ch). (C.16)

Proof. We prove it by induction. For h = H + 1, we have V
g1:H ,M
h (ch) = V

ĝ∗
1:H

,M
h (ch) = 0.

For the timestep h ≤ H , we have

V
g1:H ,M
h (ch) = EM[r̂Mh (ĉh) + V

g1:H ,M
h+1 (ch+1) | ĉh, g1:H ]

≤ EM[r̂Mh (ĉh) + V
ĝ1:H ,M
h+1 (ch+1) | ĉh, g1:H ]

= Q
ĝ1:H,M
h (ch, {gj,h(· | ch)}j∈[n])

≤ Q
ĝ1:H,M
h (ch, {gj,h(· | ch)}j∈[n])

= V
ĝ∗
1:H

,M
h (ch).

For the first inequality, we use the induction hypothesis. For the second inequality sign, we use the
property of argmax in algorithm and V

ĝ∗
1:H

,M
h (ch) = V

ĝ∗
1:H

,M
h (ĉh). By induction, we complete the

proof.

We now go back to the proof of the theorem. Let ĝ∗
1:H

be the solution output by Algorithm 6, then
for any g1:H ∈ G1:H , h ∈ [H], ch ∈ Ch, we have

ED′
L

g1:H

[
V

g1:H ,D′
L

h (ch)− V
ĝ∗
1:H

,D′
L

h (ch)
]

= ED′
L

g1:H

[(
V

g1:H ,D′
L

h (ch)− V
ĝ∗
1:H

,M
h (ch)

)
+

(
V

ĝ∗
1:H

,M
h (ch)− V

ĝ∗
1:H

,D′
L

h (ch)
)]

≤ ED′
L

g1:H

[(
V

g1:H ,D′
L

h (ch)− V
g1:H ,M
h (ch)

)
+
(
V

ĝ∗
1:H

,M
h (ch)− V

ĝ∗
1:H

,D′
L

h (ch)
)]

≤ (H − h+ 1)ϵr +
(H − h)(H − h+ 1)

2
ϵz + (H − h+ 1)ϵr +

(H − h)(H − h+ 1)

2
ϵz

= 2(H − h+ 1)ϵr + (H − h)(H − h+ 1)ϵz.
(C.17)

For the first inequality, we use Lemma C.16. For the second inequality sign, we use Lemma C.15.
Then apply h = 1, we have JD′

L
(g1:H) ≤ JD′

L
(ĝ∗

1:H
) + 2Hϵr +H

2
ϵz . This completes the proof of

Part II.

Part III: If the baseline sharing of L is one of the 4 cases in §A, we can construct an expected-
approximate common information model of D′

L.
3kkk We first prove following lemmas: We aim to bound (ϵr, ϵz) using the following lemma.
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Lemma C.17. Given any belief {PM,c
h (sh, ph}h∈[H] consistent with the expected-approximate-

common-information modelM, it holds that for any h ∈ [H], Ch, γh ∈ Γh:

||PD′
L

h (· | ch, γh)− PM,z
h (· | ĉh, γh)||1 ≤ ||P

D′
L

h (·, · | ch)− PM,c
h (·, · | ĉh)||1,

|ED′
L [Rh(sh, ah, ph) | ch, γh]− R̂M

h (ĉh, γh)| ≤ ||P
D′

L
h (·, · | ch)− PM,c

h (·, · | ĉh)||1,

where ĉh =Compressh(ch).

Proof. Adapted from Lemma 3 in (Liu & Zhang, 2023) by changing the reward function of
ri,h(sh, ah) to Rh(sh, ah, ph). Note that the latter can still be evaluated given the common-

information-based belief, PD′
L

h (sh, ph | ch).

Then we define the belief states following the notation in (Golowich et al., 2023; Liu & Zhang,
2023) as b1(∅) = µ1, bh(a1:h−1, o1:h) = P(sh = · | o1:h, a1:h−1), bh(a1:h−1, o1:h−1) = P(sh =
· | o1:h−1, a1:h−1), where b ∈ ∆(S). Also, we define the approximate belief state using the most
recent L-step history, that

b
′
h(ah−L:h−1, oh−L+1:h−1) = P(sh = · | sh−L ∼ Unif(S), ah−L:h−1, oh−L+1:h)

b
′
h(ah−L:h−1, oh−L+1:h−1) = P(sh = · | sh−L ∼ Unif(S), ah−L:h−1, oh−L+1:h).

Also, for any set N ⊆ [n], we define aN,h = {ai,h}i∈N , and the same for oN,h. We can also define
the belief of states given historical observations and actions as follows: for any N ⊆ [n],

bh(a1:h−1, o1:h−1, oN,h) = P(sh = · | a1:h−1, o1:h−1, oN,h)

b
′
h(ah−L:h−1, oh−L+1:h−1, oN,h) = Ph(sh = · | sh−L ∼ Unif(S), ah−L:h−1, oh−L+1:h−1, oN,h).

Then, we have the following lemma.

Lemma C.18. There is a constant C ≥ 1 such that the following holds. Given any LTC problem L
satisfying Assumption 3.1, and let D′

L be the Dec-POMDP after reformulation, strict expansion and
refinement. Let ϵ ≥ 0, fix a strategy g1:H and indices 1 ≤ h−L < h−1 ≤ H . If L ≥ Cγ−4 log(Sϵ ),
then the following set of inequalities hold

Ea1:h−1,o1:h∼g1:H
||bh(a1:h−1, o1:h)− b

′
h(ah−L:h−1, oh−L+1:h)||1 ≤ ϵ (C.18)

Ea1:h−1,o1:h∼g1:H
||bh(a1:h−1, o1:h−1)− b

′
h(ah−L:h−1, oh−L+1:h−1)||1 ≤ ϵ (C.19)

Ea1:h−1,o1:h∼g1:H
||bh(a1:h−1, o1:h−1, oN,h)− b

′
h(ah−L:h−1, oh−L+1:h−1, oN,h)||1 ≤ ϵ. (C.20)

Proof. Given any LTC problem L, we can construct a Dec-POMDP Ď that the transition and obser-
vation functions of Ď are the same as L. And the information of Ď is fully sharing, which means it
shares all the o1:h−1, a1:h as common information at timestep h. Since D′

L is reformulated from L,
we have

bh(a1:h−1, o1:h) = b⌊h+1
2 ⌋(a1:⌊h−1

2 ⌋, o1:⌊h+1
2 ⌋) = b̌⌊h+1

2 ⌋(ǎ1:⌊h−1
2 ⌋, ǒ1:⌊h+1

2 ⌋)

bh(a1:h−1, o1:h−1) = b⌊h+1
2 ⌋(a1:⌊h−1

2 ⌋, o1:⌊h
2 ⌋
) = b̌⌊h+1

2 ⌋(ǎ1:⌊h−1
2 ⌋, ǒ1:⌊h

2 ⌋
).

And for the approximate belief state, we have

b
′
h+1(ah−L:h, oh−L+1:h) = b′⌊h+2

2 ⌋(a⌊h−L
2 ⌋:⌊h

2 ⌋
, o⌊h−L+2

2 ⌋:⌊h+1
2 ⌋)

= b̌′⌊h+2
2 ⌋(ǎ⌊h−L

2 ⌋:⌊h
2 ⌋
, ǒ⌊h−L+2

2 ⌋:⌊h+1
2 ⌋)

b
′
h(ah−L:h−1, oh−L+1:h)

= b′⌊h+1
2 ⌋(a⌊h−L

2 ⌋:⌊h−1
2 ⌋, o⌊h−L+2

2 ⌋:⌊h+1
2 ⌋) = b̌′⌊h+1

2 ⌋(ǎ⌊h−L
2 ⌋:⌊h−1

2 ⌋, ǒ⌊h−L+2
2 ⌋:⌊h

2 ⌋
).
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Also, since for any t ∈ [H], a2t−1 are communication actions, o2t = ∅ is null, and s2t−1 = s2t
always holds. Then we can write Eq. (C.18) and Eq. (C.19) as

E
{a2t}

⌊h−1
2

⌋
t=1 ,{o2t−1}

⌊h+1
2

⌋
t=1 ∼g1:H

||bh(a1:h−1, o1:h)− b
′
h(ah−L:h−1, oh−L+1:h)||1 ≤ ϵ (C.21)

E
{a2t}

⌊h−1
2

⌋
t=1 ,{o2t−1}

⌊h+1
2

⌋
t=1 ∼g1:H

||bh(a1:h−1, o1:h−1)− b
′
h(ah−L:h−1, oh−L+1:h−1)||1 ≤ ϵ. (C.22)

Since Ď has a fully-sharing IS, for any i ∈ [n], h ∈ [H] and information τ i,h, τ i,2h, we have
σ(τ i,h) ⊆ σ(τ̌i,⌊h+1

2 ⌋). Therefore, given any strategy g1:H , we can construct a strategy ǧ1:H such
that, for any a1:h−1, o1:h

P({a2t}
⌊h−1

2 ⌋
t=1 , {o2t−1}

⌊h+1
2 ⌋

t=1 | g1:H) = P(ǎ1:⌊h−1
2 ⌋, ǒ1:⌊h+1

2 ⌋ | ǧ1:H).

Since Ď satisfies Assumption 3.1, we can apply the Theorem 10 in (Liu & Zhang, 2023) with ǧ1:H
to get the result that there is a constant C0 ≥ 1 such that if L′ ≥ C0γ

−4 log(Sϵ ), the following holds

Eǎ
1:⌊h−1

2
⌋
,ǒ

1:⌊h+1
2

⌋
∼ǧ1:H (C.23)

||b̌⌊h+1
2 ⌋(ǎ1:⌊h−1

2 ⌋, ǒ1:⌊h+1
2 ⌋)− b̌′⌊h+1

2 ⌋(ǎ⌊h
2 ⌋−L′:⌊h−1

2 ⌋, ǒ⌊h+1
2 ⌋−L′+1:⌊h+1

2 ⌋)||1 ≤ ϵ (C.24)

Eǎ
1:⌊h−1

2
⌋
,ǒ

1:⌊h+1
2

⌋
∼ǧ1:H (C.25)

||b̌⌊h+1
2 ⌋(ǎ1:⌊h−1

2 ⌋, ǒ1:⌊h
2 ⌋
)− b̌′⌊h+1

2 ⌋(ǎ⌊h
2 ⌋−L′:⌊h−1

2 ⌋, ǒ⌊h+1
2 ⌋−L′+1:⌊h

2 ⌋
)||1 ≤ ϵ. (C.26)

We choose C = 3C0, L = 2L′ + 1. If L ≥ Cγ−4 log(Sϵ ), there must have L′ ≥ C0γ
−4 log(Sϵ ).

Therefore, we directly get Eq. (C.21) and Eq. (C.22).
For Eq. (C.20), we cannot directly apply Theorem 10 in (Liu & Zhang, 2023), but we can slightly
change the Eq. (E.11) of Theorem 10 in (Liu & Zhang, 2023) as

ED′
L

a1:h−1,o1:h∼g1:H ||bh(a1:h−1, o1:h−1, oN,h)− b
′
h(ah−L:h−1, oh−L+1:h−1, oN,h)||1 ≤ ϵ. (C.27)

It still holds if the posterior update F q(P : o1,h) is changed to F q(P : oN,h), when applying Lemma
9 in the proof of Theorem 10 of (Liu & Zhang, 2023). Therefore, we can use the same arguments to
prove Eq. (C.20) from Eq. (C.27) as above, and this completes the proof.

Then we can compress the common information using a finite-memory truncation. Here, we discuss
case-by-case how to compress it for the 8 examples of QC LTC given in §A. Note that after refor-
mulation, strict expansion, and refinement, Examples 5 and 6 will be the same as Example 1, and
Examples 7 and 8 will be the same as Example 2. Therefore, we can categorize the examples in §A
into 4 types.

Type 1: Baseline sharing of L is one of Examples 1, 5, 6 in §A. Then, common information should
be that for any t ∈ [H], c2t−1 = {o1:2t−2, a1:2t−2}, c2t = {o1:2t−2, a1:2t−1, oN,2t−1}, N ⊆ [n],
where N is the set of agents choose to share their observations through additional shar-
ing, and N can be inferred from c2t. Then we have that PD′

L
2t−1(s2t−1, p2t−1 | c2t−1) =

b2t−1(a1:2t−2, o1:2t−2)(s2t−1)O2t−1(o2t−1 | s2t−1). Fix compress length L > 0, we
define the approximate common information as ĉ2t−1 = {a2t−1−L:2t−2, o2t−L:2t−2},
and the common information conditioned belief as PM,c

2t−1(s2t−1, p2t−1 | ĉ2t−1) =

b2t−1(a2t−1−L:2t−2, o2t−L:2t−2)(s2t−1)O2t−1(o2t−1 | s2t−1). Also, we have

PD′
L

2t (s2t, p2t | c2t) = b2t−1(a1:2t−1, o1:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1).
Fix compress length L > 0, we define the approximate com-
mon information a ĉ2t = {a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1}, and
the common information conditioned belief as PM,c

2t (s2t, p2t | ĉ2t) =

b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1), where
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P2t−1(o−N,2t−1 | s2t−1, oN,2t−1) =
O2t−1(oN,2t−1,o−N,2t−1 | s2t−1)∑

o′−N,2t−1
O2t−1(oN,2t−1,o′−N,2t−1 | s2t−1)

. Now, we need

to verify that Definition C.9 is satisfied.

• The {ĉh}h∈[H] satisfied the Eq. (C.8) since for any h ∈ [H], ĉh+1 ⊆ ĉh ∪ zh.

• Note that for any c2t−1 and the corresponding ĉ2t−1 constructed above:

||PD′
L

2t−1(·, · | ch)− PM,c
2t−1(·, · | ĉh)||1

=
∑

s2t−1,o2t−1

|b2t−1(a1:2t−2, o1:2t−2)(s2t−1)O2t−1(o2t−1 | s2t−1)

− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−1)(s2t−1)O2t−1(o2t−1 | s2t−1)|

= ||b2t−1(a1:2t−2, o1:2t−2)− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−1)||1.

For any c2t and the corresponding ĉ2t constructed above:

||PD′
L

2t (·, · | ch)− PM,c
2t (·, · | ĉh)||

=
∑

s2t−1,o−N,2t−1

|b2t−1(a1:2t−1, o1:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1)

− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1)|

= ||b2t−1(a1:2t−1, o1:2t−2, oN,2t−1)− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)||1.

If we choose L ≥ Cγ−4 log(Sϵ ), then we have that for any h ∈ [H]

Ea1:h−1,o1:h∼g1:H
||PD′

L
h (·, · | ch)− PM,c

h (·, · | ĉh)||1 ≤ ϵ.

Therefore, such a model is an ϵ-expected-approximate common information model.

Type 2: Baseline sharing of L is Example 3 in §A. Then, common information com-
mon information should be that for any t ∈ [H], c2t−1 = {o1:2t−2, a1:2t−2, o1:2t−1}, c2t =
{o1:2t−2, a1:2t−1, oN,2t−1}, N ⊆ [n], 1 ∈ N . Here N is the same as defined in
case 1, but it must satisfy that 1 ∈ N . Then we similarly as case 1, we con-
struct ĉ2t−1 = {o2t−L:2t−2, a2t−L−1:2t−2, o1:2t−1}, ĉ2t = {a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1},
and approximate common information conditioned belief as PM,c

2t−1(s2t−1, p2t−1 | ĉ2t−1) =

b2t−1(a2t−1−L:2t−2, o2t−L:2t−2, o1,2t−1)(s2t−1)P2t−1(o−1,2t−1 | s2t−1, o1,2t−1),PM,c
2t (s2t,

p2t | ĉ2t) = b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1).

Now, we need to verify Definition C.9 is satisfied.

• The {ĉh}h∈[H] satisfies the Eq. (C.8) since for any h ∈ [H], ĉh+1 ⊆ ĉh ∪ zh.

• Note that for any c2t−1 and the corresponding ĉ2t−1 constructed above:

||PD′
L

2t−1(·, · | ch)− PM,c
2t−1(·, · | ĉh)||1

=
∑

s2t−1,o−1,2t−1

|b2t−1(a1:2t−1, o1:2t−2, o1,2t−1)(s2t−1)P2t−1(o−1,2t−1 | s2t−1, o1,2t−1)

− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, o1,2t−1)(s2t−1)P2t−1(o−1,2t−1 | s2t−1, o1,2t−1)|

= ||b2t−1(a1:2t−1, o1:2t−2, o1,2t−1)− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, o1,2t−1)||1.
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For any c2t and the corresponding ĉ2t constructed above:

||PD′
L

2t (·, · | ch)− PM,c
2t (·, · | ĉh)||1

=
∑

s2t−1,o−N,2t−1

|b2t−1(a1:2t−1, o1:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1)

− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)(s2t−1)P2t−1(o−N,2t−1 | s2t−1, oN,2t−1)|

= ||b2t−1(a1:2t−1, o1:2t−2, oN,2t−1)− b
′
2t−1(a2t−1−L:2t−2, o2t−L:2t−2, oN,2t−1)||1.

If we choose L ≥ Cγ−4 log(Sϵ ), then from Lemma C.18 we have, for any h ∈ [H]

Ea1:h−1,o1:h∼g1:H
||PD′

L
h (·, · | ch)− PM,c

h (·, · | ĉh)||1 ≤ ϵ.

Therefore, such a model is an ϵ-expected-approximate common information model.

Type 3: Baseline sharing of L is one of Examples 2, 7, 8 in §A. Then the common information

should be that, for any h ∈ [H], ch = {o1:h−2d, a1,1:h−1, {a−1,2t−1}
⌊h

2 ⌋
t=⌊h−2d+1

2 ⌋, o1,h−2d+1:h, oM},
where M ⊂ {(i, t) | 1 < i ≤ n, h−2d+1 ≤ t ≤ h} and oM = {oi,t | (i, t) ∈M}, and correspond-
ing ph = {oi,t | 1 < i ≤ n, h− 2d < t ≤ h, (i, t) /∈ M}. Actually, oM are the observations shared

by the additional sharing in L. Denote fτ,h−2d = {a1:h−2d−1, oh−2d, {a−1,2t−1}
⌊h

2 ⌋
t=⌊h−2d+1

2 ⌋}, fa =

{a1,h−2d:h−1}, fo = {o1,h−2d+1:h, oM}. We can compute the common-information-based belief as

PD′
L

h (sh, ph | ch) =
∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fa, fo)P
D′

L
h (sh−2d | fτ,h−2d, fa, fo)

=
∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fa, fo)
PD′

L
h (sh−2d, fa, fo | fτ,h−2d)∑

s′h−2d
PD′

L
h (s′h−2d, fa, fo | fτ,h−2d)

.

Denote the probability Ph(fo | sh−2d, fa) := Π2d
t=1P

D′
L

h (o1,h−2d+t, oMh−2d+t
| sh−2d, a1,h−2d:h−2d+t),

where Mh−2d+t = {(i, h − 2d + t) | (i, h − 2d + t) ∈ M} denotes the set of observations at
timestep h− 2d+ t and shared through additional sharing. With such notation, we have

PD′
L

h (sh−2d | fτ,h−2d, fa, fo) =
bh−2d(a1:h−2d−1, o1:h−2d)(sh−2d)Ph(fo | sh−2d, fa)∑

s′h−2d
bh−2d(a1:h−2d−1, o1:h−2d)(s

′
h−2d)Ph(fo | s′h−2d, fa)

=FPh(· | ·,fa)(bh−2d(a1:h−2d−1, o1:h−2d); fo)(sh−2d),

where FPh(· | ·,fa)(·; fo) : ∆(S) → ∆(S) is the posterior belief update function. The formal
definition is shown in Lemma 9 in (Liu & Zhang, 2023).
Then, we define the approximate common information as ĉh :=
{o1,h−2d−L+1:h, a1,h−2d−L:h−1, oM} and corresponding approximate common information
conditioned belief as

PM,c
h (sh, ph | ĉh) =

∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fa, fo)F
Ph(· | ·,fa)(b

′
h−2d(ah−2d−L:h−2d−1, oh−2d−L+1:h−2d); fo)(sh−2d).

Now we verify that Definition C.9 is satisfied.

• Obviously, the {ĉh}h∈[H satisfies Eq. (C.8).

• For any ch and the corresponding ĉh constructed above:

||PD′
L

h (·, · | ch)− PM,c
h (·, · | ĉh)||1 ≤ ||FP (· | ·,fa)(bh−2d(a1:h−2d−1, o1:h−2d); fo)−

FP (· | ·,fa)(b
′
h−2d(ah−2d−L:h−2d−1, oh−2d−L+1:h−2d); fo)||1.
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If we choose L ≥ Cγ−4 log(Sϵ ), then for any strategy g1:H , by taking expectations over
fτ,h−2d, fa, fo, from Lemma C.18 and Lemma 9 in (Liu & Zhang, 2023), we have, for any
h ∈ [H]

Ea1:h−1,o1:h∼g1:H
||PD′

L
h (·, · | ch)− PM,c

h (·, · | ĉh)||1 ≤ ϵ.

Therefore, such a model is an ϵ-expected-approximate common information model.

Type 4: Baseline sharing of L is Example 4 in §A. Then, for any h ∈ [H], the common information

should be ĉh = {o1:h−2d, {a2t−1}
⌊h

2 ⌋
t=1 , oM}, where M = {(i, t) | i ∈ [n], h − 2d + 1 ≤ t ≤ h}.

Then, still we denote fτ,h−2d = {o1:h−2d, {a2t−1}
⌊h

2 ⌋
t=1}, fo = {oM}. We can compute the common

information-based belief as

PD′
L

h (sh, ph | ch) =
∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fo)P
D′

L
h (sh−2d | fτ,h−2d, fo)

=
∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fo)
PD′

L
h (sh−2d, fo | fτ,h−2d)∑

s′h−2d
PD′

L
h (s′h−2d, fo | fτ,h−2d)

.

Denote the probability Ph(fo | sh−2d) := Π2d
t=1P

D′
L

h (o1,h−2d+t, oMh−2d+t
| sh−2d), where

Mh−2d+t = {(i, h − 2d + t) | (i, h − 2d + t) ∈ M} denotes the set of observations at timestep
h − 2d + t and shared through additional sharing. Since the actions do not influence underlying
states, here we use the belief notation bk(o1:k), bk(ok−L:k), ∀k ∈ [H], L < k. With such notation,
we have

PD′
L

h (sh−2d | fτ,h−2d, fo)

=
bh−2d(o1:h−2d)(sh−2d)Ph(fo | sh−2d)∑

s′h−2d
bh−2d(o1:h−2d)(s

′
h−2d)Ph(fo | s′h−2d)

= FPh(· | ·)(bh−2d(o1:h−2d); fo)(sh−2d),

where FPh(· | ·)(·; fo) : ∆(S) → ∆(S) is the posterior belief update function, the same as men-
tioned in Type 3.
Then, we define the approximate common information as ĉh := {oh−2d−L+1:h, oM} and corre-
sponding approximate common information conditioned belief as

PM,c
h (sh, ph | ĉh) =

∑
sh−2d

PD′
L

h (sh, ph | sh−2d, fo)F
Ph(· | ·)(b

′
h−2d(oh−2d−L+1:h−2d); fo)(sh−2d).

Now we verify that Definition C.9 is satisfied.

• Obviously, the {ĉh}h∈[H satisfies Eq.(C.8).

• For any ch and corresponding ĉh constructed above:

||PD′
L

h (·, · | ch)− PM,c
h (·, · | ĉh)||1

≤ ||FP (· | ·)(bh−2d(o1:h−2d); fo)− FP (· | ·)(b
′
h−2d(ah−2d−L:h−2d−1, oh−2d−L+1:h−2d); fo)||1.

If we choose L ≥ Cγ−4 log(Sϵ ), then for any strategy g1:H , by taking expectations over
fτ,h−2d, fo, from Lemma C.18 and Lemma 9 in (Liu & Zhang, 2023), we have, for any h ∈ [H]

Ea1:h−1,o1:h∼g1:H
||PD′

L
h (·, · | ch)− PM,c

h (·, · | ĉh)||1 ≤ ϵ.

Therefore, such a model is an ϵ-expected-approximate common information model.

Combining Parts I, II, III, we complete the proof.
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Remark C.19. Let L be an LTC problem satisfying Assumptions 3.1, 3.2, 3.3, and 3.4, and D′
L

be the Dec-POMDP after reformulation, strict expansion and refinement. Then, if L has any one
of baseline sharing protocols as in Appendix A, and L satisfies the conditions as follows, then D′

L
satisfies Assumption 4.3.

• If L has baseline sharing protocol as one of Examples 1, 5, 6 in A, L needs to satisfy the part (1)
of Factorized structure in G.

• If L has baseline sharing protocol as one of Examples 2, 7, 8 in A, L needs to sat-
isfy Rh(· | sh, a1,h, a−1,h) = Rh(· | sh, a1,h, a′−1,h) for any h ∈ [H], sh ∈ S, a1,h ∈
A1,h, a−1,h, a

′
−1,h ∈ A−1,h.

• If L has baseline sharing protocol as one of Examples 3, 4 in A, it does not need additional
condition.

Actually, such condition is also considered in (Liu & Zhang, 2023). For L with baseline sharing
protocols as one of examples in A and satisfying the conditions as above, we can construct expected
common information modelM of D′

L as mentioned in the proof of Theorem C.14. If the baseline
sharing protocol of L is one of Examples 1, 5, 6, then D′

L and M satisfy Factorized structures
condition in G; If the baseline sharing protocol of L is one of Examples 2, 7, 8, then D′

L and
M satisfy Turn-based structures condition in G; If the baseline sharing protocol of L is one of
Examples 3, 4, then D′

L andM satisfy Nested private information condition in G. From Lemma
G.1, we can conclude that Assumption 4.3 holds.

C.9 Main Results for Learning in QC LTC

Here we provide a full version of Theorem 4.4 as follows.
Theorem C.20. Given any QC LTC problem L satisfying Assumptions 3.1, 3.2, 3.3, 3.4, and 4.3,
we can construct an SI-CIB Dec-POMDP problem D′

L such that the following holds. Given a
strategy g1:H , M̃(g1:H), and L̂, where each gh is a complete strategy with gh

h−L̂:h
= Unif(A) for

h ∈ [H], we define the statistical error for estimating M̃(g1:H) as ϵapx(g
1:H , L̂, ζ1, ζ2, θ1, θ2, ϕ)

for some parameters δ1, ζ1, ζ2, θ1, θ2, ϕ > 0. Then, there exists an algorithm that can learn an
ϵ-team-optimal strategy for L with probability at least 1 − δ1, using a sample complexity N0 =
poly(maxh∈[H] |Ph|,maxh∈[H] |Ĉh|, H,maxh∈[H] |Ah|,maxh∈[H] |Oh|, 1/ζ1, 1/ζ2, 1/θ1, 1/θ2) ·
log(1/δ1), where ϵ := Hϵr(M̃(g1:H)) + H

2
ϵz(M̃(g1:H)) + (H

2
+

H)ϵapx(g
1:H , L̂, ζ1, ζ2, θ1, θ2, ϕ). Specifically, if L has the baseline sharing protocols as in §A,

there exists an algorithm that learns an ϵ-team optimal strategy for L with both quasi-polynomial
time and sample complexities.

Proof. Firstly, given any LTC problem L, we can apply Algorithm 2 to solve such problem. From
the proof of C.14, we know that Algorithm 6 can output the team optimal strategy of M̂(g1:H,j) for
each j ∈ [K]. Then, from Theorem 4 in (Liu & Zhang, 2023), it can guarantee that g∗

1:H
is an ϵ-team

optimum of D′
L with probability at least 1 − δ1, where ϵ = Hϵr(M̃(g1:H)) +H

2
ϵz(M̃(g1:H)) +

(H
2
+ H)ϵapx(g

1:H , L̂, ζ1, ζ2, θ1, θ2, ϕ) + Hϵe. Then, from the proof of Theorem C.14, we have
that (gm,∗

1:H , ga,∗1:H) is an ϵ-team optimal strategy of L is g∗
1:H

is an ϵ-team optimal strategy of D′
L.

Therefore, we complete the proof.

D Deferred Details of §5

In the following, we will use ¯ to denote the elements and random variables in the Dec-POMDP D.
We first introduce the notion of perfect recall (Kuhn, 1953):
Definition D.1 (Perfect recall). We say that agent i has perfect recall if ∀h ∈ 2, · · · , H , it holds that
τi,h−1 ∪ {ai,h−1} ⊆ τi,h. If for any i ∈ [n], agent i has perfect recall, we call that the Dec-POMDP
has a perfect recall property.
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D.0.1 Proof of Theorem 5.1

Proof. sQC⇒ SI-CIB:
Let D be the Dec-POMDP with an sQC information structure, and D satisfy Assumptions 3.3,
3.4, and 3.5. To prove that D has SI-CIB, it is sufficient to prove that for any h = 2, · · · , H ,
fix any h1 ∈ [h − 1], i1 ∈ [n], and for any g1:h−1 ∈ G1:h−1, g

′
i1,h1

∈ Gi1,h1
, let g′h1

:=
(g1,h1

, · · · , g′i1,h1
, · · · , gn,h1

) and g′1:h−1 := (g1, · · · , g′h1
, · · · , gh−1), the following holds

P(sh, ph | ch, g1:h−1) = P(sh, ph | ch, g′1:h−1). (D.1)

We prove this case-by-case as follows:

1. If there exists some i3 ̸= i1 such that σ(τ i1,h1
) ∪ σ(ai1,h1

) ⊆ σ(τ i3,h), then from Assumption
3.5, we know that σ(τ i1,h1

) ∪ σ(ai1,h1
) ⊆ σ(ch). Therefore, there exist deterministic functions

β1, β2 such that τ i1,h1
= β1(ch), ai1,h1

= β2(ch), and further it holds that

P(sh, ph | ch, g1:h−1) = P(sh, ph |β1(ch), β2(ch), ch, g1:h−1)

= P(sh, ph | τ i1,h1 , ai1,h1 , ch, g1:h−1) = P(sh, ph | τ i1,h1 , ai1,h1 , ch, g
′
1:h−1).

The last equality is due to the fact that the input and output of gi1,h1
are τ i1,h1 and ai1,h1 ,

respectively.

2. If there does not exist any i2 ̸= i1 such that σ(τ i1,h1
)∪σ(ai1,h1

) ⊆ σ(τ i2,h), i.e., for all i2 ̸= i1,
either σ(τ i1,h1

) ⊈ σ(τ i2,h) or σ(ai1,h1
) ⊈ σ(τ i2,h), then agent (i1, h1) does not influence agent

(i2, h) for any i2 ̸= i1, since D is sQC. Now, we first claim that agent (i1, h1) does not influence
sh1+1: since if it influences, from Assumption 3.4, there exists some i3 ̸= i1 such that agent
(i1, h1) influences oi3,h1+1; however, from Assumption 2.1 (e), we know oi3,h1+1 ∈ τ i3,h1+1 ⊆
τ i3,h; therefore, agent (i1, h1) influences agent (i3, h), contradicting the argument above that the
former does not influence (i2, h) for any i2 ̸= i1. Hence, we further have that agent (i1, h1) does
not influence sh2

for any h2 > h1. Therefore, by Assumption 3.3, for any h2 > h1, ai1,h1
/∈ τh2

.

Second, we claim that agent (i1, h1) does not influence τ i4,h2
, for any i4 ∈ [n] and h2 > h1.

This is because of the fact that agent (i1, h1) does not influence sh1+1 and thus not oi4,h1+1 for
any i4 ∈ [n], together with the fact proved above that ai1,h1

/∈ τh1+1, implies that agent (i1, h1)
does not influence any element in τ i4,h1+1 for any i4 ∈ [n], either directly or indirectly. Since
τ i4,h1+1 is the input of agent i4’s strategy at timestep h1+1 to decide ai4,h1+1, agent (i1, h1) thus
does not influence ai4,h1+1 for any i4 ∈ [n], either, which, together with the fact that it does not
influence sh1+2 and thus not oi4,h1+2 for any i4 ∈ [n], further implies that it does not influence
any element in τ i4,h1+2 for any i4 ∈ [n]. By recursion, agent (i1, h1) does not influence τ i4,h2

for any i4 ∈ [n] and h2 > h1.

Therefore, agent (i1, h1) does not influence ch = ∩ni4=1τ i4,h nor ph = τh\ch, which thus leads
to

P(sh, ph | ch, g1:h−1) = P(sh, ph | ch, g′1:h−1).

SI-CIB⇒ sQC:
Since D has perfect recall and has SI-CIB, i.e., ∀i ∈ [n], h ∈ [H],∀g1:h−1, g

′
1:h−1 ∈ G1:h−1, ch ∈

Ch, sh ∈ S, ph ∈ Ph, the following holds

P(sh, ph | ch, g1:h−1) = P(sh, ph | ch, g′1:h−1).

Our goal is to prove that D is sQC (up to null sets). In particular, we meant to prove that if agent
(i1, h1) influences agent (i2, h2) in the intrinsic model of the Dec-POMDP (cf. §F), then under any
strategy g1:H ∈ G1:H , σ(τ i1,h1) ⊆ σ(τ i2,h2) except the null sets generated by g1:H .

We prove this by contradiction. If this is not true, then there exists some strategy g1:H
and i1, i2 ∈ [n], h1, h2 ∈ [H], such that agent (i1, h1) influences agent (i2, h2), but either
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σ(τ i1,h1
) ⊈ σ(τ i2,h2

) or σ(ai1,h1
) ⊈ σ(τ i2,h2

) (up to the null sets generated by g1:H ). First, we
can assume i2 ̸= i1, since otherwise it always holds that τ i1,h1

⊆ τ i1,h2
and ai1,h1

∈ τ i1,h2
, due to

the assumption that the agents in D have perfect recall.

Then, we discuss the following different cases. Note that in the following discussion, when it comes
to σ-algebra inclusion, we meant it up to the null sets generated by g1:H .

1. If σ(ai1,h1
) ⊈ σ(τ i2,h2

), then it implies that σ(ai1,h1
) ⊈ σ(ch2

) because ch2
⊆ τ i2,h2

. This
also implies that ai1,h1

/∈ ch2
, and thus ai1,h1

∈ pi1,h2
due to perfect recall. Note that there must

exist some realizations ch2
∈ Ch2

, ph2
∈ Ph2

, sh2
∈ S such that ch2

has non-zero probability
under g1:h2−1, and P(sh2

, ph2
| ch2

, g1:h2−1) ̸= 0. Meanwhile, there must exist another different
action realization a′i1,h1

such that

P(sh2 , ph2
\{ai1,h1} ∪ {a′i1,h1

} | ch2 , g1:h2−1) ̸= 0, (D.2)

since otherwise it holds that σ(ai1,h1) ⊆ σ(ch2). Actually, this means that there are some non-
zero probability trajectories containing ai1,h1 and ch2 , and some non-zero probability trajectories
containing a′i1,h1

and ch2 . Then, we define another strategy g′i1,h1
as:

∀τ i1,h1
∈ T i1,h1

, g′i1,h1
(τ i1,h1

) = a′i1,h1
, (D.3)

and we let g′h1
:= (g1,h1

, · · · , g′i1,h1
, · · · , gn,h1

) and g′1:h2−1 := (g1, · · · , g′h1
, · · · , gh2−1).

Now we claim that ch2
has non-zero probability under g′1:h2−1. From that ch2

has non-
zero probability under g1:h2−1, and P(sh2

, ph2
\{ai1,h1

} ∪ {a′i1,h1
} | ch2

, g1:h2−1) ̸= 0, we
can get P(a′i1,h1

, ch2 | g1:h2−1) > 0. Since g′1:h2−1 only differs from g1:h2−1 in the strat-
egy of agent (i1, h1), and g′i1,h1

always chooses a′i1,h1
, then we get P(a′i1,h1

, ch2 | g′1:h2−1) ≥
P(a′i1,h1

, ch2
| g1:h2−1) > 0 because g1:h2−1 and g′1:h2−1 are the same in those trajectories con-

taining a′i1,h1
and ch2

, and thus P(ch2
| g′1:h2−1) > 0. Hence, we prove our claim.

Meanwhile, due to (D.3), notice that

P(sh2
, ph2

| ch2
, g′1:h2−1) = 0 ̸= P(sh2

, ph2
| ch2

, g1:h2−1), (D.4)

which leads to a contradiction to the fact that D has SI-CIB.

2. If σ(ai1,h1
) ⊆ σ(τ i2,h2

), then it implies that σ(τ i1,h1
) ⊈ σ(τ i2,h2

), and further implies
that σ(τ i1,h1

) ⊈ σ(ch2
) since ch2

⊆ τ i2,h2
. Note that there must exist some realizations

ch2
∈ Ch2

, τ i2,h2
∈ T i2,h2

such that τ i2,h2
has non-zero probability under g1:h2−1 and ch2

⊆
τ i2,h2

, and there exist two realizations τ i1,h1
, τ ′i1,h1

∈ T i1,h1
such that P(τ i1,h1

| τ i2,h2
) >

0,P(τ ′i1,h1
| τ i2,h2) > 0, since otherwise, it holds that σ(τ i1,h1) ⊆ σ(ch2). Furthermore,

we know that there exist sh2
∈ S, ph2

∈ Ph2
such that P(sh2

, ph2
| ch2

, g1:h2−1) > 0 and
τ ′i2,h2

⊆ ch2
∪ ph2

. Since σ(ai1,h1
) ⊆ σ(τ i2,h2

), we know that there exists ai1,h1
that

P(ai1,h1
| τ i2,h2

) = 1. Let τ := τ i1,h1
\ch2

and τ ′ := τ ′i1,h1
\ch2

. and consider another ac-
tion a′i1,h1

̸= ai1,h1 and strategy g′i1,h1
defined such that

g′i1,h1
(τ i1,h1

) = a′i1,h1
, g′i1,h1

(τ ′i1,h1
) = ai1,h1

, (D.5)

and keeps g′i1,h1
(τ ′′i1,h1

) the same as gi1,h1
(τ ′′i1,h1

) for any other τ ′′i1,h1
. We denote g′h1

:=
(g1,h1

, · · · , g′i1,h1
, · · · , gn,h1

) and g′1:h2−1 := (g1, · · · , g′h1
, · · · , gh2−1). Since (τ ′i1,h1

, τ i2,h2)
has non-zero probability under g1:h2−1 and P(ai1,h1 | τ i2,h2), then we know (τ ′i1,h1

, τ i2,h2) has
non-zero probability under g;1:h2−1. Hence, we know that ch2

has non-zero probability under
g;1:h2−1. Meanwhile, it holds that

P(sh2 , ph2
| ch2 , g

′
1:h2−1) =

P(sh2
, ph2

, ch2
| g′1:h2−1)

P(ch2 | g′1:h2−1)

=
P(sh2

, τh2
| g′1:h2−1)

P(ch2 | g′1:h2−1)
= 0 ̸= P(sh2 , ph2

| ch2 , g1:h2−1),

(D.6)
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where the third equal sign is because ai1,h1
∈ τh2

, τ i1,h1
⊆ τh2

from perfect recall, and
ai1,h1

, τ i1,h1
can never happen together under g′1:h2−1 due to (D.5). Therefore, (D.6) leads to

a contradiction to the fact that D has SI-CIB and thus completes the proof.

E Collection of Algorithm Pseudocodes

Here we collect both our planning and learning algorithms as pseudocodes in Algorithms 1, 2, 3, 4,
5, and 6.

Algorithm 1 Planning in QC LTC Problems

Require: LTC L, accuracy levels ϵr, ϵz > 0
Reformulate L to DL based on Eq. (C.1).
Expand DL to D†

L based on Eq. (4.1).
Refine D†

L to D′
L based on L.

Construct expected Approximate Common-information ModelM from D′
L with error ϵr, ϵz .

g∗
1:H̃
← Algorithm 6(M)

g̃∗
1:H̃
← φ(g∗

1:H̃
,DL)

gm,∗
1:H ← {g̃∗1 , g̃∗3 , · · · , g̃∗2H−1}
ga,∗1:H ← {g̃2, g̃4, · · · , g̃2H}
Return (gm,∗

1:H , ga,∗1:H)

Algorithm 2 Learning in QC LTC Problems

Require: Underlying environment LTC L, iteration number K.
Reformulate L to DL based on Eq. (C.1).
Refine DL to D′

L based on Eq. (4.1).
Obtain {g1:H,j}Kj=1 by calling Algorithm 3 of (Golowich et al., 2022).
for j = 1 to K do

Construct M̂(g1:H,j) by calling Algorithm 5 of (Liu & Zhang, 2023) with the underlying
environment D′

L and g1:H,j .
gj,∗
1:H
← Algorithm 6(M̂(g1:H,j))

end for
g∗
1:H
← Algorithm 8({gj,∗

1:H
}Kj=1) of (Liu & Zhang, 2023).

g̃∗
1:H̃
← φ(g∗

1:H
,DL)

gm,∗
1:H ← {g̃∗1 , g̃∗3 , · · · , g̃∗2H−1}
ga,∗1:H ← {g̃2, g̃4, · · · , g̃2H}
Return (gm,∗

1:H , ga,∗1:H)

F Decentralized POMDPs (with Information Sharing)

A Dec-POMDP with n agents and potential information sharing can be characterized by a tuple

D = ⟨H,S, {Ai,h}i∈[n],h∈[H], {Oi,h}i∈[n],h∈[H], {Th}h∈[H], {Oh}h∈[H], µ1, {Rh}h∈[H]⟩,

where H denotes the length of each episode, S denotes state space, and Ai,h denotes the control
action spaces of agent i at timestep h. We denote by sh ∈ S the state and by ai,h the control action
of agent i at timestep h. We use ah := (a1,h, · · · , an,h) ∈ Ah := A1,h × A2,h × · · ·An,h to
denote the joint control action for all the n agents at timestep h, with Ah denoting the joint control
action space at timestep h. We denote T = {Th}h∈[H] the collection of transition functions, where
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Algorithm 3 Vanilla Realization of φ(ğ1:H̆ ,DL)

Require: Strategy ğ1:H̆ , QC Dec-POMDP DL
g̃1:H̆ ← ∅
for h2 = 1 to H̆ , i2 = 1 to n, τ̃i2,h2

∈ T̃i2,h2
do

τ̆i2,h2 ← τ̃i2,h2

for h1 = 1 to h2 − 1, i1 = 1 to n do
if σ(τ̃i1,h1

) ⊆ σ(τ̃i2,h2
) in DL then

ãi1,h1
← g̃i1,h1

(τ̃i1,h1
)

τ̆i2,h2
← τ̆i2,h2

∪ {ãi1,h1
}

end if
end for
g̃i2,h2

(τ̃i2,h2
)← ği2,h2

(τ̆i2,h2
)

end for
Return g̃1:H̃

Algorithm 4 Efficient Implementation of φ(ğ1:H̆ ,DL)

Require: Strategy ğ1:H̆ , QC Dec-POMDP DL

for h = 1 to H̆ do
for i = 1 to n do

Agent i receives τ̃i,h
τ̆i,h ← Recover(τ̃i,h, ğ1:h−1,DL) \\ Defined in Algorithm 5
Agent i chooses ği,h(τ̆i,h) as ãi,h

end for
end for

Algorithm 5 Recover τ̆i,h from τ̃i,h

Require: Information τ̃i,h, Strategy ğ1:h−1, QC Dec-POMDP DL
τ̆i,h ← τ̃i,h
for j = 1 to n, h′ = 1 to h− 1 do

if σ(τ̃j,h′) ⊆ σ(c̃h) in DL and ãj,h′ /∈ τ̆i,h then
τ̆j,h′ ← Recover(τ̃j,h′ , ğ1:h′−1,DL)
ãj,h′ ← ğj,h′(τ̆j,h)
τ̆i,h ← τ̆j,h ∪ {ãj,h′}

end if
end for
Return τ̆i,h
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Algorithm 6 Planning in Dec-POMDP with expected Approximate Common-information Model

Require: Expected Approximate Common-information ModelM.
for i ∈ [n] and ĉH+1 ∈ ĈH+1 do
V ∗,M
i,H+1

(ĉH+1)← 0

end for
for h = H to 1 do

for ĉh ∈ Ĉh do
Define Q∗,M

h (ĉh, γ1,h, · · · , γn,h) := R̂M
h (ĉh, γh) + EM

[
V ∗,M
h+1 (ĉh+1) | ĉh, γh

]
(
ĝ∗1,h(· | ĉh, ·), · · · , ĝ∗n,h(· | ĉh, ·)

)
← argmax

γ1:n,h∈Γh

Q∗,M
h (ĉh, γ1,h, · · · , γn,h) (E.1)

end for
V ∗,M
h (ĉh)← maxγ1:n,h

Q∗,M
h (ĉh, γ1,h, · · · , γn,h)

end for
Return ĝ∗

1:H

Th(· | sh, ah) ∈ ∆(S) gives the transition probability to the next state sh+1 when taking the joint
control action ah at state sh. We use µ1 ∈ ∆(S) to denote the distribution of the initial state s1. We
denote byOi,h the observation space and by oi,h ∈ Oi,h the observation of agent i at timestep h. We
use oh := (o1,h, o2,h, · · · , on,h) ∈ Oh := O1,h × O2,h × · · ·On,h to denote the joint observation
of all the n agents at timestep h, with Oh denoting the joint observation space at timestep h. We
use {Oh}h∈[H] to denote the collection of emission matrices, where oh ∼ Oh(· | sh) ∈ ∆(Oh) at
timestep h under state sh ∈ S. For notational convenience, we adopt the matrix convention, where
Oh is a matrix with each row Oh(· | sh) for all sh ∈ S . Also, we denote by Oi,h the marginalized
emission for agent i at timestep h. Finally, {Rh}h∈[H] is a collection of reward functions among all
agents, whereRh : S ×Ah → [0, 1].

At timestep h, each agent i in the Dec-POMDP has access to some information τi,h, a subset of his-
torical joint observations and actions, namely, τi,h ⊆ {o1, a1, o2, · · · , ah−1, oh}, and the collection
of all possible such available information is denoted by Ti,h. We use τh to denote the joint available
information at timestep h. Meanwhile, agents may share part of the history with each other. The
common information ch = ∪ht=1zt at timestep h is thus a subset of the joint history τh, where zh
is the information shared at timestep h. We use Ch to denote the collection of all possible ch at
timestep h, and use Ti,h to denote the collection of all possible τi,h of agent i at timestep h. Besides
the common information ch, each agent also has her private information pi,h = τi,h\ch, where the
collection of pi,h is denoted by Pi,h. We also denote by ph the joint private information, and by Ph

the collection of all possible ph at timestep h. We refer to the above the state-space model of the
Dec-POMDP (with information sharing).

Each agent i at timestep h chooses the control action ai,h based on some strategy gi,h : Ti,h → Ai,h.
We denote by gh := (g1,h, g2,h, · · · , gn,h) the joint control strategy of all the agents, and by g1:h :=
(g1, g2, · · · , gh),∀h ∈ [H] the sequence of joint strategies from timestep 1 to h. We use Gi,h to
denote the strategy space of gi,h, and use Gh,G1:h to denote joint strategy spaces, correspondingly.

Next, we introduce some background on the intrinsic model and information structure of Dec-
POMDPs.

F.1 Intrinsic Model

In an intrinsic model (Witsenhausen, 1975), we regard the agent i at different timesteps as dif-
ferent agents, and each agent only acts once throughout. Any Dec-POMDP D with n agents
can be formulated within the intrinsic-model framework, and can be characterized by a tuple
⟨(Ω,F ), N, {(Ul,Ul)}Nl=1, {(Il,Il)}Nl=1⟩ (Mahajan et al., 2012), where (Ω,F) is a measurable
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space of the environment, N = n × H is the number of agents in the intrinsic model. By a slight
abuse of notation, we write [N ] := [n]× [H], and write l := (i, h) ∈ [N ] for notational convenience.
This way, any agent l ∈ [N ] corresponds to an agent i ∈ [n] at timestep h ∈ [H] in the state-space
model. We denote by Ul the measurable action space of agent l and by Ul the σ-algebra over Ul. For
A ⊆ [N ], let HA := Ω ×

∏
l∈A Ul and H := H[N ]. For any σ-algebra C over HA, let ⟨C ⟩ denote

the cylindrical extension of C on H. Let HA := ⟨F⊗(⊗l∈AUl)⟩ and H = H[N ]. We denote
by Il the space of information available to agent l, and by Il the σ-algebra over H. For l ∈ [N ],
we denote by Il the information of agent l, and Ul the action of agent l. The spaces and random
variables of agent l = (i, h) in the intrinsic model are related to those in the state-space model as
follows: ∀l = (i, h) ∈ [N ],Ul = Ai,h, Il = Ti,h, Ul = ai,h, Il = τi,h.

F.2 Information Structures of Dec-POMDPs

An important class of IS is the quasi-classical one, which is defined as follows (Witsenhausen, 1975;
Mahajan et al., 2012; Yüksel & Başar, 2023).

Definition F.1 (Quasi-classical Dec-POMDPs). We call a Dec-POMDP problem QC if each agent
in the intrinsic model knows the information available to the agents who influence her, directly or
indirectly, i.e. ∀l1, l2 ∈ [N ], l1 = (i1, h1), l2 = (i2, h2), i1, i2 ∈ [n], h1, h2 ∈ [H], if agent l1
influences agent l2, then Il1 ⊆ Il2 .

Furthermore, strictly quasi-classical IS (Witsenhausen, 1975; Mahajan & Yüksel, 2010), as a sub-
class of QC IS, is defined as follows.

Definition F.2 (Strictly quasi-classical Dec-POMDPs). We call a Dec-POMDP problem sQC if each
agent in the intrinsic model knows the information and actions available to the agents who influence
her, directly or indirectly. That is, ∀l1, l2 ∈ [N ], l1 = (i1, h1), l2 = (i2, h2), i1, i2 ∈ [n], h1, h2 ∈
[H], if agent l1 influences agent l2, then Il1 ∪ ⟨Ul1⟩ ⊆ Il2 .

F.3 Intrinsic Model of LTC Problems

Firstly, we formally define the Dec-POMDP induced by LTC as follows

Definition F.3 (Dec-POMDP (with information sharing) induced by LTC). For an LTC L , we call
a Dec-POMDP (with information sharing)DL the Dec-POMDP (with information sharing) induced
by L if the agents share information only following the baseline sharing protocol of L, i.e., without
additional sharing. We may refer to it as the Dec-POMDP induced by LTC or the induced Dec-
POMDP for short.

Given any LTC L of the state-space-model form defined in §2.1, we define the intrinsic model of L
as a tuple ⟨(Ω,F ), N, {(Ul,Ul)}Nl=1, {(Ml,Ml)}Nl=1, {(Il− ,Il−)}Nl=1,
{(Il+ ,Il+)}Nl=1⟩, where (Ω,F ) is the measure space representing all the uncertainty in the system;
N = n ×H is the number of agents in the intrinsic model. By a slight abuse of notation, we write
[N ] := [n] × [H], and write l := (i, h) ∈ [N ] for convenience. This way, any agent l ∈ [N ]
corresponds to an agent i ∈ [n] at timestep h ∈ [H] in the state-space model, and we thus define
l− := (i, h−) and l+ := (i, h+) accordingly. We denote by Ul and Ml the measurable control and
communication action spaces of agent l, and by Ul and Ml the σ-algebra over Ul and Ml, respec-
tively. For any A ⊆ [N ], let HA := Ω×

∏
l∈A(Ul×Ml) and H := H[N ]. For any σ-algebra C over

HA, let ⟨C ⟩ denote the cylindrical extension of C on H. Let HA := ⟨F⊗(⊗l∈AUl)⊗(⊗l∈AMl)⟩,
H = H[N ]. We denote by Il− and Il+ the spaces of information available to agent l before and
after additional sharing, respectively, and by Il− ⊆ H and Il+ ⊆ H the associated σ-algebra.
The spaces and random variables of agent l = (i, h) in the intrinsic model are related to those in
the state-space model as follows: ∀l = (i, h) ∈ [N ],Ul = Ai,h,Ml = Mi,h, Il− = Ti,h− , Il+ =
Ti,h+ , Ul = ai,h,Ml = mi,h, Il− = τi,h− , Il+ = τi,h+ . For notational convenience, for any random
variable B in LTC and the σ-algebra B generated by B, we overload σ(B) to denote the cylindrical
extension of B on H, i.e., σ(B) = ⟨B⟩.
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G Conditions Leading to Assumption 4.3

As a minimal requirement for computational tractability (for both Dec-POMDPs and LTCs), As-
sumption 4.3 is needed for the one-step tractability of the team-decision problem involved in the
value iteration in Algorithm 6. We now adapt several such structural conditions from (Liu & Zhang,
2023) to the LTC setting, which lead to this assumption and have been studied in the literature. Note
that since we need to do planning in the approximate model M, which is oftentimes constructed
based on the original problem L and approximate belief {PM,c

h (sh, ph | ĉh)}h∈[H], we necessarily
need assumptions on these two models L andM, for which we refer to as the Part (1) and Part (2)
of the conditions below, respectively.

• Turn-based structures. Part (1): At each timestep h ∈ [H], there is only one agent, denoted
as ct(h) ∈ [n], that can affect the state transition. More concretely, the transition dynamics take
the forms of Th : S × Act(h) → ∆(S). Additionally, we assume the reward function admits an
additive structure such that Rh(sh, ah) =

∑
i∈[n]Ri,h(sh, ai,h) for some functions {Ri,h}i∈[n].

Meanwhile, since only agent ct(h) takes the action, we assume the increment of the common
information zbh+1 = χh+1(ph+ , act(h),h, oh+1). Part (2): No additional requirement. Such a
structure has been commonly studied in (fully observable) stochastic games and multi-agent RL
(Filar & Vrieze, 2012; Bai & Jin, 2020).

• Nested private information. Part (1): No additional requirement. Part (2): At each timestep
h ∈ [H], all the agents form a hierarchy according to the private information after ai,h they
possess, in the sense that ∀ i, j ∈ [n], j < i, pj,h = Y i,j

h (pi,h) for some function Y i,j
h . More

formally, the approximate belief satisfies that PM,c
h (pj,h = Y i,j

h (pi,h) | pi,h, ĉh) = 1. Such a
structure has been investigated in (Peralez et al., 2024) with heuristic search, and in (Liu & Zhang,
2023) with finite-time complexity analysis.

• Factorized structures. Part (1): At each timestep h ∈ [H], the state sh can be partitioned into
n local states, i.e., sh = (s1,h, s2,h, · · · , sn,h). Meanwhile, the transition kernel takes the product
form of Th(sh+1 | sh, ah) =

∏n
i=1 Ti,h(si,h+1 | si,h, ai,h), the emission also takes the product

form of Oh(oh | sh) =
∏n

i=1 Oi,h(oi,h | si,h), and the reward function can be decoupled into n
terms such that Rh(sh, ah) =

∑
i,hRh(si,h, ai,h). Part (2): At each even timestep h ∈ [H],

the approximate common information is also factorized so that ĉh = (ĉ1,h, ĉ2,h, · · · , ĉn,h) and its
evolution satisfies that ĉi,h+1 = ϕ̂i,h+1(ĉi,h, zi,h) for some function ϕ̂i,h+1. Correspondingly, the
approximate belief need to satisfy that PM,c

h (sh, ph | ĉh) = Πn
i=1P

M,c
i,h (si,h, pi,h | ĉi,h) for some

functions {PM,c
i,h }i∈[n],h∈[H] Such a structure, under general information sharing protocols, can

lead to non-classical IS. In this case, it can be viewed an example of non-classical ISs where the
agents have no incentive for signaling (Yüksel & Başar, 2023, §3.8.3).

Lemma G.1. Given any LTC problem L and D′
L is the Dec-POMDP after reformulation and ex-

pansion. For anyM to be the approximate model of DL and {PM,c
h }h∈[H] to be the approximate

belief, if they satisfy any of the 3 conditions above, then Eq. (E.1) in Algorithm 6 can be solved in
polynomial time, i.e., Assumption 4.3 holds.

Proof. We prove the result case by case:
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• Turn-based structures: For any h = 2t, t ∈ [H], γct(h),h ∈ Γct(h), γ−ct(h),h, γ
′
−ct(h),h ∈

Γ−ct(h),h, where ct(h) is the controller, it holds for any ĉh that

Q∗,M
h (ĉh, γct(h),h, γ−ct(h),h)

=
∑

sh,ph,sh+1,oh+1

PM,c
h (sh, ph | ĉh)Th(sh+1 | sh, γct(h),h(pct(h),h)γ−ct(h),h(p−ct(h),h))

Oh+1(oh+1 | sh+1)[Rh(sh, γct(h),h(pct(h),h)) + V ∗,M
h+1 (ĉh+1)]

=
∑

sh,ph,sh+1,oh+1

PM,c
h (sh, ph | ĉh)Th(sh+1 | sh, γct(h),h(pct(h),h)

Oh+1(oh+1 | sh+1)[Rh(sh, γct(h),h(pct(h),h)) + V ∗,M
h+1 (ĉh+1)],

where the last step is due to the fact that ĉh+1 = ϕ̂h+1(ĉh, zh+1). And zh+1 = zbh
2 +1

=

χh
2 +1(ph, act(h),h, oh+1). Therefore, right-hand side does no depend on γ−ct(h),h. Therefore,

Eq. (E.1) with complexity poly(S,Pct(h),Act(h)).

• Nested private information: For any i ∈ [n], h = 2t, t ∈ [H], we first define the ui,h ∈ Ui,h :=

{(×i
j=1Pj,h)× (×i−1

j=1Aj,h)→ Ai,h} and slightly abuse the notation for Q∗,M
h as follows

Q∗,M
h (ĉh, u1,h, · · · , un,h)

:=
∑

sh,ph,ah,sh+1,oh+1

PM,c
h (sh, ph | ĉh)Πn

i=11[ai,h = ui,h(p1:i,h, a1:i−1,h)]Th(sh+1 | sh, ah)

Oh+1(oh+1 | sh+1)[Rh(sh, ah) + V ∗,M
h+1 (ĉh+1)]

Since the space of Ui,h covers the space Γi,h, then for the u∗
1:n,h be an optimal one that maximize

the Q∗,M
h , we have

Q∗,M
h (ĉh, u

∗
1,h, · · · , u∗

n,h)

= max
{ui,h∈Ui,h}i∈[n]

Q∗,M
h (ĉh, u1,h, · · · , un,h) ≥ max

{γi,h∈Γi,h}i∈[n]

Q∗,M
h (ĉh, γ1,h, · · · , γn,h).

Meanwhile, due to the nested private information condition, for any ph ∈ Ph, there must exists
γ′
1:n,h such that γ′

1:n,h output the same actions as u∗
1:n,h under ph. Therefore, we can conclude

that

max
{ui,h∈Ui,h}i∈[n]

Q∗,M
h (ĉh, u1,h, · · · , un,h) = max

{γi,h∈Γi,h}i∈[n]

Q∗,M
h (ĉh, γ1,h, · · · , γn,h)

Therefore, we can solve Eq. (E.1) and compute γ∗
1:n,h from computing u∗

1:n,h, which can be solved
with complexity poly(Ph,Ah,S).

• Factorized structures: For any h ∈ [H], t ∈ [H], for any ĉh ∈ Ĉh, γh ∈ Γh we use backward
induction to prove that, there exist n functions {Fi,h}i∈[n] such that

Q∗,M
h (ĉh, γh) =

n∑
i=1

Fi,h(ĉi,h, γi,h)
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It holds for h = H + 1 obviously. For any h ≤ H , it holds that

Q∗,M
h (ĉh, γh)

=
∑

sh,ph,sh+1,oh+1

PM,c
h (sh, ph | ĉh)Th(sh+1 | sh, γh(ph))Oh+1(oh+1 | sh+1)

[

n∑
i=1

Ri,h(si,h, γi,h(pi,h) + Fi,h+1(ĉi,h+1, ĝ
∗
i,h+1(ĉi,h+1))]

=

n∑
i=1

∑
si,h,pi,h,si,h+1,oi,h+1

PM,c
i,h (si,h, pi,h | ĉi,h)Th(si,h+1 | si,h, γi,h(pi,h))

Oi,h+1(oi,h+1 | si,h+1)[Ri,h(si,h, γi,h(pi,h) + Fi,h+1(ĉi,h+1, ĝ
∗
i,h+1(ĉi,h+1))]

=:

n∑
i=1

Fi,h(ĉi,h, γi,h).

Then, by induction, we know that it holds for any h ∈ [H]. We can define
ĝ∗i,h(ĉh) ∈ argmaxγi,h∈Γi,h

Fi,h+1(ĉi,h+1, γi,h), and thus solve Eq.(E.1) with complexity
∑n

i=1

poly(Si,Ai,h,Pi,h).

This completes the proof.

H Venn Diagrams of LTCs and General POSGs

LTCs
①QC LTCs

②QC LTCs w/ A

③sQC LTCs

④sQC LTCs w/ A

(a)

Dec-POMDPs

QC sQC

SI-CIB

PR

①

②

③

④

⑤

(b)

Figure 1: (a) Venn diagram of LTCs with different ISs: ① QC LTCs. ② QC LTCs satisfying As-
sumptions 3.2, 3.3, and 3.4. ③ sQC LTCs. ④ sQC LTCs satisfying Assumptions 3.2, 3.3, and 3.4,
whose reformulated Dec-POMDPs have SI-CIB; (b) Venn diagram of general Dec-POMDPs with
different ISs. PR denotes perfect recall. ③ denotes the Dec-POMDPs we mainly consider, e.g., the
examples in (Nayyar et al., 2013a; Liu & Zhang, 2023).

Here, we show some examples of the areas ①-⑤ in the Venn diagram in Fig. 1b.

• ①: Multi-agent MDP (Boutilier, 1999) with historical states. The Dec-POMDPs satisfying that
for any h ∈ [H], i ∈ [n],Oi,h = S,Oi,h(s | s) = 1, ch = s1:h, ph = ∅ lie in the area ①.



Principled Learning-to-Communicate in Cooperative MARL: An Information-Structure Perspective

• ②: Uncontrolled state process without any historical information. The Dec-POMDPs satisfy-
ing that for any h ∈ [H], i ∈ [n], sh, ah, a

′
h,Th(· | sh, ah) = Th(· | sh, a′h), ch = ∅, pi,h = {oi,h}

lie in the area ②.

• ③: Dec-POMDPs with sQC information structure and perfect recall, and satisfying Assump-
tions 3.3 and 3.4. This class is what we mainly considered in §5.

• ④: State controlled by one controller with no sharing and only observability of controller. We
consider a Dec-POMDPD. The state dynamics are controller by only one agent (, for convenience,
agent 1), and only agent 1 has observability, i.e. Th(· | sh, a1,h, a−1,h) = Th(· | sh, a1,h, a′−1,h)
for all sh, a1,h, a−1,h, a

′
−1,h, andO−1,h = ∅. There is no information sharing, i.e. ch = ∅, p1,h =

{o1:h, a1:h−1}, pj,h = {aj,1:h−1},∀j ̸= 1. Then ∀j ̸= 1, h1 < h2 ∈ [H], agent (1, h1) does
not influence (j, h2), since τj,h2

= {aj,1:h2−1} is not influenced by agent (1, h1). Therefore, D
is sQC and has perfect recall, D is not SI (underlying state sh influenced by g1,1:h−1). This is
because D does not satisfy Assumption 3.4. Then D lies in the area ④.

• ⑤: One-step delayed observation sharing and two-step delayed action sharing. The Dec-
POMDPs satisfying that for any h ∈ [H], i ∈ [n], ch = {o1:h−1, a1:h−2}, pi,h = {ai,h−1, oi,h}
lie in the area ⑤.

I Experimental Results

For the experiments, we validate both the implementability and performance of our LTC algorithms,
and conduct ablation studies for LTCs with different communication costs and horizons.

Experimental setup We conduct our experiments on two popular and modest-scale partially ob-
servable benchmarks, Dectiger (Nair et al., 2003) and Grid3x3 (Amato et al., 2009). We train the
agents in each LTC problem in the two environments with 20 different random seeds and different
communication cost functions, and execute them in problems with horizons [4, 6, 8, 10]. To fit the
setting of LTC in our paper. We regularize the reward between [0,1] and set the base information
structure as one-step-delay. As for the communication cost function, we set Kh(Z

a
h) = α|Za

h |, and
set α ∈ [0.01, 0.05, 0.1] for the purpose of ablation study. Also, we study 2 baselines under the
same environment with information structure of one-step delay and fully-sharing, respectively. The
one-step-delay baseline can be regarded as an LTC problem with extremely high communication
cost, thus no additional sharing. On the other hand, the fully-sharing baseline is the LTC problem
with no communication cost.

Figure 2: The average-values achieved under different communication costs and horizons. Each full
bar, the dark part, and the light part denote the values associated with the reward, the communication
cost, and the overall objective (reward minus cost) of the agents, respectively. Note that, as baselines,
there is no communication cost in the no additional sharing and fully sharing cases.

Results and analysis The attained average-values are presented in Fig. 2, and the learning curves
are shown in Fig. 3. Additionally, the results of different horizons and communications costs over
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Figure 3: Learning curves with different communication costs.
Horizon/Cost No Sharing Cost=0.1 Cost=0.05 Cost=0.01 Fully Sharing

H=4 w/ cost 1.32±0.025 1.33±0.044 1.44±0.034 1.54±0.013 1.57±0.004

H=4 w/o cost - 1.36±0.032 1.48±0.034 1.59±0.002 -

H=6 w/ cost 1.95±0.009 1.97±0.07 2.08±0.068 2.26±0.012 2.29±0.002

H=6 w/o cost - 2.01±0.047 2.14±0.072 2.27±0.011 -

H=8 w/ cost 2.56±0.041 2.64±0.078 2.74±0.118 2.96±0.021 3.0±0.002

H=8 w/o cost - 2.7±0.044 2.83±0.117 2.98±0.02 -

H=10 w/ cost 3.31±0.024 3.37±0.135 3.51±0.153 3.69±0.029 3.87±0.007

H=10 w/o cost - 3.46±0.069 3.63±0.152 3.71±0.026 -

Table 1: Experimental results for Dectiger.

Horizon/Cost No Sharing Cost=0.1 Cost=0.05 Cost=0.01 Fully Sharing

H=4 w/ cost 0.14±0.003 0.14±0.019 0.15±0.002 0.26±0.028 -0.48±0.023

H=4 w/o cost - 0.14±0.019 0.21±0.007 0.33±0.023 -

H=6 w/ cost 0.33±0.02 0.32±0.025 0.4±0.009 0.48±0.059 -0.38±0.075

H=6 w/o cost - 0.32±0.025 0.54±0.02 0.62±0.075 -

H=8 w/ cost 0.52±0.084 0.52±0.051 0.58±0.072 0.67±0.031 -0.4±0.022

H=8 w/o cost - 0.52±0.051 0.72±0.035 0.82±0.074 -

H=10 w/ cost 0.73±0.02 0.73±0.037 0.9±0.169 1.03±0.019 -0.15±0.188

H=10 w/o cost - 0.73±0.037 1.08±0.14 1.25±0.062 -

Table 2: Experimental results for Grid3x3.

20 random seeds are shown in Tables 1 and 2. The results show that communication is beneficial
for agents to obtain higher values with better sample efficiency. Also, cheaper communication costs
can encourage agents to share more information, and jointly achieve a better strategy.

J Additional Figures

We provide a few figures to better illustrate the paradigms and algorithmic ideas of this paper. Fig. 4
and Fig. 5 illustrate the paradigm and the timeline of the LTC problems considered in this paper, and
Fig. 6 illustrates how Algorithm 1 solves the LTC problems, including the subroutines presented in
§4.

K Related Work

Communication-control joint optimization. The joint design of control and communication strate-
gies has been studied in the control literature (Xiao et al., 2005; Yüksel, 2013; Sudhakara et al.,
2021; Kartik et al., 2022). However, even with model knowledge, the computational complexity
(and associated necessary conditions) of solving these models remains elusive, let alone the sample
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complexity when it comes to learning. Moreover, these models mostly have more special structures,
e.g., with linear systems (Xiao et al., 2005; Yüksel, 2013), or allowing to share only instantaneous
observations (Sudhakara et al., 2021; Kartik et al., 2022).

Information sharing and information structures. Information structure has been extensively stud-
ied to characterize who knows what and when in decentralized control (Mahajan et al., 2012; Yüksel
& Başar, 2023). Our paper aims to formally understand LTC through the lens of information struc-
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tures. The common-information-based approaches to formalize information sharing in (Nayyar
et al., 2013b;a) serve as the basis of our work. In comparison, these results focused on the structural
results, without concrete computational (and sample) complexity analysis.

Partially observable MARL theory. Planning and learning in partially observable MARL are
known to be hard (Papadimitriou & Tsitsiklis, 1987; Lusena et al., 2001; Jin et al., 2020; Bernstein
et al., 2002). Recently, (Liu et al., 2022; Altabaa & Yang, 2024) developed polynomial-sample com-
plexity algorithms for partially observable stochastic games, but with computationally intractable
oracles; (Liu & Zhang, 2023) developed quasi-polynomial-time and sample algorithms for such
models, leveraging information sharing. In contrast, our paper focuses on optimizing/learning to
share, together with control strategy optimization/learning.

L Concluding Remarks

We formalized the learning-to-communicate problem under the Dec-POMDP framework, and pro-
posed a few structural assumptions for LTCs with quasi-classical information structures, violating
which can cause computational hardness in general. We then developed provable planning and
learning algorithms for QC LTCs. Along the way, we also established some relationship between
the strictly quasi-classical information structure and the condition of having strategy-independent
common-information-based beliefs, as well as solving general Dec-POMDPs without computa-
tionally intractable oracles beyond those with the SI-CIB condition. Our work has opened up
many future directions, including the formulation, together with the development of provable plan-
ning/learning algorithms, of LTC in non-cooperative (game-theoretic) settings, and the relaxation of
(some of) the structural assumptions when it comes to equilibrium computation.
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