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ADVERSARIALLY ROBUST FEDERATED LEARNING
FOR NEURAL NETWORKS

ABSTRACT

In federated learning, data is distributed among local clients which collaboratively
train a prediction model using secure aggregation. To preserve the privacy of the
clients, the federated learning paradigm requires each client to maintain a pri-
vate local training data set, and only uploads its summarized model updates to
the server. In this work, we show that this paradigm could lead to a vulnerable
model, which collapses in performance when the corrupted data samples (under
adversarial manipulations) are used for prediction after model deployment. To
improve model robustness, we first decompose the aggregation error of the cen-
tral server into bias and variance, and then, propose a robust federated learning
framework, named Fed_BVA, that performs on-device adversarial training using
the bias-variance oriented adversarial examples supplied by the server via asym-
metrical communications. The experiments are conducted on multiple benchmark
data sets using several prevalent neural network models, and the empirical results
show that our framework is robust against white-box and black-box adversarial
corruptions under both IID and non-IID settings.

1 INTRODUCTION

The explosive amount of decentralized user data collected from the ever-growing usage of smart
devices, e.g., smartphones, wearable devices, home sensors, etc., has led to a surge of interest in
the field of decentralized learning. To protect the privacy-sensitive data of the clients, federated
learning (McMahan et al., [2017; [Yang et al., 2019) has been proposed. Federated learning only
allows a group of clients to train local models using their own data, and then collectively merges
the model updates on a central server using secure aggregation (Acar et al., [2018)). Due to its high
privacy-preserving property, federated learning has attracted much attention in recent years along
with the prevalence of efficient light-weight deep models (Howard et al.| 2017} and low-cost network
communications (Wen et al., 2017; Konecny et al., 2016).

In federated learning, the central server only inspects the secure aggregation of the local models as
a whole. Consequently, it is susceptible to clients’ corrupted updates (e.g., system failures, etc).
Recently, multiple robust federated learning models (Fang et al.,[2019; |Pillutla et al., [2019} |[Portnoy
& Hendler, 20205 |Mostafal 2019) have been proposed. These works only focus on performing client-
level robust training or designing server-level aggregation variants with hyper-parameter tuning for
Byzantine failures. However, none of them have the ability to mitigate the federated learning’s
vulnerability when the adversarial manipulations are present during testing, which as we shown in
Section[4.T]that is mainly due to the generalization error in the model aggregation.

Our work bridges this gap by investigating the error incurred during the aggregation of federated
learning from the perspective of bias-variance decomposition (Domingos) [2000; [Valentini & Diet-
terichl 2004). Specifically, we show that the generalization error of the aggregated model on the
central server can be decomposed as the combination of bias (triggered by the main prediction of
these clients) and variance (triggered by the variations among clients’ predictions). Next, we pro-
pose to perform the local robust training on clients by supplying them with a tiny amount of the
bias-variance perturbed examples generated from the central server via asymmetrical communica-
tions. The experiments are conducted on neural networks with cross-entropy loss, however, other
loss functions are also applicable as long as their gradients w.r.t. bias and variance are tractable to
estimate. In this way, any gradient-based adversarial training strategies (Goodfellow et al., 2015}
Madry et al.,|2018) could be used. Compared with previous work, our major contributions include:

e We provide the exact solution of bias-variance analysis w.r.t. the generalization error which is
perfectly suitable for neural network based federated learning. As a comparison, performing
adversarial attacks or training with conventional federated learning methods will only focus on
the bias of the central model but ignore the variance.
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e We demonstrate that the conventional federated learning framework is vulnerable to the strong
attacking methods with increasing communication rounds even if the adversarial training using
the locally generated adversarial examples is performed on each client.

e Without violating the clients’ privacy, we show that providing a tiny amount of bias-variance
perturbed data from the central server to the clients through asymmetrical communication could
dramatically improve the robustness of the training model under various settings.

2 PRELIMINARIES

2.1 SETTINGS

In federated learning, there is a central server and K different clients, each with access to a private
training set Dy, = {(xf, tf)}?:kl, where J:f tf, and ny, are the features, label, and number of training
examples in the k*® client (k = 1,--- , K). Each data Dy, is exclusively owned by client & and will
not be shared with the central server or other clients. In addition, there is a small public training

set D, = {(srj, tj)}?;l with n, training examples from the server that is shared with clients, where

ng K Zszl ng. Note that this will not break the privacy constraints, for example, hospitals (local
devices) that contribute to a federated learned medical image diagnosis system could take a few
publicly accessible images as additional inputs. The goal of federated learning is to train a global
classifier f(-) using knowledge from all the clients such that it generalizes well over test data Dyes.
The notation used in this paper is summarized in the Appendix (see Table ).

2.2 PROBLEM DEFINITION

In this paper, we study the adversarial robustness of neural networksﬂ in federated learning setting,
and we define robust decentralized learning as follows.

Definition 2.1. (Adversarially Robust Federated Learning)

Input: (1) A set of private training data {Dk}kK:1 on K different clients; (2) Tiny amount of training
data D; on the central server; (3) Learning algorithm f(-) and loss function L(-, -).

Output: A trained model on the central server that is robust against adversarial perturbation.

We would like to point out that our problem definition has the following properties: Asymmet-
rical communication: The asymmetrical communication between each client and server cloud is
allowed: the server provides both global model parameters and limited shared data to the clients;
while each client only uploads its local model parameters back to the server. Data distribution:
All training examples on the clients and the server are assumed to follow the same data distribution.
However, the experiments show that our proposed algorithm also achieves outstanding performance
under the non-IID setting, which could be common among personalized clients in real scenarios.
Shared learning algorithm: All the clients are assumed to use the identical model f(-), including
architectures as well as hyper-parameters (e.g., learning rate, local epochs, local batch size).

Remark. The basic assumption of this problem setting is that the learning process is clean (no
malicious behaviors are observed during training), however, the intentionally generated adversarial
poisoning data will be mixed with clean data during training. The eventual trained model being
deployed on the devices will be robust against potential future adversarial attacks.

2.3 BIAS-VARIANCE TRADE-OFF

Following (Domingos| |2000; |Valentini & Dietterich, [2004), we define the optimal prediction, main
prediction as well as the bias, variance, and noise for any real-valued loss function L(-, -) as follows:

Definition 2.2. (Optimal Prediction and Main Prediction) Given loss function L(-, -) and learning
algorithm f(-), optimal prediction ¥, and main prediction y,, for an example are defined as:
ys(z) = argmin E,[L(y, )] and ym(z) = argmin Ep[L(fp(z),y")] (D

where ¢ and D are viewed as the random variables to denote the class label and training set, and fp
denotes the model trained on D. In short, the main prediction is the prediction whose average loss
relative to all the predictions over data distributions is minimum, e.g., the main prediction for zero-
one loss is the mode of predictions. In this work, we show that the main prediction is the average
prediction of client models for mean squared (MSE) loss and cross-entropy (CE) loss in Section

Our theoretical contribution mainly focuses on classification using neural networks with cross-entropy loss and mean squared loss.
However, the proposed framework is generic to allow the use of other classification loss functions as well.
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Definition 2.3. (Bias, Variance and Noise) Given a loss function L(-, -) and a learning algorithm
f(-), the expected loss Ep ,[L( fp(z),t)] for an example x can be decomposecﬂ into bias, variance
and noise as follows:

B(z) = L(ym,y«) and V(x) =Ep[L(fp(z),ym)] and N(z)=Ei|L(y.t)] (2)

In short, bias is the loss incurred by the main prediction w.r.t. the optimal prediction, and variance is
the average loss incurred by predictions w.r.t. the main prediction. Noise is conventionally assumed
to be irreducible and independent to f(-).

Remark. Our definitions on optimal prediction, main prediction, bias, variance and noise slightly
differ from previous ones (Domingos, 2000; \Valentini & Dietterich, 2004)). For example, conven-
tional optimal prediction was defined as y.(x) = arg min, E;[L(t,y)], and it is equivalent to our
definition when loss function is symmetric over its arguments, i.e., L(y1,y2) = L(y2,y1). Note that
this decomposition holds for any real-valued loss function in the binary setting (Domingos, |2000))
with a bias & variance trade-off coefficient that has a closed-form expression. For multi-class set-
ting, we inherit their definition of bias & variance directly, and treat the trade-off coefficient as a
hyper-parameter \ to tune because no closed-form expression of \ is available.

3 THE PROPOSED FRAMEWORK

A typical framework (Kairouz et al., 2019) of privacy-preserving federated learning can be summa-
rized as follows: (1) Client Update: Each client updates local model parameters wj by minimizing
the empirical loss over its own training set; (2) Forward Communication: Each client uploads its
model parameter update to the central server; (3) Server Update: It synchronously aggregates the
received parameters; (4) Backward Communication: The global parameters are sent back to the
clients. Our framework follows the same paradigm but with substantial modifications as below.

Server Update. The server has two components: The first one uses FedAvg (McMahan et al.,
2017) algorithm to aggregate the local models’ parameters, i.e., wg = Aggregate(wy, - ,wg) =

Zszl “Ewy where n = Zle ny, and wy, is the model parameters in the k" client. Meanwhile,
another component is designed to produce adversarially perturbed examples which could be induced
by a poisoning attack algorithm for the usage of robust adversarial training.

It has been well studied (Belkin et al., [2019; [Domingos} 2000; |Valentini & Dietterich, [2004)) that
in the classification setting, the generalization error of a learning algorithm on an example is deter-
mined by the bias, variance, and irreducible noise as defined in Eq. . Similar to the previous work,
we also assume a noise-free learning scenario where the class label ¢ is a deterministic function of x
(i.e., if z is sampled repeatedly, the same values of its class ¢ will be observed). This motivates us to
generate the adversarial examples by attacking the bias and variance induced by clients’ models as:

mél(x) B(Z;wy, - ,wg) + AV(Z;wy, -+ ,wg) V(z,t) € Dy 3)
zeQ(x

where B(&; w1, -+ ,wk) and V(&; w1, - - ,wg) could be empirically estimated from a finite num-
ber of clients’ parameters trained on local training sets {D1, Ds, -+ , Dk }. Here A is a hyper-

parameter to measure the trade-off of bias and variance, and () is the perturbation constraint.

Note that Dy (on the server) is the candidate subset of all available training examples that would
lead to their perturbed counterparts. This is a more feasible setting as compared to generating ad-
versarial examples on clients’ devices because the server usually has much powerful computational
capacity in real scenarios that allows the usage of flexible poisoning attack algorithms. In this case,
both poisoned examples and server model parameters would be sent back to each client (Backward
Communication), while only clients’ local parameters would be uploaded to the server (Forward
Communication), i.e., the asymmetrical communication as discussed in Section

Client Update. The robust training of one client’s prediction model (i.e., wy) can be formulated as
the following minimization problem.

Nk Mg
min D L(fo (@ wn), tF) + > L(fo, (&5 w), £5) (4)
i=1 j=1
where 77 € Q(a;j) is the perturbed examples that is asymmetrically transmitted from the server.

2This decomposition is based on the weighted sum of bias, variance, and noise. In general, ¢ is a non-deterministic function (Domingos,
2000) of « when the irreducible noise is considered. Namely, if « is sampled repeatedly, different values of ¢ will be observed.
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Remark. Intuitively, the bias measures the systematic loss of a learning algorithm, and the vari-
ance measures the prediction consistency of the learner over different training sets. Therefore, our
robust federated learning framework has the following advantages: (i) it encourages the clients
to consistently produce the optimal prediction for perturbed examples, thereby leading to a better
generalization performance; (ii) local adversarial training on perturbed examples allows to learn a
robust local model, and thus a robust global model could be aggregated from clients.

Theoretically, we could still have another alternative robust federated training strategy:
Nk

min max L(f(z¥;wp),tF) Vke{1,2,--- K} 5)
wk — 2k eQ(ah)

where the perturbed training examples of each client k is generated on local devices from Dy, instead
of transmitted from the server. This min-max formula is similar to (Madry et al., [2018; [Tramer,
et al., 2018)) where the inner maximization problem synthesizes the adversarial counterparts of clean
examples, while the outer minimization problem finds the optimal model parameters over perturbed
training examples. Thus, each local robust model is trained individually, nevertheless, poisoning
attacks on device will largely increase the computational cost and memory usage. Meanwhile, it only
considers the client-specific loss and is still vulnerable against adversarial examples with increasing
communication rounds. Both phenomena are observed in our experiments (see Fig. [4]and Fig. [5).

4  ALGORITHM

4.1 BIAS-VARIANCE ATTACK

We first consider the maximization problem in Eq. (3)) using bias-variance based adversarial attacks.
It aims to find the adversarial example & (from the original example x) that would produce large
bias and variance values w.r.t. clients’ local models. Specifically, perturbation constraint & € Q(x)
forces the adversarial example 2 to be visually indistinguishable w.r.t. . Here we consider the well-
studied [,.-bounded adversariesﬂ (Goodfellow et al., [2015} |[Madry et al., 2018} [Tramer et al., 2018))
such that Q(z) := {£|||# — 2|/ < €} for a perturbation magnitude e. Furthermore, we propose to
consider the following two gradient-based algorithms to generate adversarial examples.

Bias-variance based Fast Gradient Sign Method (BV-FGSM): Following FGSM (Goodfellow
et al.l 2015), it linearizes the maximization problem in Eq. @I) with one-step attack as follows.
Tpv_rasM = & + € - sign (V, (B(z;wy, -+ ,wi) + AV (z;wi, -+, wk))) (6)

Bias-variance based Projected Gradient Descent (BV-PGD): PGD can be considered as a multi-
step variant of FGSM (Kurakin et al., 2017) and might generate powerful adversarial examples. This
motivated us to derive a BV-based PGD attack:

ig{,l_PGD = Projgq) (:i"l + € - sign (V@z (B(:i“l; wy, W) + /\V(il; Wy, - ,wK)))) 7
where 2! is the adversarial example at the I*" step with the initialization #° = x and Projoq)(*)
projects each step onto (z).

Remark. The proposed framework could be naturally generalized to any gradient-based adversar-
ial attack algorithms where the gradients of bias B(-) and variance V (-) w.r.t. x are tractable when
estimated from finite training sets. Compared with the existing attack methods (Carlini & Wagner,
2017} \Goodfellow et al.| 2015} |Kurakin et al., 2017; |Moosavi-Dezfooli et al.| | 2016)), our loss func-
tion the adversary aims to optimize is a linear combination of bias and variance, whereas existing
work mainly focused on attacking the overall classification error that considers bias only.

The following theorem states that bias B(-) and variance V' (-) as well as their gradients over input
x could be estimated using the clients’ models.

Theorem 4.1. Assume that L(-,-) is the cross-entropy loss function, then, the empirical esti-
mated main prediction y,, for an input example (z,t) has the following closed-form expression:

Ym(zi w1, wE) = & Zkl,il fp, (z;wy,). Furthermore, the empirical bias and variance, as well
as their gradients over an input x are estimated as follows:

K
1
B(m;w17~-~ awK) = ? § L(ka(x§wk>7t); V(x§w1a"' awK) = L(ymaym) = H(ym>
k=1

3l oo robustness is surely not the only option for robustness learning. However, we use this standard approach to show the limitations of
prior federated learning, and evaluate the improvements of our proposed framework.
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Here, H(y,) = —Zley%) log y%) is the entropy of the main prediction y,, and C is
the number of classes. Easily, we can have their gradients in terms of the bias and vari-
ance as V,B(z;wy, - ,wg) = %Zle V. L(fp, (z;wg),t) and V,V(z;wy, - ,wg) =

-+ Zf:l ch:l (log y%) + I)megg (x; wy). Details of the proof is elaborated in

In addition, we also consider the case where L(-,-) is the MSE loss function. But the gradients
of MSE’s bias and variance are much more computational demanding comparing with the concise
formulas that cross-entropy ends up with. More comparisons are illustrated in Appendix [A.5.1]

Algorithm 1 Fed BVA Algorithm 2 ClientUpdate(w, D;, Dy k)

. Initialize k" client’s model with w

1: Input: K (number of clients, with local data
: B + split D, U D, into batches of size B

1
sets {Dy 1 |); f (learning model), E (num- 2
ber of local epochs); F' (fraction of clients se- 3: for each local epoch i = 1,2,--- , E'do
lected on each round); B (batch size of local 4:  for local batch (z,t) € B do
client); 7 (learning rate); D, (shared data set 5: w <+ w —nVL(fp, (v;w),1)
on server); € (perturbation magnitude). 6:  end for
Initialization: Initialize w and D, = ) 7: end for
for each round = 1,2, - - - do 8: Calculate fp, (x;w}), V[, (x;w) Vo € Dy
m = max(F - K, 1) 9: return w, fp, (z;w}), Vafp, (x;w)
S, < randomly sampled m clients
for each client £ € S, in parallel do Algorithm 3 BVAttack({ fp,, V. [p, }k € S;)
1Ul% ja)ka ‘713fb)k <~ )
ClientUpdate(w’“G*1 , Dy, Dy, k)
8: end for

AR AN ol

1: Initialize 753 =0
: for (z,t) € Ds do
Estimate the gradients V,B(x) and V,V (z)

W N

9: Dy <+ BVAttack({ fp,, V[, }|k € Sy) .
. r i ~ using Theorem [4.]
} (]) eng?mi_ Asggregate(wi|k € Sr) ;1: dCa;lculate 2 using Eq. @) or (7)) and add to D
: end for

12: return wg 6: return D
. S

4.2 FED_BVA

We present a novel robust federated learning algorithm with our proposed bias-variance attacks,
named Fed_BVA. Following the framework defined in Eq. and Eq. (), key components of our
algorithm are (1) bias-variance attacks for generating adversarial examples on the server, and (2)
adversarial training using poisoned server examples together with clean local examples on each
client. Therefore, we optimize these two objectives by producing the adversarial examples D, and
updating the local model parameters w iteratively.

The proposed algorithm is summarized in Alg. I} Given the server’s Dy and clients’ training data
{Dk}kK:l as input, the output is a robust global model on the server. In this case, the clean server data
D, will be shared to all the clients. First, it initializes the server’s model parameter w¢ and perturbed
data D, and then assigns to the randomly selected clients (Steps 4-5). Next, each client optimizes
its own local model (Steps 6-8) with the received global parameters w¢ as well as its own clean data
Dy, and uploads the updated parameters as well as the gradients of local model on each shared server
example back to the server. At last, the server generates the perturbed data D, (Step 9) using the
proposed bias-variance attack algorithm (see Alg.[3) with aggregations (model parameter average,
bias gradients average, and variance gradients average) in the similar manner as FedAvg (McMahan
et al.| 2017)). These aggregations can be privacy secured if additive homomorphic encryption (Acar
et al.,[2018)) is applied.

5 EXPERIMENTS
5.1 SETTINGS

In this section, we evaluate the adversarial robustness of our proposed algorithm on four bench-
mark data sets: MNISTE], Fashion-MNISTE], CIFAR-ld%] and CIFAR-10 The baseline models

4
http://yann.lecun.com/exdb/mnist
https://github.com/zalandoresearch/fashion-mnist

https://www.cs.toronto.edu/~kriz/cifar.html
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we used include: (1). Centralized: the training with one centralized model, which is identi-
cal to the federated learning case that only has one client (K = 1) with fraction (F' = 1). (2).
FedAvg: the classical federated averaging model (McMahan et al [2017). (3). FedAvg_AT: The
simplified version of our proposed method where the local clients perform adversarial training with
the asymmetrical transmitted perturbed data generated on top of FedAvg’s aggregation. (4) - (6).
Fed Bias, FedVariance, Fed_BVA: Our proposed methods where the asymmetrical trans-
mitted perturbed data is generated using the gradients of bias-only attack, variance-only attack, and
bias-variance attack, respectively. (7). EAT: Ensemble adversarial training (Tramér et all, 2018),
where each client performs local adversarial training using Eq. (5), and their model updates are
aggregated on server using FedAvg. For fair comparisons, all baselines are modified to the asym-
metrical communications setting (FedAvg and EAT have clean D, received), and all their initial-
izations are set to be the same. (8). EAT+Fed_BVA: A combination of baselines (6) and (7). Note
that baselines (7) and (8) have high computational requirements on client devices, and are usually
not preferred in real scenarios.

For the defense model, we use a 4-layer CNN model for MNIST and Fashion-MNIST, and VGG9
architecture for CIFAR-10 and CIFAR-100. Regarding blackbox attacks, we apply ResNet18
et all 2016), VGGI1 (Simonyan & Zisserman, 2015), Xception 2017), and Mo-
bileNetV2 (Sandler et al. [2018) for CIFAR data, and provide a variety of models for MNIST and
Fashion-MNIST by following the design of (Tramér et al.,[2018). The training is performed using
the SGD optimizer with fixed learning rate of 0.01 and momentum of value 0.9. The trade-off co-
efficient between bias and variance is set to A = 0.01 for all experiments. All hyper-parameters
of federated learning are presented in Table [5]in the Appendix. We empirically demonstrate that
these hyper-parameter settings are preferable in terms of both training accuracy and robustness (see
the details of Fig.[6]- Fig.[I4]in the Appendix). To evaluate the robustness of our federated learning
algorithm against adversarial attacks, except for the clean model training, we perform FGSM
fellow et all 2015), PGD (Kurakin et al.}[2017) with 10 and 20 steps towards the aggregated server
model on the D;.q. Following (Tramer et al., 2018} Wang et al.} 2019), the maximum perturbations
allowed are ¢ = 0.3 on MNIST and Fashion-MNIST, and € = % on CIFAR-10 and CIFAR-100
for both threat and defense models. For IID sampling, the data is shuffled and uniformly partitioned
into each client; For non-IID setting, data is divided into 2F" - K shards based on sorted labels, then
assigns each client with 2 shards. Thereby, each client will have data with at most two classes.

6
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5.2 RESULT ANALYSIS

To analyze the properties of our proposed Fed_BVA framework, we present two visualization plots
on MNIST using a trained CNN model where the bias and variance are both calculated on the
training examples. In Fig.[I] we visualize the extracted gradients using adversarial attack from bias,
variance, and bias-variance. Notice that the gradients of bias and variance are similar but with subtle
differences in local pixel areas. However, according to Theorem the gradient calculation of
these two are quite different: bias requires the target label as input, but variance only needs the
model output and main prediction. From another perspective, we also investigate the bias-variance
magnitude relationship with varying model complexity. As shown in Fig. 2| with increasing model
complexity (more convolutional filters in CNN), both bias and variance decrease. This result is
different from the double-descent curve or bell-shape variance curve claimed in (Belkin et al.|
2019; |Yang et al., [2020). The reasons are twofold: First, their bias-variance definitions are from
the MSE regression decomposition perspective, whereas our decomposition utilizes the concept of
main prediction, and the generalization error is decomposed from the classification perspective;
Second, their implementations only evaluate the bias and variance using training batches on one
central model and thus is different from the definition which requires the variance to be estimated
from multiple sub-models (in our scenario, client models).

The convergence plot of all baselines is presented in Fig. 3] We observe that FedAvg has the best
convergence, and all robust training will have a slightly higher loss upon convergence. This matches
the observations in (Madry et al., [2018) which state that training performance may be sacrificed
in order to provide robustness for small capacity networks. For the model performance shown in
Fig.[] we observe that the aggregation of federated learning is vulnerable to adversarial attacks since
both FedAvg and EAT have decreased performance with an increasing number of server-client
communications. Other baselines that utilized the asymmetrical communications have increasing
robustness with more communication rounds although only a small number of perturbed examples
(ns = 64) are transmitted. We also observe that when communication rounds reach 40, Fed_BVA
starts to outperform EAT while the latter is even more resource-demanding than Fed_BVA (shown in
Fig.[5l where the pie plot size represents the running time). Overall, bias-variance based adversarial
training via asymmetric communication is both effective and efficient for robust federated learning.

For the comprehensive experiments in Table [T] and Table [2] it is easy to verify that our proposed
model outperforms all other baselines regardless of the source of the perturbed examples (i.e., locally
generated like EAT+Fed_BVA or asymmetrically transmitted from the server like Fed_BVA). Com-
paring with standard robust federated learning FedAvg_AT, the performance of Fed_BVA against
adversarial attacks still increases 4% — 13% and 2% — 9% on IID and non-IID settings respectively,
although Fed_BVA is theoretically suitable for the cases that clients have IID samples. In Table |3}
we observe a similar trend where Fed_BVA outperforms FedAvg_AT on CIFAR-10 and CIFAR-100
(with 0.2% — 10% increases) when defending different types of adversarial examples. Comparing
with strong local adversarial training baseline EAT, we also observe a maximum 13% accuracy in-
crease when applying its bias-variance oriented baseline EAT+Fed_BVA. Overall, the takeaway is
that without local adversarial training, using a bias-variance based robust learning framework will
almost always outperform other baselines for defending FGSM and PGD attacks. When local adver-
sarial training is allowed (e.g., client device has powerful computation ability), using bias-variance
robust learning with local adversarial training will mostly have the best robustness.

We also conducted various additional experiments in Appendix[A.3|which includes: (1) Comparison
of efficiency and effectiveness of Fed_BVA using cross-entropy loss and MSE loss; (2) Compari-
son of single-step Fed_BVA and multi-step Fed_BVA in terms of the generation of Dy; (3) Three
training scenarios of Fed_BVA that use client-specific adversarial examples or universal adversarial
examples; (4) Ablation study in terms of the number of shared perturb examples n s, optimizer’s mo-
mentum, and the number of local epochs F; (5) Blackbox attacking transferability between various
models on all four data sets under multiple settings.

6 RELATED WORK

Adversarial Machine Learning: While machine learning models have achieved remarkable perfor-
mance over clean inputs, recent work (Goodfellow et al.,|2015)) showed that those trained models are
vulnerable to adversarially chosen examples by adding the imperceptive noise to the clean inputs. In
general, the adversarial robustness of centralized machine learning models have been explored from
the following aspects: adversarial attacks (Carlini & Wagner, 2017; Athalye et al., 2018} Zhu et al.,
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11D non-11D

Clean FGSM PGD-10 PGD-20 Clean FGSM PGD-10 PGD-20
Centralized 0-991i0,000 0.689i0_000 0.260i0_000 0.182i0_000 n/a n/a n/a n/a
FedAvg 0.98910.001 0.669+0.000 0.576+0.005 0.267+0.014 0.980+0.002 0.49110.067 0.475+0.057 0.158+0.074
FedAvg AT 0.98810.000 0.802+0.001 0.745+0.014 0.51210.042 097410005 0.64910.066 0.6151+0.045 0.36310.066
Fed Bias 0.986.0.000 0.812+0.000 0.788+0.021 0.58310.036 0.971+0.004 0.679+0.040 0.62710.078 0.39410.103
Fed_Variance  0.98510.001 0.80310.007 0.779+0.014 0.57240.010 0.97310.005 0.68440.004 0.622+0.040 0.39510.049
Fed BVA 0.98610.001 0.818+0.003 0.804+0.000 0.61310.020 0.969+0.002 0.705+0.000 0.66410.013 0.469+0.031
EAT 0.98110.000 090210001 0.907+0.001 0.811+10.004 097240002 0.789+0.016 0.72110.018 0.415+0.035

EAT+Fed_-BVA 0.980+0.001 0.90110.006 0.91010.004 0.82110.013 0.96510.005 0.81110.020 0.831:0.013 0.67010 014
Table 1: Accuracy of MNIST under white-box attacks in IID and non-IID settings

11D non-11D

Clean FGSM PGD-10 PGD-20 Clean FGSM PGD-10 PGD-20
Centralized 0.882i0_000 0-229i0.000 0~010i0.000 0-009i0.000 n/a n/a n/a n/a
FedAvg 0.877+0.001 0.30040.021 0.07210.016 0.036+0.016 0.80410.013 0.19310.036 0.061+0.015 0.01740.003
FedAvg AT 0.86610.001 0.490+0.021 0.170+0.014 0.13910.011  0.730+0.023 0.44510.065 0.13610.044 0.08710.042
Fed Bias 0.86210.001 0.505+0.015 0.199+0.007 0.159+0.003 0.709+0.025 0.460+0.038 0.149+0.067 0.115+0.054
Fed_Variance  0.86240.002 0.49610.012 0.20140.012 0.157+0.017  0.719+0.036 0.499+0.081 0.188.10.025 0.12040.038
Fed BVA 0.86210.003 0.528+0.016 0.210+0.023 0.18010.027  0.710+0.045 0.49510.030 0.14110.021 0.09310.028
EAT 0.86010.005 0.773+0.029 0.191+0.012 0.10310.013 0.791+0.012 0.597+0.033 0.07110.050 0.027+0.023

EAT+Fed BVA 0.838i0_009 0-7]5i0.011 0~357i0.024 0-226i0.006 0~735i0.020 0.632i0_015 0.164i0_035 0.106i0_039
Table 2: Accuracy of Fashion-MNIST under white-box attacks in IID and non-IID settings

CIFAR-10 CIFAR-100

Clean FGSM PGD-10 PGD-20 Clean FGSM PGD-10 PGD-20
Centralized 0-903i0.003 0.288i0_001 0.206i0_001 0'074i0.005 0~741i0.003 O.]66i0_012 0.04910_004 0~032i0.003
FedAvg 0.89010.002 0.225+0.022 0.207+0.004 0.06210.008 0.730+0.003 0.16110.009 0.11310.009 0.035+0.006
FedAvg AT 0.890+0.003 0.280+0.021 0.29510.006 0.099+0.014 0.70740.003 0.16240.006 0.064+0.007 0.04840.003
Fed_Bias 0.890i0>004 0-280i0.018 0~297i0.011 O~103i0.012 0~702i0.002 0.163i0_005 0‘165i0_007 0.061i0_003
Fed Variance ~ 0.88910.001 0.267+0.014 0.27610.006 0.092+0.000 0.710+£0.007 0.1614+0.005 0.157+0.010 0.04510.016
Fed BVA 0.889.10.003 0.286+0.013 03010003 0.10410.012  0.709+0.003 0.16310.007 0.1651+0.008 0.062+0.005
EAT 0.83310.003 0.596+0.003 0.667+0.007 0.56110.002 0.661+0001 0.26710.002 0.20610.002 0.188+0.001

EAT+Fed_ BVA 0.83310.003 0.598.0.002 0.66810.001 0.56410.003 0.65710.002 0.27210.003 0.33210.003 0.21110.002
Table 3: Accuracy of CIFAR-10 and CIFAR-100 under white-box attacks

2019), defense (or robust model training) (Madry et al., [2018; [Carlini et al.l 2019} [Tramér et al.|
2018) and interpretable adversarial robustness (Schmidt et al., [2018; [Tsipras et al., 2018).

Federated Learning: Federated learning with preserved privacy (Kone€ny et all, 2016},
et alll [2017; Hard et all, [2018) and knowledge distillation (Chang et al.l 2019; Jeong et al., 2018)

has become prevalent in recent years. Meanwhile, the vulnerability of federated learning to back-
door attacks has also been explored by (Bagdasaryan et all, 2018} [Bhagoji et al, 2019;
2019). Following their work, multiple robust federated learning models (Fang et al.,|2019; |Pillutla
et al.| 2019} [Portnoy & Hendler, 2020} Mostafal [2019) are also proposed and studied. In this paper,
we studied the federated learning’s adversarial vulnerability after model deployment from the per-
spective of bias-variance analysis. This is in sharp contrast to the existing work that focused on the
model robustness against the Byzantine failures.

Bias-Variance Decomposition: Bias-variance decomposition (Geman et al [1992) was originally
introduced to analyze the generalization error of a learning algorithm. Then, a generalized bias-
variance decomposition (Domingos|,[2000; [Valentini & Dietterich, [2004) was studied in the classifi-
cation setting which enabled flexible loss functions (e.g., squared loss, zero-one loss). More recently,
bias-variance trade-off was experimentally evaluated on modern neural network models

2018; [Belkin et al., 2019} [Yang et al., [2020).
7  CONCLUSION

In this paper, we proposed a novel robust federated learning framework, in which the aggregation
incurred loss during the server’s aggregation is dissected into a bias part and a variance part. Our ap-
proach improves the model robustness through adversarial training by supplying a few bias-variance
perturbed samples to the clients via asymmetrical communications. Extensive experiments have
been conducted where we evaluated its performance from various aspects on several benchmark
data sets. We believe the further exploration of this direction will lead to more findings on the
robustness of federated learning.
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A APPENDIX

A.1 NOTATION SUMMARY

Notation | Definition
Ds = {(z} it ) i 1 Training set with n, examples in the central server
Dy = {(zF, tF)}1x, Local training set with nj, examples in the k" client
Diest Test data set in the central server
f) Learning algorithm
L(-,") Loss function over prediction and target
W Local model parameters over Dy,
wa Server’s global model parameters
Aggregate(w,ws, -+ ,wg) | Synchronous aggregation function over local parameters

fp, (z;wy) (fp, for short) Local model prediction on x with parameters wy,
C Number of label classes in the training set, i.e., t € RC
K Number of clients
E Number of local epochs
F Fraction of clients selected on each round
B Batch size of local client
n Learning rate

Yo Ym Optimal prediction and main prediction
B(-),V(-),N(") Expected bias, variance and irreducible noise
E[] Expected value
B(;wy, - ,wk) Empirical estimated bias over training sets {D1, - , D }
V(swy, - ,wk) Empirical estimated variance over training sets {D1,--- , Dk}
Q) Perturbation constraint
€ Perturbation magnitude
T Adversarial counterpart of an example z, i.e., & € Q(x)
H() Entropy

Table 4: Notation

A.2 PROOF OF THEOREM

Proof of Theorem Theorem [4.1] states that assume L(-, -) is the cross-entropy loss function,
then the empirical estimated main prediction y,,, for an input example (z, t) has the following closed-
form expression:

Ym (@3 Wy, - w me T W)
Furthermore, the emplrlcal b1as and variance as well as thelr gradients over input z are estimated as:
B(z;wi, -+ wik) =% ZL fou(ziwg), t); - Vizyw, -+ wi) = LYm, Ym) = H(Ym)

(J

where H(y,) = — Z =1 ym log ym, ) is the entropy of the optimal prediction y,,, and C' is the

number of classes.

Proof. We first calculate the main prediction. Let

M= KZL I, (5w, y)
K
Z fo (@ wi) -logy’ + (1 — fp, (z;wy)) - log (1 —y'))
K

12
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Take the derivative of M with respect to 3/’, we have

oM if: (fm(x;wk) 3 l—fm(az;wk)> _ _iiw

oy K — y 11—y
By letting OM /0y’ = 0, we have
K
1

Then for bias and variance, from their definitions, we have,
B(.I"th e ,U}K)

SIES Ty
k=1
K

o, (z;wy) - logt + (1 - %Z o, (z; wk)> -log(1 —t)

k=1

=[ =

M T 1L

1
== =Y (fol@swe) logt + (1 = fo, (wswp)) - log(1 = )
k=1
| X
=% > L(fp, (w;wp), )
k=1
and
K
?Z (foi (T3 Wk), Ym)
| X
= 2> (Fou s wn) logym + (1 = fo, (a3 w3) og(1 — logyn,) )
k=1
= —Ym 10g Ym — (1 - ym) log(l —log ym)
= H(ym)
which completes the proof. O

A.3 EXPERIMENTAL SETTING

Regarding the experimental settings, all data sets have performed 100 clients-served communica-
tions using federated learning. For MNIST and Fashion-MNIST, we deployed 100 clients (each
has 1% of the overall data) and 10% of them would be selected for model updating (with 50 local
training epochs) and aggregation on server. In client’s training stage, there will be n; = 64 shared
examples being transmitted from the server using asymmetrical communication. Comparing with
the total number of examples in data set (i.e., 60k examples), number of the shared examples, ng,
would be only 0.1% of the data set’s size.

|# comms. | # clients (K) | fraction (F) |# epoch (E)|local batch (B) | # shared (n)|# categories

MNIST | 100 | 100 | o1 | 50 | 6 | 6 | 10
Fashion-MNIST | 100 100 0.1 50 64 64 10

| | | | | |
CIFAR-10 | 100 | 20 | 02 | 5 | 128 | 30 | 10
CIFAR-100 (coarse) | 100 | \ \ 128 | 60 | 20

Table 5: Learning setting of Fed BVA

For the CIFAR-10 and CIFAR-100 data sets (we use its 20 class version with coarse labels), we
deployed 20 clients (each has 5% of the over all data) since the data examples have more variations
in terms of their categories and cluttered backgrounds. Among these clients, 20% of them would
be selected for model updating (with 5 local epochs since we utilized deeper models with longer
training time per epoch). Similarly, we only transmitted 30 or 60 examples from the server to the
clients in CIFAR-10 or CIFAR-100. Due to the complexity of CIFAR’s data distributions, we enforce

13
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ng to be spread out in every categories (i.e., both CIFAR-10 and CIFAR-100 with coarse labels will
have 3 shared examples among these clients per category). An alternative is selecting n; randomly
from the data sets, and in this scenario, we only observer slight perform drop in all settings where
the model behavior remains unchanged. In CIFAR-10, we choose n to be only 0.05% of the data
set’s size.

A.4 NETWORK ARCHITECTURES

For the MNIST and Fashion-MNIST data sets, the CNN network structure is shared since the input
image examples have the same dimensions. The detail is shown in Table[f] Conv1 and Conv2 denote
the convolution block that may have convolution layer together with activation unit (e.g., ReLU,
Tahn) and(or) batch normalization (BN). For short, here, [5 x 5,10] x 1 denotes one convolution
layer with 10 filters of size 5 x 5.

Layers | 4-layer CNN

Convl [5 x 5,10] + ReLU
Pooll 2 x 2 Max Pooling, Stride 2
Conv2 [5 x 5,20] + ReLU
Pool2 2 x 2 Max Pooling, Stride 2
Dropout 0.5

FC1 50 + ReLU
Dropout 0.5

FC2 10

Table 6: The 4-layer CNN architecture for MNIST and Fashion-MNIST

For the CIFAR-10 and CIFAR-100 data set, the VGG9 network structure is shown in Table It
should be noticed that state-of-the-art approaches have achieved a better test accuracy on CIFAR,
nevertheless, this model is sufficient for our experimental needs since our goal is to evaluate the
robust federated model instead of achieving the best possible accuracy on testing stage.

Layers | VGGY

Convl [3 x 3,32] + BN + ReLU
Conv2 [3 x 3, 64] + ReLU
Pooll 2 x 2 Max Pooling, Stride 2
Conv3 [3 x 3, 128] + BN + ReLU
Conv4 [3 x 3, 128] + ReLU
Pool2 2 x 2 Max Pooling, Stride 2
Dropout 0.05

Conv5 [3 x 3,256] + BN + ReLU
Conv6 [3 x 3,256] + ReLU
Pool3 2 x 2 Max Pooling, Stride 2
Dropout 0.1

FC1 1024

FC2 512

Dropout 0.1

FC3 10 or 20

Table 7: The VGG-9 architecture for CIFAR-10 and CIFAR-100

A.5 ADDITIONAL EXPERIMENTS
A.5.1 MSE v.S. CROSS-ENTROPY
Both cross-entropy (CE) and mean squared error (MSE) loss functions could be used for training a

neural network model. In our paper, the loss function of neural networks determines the derivation
of bias and variance terms used for producing the adversarial examples. Specifically, we show that

14
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when using CE loss function, the empirical estimate of bias and variance as follows:

Beg(z;w, - w ZL (fou (z3we),t) and Vop(zwi, - wg) = H(ym)

and their corresponding gradients over 1nput T are

VeBeg(zyw, -+ wk) = I vaL(ka(x;wk),t)
k=1

K C
1 )
. .. —— (9) ) @ (..
VzVCE(l',wla ;wK) - K];Zl(logym +1) V f (wik)
—1j=
In the similar way, we show that when using MSE loss function, the empirical estimate of bias and
variance are as follows:

1
Busp(ziwr, -+ wk) = HngDk(x;wk) —tll3

K

K
Vuse(@wy, - w ZHfm 5wy ) Z Dy (2301 |13
k::

k-:
and their gradients over input x are:

K K
VeBuse(@;wy, - wk) = <[1{ > o (wswe) — t) (Il( > V.o, (ﬂc;wk)>
k=1 k=1

VioVuse(z;wi, - wi)

1 & 1 & 1 &
K _1 Z ((ka(fU§wk) K fou (l“;wk)> (Va:fm (5 wk) — i7d vafm(x;wk)>>

k=1 k=1 k=1

It can be seen that the empirical estimate of V,Bysg(z; w1, -+ ,wk) has much higher compu-
tational complexity than V,Bcog(x;w, -+ ,wgk) because it involves the gradient calculation of
prediction vector fp, (x;wy) over the input tensor x. Besides, it is easy to show that the empirical
estimate of V, Vissg(z; w1, -+, wg) is also computationally expensive.

We experimentally compare the CE and MSE loss functions in our framework. Table [8| reports the
adversarial robustness of our federated framework w.r.t. FGSM attack (¢ = 0.3) on MNIST with IID
setting (the best resutls are indicated in bold). It is observed that (1) our framework with MSE loss
function has significantly larger running time; (2) the robustness of our framework with MSE loss
function becomes slightly weaker, which might be induced by the weakness of MSE loss function
in training neural networks under the classification setting.

| | Fed BVA
Clean
\ | BiasOnly VarianceOnly BVA
Cross-entropy | 0.5875 (38.13s) | 0.7627 (47.58s)  0.7594 (63.46s)  0.7756 (63.67s)
MSE 0.6011 (39.67s) | 0.7112 (65.03s) 0.7108 (162.40s) 0.7119 (179.60s)

Table 8: Adversarial robustness with different loss functions and running time (second/epoch)

A.5.2 BV-PGD v.s. BV-FGSM

Our bias-variance attack could be naturally generalized to any gradient-based adversarial attack al-
gorithms when the gradients of bias B(-) and variance V() w.r.t. z are tractable to be estimated
from clients’ models learned on finite training sets. Here, we empirically compare the adversarial
robustness of the proposed framework trained with bias-variance guided PGD (BV-PGD) adversar-
ial examples and bias-variance guided FGSM (BV-FGSM) adversarial examples. Table [9] provides
our results on w.r.t. FGSM and PGD attacks (¢ = 0.3) on MNIST with IID and non-IID settings.
Compared to FedAvg, our framework Fed_BVA with either BV-FGSM or BV-PGD could largely
improve the model robustness against adversarial noise (the best results are indicated in bold). Fur-
thermore, BV-PGD could potentially improve white-box robustness on multi-step attacks, but it
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is often more computationally demanding. As a comparisons, BV-FGSM is more robust against
single-step attacks.

\ 11D \ non-11D
‘ Clean FGSM PGD-10 PGD—ZO‘ Clean FGSM PGD-10 PGD-20
FedAvg 0.9863 0.5875 0.6203 0.2048 | 0.9462 0.1472 0.5254 0.0894

Fed_BVA (BV-FGSM training)|0.9837 0.7756 0.7927 0.5699 | 0.9671 0.6696 0.6953 0.4717
Fed_BVA (BV-PGD training) [0.9849 0.7565 0.8399 0.6317 | 0.9670 0.6592 0.7836 0.5752

Table 9: Adversarial robustness with BV-PGD and BV-FGSM

A.5.3 ALTERNATIVE TRAINING STRATEGIES FOR FED_BVA

In our Fed_BVA framework, we propose to maximize the overall generalization error induced by
bias and variance from different clients in order to generate the adversarial examples for robust
training. Under this setting, the generated adversarial examples on the server are shared to all the
clients for local adversarial training. In particular, we also found that when using the cross-entropy
loss function, the estimated gradients of both bias and variance can be considered as the average
of clients’ local gradients over input x (see Section 4.1). This motivates us to consider several
alternative training strategies by generating the client-specific adversarial examples on the server.

To be more specific, we have the following three training strategies:

e S1: Following the bias-variance decomposition, we can generate the adversarial examples
to maximize the bias and variance from all clients’ predictions. In this case, the generated
adversarial examples on the server will be shared by all the local clients. We adopted this
strategy in our Fed_BVA algorithm. It allows to guarantee the minimization of general-
ization error from the perspective of bias-variance decomposition when training with these
adversarial examples, thus leading to a robust federated learning model.

e S2: The bias-variance decomposition with cross-entropy loss function indicates that we
can generate the client-specific adversarial examples as follows.
VuBi(z;w) = Vo L(fp, (z;wg),t) YeeDs k=1,--- | K
C

VoVilwwy) = Y (logy$) + DV, f5) (r3w) Yx €Dy k=1, K
j=1
Then, if we using FGSM for attacking, the adversarial example on the £™ client would be:
Ehv_rasm = T + € - sign (Vo (Br(z; wi) + AV (25 wr)))

We would like to point out that the gradient estimate of client-specific variance also relies
on the main prediction y,,,. But in this case, it allows every client to have different adversar-
ial examples D,. Intuitively, this training strategy further decompose the bias and variance
into individual client-specific terms.

e S3: Another training strategy is to use every local client model to generate the adversarial

examples on the server individually as follows.
ViBi(z;wg) = Vi L(fp, (z;wg),t) YreDs k=1,--- K
Similarly, we can have:
Fhv_rasm = + € - signV,, (By(z; wy))

It can be considered as a special case of S2 with A = 0. In this case, every client will only
use its own model parameters to generate the client-specific adversarial examples on the
server. This strategy is actually a simple extension of the conventional adversarial training
(with centralized data) in federated learning setting.

We conduct the ablation study to compare different training strategies in our Fed_BVA framework.
In this case, we use K = 10 clients with fraction F' = 1 and local epoch £ = 5. Other hyper-
parameters and model architecture setting are the same as our previous experiments (see Table [5).
Table [T0] provides the performance of adversarial robustness using our Fed BVA framework on
MNIST data set with both IID and non-IID settings. It is observed that Fed_BVA with S1 has
the best robustness in most cases compared to other heuristic training strategies S2 and S3. This

16



Under review as a conference paper at ICLR 2021

indicates that bias and variance could provide better direction to generate the adversarial examples
for robust training. In contrast, detecting the adversarial examples with individual directions in S2
for each clients might be suboptimal.

IID Non-IID
Clean FGSM PGD-10 PGD-20 Clean FGSM PGD-10 PGD-20

S1 09879 0.7445 0.7425  0.4504 0.9005 0.5292 0.6769  0.4333
S2 09890 0.7432 0.7306  0.4357 0.8894 0.5125 0.6800  0.4323
S3 09906 0.7301 0.7044  0.3997 0.8888 0.4947 0.6573  0.3800

Table 10: Robust training with different strategies on MNIST
A.5.4 PARAMETER ANALYSIS

In this part, we perform parameter analysis regarding a few key hyper-parameters that have high in-
fluence on the model performance. Since our target is to train a federated model where the robustness
of the model is high but the accuracy still remains. For that purpose, we have the following three sets
of experimental plots to guide us choosing the optimal hyper-parameters used in the experiments.
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Figure 6: Accuracy of clean Figure 7: Accuracy under FGSM Figure 8: Accuracy under PGD-
training with varying n attack with varying ng 20 attack with varying n

Number of shared perturbed samples n,. From Fig. [6] we see that the accuracy of FedAvg
(i.e., ns = 0) has the best accuracy as we expected. For Fed_BVA with varying size of asymmet-
rical transmitted perturbed samples (i.e., ny, = 8, 16,32, 64), its performance drops slightly with
increasing ns (on average drop of 0.05% per plot). As a comparison, the robustness on test set
Diest increases dramatically with increasing n, (increasing ranges from 18% to 22% under FGSM
attack and ranges from 15% to 60% under PGD-20 attack). However, choosing large ns would have
high model robustness but also suffer from the high communication cost. In experiment, we choose
ns = 64 for MNIST for the ideal trade-off point.
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training with varying momentum FGSM attack with varying mo- 20 attack with varying momen-
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Momentum. We also care about the choice of options in the SGD opﬁrrnmzer. As seen in Fig. 0] the
accuracy of clean training is monotonically increase with momentum. Interestingly, we also observe
that the federated model is less vulnerable when momentum is large no matter the adversarial attack
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is FGSM or PGD-20 on test set D;.4, see Fig. [I0] and Fig. [[T] This phenomenon is also mono-
tonically observed when we changing momentum from 0.1 to 0.9 and this suggests us to choose
momentum as 0.9 through all experiments.
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Local epochs E. The third important factor of federated learning is the number of epoch E we
should use. In Fig.[T2] we clearly see that more local epochs in each client leads to more accurate
aggregated server model in prediction. Similarly, its robustness against both FGSM and PGD-20
attack on test set D;.; also have the best performance when local epochs are large on device. Hence,
in our experiments, if the on-device computational cost is not very high (large data example size,
deep models with many layers), we choose £ = 50. Otherwise, we will reduce E to a smaller
number accordingly.

A.5.5 BLACKBOX ATTACK RESULTS

Using blackbox attack, we test the transferability of single-step attack (i.e., FGSM) and multi-step
attack (i.e., PGD) on various federated learning baseline models. For MNIST and Fashion-MNIST,
the architectures for threat models are shown in Table[I1]

Model A \ Model B \ Model C \ Model D
Conv[5x5, 64] + ReLU Dropout[0.2] Conv[3x3, 128] + Tahn | FC[512] + ReLU
Conv[5x5, 64] + ReLU | Conv[8x8, 64] + ReLU | MaxPool[2 x 2, Stride=2] Dropout[0.5]

Dropout[0.25] Conv[6x6, 128] + ReLU Conv[3x3, 64] + Tahn FC[512] + ReLU
FC[128] + ReLU Conv[5x5, 128] + ReLU | MaxPool[2 x 2, Stride=2] Dropout[0.5]
Dropout[0.5] Dropout[0.5] FC[128] + ReLU FC[10]
FC[10] FC[10] FC[10]

Table 11: Neural network architectures used for blackbox attacks on MNIST and Fashion-MNIST

For MNIST under the setting of IID|non-IID (see Table [12] and Table , we observe maximum
27%]28% accuracy drop on FedAvg under various blackbox attacks. As as comparison, the robust
federated learning model with global transmitted perturb samples (i.e., FedAvg_ AT, Fed Bias,
Fed.Variance, Fed_BVA) will have increase robustness with maximum of 12%|14% accuracy
drop on best baselines. For the more computation-demanding local robust training methods (i.e.,
EAT and EAT+Fed_BVA), the maximum accuracy drop are only 6%|11% respectively.

For Fashion-MNIST data set under the IID|non-IID settings (see Table and Table , similar
trends are observed. We see that without any adversarial training, FedAvg will suffer a maxi-
mum of 74%|64% accuracy lost. For comparison, the robust federated learning model with global
transmitted perturb samples (i.e., FedAvg_AT, Fed Bias, Fed Variance, Fed_BVA)will
have increase robustness with maximum of 41%|17% accuracy drop on best baselines. For the
computation-demanding local robust training methods (i.e., EAT and EAT+Fed_BVA), the maxi-
mum accuracy drop are only 27%)]|14%, respectively.

On both the MNIST and Fashion-MNIST data sets, we also observe that the single-step adversarial
attacks (i.e., FGSM) have higher transiferability than these generated using multi-step adversarial at-
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MNIST (IID) ‘ Source (FGSM attack) ‘ Source (PGD-20 attack)
Target | A B C D | A B C D
FedAvg 0.7713  0.9229 0.8915 0.717 | 0.8692 0.9632 0.924 0.9582
FedAvg_AT 0.8620 0.933 0.9296 0.8335 | 0.9241 0.9633 0.9479 0.9636
Fed_Bias 0.8849 0.9369 0.9342 0.8563 | 0.9362 0.9628 0.9541 0.9644
Fed_Variance 0.8828 0.9366  0.932 0.85 0.9342  0.9617 09517 0.9628
Fed_BVA 0.8826 0.9396 0.9353 0.862 | 0.9363 0.9657 0.9560 0.9652
EAT 0.9433 0.9594 0.9598 0.9222 | 0.9644 0.9695 0.9689 0.9693
EAT+Fed BVA | 0.9433 0.9578 0.9585 0.9188 | 0.9647 0.9698 0.9679 0.9675

Table 12: MNSIT IID accuracy towards blackbox adversarial examples on transferability between models

MNIST (non-IID) | Source (FGSM attack) \ Source (PGD-20 attack)
Target | A B C D | A B C D
FedAvg 0.7827 0.8659 0.8756 0.6954 | 0.8844 0.9304 0.9073 0.9372
FedAvg_AT 0.8723 0.9013 0.9117 0.8234 | 0.9142 0.9368 0.9301 0.9420
Fed_Bias 0.8234 0.8231 0.8712 0.7295 | 0.882 0.8907 0.8948 0.9078
Fed_Variance 0.8513 0.8685 0.8967 0.7887 | 0.9103 0.9234 0.9253 0.9328
Fed_BVA 0.856 0.8754 0.8955 0.7796 | 0.9067 0.9177 0.9204 0.9282
EAT 0.8877 09014 0.9187 0.8456 | 0.9194 0.9324 0.9362 0.9377
EAT+Fed_BVA 0.8967 0.9152 0.9225 0.8592 | 0.9245 09334 0.934 0.9354

Table 13: MNSIT non-IID accuracy towards blackbox adversarial examples on transferability between models

Fashion-MNIST (IID) \ Source (FGSM attack) Source (PGD-20 attack)
Target | A B C D | A B C D
FedAvg 0.3997 0.2554 0.5355 0.1451 | 0.5674 0.4634 0.6404 0.5983
FedAvg_AT 0.6141 0.5353 0.6689 0.4011 | 0.7026 0.6466 0.732 0.6985
Fed_Bias 0.6348 0.5719 0.6764 0.4399 | 0.7135 0.6541 0.7372 0.7044
Fed_Variance 0.6354 0.5516 0.6763 0.4134 | 0.7089 0.6406 0.7388 0.6945
Fed_BVA 0.6191 0.5268 0.6592 0.4291 | 0.6987 0.6241 0.7279 0.6987
EAT 0.7466 0.7334 0.7688 0.5819 | 0.7645 0.7367 0.7719 0.7374
EAT+Fed_BVA 0.7343 0.7089 0.7653 0.52 | 0.7691 0.7358 0.7766 0.7381

Table 14: Fashion-MNSIT IID accuracy towards blackbox adversarial examples on transferability between
models

tacks (i.e., PGD). That is, the accuracy after PGD-20 blackbox attacking is higher than the accuracy
after FGSM blackbox attack. This phenomenon is observed on all results of Table [T2] - Table [T3]
and this match with the conclusion of (Tramer et al.,[2018)).

For the CIFAR data set, we pretrained the ResNet18 (He et al., 2016), VGG11 (Simonyan & Zisser-
man, |2015), Xception (Chollet, [2017), and MobileNetV2 (Sandler et al.,[2018) as the source threat
models for generating the single-step and multi-step adversarial examples.

For the blackbox transfer attacking results (see Table @] and Table , we see that CIFAR data
set is more robust (bear less accuracy loss after attack) towards blackbox attack in general than
the simpler data sets such as MNIST and Fashion-MNIST. Even though, a similar trend of results
are also observed. We observe that without any adversarial training, FedAvg will suffer a maxi-
mum of 28%]|22% accuracy lost. For comparison, the robust federated learning model with global
transmitted perturb samples (i.e., FedAvg_AT, Fed Bias, Fed.Variance, Fed_BVA)will
have increase robustness with maximum of 23%]|15% accuracy drop on best baselines. For the
computation-demanding local robust training methods (i.e., EAT and EAT+Fed_BVA), the maxi-
mum accuracy drop are only 3%|7%, respectively. Thus, it is straightforward to see that CIFAR is
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Fashion-MNIST (non-IID) \ Source (FGSM attack) Source (PGD-20 attack)
Target | A B C D A B C D
FedAvg 0.431 0.2487 0.4814 0.1728 | 0.5694 0.4251 0.6304 0.5472
FedAvg_AT 0.6174 0.5627 0.6396 0.4426 | 0.6752 0.6194 0.6805 0.6516
Fed_Bias 0.5936 0.5254 0.608 0.4492 |0.6304 0.5753 0.6451 0.6132
Fed_Variance 0.6205 0.5924 0.6405 0.5174 | 0.6794 0.6315 0.6834 0.6626
Fed BVA 0.5761 0.4977 0.6007 0.4901 | 0.6284 0.5866 0.6482 0.6419
EAT 0.6049 0.4979 0.5991 0.4529 | 0.6429 0.5896 0.6538 0.6458
EAT+Fed _BVA 0.6864 0.6263 0.7007 0.569 | 0.7027 0.6636 0.7087 0.6828

Table 15: Fashion-MNSIT non-IID accuracy towards blackbox adversarial examples on transferability between

models

more vulnerable towards multi-step blackbox adversarial attack, but the local adversarial training
methods would significantly improve its robustness.

CIFAR-10 \ Source (FGSM attack) \ Source (PGD-20 attack)

Target | ResNet;s VGGi1 Xception MobileNet,, | ResNetis VGG11 Xception MobileNet,s
FedAvg 0.7067 0.6877 0.6894  0.7929 | 0.6109 0.6233 0.5973  0.7870
FedAvg_AT 0.7422 0.7104 0.7201 0.8078 0.6950 0.6704 0.6608 0.8077
Fed_Bias 0.7400 0.7025 0.7146 0.7988 0.6898 0.6669 0.6538 0.7990
Fed_Variance | 0.7384 0.7042 0.7186  0.8096 | 0.6770 0.6564 0.6480  0.8085
Fed_BVA 0.7435 0.7059 0.7219 0.8086 0.6927 0.6687 0.6639 0.8087
EAT 0.8205 0.8063 0.8146 0.8226 0.8187 0.8080 0.8129 0.8215
EAT+Fed BVA| 0.8281 0.8077 0.8167 0.8283 0.8250 0.8087 0.8116 0.8293

Table 16: CIFAR-10 accuracy towards blackbox adversarial examples on transferability between models

CIFAR-100 | Source (FGSM attack) \ Source (PGD-20 attack)

Target |ResNetis VGGi1 Xception MobileNet,2 | ResNetis VGG11 Xception MobileNetyo
FedAvg 0.5614 0.5326 0.5648  0.6133 | 0.5396 0.5121 0.5376  0.6208
FedAvg AT 0.5926 0.5453 0.5852 0.624 0.5802 0.5523 0.5763  0.6366
Fed_Bias 0593 055 0.5886  0.6211 0.5829 0.5476 0.5766  0.6313
Fed_Variance | 0.5853 0.5463 0.5829  0.6216 | 0.5735 0.545 0.5699  0.6298
Fed BVA 0.5883 0.5475 0.5851  0.6201 0.5762 0.5449 0.5773  0.6314
EAT 0.6237 0.5922 0.6199  0.6291 0.6223 0.5987 0.6174  0.6349
EAT+Fed BVA| 0.6244 0.5931 0.6194  0.6292 | 0.6219 0.5993 0.6199  0.6333

Table 17: CIFAR-100 accuracy towards blackbox adversarial examples on transferability between models
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