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ABSTRACT

While diffusion models have revolutionized generative AI, their application to hu-
man sketch generation, especially in the creation of complex yet concise and rec-
ognizable sketches, remains largely unexplored. Existing efforts have primarily
focused on vector-based sketches, limiting their ability to handle intricate sketch
data. This paper introduces an innovative extension of diffusion models to pixel-
level sketch generation, addressing the challenge of dynamically optimizing the
guidance scale for classifier-guided diffusion. Our approach achieves a delicate
balance between recognizability and complexity in generated sketches through
scale-adaptive classifier-guided diffusion models, a scaling indicator, and the con-
cept of a residual sketch. We also propose a three-phase sampling strategy to en-
hance sketch diversity and quality. Experiments on the QuickDraw dataset show-
case the potential of diffusion models to push the boundaries of sketch generation,
particularly in complex scenarios unattainable by vector-based methods.

1 INTRODUCTION

The field of diffusion models (Ho et al., 2020; Song et al., 2020a;b; Dhariwal & Nichol, 2021; Ho
& Salimans, 2021) has seen remarkable progress, pushing the boundaries of generative AI and en-
abling the generation of high-quality images across diverse domains (Meng et al., 2021; Choi et al.,
2021; Rombach et al., 2022; Poole et al., 2022; Wang et al., 2023). However, this surge of ad-
vancements has largely overlooked the unique challenge posed by human sketch generation—a task
demanding the creation of complex sketches that maintain a delicate balance between conciseness
and recognizability. Recent endeavors in this direction have predominantly centered on vector-based
sketches (Ha & Eck, 2018; Chen et al., 2017; Zang et al., 2021). Unfortunately, these vector-based
approaches, while suitable for simpler sketches, grapple with inherent limitations when tackling
intricate and complex sketch data (Das et al., 2022; Wang et al., 2022).

In this paper, we embark on an ambitious endeavor to harness the full potential of diffusion models
by extending their capabilities into the realm of pixel-based sketch generation. Our overarching
goal is to demonstrate their prowess in generating complex sketches that strike the perfect bal-
ance—concise yet highly recognizable. Determining the appropriate level of complexity in sketch
generation has long been considered a formidable challenge, primarily due to the inherent variabil-
ity in line structures within sketches. To address this challenge, we adapt a conventional classifier-
guided pipeline (Dhariwal & Nichol, 2021) designed specifically for sketch generation. However,
this transition is not without its difficulties, as we quickly encounter a significant hurdle: the con-
ventional designs, meticulously fine-tuned for photo generation, do not seamlessly transfer to the
intricate realm of sketch creation (as illustrated in Figure 1).

As we delve deeper into this problem space, we uncover a compelling revelation—one that diverges
from the well-established principles governing photography. In the realm of photos, higher scale
values often correlate with increased fidelity (Dhariwal & Nichol, 2021; Ho & Salimans, 2021).
However, in the context of sketch generation, we encounter a fascinating phenomenon that we term
”over-sketching” (as depicted in Figure 1 (a)). When working with larger scale values, we witness
the emergence of repetitive strokes, overlaying previously rendered lines and ultimately compromis-
ing the quality of the generated sketches. Addressing this issue proves challenging, as there exists

∗Correspondence to: Ke Li (like1990@bupt.edu.cn). Code to be found at GitHub page
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Figure 1: (a) Vanilla constant scale classifier guided sketch sampling suffers from either insufficient
recognizability or over-sketching. In addition, there is no universal scale that is suitable for all cate-
gories. (b) Sketches generated by our model are highly recognizable and more visually appealing.

no universal scale choice suitable for diverse sketch categories. Moreover, adopting smaller scales
may result in insufficient recognizability, a trade-off that is also undesirable.

Our paramount contribution, therefore, revolves around the development of a specialized classifier-
guided diffusion model meticulously crafted for the domain of sketches. At its core, our model
introduces a dynamic sampling scale selector. This selector grapples with the intricate task of deter-
mining the optimal scale for each distinct sketch while ingeniously sidestepping the issue of over-
sketching. This delicate equilibrium ensures that our generated sketches strike the perfect harmony
between recognizability and complexity.

This strategy pivots around two integral components that work in tandem: a scaling indicator and
a residual sketch. The residual sketch offers us a nuanced perspective on the influence of classifier
guidance by tracking how the generated sketch evolves, pixel by pixel, under varying scale choices.
This empowers us to pinpoint the scale where the residual sketch best aligns with the scaling indi-
cator, thereby optimizing the entire generation process.

To further elevate the quality of our generated sketches, we introduce two supplementary design
elements. Firstly, we demonstrate the effectiveness of commencing the generation process with a
few unconditional sampling steps. This initial phase allows the rough structure of the sketch to take
form, amplifying the diversity of the generated sketches by maximizing mode coverage. Secondly,
we address the gradual attenuation of classifier gradients as the sampling deepens. To counteract
this, we strategically implement an early-stop mechanism within our scale adaptive sampling. This
seamless transition back to unconditional denoising accelerates the process while concurrently re-
fining the generation results by eliminating noisy pixels.

Our contributions can be summarized as follows: (i) We introduce scale adaptive classifier-guided
diffusion models tailored for pixel-based sketch generation, replacing the conventional fixed gradient
scale approach and achieving high-quality sketch generation. (ii) We present a novel scaling indi-
cator that optimizes classifier guidance based on recognizability and complexity, complemented by
the innovative concept of the residual sketch, enabling fine-tuned control of the generation process
in raw pixel space for improved sketch quality. (iii) Our three-phase sampling strategy, comprising
shape and structure construction, scale adaptive sampling for class-specific sketches, and denois-
ing, significantly enhances sample diversity and quality by removing background clutter. These
contributions collectively advance the state-of-the-art in sketch generation with diffusion models.

2 RELATED WORK

Sketch Generation. Synthesizing human sketches is an appealing task that increasingly received
attention in recent years. Early studies (Song et al., 2018; Wang et al., 2018; Li et al., 2019b;a;
Yu et al., 2020) and more recent arts (Chan et al., 2022; Wan et al., 2022) focused on the problem
of image-to-sketch generation, to help understand and mimic how humans perceive and represent
the visual world using sketches. Another line of work is however concentrating on how to better
capture the sequential features in human sketches within the single domain, involving RNN-based
(Ha & Eck, 2018; Su et al., 2020; Chen et al., 2017), GAN-based (Ge et al., 2020; Liu et al., 2019),
and Graph-based (Xu et al., 2021; Yang et al., 2021b) approaches. These models typically adopt
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a sequence decoder, i.e., LSTM or Transformer, to explicitly capture the geometric structure of
the sequential points represented in coordinates or parametric Bézier curve (Das et al., 2020). As
a result, the sketch generation is formed as an autoregressive process. Most recently, diffusion
models (Das et al., 2022; Wang et al., 2022) are leveraged to directly learn the distribution of points’
coordinates in a non-autoregressive manner, thereby advancing in generating complex sketches.
Instead of using the sequential representation of stroke points, we seek to train diffusion models on
the raster sketches composed of pixel grids to generate high-quality sketches. An additional property
of pixel-based diffusion modeling is that the classifier gradients (Dhariwal & Nichol, 2021) can be
conveniently applied as guidance without retraining the unconditional diffusion models or extra
differentiable rasterization rendering.

Guided Diffusion Models. There is a large body of literature on controllable generation using
diffusion models. The pioneering work ADM (Dhariwal & Nichol, 2021) allows image generation
conditioned on a class label by adding the classifier gradients to the frozen unconditional trained
diffusion. Later, a Classifier-free approach (Ho & Salimans, 2021) is importantly proposed to avoid
separately training the classifier while achieving similar sample quality, thereby triggering plenty of
work on text-conditional image synthesis, e.g., Stable Diffusion (Rombach et al., 2022), DALL-E 2
(Ramesh et al., 2022), GLIDE (Nichol et al., 2022) and Imagen (Saharia et al., 2022) to name a few.
More broadly, latest works expand the scope of conditions to different modalities via cross-attention
or adapter with CLIP, such as segmentation mask (Gafni et al., 2022), sketch (Voynov et al., 2023),
and many others (Zhang & Agrawala, 2023; Mou et al., 2023). Our work is different from previous
works in that the strength of the classifier guidance is dynamically determined to manage the line
complexity, to improve the realism of produced sketches.

3 BACKGROUND

On a high level, diffusion models can sample data from a simple Gaussian distribution by reversing
noisy data gradually in multiple steps. It typically consists of two inverse processes, i.e., the forward
for diffusion and the backward for denoising.

Diffusion and Denoising The forward process is a predefined diffusion process q, which gradu-
ally adds Gaussian noise to a real image x0, resulting noisier versions x1:T . It is formally defined
as q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where 0 < βt < 1, t = 1 . . . T is a predefined variance

schedule to specify the noise levels of xt. The backward process is a denoising function pθ, where
a neural network is trained to produce slightly clearer data xt−1 from xt at each timestep. Given
pθ, we can sample from pure noise xT and sequentially produce samples xT−1, xT−2, . . . until
reaching x0, i.e., a produced sample.

Learning Objective As the backward process is also formulated as a Gaussian, i.e.,
pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), where the mean and variance of the Gaussian are
parameterized by µθ and Σθ, respectively. DDPM (Ho et al., 2020) show that the variance can be
set to time-dependent constant, i.e., Σθ(xt, t) = σ2

t I, the mean µθ(xt, t) is then reparametrized by
a noise approximator ϵθ since we have µθ(xt, t) = 1/

√
αt ·

(
xt − βt/

√
1− ᾱtϵθ(xt, t)

)
, where

αt = 1 − βt and ᾱt :=
∏t

s=1 αs. Consequently, an alternative training objective ||ϵθ(xt, t) − ϵ||2,
i.e., MSE loss between the true and the estimated noise, is derived for training the diffusion models.

Classifier-guided Sampling To generate data conditioned on class labels, a classifer pϕ(y|xt) can
be trained on noisy data xt. Then the gradient of the classifier, i.e., ∇xt

log pϕ(y|xt), is leveraged
to guide the sampling. Specifically, the predicted noise after classifier guidance is:

ϵ̂ = ϵθ(xt, t)− s ·
√
1− ᾱt∇xt log pϕ(y|xt) (1)

where s is a gradient scale predefined manually. Then the class conditional sampling is achieved by
replacing ϵθ with ϵ̂. It turns out that the scaling factor s has a significant impact on the generated
data, and increasing s will typically trade off the diversity for fidelity (Ho & Salimans, 2021).

4 METHODOLOGY

Our goal is to generate new sketches in pixel format conditioned on class labels using the learned
denoising function, i.e., pθ(xt−1|xt, y), using DDIM sampler (see Appendix A for more details
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Figure 2: Schematic overview of our pixel-level sketch generator. There are three sampling phases,
i.e., warm-up sampling (phase #1), scale adaptive classifier-guided sampling (phase #2), and end-up
denoising (phase #3). Core to our framework is phase #2 which can adaptively select an optimal
classifier guidance scale s to encourage better recognizability and avoid over-sketching, thereby
boosting the sample quality. Essentially, the scale is dynamically determined by matching a scale
indicator and residual sketches at each sampling step. The scale indicator is to signal the demand
for classifier guidance by predicting the final generation results x0|t. The residual sketch measures
whether the chosen scale could activate proper guidance as the indicator suggests.

about DDIM sampling) under the guidance of classifier gradients as described above. Particularly,
an adaptive scaling strategy is devised to dynamically determine the level of the gradient scale at
each time step to improve the quality of the produced sketches. A schematic overview of our model
is shown in Figure 2. Details are described in the following.

4.1 SCALE ADAPTIVE CLASSIFIER-GUIDED SAMPLING

Following the standard pipeline for handling natural images, we first train a DDPM using sketch
images, i.e., x0 ∈ RH×W×3. During generation, as shown in Figure 1, a constant value of the scale s
in Eq. (1) will lead to sub-optimal quality of the produced sketches, suffering from either insufficient
recognizability or over-sketching. Therefore, a scale adaptive sampling strategy is developed to
overcome the above issues. Specifically, for each intermediate sampling step t, a scaling indicator
is used to penalize the guidance strength when the complexity and recognizability of the expected
produced sketch x0|t are already sufficiently high. A residual sketch image xrs is then to explicitly
measure the impact of any gradient scale, by leveraging the visual difference of x0|t before and after
performing the guidance. Then the scale is optimized by using a differentiable matching module
to encourage the residual sketch to conform to the scaling indicator, thereby steering the generation
accordingly. In the following, we will formally define each key module.

Scaling Indicator. High recognizability and proper complexity are two crucial properties to
make the produced sketches informative and visually appealing. Therefore, we empirically define a
scaling indicator by combining these two factors:

ς(xt) = γ · exp(α · (1− c(x0|t))− β · f(x0|t)), (2)

where x0|t = (xt −
√
1− ᾱt · ϵθ(xt, t))/

√
ᾱt, c(x0|t) and f(x0|t) are all scalar, denoting the

complexity and the recognizability of an expected produced sketch x0|t, respectively. Specifically,
the stroke complexity c(x0|t) is heuristically defined as the fraction of stroke pixels to the whole
canvas: c(x0|t) =

1
HW

∑
HW ||x0|t||0. The recognizability f(x0|t) is given by the probability of the

estimated produced sketch x0|t being classified to the conditional class y, i.e., f(x0|t) = pϕ(y|x0|t),
where the classifier pϕ is parameterized by ϕ, and trained using noisy sketches. Intuitively, the
scale indicator ς(xt) is to signal the demand for classifier guidance. For example, a high level of
either complexity or recognizability will derive a small ς(xt), suggesting a stop sign for applying
the classifier guidance. In contrast, a large ς(xt) implies the classifier guidance in need. α and β
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are used to balance the effects between c(x0|t) and f(x0|t). In the following, we will show how to
optimize the scale s according to the scaling indicator by introducing residual sketch.

Residual Sketch. To measure the impact of classifier guidance on x0|t, i.e., the estimated final-
step sketch x0 based on the current sample xt, we can compare two versions of x0|t before and after
performing the classifier guidance, i.e., x0|t and x̂0|t. Namely, a residual sketch xrs is developed to
represent the per-pixel differences between x0|t and x̂0|t. Formally, xrs is defined as follows:

xrs(xt, s) =
∣∣M(x̂0|t)−M(x0|t)

∣∣ (3)

where M(·) ∈ RH×W is a Sigmoid function to transform a sketch (pixel values are firstly averaged
across the RGB channels) into a soft binary mask, i.e., most of the pixel values are projected near
zeros or ones. And | · | is to ensure the entries in xrs ∈ RH×W are all positive.

Scale Optimization. Here, we show how to optimize the gradient scale s according to the scaling
indicator at each sampling step. Basically, this is achieved by enforcing the residual sketch xrs to
be synchronized with the scale indicator ς(xt). Intuitively, xrs should be an empty mask if ς(xt)
suggests a stop sign for applying the classifier guidance. Otherwise, xrs should be richly painted
if ς(xt) is large, indicating guidance in high demand. Therefore, an optimization objective can be
formulated as follows:

Lt(s) =
1

2

N∑
i=1

(
ς(x

(i)
t )− 1

HW

∑
HW

xrs(x
(i)
t , s)

)2

(4)

where N is the number of sketches generated within a sampling batch, and Lt(s) is the mean
squared error between the scaling indicator ς(xt) and the global average pooling of the residual
sketch xrs(xt, s). Stochastic gradient descent (SGD) is employed to obtain the optimal value of s at
each timestep t by minimizing Lt(s).

4.2 WARM-UP SAMPLING FOR DIVERSITY EXPANSION

Prior works Dhariwal & Nichol (2021); Ho & Salimans (2021) reveal that increasing the strength of
the classification guidance can improve the sample precision (i.e., fidelity), while at the cost of re-
call, i.e., the degraded diversity of the generation. We show that beginning with a few unconditional
sampling steps as warm-up can considerably alleviate the issue, i.e., boost the diversity of the gen-
erated samples. An empirical principle is applied to determine how many unconditional sampling
steps are conducted for the warm-up. The idea is to carry out unconditional generation until the
overall structure has been shaped. To achieve the goal, we can simply measure if the classification
probability of the top-1 class, i.e., p(c1st|x0|t), exceeds any other classes by a pre-defined margin η.
Therefore, the end step tw of the warm-up sampling can be set by:

tw = t, if pϕ(c1st|x0|t)− pϕ(c2nd|x0|t) > η (5)

4.3 END-UP UNCONDITIONAL DENOISING

We observe that as the sampling goes on, the classifier gradient will gradually vanish and almost has
no effect afterward. Therefore, we early-stop the classifier-guided sampling when the expected x0|t
at timestep td is sufficiently recognizable, i.e.,

td = t, if pϕ(y|x0|t) > ξ (6)
where ξ is a threshold to determine the endpoint of the guidance. However, it turns out that the
produced sketches are still noisy (i.e., lots of clutter pixels scattered across the image) once the
classifier-guided sampling is ceased at the cut-off point td. We find out that continuing to progress
unconditional denoising till the end (i.e., the pre-defined total number of DDIM sampling steps) will
eventually produce sketches with clean backgrounds.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Dataset. The current largest doodle dataset QuickDraw, which has 345 common object cate-
gories, is adopted for model training and evaluation. In our experiments, a small subset, i.e., 30
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categories1 are first randomly chosen to facilitate a thorough yet easier comparison with other base-
line methods. Meanwhile, our model is trained on the complete 345 classes and compared with a
few top-notch generative models to validate the scalability of our approach.

Competitors. There are two categories of baseline methods based on the representation of
the sketches, i.e., vector-based or raster-based. Vectorized sketch generation competitors include
SketchRNN (Ha & Eck, 2018), SketchHealer (Su et al., 2020), SketchAA (Yang et al., 2021a),
SketchKnitter (Wang et al., 2022), and ChiroDiff (Das et al., 2022). Due to the lack of existing raster-
based sketch generation approaches, three strong image generation models, i.e., StyleGAN2 (Karras
et al., 2020), DDIM 2(Song et al., 2020a), and classifier-free diffusion guidance (CFDG3)(Ho &
Salimans, 2021), are employed as alternatives for comparison.

Evaluation metrics. Several standard metrics, including FID, precision, and recall, are leveraged
for evaluation. Fréchet Inception Distance (FID) is widely used to measure the fidelity of the RGB
images produced by generative models. To tailor it as a reasonable measurement for sketches, the
same network Inception-V3 is employed but further finetuned on QuickDraw dataset for classifica-
tion. Then the obtained customized Inception-V3 is utilized as a feature extractor, which is used
to calculate the distance between the generated samples and the real data. Precision and recall are
typically adopted by diffusion models to validate the quality and mode coverage of the generated
samples. We follow (Nichol & Dhariwal, 2021) to employ the improved precision and recall metrics
(Kynkäänniemi et al., 2019) to assess the generation results.

Language Aligned Expressivity. We additionally proposed to utilize CLIP-Score (Radford et al.,
2021) to measure the expressiveness of the generated sketches. Intuitively, the produced sketches
would express similar visual concepts to real sketches. In practice, CLIP-Score is leveraged to
measure the distance between the generated sketches and the text descriptions of real ones, where
the text descriptions are sourced by manually summarizing the visual content in the QuickDraw
dataset. More specifically, five captions are constructed for each category under the template “this
is a sketch of X”, where X is either a coarse or fine-grained linguistic caption, e.g., X = “a girl’s face
with two pigtails”. A full list of the captions is attached in Appendix E. Then a pre-trained CLIP
model ViT-L/14 (Dosovitskiy et al., 2021) is used to extract the features of the generated sketches
and the pre-defined descriptions using the image encoder and text encoder, respectively. The CLIP-
Score is then defined as the averaged similarity between the generated sketches and their closest
captions. Given CLIP-Score, we further propose a CLIP-Fine score which measures whether the
retrieved top-1 captions are fine-grained or not.

Implementation details. The same U-Net proposed in ADM (Dhariwal & Nichol, 2021) is em-
ployed as the noise predictor, and 10k sketches per category (batch size is 64) in the training set
are used to train our model for 200k iterations. The default size of the produced sketches is set to
64×64. Four Nvidia 3090 GPUs are used and the learning rate is set to 1e-4. An EMA rate of 0.9999
is adopted to stabilize the training. The default parameters are α = 1.0, β = 0.2, and γ = 0.02 in
equation 2, which are determined on a validation set through greedy search. (See Appendix B for
more details.) And we set η = 0.2 in equation 5, ξ = 0.5 in equation 6 empirically. During genera-
tion, the DDIM sampler is adopted and the default total steps are set to 250. And we can produce a
batch (N=128) of sketches by simply calculating the average values of ς(xt) and xrs(xt, s) within
the batch, hence updating the loss Lt(s) into a batch version accordingly.Using a shared scale within
a batch can dramatically reduce the computation cost and speed up the sampling. Additionally, we
use an asymmetric reverse process (Kwon et al., 2023) to improve the controllability of classifier
guidance, i.e., compute xt−1 using the predicted noise before and after performing the guidance
together.

5.2 RESULTS

Quantitative Results. As shown in Table 1, our model outperforms other competitors on all met-
rics except precision (ours achieves the second best). Interestingly, pixel-based generation methods
(i.e., StyleGAN2, DDIM and ours) can clearly beat vector-based approaches. Additionally, our

1fish, umbrella, apple, moon, shoe, cloud, candle, vase, chair, sun, cat, airplane, spider, car, pig, bus, face,
yoga, butterfly, mosquito, lion, television, basket, barn, angel, pizza, book, grapes, fireplace, cake

2The guidance scale for DDIM is set to 0.4 determined by greedy search, offering its best FID score.
3The optimal guidance strength ω of CFDG is set to 2 for sketch generation.
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Table 1: Quantitative comparison results on QuickDraw Dataset. The best and second best are
color-coded in red and blue, respectively.

Model Random 30 Categories 345 Categories
FID↓ CLIP-Score↑ CLIP-Fine(%)↑ Prec↑ Rec↑ FID↓ Prec↑ Rec↑

SketchRNN 8.15 0.59 52.67 0.37 0.22 10.32 0.26 0.24
SketchHealer 5.85 0.63 51.51 0.67 0.12 – – –
SketchAA 5.98 0.59 50.41 0.51 0.17 – – –
SketchKnitter 7.05 0.55 43.15 0.41 0.19 – – –
ChiroDiff 4.75 0.59 53.16 0.64 0.18 3.17 0.58 0.25
StyleGAN2 4.12 0.67 53.39 0.55 0.24 2.93 0.63 0.27
DDIM 4.08 0.67 54.19 0.71 0.30 2.85 0.74 0.31
CFDG 3.75 0.68 54.86 0.68 0.32 2.64 0.73 0.36

Ours 3.08 0.68 55.54 0.68 0.35 2.51 0.72 0.39

model achieves the highest CLIP-Score, indicating that the produced sketches by our model can
best align the visual content of real sketches. Notably, a higher CLIP-Fine score (i.e., 55.5%) im-
plies that our model tends to produce richer visual content. Some examples of the generated sketches
and the retrieved captions are shown in Figure 14, which showcase how our generated sketches can
align with the captions summarized from the real sketches.

SketchRNN

SketchHealer

SketchAA

SketchKnitter

ChiroDiff

DDIM

StyleGAN2

Ours

(b) 

(a) 

Figure 3: (a) Qualitative comparison results. (b) More generation results by our model.

Qualitative Results. Some qualitative results are shown in Figure 3. From Figure 3(a), we can
observe that: (i) sketches generated by our model are of better quality in terms of expressiveness,
see the drawn whiskers of cat. (ii) Our method is also capable of depicting objects with more
details, see the drawn antennae of a butterfly and the window of a car by our model, while
these subtle parts are absent from the sketches obtained by other baseline methods. (iii) the sketches
produced by our method are more visually appealing and recognizable, e.g., the eyes and nose on
the human face are more vividly portrayed, and the overall visual appearance of lion is better
and more identifiable. More samples generated by our approach can be found in Figure 3(b) and
Appendix F. We also visualize an example of the sketch generation process in Figure 4 to better
understand the effects of different sampling phases. We can observe that the overall shape of the
expected sketch is formed during the warm-up sampling. The scale adaptive guidance sampling
instantiates the generation according to the classifier guidance, yielding a sketch of a desired class
that fits the overall shape formed in the previous stage. The last phase (i.e., end-up denoising) is
responsible for further refinement.

5.3 ABLATION STUDY

Computation analysis and sampling acceleration. The number of denoising steps during gen-
eration is squeezed to 250 using the linear selection procedure following DDIM. To testify how the
selection procedure and total sampling steps trade off the overall generation quality and the computa-
tional cost, we compare the results under different settings. Results in Table 2a reveal that the linear
procedure is typically better than its quadratic counterpart. More sampling steps lead to improved
FID and precision but with slightly reduced recall. However, the computational cost is obviously
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Phase#1 :Warm-up Sampling (Unconditional)

Phase#2 :Scale Adaptive Sampling (Conditional)

car

cat

Phase#3 :Ending-up Denoising (Unconditional)

(a)

(b)

(c)

Figure 4: Visualization of x0|t and xt. (a) The estimated final obtained sketches x0|t at time step
t during warm-up sampling (green box). The overall structure has been formed in this phase. (b)
Given different class labels, i.e., cat and car, x0|t is gradually transformed into the corresponding
sketch object by scale adaptive sampling (red box). The end-up denoising (blue) can further refine
the sketches by removing the blur in the background. (c) Sketches generated at different time steps.

Table 2: Ablative studies on applying different (a) skip procedures and (b) sampling phases.

(a) Computation analysis. Acceleration in gray.

Procedure Steps FID↓ Prec↑ Rec↑ Speed (s)↓
Quadratic 100 8.85 0.58 0.48 0.86

Linear 100 4.95 0.62 0.48 0.90

Quadratic 250 5.54 0.61 0.32 1.87
Linear 250 3.08 0.68 0.35 1.90

Shortcut 67 3.30 0.67 0.36 0.98

(b) Effect of each sampling phase.

Model Variant FID↓ CLIP-Score↑ Prec↑ Rec↑ Speed (s)↓
No warm-up 3.22 0.63 0.69 0.32 2.87
No Adaptive 3.54 0.62 0.67 0.42 3.07
Full Guidance 4.08 0.67 0.71 0.30 3.27
No End-up Denoising 3.24 0.62 0.68 0.25 5.74

Our Full Model 3.08 0.68 0.68 0.35 1.90

increased in this case. To accelerate the sampling, we will later show that the end-up denoising can
occupy up to about 86% of the total sampling steps that can be dramatically shortened.

Effect of each sampling phase. There are three phases in order during sampling, i.e., the warm-
up sampling, the scale adaptive sampling, and the ending-up denoising sampling. To verify the
effectiveness of each phase, we evaluate the generation results in different scenarios. Specifically,
(i) No Warm-up: Without performing the warm-up sampling, we directly perform scale adaptive
sampling at the beginning, followed by the end-up unconditional denoising till the end; (ii) No
Adaptive: We keep all sampling phases unchanged (i.e., the start and end of each sampling stage
remain unchanged) but switch the scale adaptive sampling to the vanilla classifier-guided sampling,
i.e., applying a constant gradient scale; (iii) Full Guidance: All generation steps are classifier-guided
samplings with a constant gradient scale. (iv) No End-up Denoising: Sketch generation starts with
the warm-up sampling, followed by scale adaptive classifier-guided sampling till the end (i.e., 250
steps are reached).

The results are shown in Table 2b. Compared with our full model, we can find out that (i) No Warm-
up: Both the FID and recall are getting worse when without the warm-up sampling, indicating that
carrying out unconditional generation at the beginning can benefit both fidelity and diversity; (ii) No
Adaptive: Applying a constant scale (i.e., s = 0.4) to the classifier gradients will clearly harm the
quality of generation, i.e., fidelity (FID). (iii) Full Guidance: Merely performing classifier guidance
with a constant gradient scale (i.e., s = 0.4) will simultaneously lower the fidelity and diversity;
(iv) No End-up Denoising: Both the fidelity and mode coverage of the produced sketches are com-
promised when maintaining the classifier guidance till the end. This is because too strong classifier
guidance can lead to over-sketching, hence resulting in declined sample quality and diversity. More-
over, the generation is much more expensive (i.e., 5.74 s per sketch) in this case due to the increased
sampling steps required for gradient scale optimization.

Length of each sampling phase. To study the influence of varying the length of each sampling
phase, we compare the generation results using different configurations of the parameters η and ξ in
Eq. (5) and Eq. (6). Results are shown in Table 3. We can find out that most steps are occupied by
the end-up denoising sampling, which can be shortened for acceleration as shown in the last row in
Table 3. When increasing ξ and fixing η, the length of the scale adaptive sampling becomes longer,
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Table 3: Comparison results when varying the parameters η and ξ.

# Steps η ξ Warm-up (%) Adaptive(%) End-up(%) FID↓ Prec↑ Rec↑ Speed (s)↓

T=250

0.2
0.3 6.01 8.26 85.73 3.21 0.65 0.38 1.76
0.4 6.01 10.02 83.97 3.17 0.66 0.37 1.83
0.5 6.01 11.73 82.25 3.08 0.68 0.35 1.90

0.1
0.5

4.47 12.56 82.97 3.12 0.69 0.32 2.03
0.3 13.27 7.52 79.21 5.37 0.61 0.42 1.78
0.4 18.52 5.44 76.04 8.53 0.57 0.48 1.67

T=67 (shortcut) 0.2 0.5 15.22 40.90 43.88 3.30 0.67 0.36 0.98

step=234

s

step=218 step=200

(a) (b) (c)

Figure 5: Visualization of the residual sketches xrs and the estimated final sketch x̂0|t during scale
optimization at (a) early (b) middle and (c) late sampling steps. By scale optimization, the residual
sketches are getting more organized and cleaner.

leading to improved sample quality (i.e., lower FID score) yet narrowing the mode coverage (i.e.,
reduced recall). Extending the warm-up sampling will squeeze the scale adaptive sampling, and
let the sample quality get worse but achieve better diversity. The optimal balance is reached when
warm-up takes about half the number of the adaptive sampling steps.

Visualization of scale optimization. To better understand the mechanism of utilizing scaling
indicator as an explicit signal to obtain the optimized gradient scale, we visualize the optimization
process along with the corresponding residual sketches xrs(xt, s) and the estimated final sketch
x̂0|t. As shown in Figure 5, at the beginning of optimization, the randomly initiated guidance scale s
is often mismatched with the scaling indicator ς(xt). The corresponding residual sketch xrs(xt, s)
looks messy and unstructured, implying a less favorable (i.e., too noisy) output sketch x̂0|t under
the classifier guidance. Once the gap between ς(xt) and xrs(xt, s) is closed, the residual sketch
becomes cleaner and more organized. As a result, the expected sketches x̂0|t using the optimized
scale are painted in a more structured and concise way.

6 CONCLUSION

Raster sketches generated by diffusion models using classifier guidance with a constant scale are
sub-optimal, either too sparse to recognize or too densely depicted (i.e., over-sketching). We show
that the generation quality can be improved by simply adjusting the guidance scale dynamically at
each sampling step, without retraining the model. Concretely, we proposed to optimize the scale
according to the predictable generation results at each sampling step by using the developed scale
indicator and residual sketch. It is observed that the pixel changes, i.e., the residual sketches, dur-
ing sampling are more organized and located at critical positions to form a sketch object by our
model. Injecting unconditional sampling at the beginning and the end of generation is also benefi-
cial. Uniquely, we proposed to assess the generated sketches in terms of expressiveness by using the
CLIP-Score. It shows that ours can generate sketches containing richer object details.
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A DDIM SAMPLING

DDIM (Song et al., 2020a) reveals that the learning objective of DDPM (Ho et al., 2020) only
depends on the “marginals” q(xt|x0) rather than the joint q(x1:T |x0), thus a non-markovian forward
process is proposed such that the desired marginals are fulfilled, yielding the same learning objective
as DDPM. Formally, the forward process of DDIM is formulated as:

q(xt|xt−1, x0) =
q(xt−1|xt, x0)q(xt|x0)

q(xt−1|x0)
(7)

where q(xt|x0) and q(xt−1|x0) can be obtained by the marginals:
q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I) (8)

and q(xt−1|xt, x0) is a Gaussian defined in the following:

q(xt−1|xt, x0) = N (xt−1;
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt︸ ︷︷ ︸
Mean

, σ2
t I) (9)

where the choice of mean function is to ensure the desired marginals, i.e., q(xt|x0) =
N (xt;

√
ᾱtx0, (1−ᾱt)I) for all t. Then during the generative process, q(xt−1|xt, x0) can be used to

approximate the denoising function pθ(xt−1|xt) without knowing x0, which can be predicted from
xt at timestep t derived from Eq. (8):

x̂0 = (xt −
√
1− αt · ϵ(t)θ (xt))/

√
αt (10)

Consequently, derived from Eq. 9, we can sample data by repeating:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
+
√
1− ᾱt−1 − σ2

t · ϵθ(xt, t) + σtϵt (11)

DDIM shows that sampling could be accelerated using much fewer steps when setting σt = 0 for
all timesteps t.

B HYPERPARAMETER SETTING IN EQUATION 2

The hyperparameters (i.e., α, β, and γ) of Equation 2 for calculating the scaling indicator are deter-
mined by greedy search on a small validation set, comprising of sketches generated by our model.
Specifically, we generate 1k sketches per class by conducting classifier guidance on the obtained
unconditional DDPM under different hyperparameter configurations. As shown in Figure 6, the
optimal values are α = 1.0, β = 0.2, and γ = 0.02.
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3.1
3.2
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(a) Searching α, β with γ fixed.

0.5 1.0 1.5 2.0

3.2

3.4
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= 0.04
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(b) Searching β, γ with α fixed.
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4.5
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5.5
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(c) Searching α with β and γ fixed.

Figure 6: Greedy search on hyperparameters α, β, and γ based on FID scores.

C LOSS CURVE OF Lt(s) DURING SCALE OPTIMIZATION

To gain more insights into the process of scale optimization, we plot the scaling indicator ς(x(i)
t ),

the fraction of per-pixel difference of the residual sketch, i.e., the xrs term 1
HW

∑
HW xrs(x

(i)
t , s),

and their resulting loss Lt(s) at six different time steps which are evenly selected during the stage
of scale adaptive sampling. As shown in Figure 7, we can see that Lt(s) can converge quickly after
a few SGD optimization steps for various sampling time steps t.
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Figure 7: Scaling indicator (denoted by the green line) and the xrs term (denoted by the red dashed
line), and their corresponding loss Lt(s) (the gap between the red and green lines) at different steps
during scale optimization.

Figure 8: Top-1 classification accuracy on noisy sketches xt and the estimated sketches x0|t.

D THE EFFECTIVENESS OF CLASSIFICATION ON x0|t

To validate the applicability of the classifier (trained using the noisy sketches xt) to recognize the
estimated sketch x0|t, we provide the results of the top-1 classification accuracy both on xt and
x0|t using the same classifier. As shown in Figure 8, the estimated sketch x0|t can be successfully
recognized by using the classifier, i.e., achieving the same level top-1 accuracy of xt.
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E SUMMARIZED CAPTIONS

airplane

an airplane with two wings

an airplane with a streamlined fuselage

an airplane flying upward

an airplane with tail fin

an airplane with windows

barn

a barn with a peaked roof

a barn with a door

a barn with double doors

a barn with arched door

a barn with windows

angel

an angel with a pair of wings

an angel with a halo above his head

an angel in robes

an angel with feather-like wings

an angel with eyes

apple

a round apple

an apple with a stem

an apple with one leaf

an apple with a small pit on the bottom

an apple with two leaves

basket

a basket with a handle

a plaid woven basket

a square basket

a round-bottomed basket

a basket with a thin handle

book

an open book

a closed book

a book with wavy lines

a book with a spine

a book with a pattern

bus

a bus with a rectangular body

a bus with a row of windows

a bus with a row of tires

a bus with doors

a bus with an antenna on the roof

butterfly

a butterfly with a pair of wings

a butterfly with an elongated body

a butterfly with antennae

a butterfly with horizontal lines on its body

a butterfly with spots on its wings

cake

a cylindrical cake

a cake with candles

a cake with two tiers

a cake with wavy lines on the sides

a cake with decorations on it

candle

a rectangular candle

a candle with flame

a candle with wax drops on the bottom

a candle with wax drops on the side

a candle with patterned sides

car

a car with two tires

a car with a flat roof

a car with a rectangular body

a car with doors

a car with windows

cat

a round-faced cat

a cat with eyes

a cat with pointed ears

a cat with beard

a full body cat

chair

a four-legged chair

a chair with an upright back

a chair with an oval seat

a chair with a rectangular seat

a chair with rails on the back

cloud

a fluffy cloud

a cloud with wavy edges

a cloud with a flat bottom

a flat cloud

a marshmallow-like cloud

face

a round face

a smiling face

a face wearing glasses

a boy's face with short hair

a girl's face with two pigtails

fireplace

a rectangular fireplace

a fireplace with a pile of firewood

a fireplace with flames

an arched fireplace

a fireplace with chimney

spider

a spider with many legs

a spider with an oval body

a spider with a segmented body

a spider with black body

a spider with bent legs

fish

a fish with an oval body

a fish with a triangular tail

a fish with eyes

a fish with a mouth

a fish with fins

sun

a sun with a large circle in the center

a sun with dashes around it

a sun with wavy lines on the border

a sun surrounded by triangular rays

a sun with a smiling face

television

a rectangular television

a television with an antenna on top

a television with a base

a television with a row of buttons

a television with patterns on the screen

grapes

a bunch of round grapes

a bunch of closely packed grapes

a bunch of grapes with leaves

a bunch of grapes with glucose

a bunch of grapes of the same size

lion

a lion's face

a lion with a thick mane

a lion with eyes

a lion with ears

a full-body lion

pizza

a round pizza

a triangular pizza

a pizza with outer edge

a pizza with round garnish

a pizza with cutting lines

shoe

a flat shoe

a round-toed shoe

a boot

a high heel shoe

a shoe with laces

vase

a plump vase

a cylindrical vase

a vase with a flat bottom

a vase with an elongated neck

a vase with flowers

yoga

a stickman

a person on a yoga mat

a person with arms raised

a person standing on one foot

a person lying on the ground

moon

a round moon

a small crescent moon

a waxing moon

a waning moon

a half-circle moon

umbrella

a domed umbrella

an umbrella with a curved handle

an umbrella with ribs

an umbrella with wavy edges

an umbrella with horizontal edges

pig

a round-faced pig

a pig with eyes

a pig with an oval nose

a pig with ears

a full-body pig

mosquito

a mosquito with spikes

a mosquito with wings

a mosquito with slender legs

a mosquito with an elongated body

a mosquito with longitudinal texture 

Category Prompt Category Prompt Category Prompt

Figure 9: All captions summarized from the randomly chosen 30 categories. Five captions are
collected per category with template “this is a sketch of X” in our experiments, where X is either a
coarse or fine-grained text description, as shown in the table. The fine-grained and coarse captions
are color-coded in red and blue, respectively.
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F MORE SAMPLES

Figure 10: Samples from our model. Classes are yoga, kangaroo, house plant.
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Figure 11: Samples from our model. Classes are strawberry, face, car.
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Figure 12: Samples from our model. Classes are bird, basket, pineapple.
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Figure 13: Samples from our model. Classes are owl, rain, whale.
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G EFFECT OF BATCH SIZE

To inspect the robustness of our model under various choices of batchsize, and how the batchsize
impact the results, we set different batchsize to generate 5k samples for evaluation. As shown in the
table 4, the FID score remains relatively stable while the recall increases clearly when the batchsize
becomes smaller (but much more time-consuming). The trend of generation results can conform to
the expectation, i.e., using smaller batchsize offers improved results.

When setting batchsize=1, other than the known fact that this choice can highly slow down the sam-
pling process , we further found that it makes the sampling sometimes unstable due to gradient van-
ishing during scale optimization, i.e., the scale gradient becomes zero (achieving local minimum).
In contrast, our default setting, i.e., batchsize=128, offers alleviation to the sisue since larger batches
provide more samples for gradient computation thus slowing down the vanishing of gradients.

To sum up, batchsize=1 should be ideal for scale optimization theoretically, however it is sub-
optimal due to the issue of scale gradient vanishing in practice. As a result, we altered to a batch
version scale for speeding up and stabilizing the generation.

Table 4: Comparison results when varying batchsize on 30 categories of QuickDraw datasets.

batchsize FID↓ Prec↑ Rec↑ Speed(s)↓
1 3.34 0.67 0.42 274.57

16 3.13 0.68 0.40 17.62
64 3.11 0.68 0.38 3.97

128 3.08 0.68 0.35 1.90

H EXAMPLES AND THE RETRIEVED CAPTIONS USING CLIP-SCORE

a round face

a smiling face

a face wearing
glasses

a girl's face with
two pigtails

a bird with a tail

a bird with eyes

a bird with wings

a flying bird

a bird with textured
body

  this is a sketch of    this is a sketch of  

a boy's face with
short hair

Figure 14: Examples of the generated sketches and the retrieved captions (Top-1) using CLIP-Score.
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