A Appendix

A.1 Proof

A1.1 Lemma[ddl

Proof. First, according to the linearity of expectation, we have
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where E(Wh'n) = E(m‘m) == E(m"frb), and here {61,62,...,€N_m}
is the test answer set. We denote the final item as E( m) Then, using the conditional expectation,

we have
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For the first item, because the ranking of each positive entity is uniformly at random and note the
ranking is filtered, we have P(r = k|Y) =1/(m+1), Yk =1,2,..., m + 1. Note m is a random
variant following the binomial distribution B(V, 5¢), we have
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where & is the cdf of binomial distribution B (N +1,¢p). To prove this lemma, we only need to prove

0<(1-19) E(%F) <(1- E)% The left side is obvious, and the right side can be
proved as follow. Here we use N, to denote the number of entity instead of N¢pyity. Condition on
m, note that the minimal ranking of negative entities is m + 1 because there have been m missing
answers with higher rankings, and the maximal ranking of them is N, — (N — m) which is the

number of entities except for the filtered ones. So we have
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The first inequality is because 1/k < In(k) — In(k — 1). This proves the lemma. O
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A.1.2 Corollaryd.1]

Proof. We need the derivative of the cdf of binomial distribution. Assuming ® is the cdf of B(N, p),
we have
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So for ®(k) is the cdf of B(N + 1, £8), we have
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The final equation is because g(0) = 0. O

A.1.3 Corollary[d.2]

Proof. For MRR, g(r) = 1, Vr € N4 and g(0) = 0. Just replace g into Corollary [4.1] we can get
this corollary. O

A.14 Corollary[d.3
Proof. According to the Corollary 1] we have
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where @ is the cdf of the binomial distribution B(N, ¢73). O

A.1.5 Theorem[d.1l
Proof. Let E = K = T S (- ®(k)) and t = ¢3. In the same way in Corollary

we have
/ (1 _ \N+1
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dt (N+1) k+1 t(N+1)
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For 0 < tg <t < 1, we have
1—(1—t)N*tt  dE 1
_— < < —.
t(N+1) = dt |, = t(N+1)
Then we integrate them from ¢y to 1.
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Because t is arbitrary, we replace ¢ as general /..
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We denote it as Ey, where ey = In(N +2) + v — ZNH L'is the residual of the sum of harmonic

. 1
series and 0 < eyy1 < SNTFD) Then, we have

(L= (U= BV +Y) - (By 457 — BE) < By —E' < (Ba 705 - BB).

For the second inequality, it is equivalent to
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For the first inequality, we have
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A.1.6 Theorem

Proof. Given all the independence assumption, I (Msz) — M(M;) follows normal distribution
N( In(1+4%) v(B, Z)+V(5 A€+Z)) So
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Then M(My) < M(M;) is equivalent to
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So the probability is as shown in the theorem. O
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A.1.7 Corollary 4.4
Proof. Just solve N from the Theorem [4.2] O

A.1.8 Theorem

Proof. We can generalize the Lemma[4.T]as follows.

Lemma A.1 (Expectation with Correlation). Under the same assumptions as the lemma {4 and the
correlation coefficient is p, the expectation of the metric N

1 T /
’E'6<N+1>,§f<k+1> (1 =) +7. ©

where ® is the cdf of binomial distribution B(N + 1,¢13) and 0 < &' < (1 — EQ)W.
entity

The proof of the lemma is similar to what we have shown in Given the lemma, the E can be
.. N ~

similarly expressed as ¢ - BONTD ko Foerm (L — 2(K))-

In the similar way in , let E' = ¢, 8K and ¢ = ¢, 3 we have
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The error bound is that
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A.19 Corollary[d.3|
Proof. Let B(N + 1) =candIn 8 + In(N + 2) + v = d, we have
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Note that « + 8 = 1. Because of the conditions ¢1 3(N + 2) > exp(a + a'@(}%) — ), we have
1-7
ln(gl) +d>a+ #

and then

14 1—-20)¢ 1-20)¢
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o o o
Combining this inequality with the derivative expression, we have %—E < 0. O

A.2 Details of the simulation

In the Figures|T]and 2} we choose N as 43 = 14505 x 30% x 1%, where we assume Nep¢i¢,, = 14505
as the same as FB15k-237, the total answers accounts for one percent of all entities and the test set
accounts for thirty percent of the total answers. For each ¢ and « we repeat the simulation with 500
times to calculate the average MRR and the standard derivation.

A.3 Details of artificial family tree KG

Our codes are modified from [Hohenecker and Lukasiewicz, [2020] (BSD license) to generate the
KG. Firstly, it generates all the parent-child relations and then deduced other relations by a symbolic
reasoning systems called DLV system [Leone et al.|[2006]. We generate 20 family trees then merge
them into a whole. Each family tree has three layer depth and 300 entities, with maximal branching
width 20 at each internal node. The final artificial KG has 6,004 entities, 23 relations and 192,532
facts. The relations are listed as follow:

* parentOf » wifeOf ¢ girlCousinOf * granddaughterOf
* sisterOf * husbandOf * boyCousinOf « grandsonOf
* brotherOf * grandmotherOf * cousinOf
. dchildOf
« siblingOf « grandfatherOf « daughterOf grandein
¢ motherOf o auntOf ¢ sonOf * nieceOf
o fatherOf * uncleOf * childOf * nephewOf

Note that Gy 2 Giest 2 Girain- We use density d to denote the ratio |Gyest|/|G fuu| and then
in the open-world KG G}, we split the training set and test set with ratio ) = |Gtrainl|/|Gtest|-
For each facts, it is a missing fact with probability 1 — d, a test fact with probability d(1 — 1) and a
training fact with probability dn. We setp = 0.7 and d = 95%, 85%, 756%, 65% which corresponds

_ |Grest\Grrain| _ d(1=m) _
0 Q= G R Gn] = 1oy = 59, 63%,47%, 35%.

As the same as [Ren et al.| 2020, |Ren and Leskovec, |2020], we organize the test by queries which
means we firstly randomly sample the test queries r(ep,, 7) and then search answers e € G full \ Grest
as missing answers and ¢ € Giest \ Girain as test answers. In order to simulate the real situation of
common KGs, we filter out the queries with less than 10 answers in the closed-world graph G ;.
Finally, for each sparsity d we choose 500 test queries. For training, we use all facts in Gyqr, -

A.4 Details of models

Different models are trained on artificial family tree KG. During training, we test them on full test
set and sparse test set to plot the sparse-full curve to show the inconsistency. We choose different
framework, including RotatE, pRotatE [Sun et al.,|2019], ComplEx [Trouillon et al.,|2016]] and BetaE
[Ren and Leskovec, [2020]. We also test Q2B [Ren et al., 2020] and TransE [Bordes et al., [2013]]
models, both of which cannot fit the KG well. For each framework, we use several setting, where
their label in Figure [3|and the hyper-parameters of the models are shown in Table[2] Here, We have
filtered some models which maximal strength ¢ < 0.1.

A.5 Experiments with correlation

Here we show more results of the experiments on the correlated family tree KG in Figure|[6]
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Table 2: Detail of the models trained on family tree KG.

label model dimension gamma step batchsize negative sampling
0 RotatE 10 24 100000 1024 128
1 RotatE 50 12 100000 256 128
2 RotatE 500 12 100000 1024 512
3 RotatE 500 24 100000 1024 128
4 RotatE 1000 24 100000 1024 128
S pRotatE 1000 24 12000 1024 128
6 pRotatE 250 24 12000 1024 128
7 pRotatE 500 24 12000 1024 128
8 pRotatE 500 24 12000 128 512
9 pRotatE 500 6 12000 1024 128
10 BetaE 1000 60 400000 1024 128
11 BetaE 500 240 400000 1024 128
12 BetaE 500 60 400000 1024 128
13 BetaE 500 15 400000 1024 128
14 BetaE 100 60 400000 1024 128
15 ComplEx 1000 500 100000 1024 128
16 ComplEx 1000 200 100000 512 256
17 ComplEx 2000 500 100000 1024 128
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Figure 6: Full test and sparse test MRR on independent (above) and correlated (bottom) family tree
KG. Density d = 95%, 85%, 65% from left to right.
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A.6 Family tree experiments with MRR, Hits @K and more less focus-on-top metrics

The results for other density d and more metrics in the independent situation are shown in Figures[7H10)|
And the results in the correlated situation are shown in Figures [[THT4]
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Figure 13: d = 75% correlated
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