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A Implementation Details

To train the fusion network F which is comprised of SIM, CN and AGN, we set the batch size to be
512. We take the pretrained model E, which is IResNet-101 [2], trained on WebFace4M [15] with
ArcFace loss [2] and freeze it without further tuning. For training CAFace, the number of images per
identity N is randomly chosen between 2 and 16 during each step of training, and we take two sets
per identity. The intermediate feature for the Style Input Component (SIM) is taken from the block 3
and 4 of the IResNet-101. The number of clusters in CN is varied in the ablation studies and fixed to
be 4 for subsequent experiments. The number of layers L in CN is equal to 2.

We train the whole network end-to-end for 10 epochs with an AdamW optimizer [9]. The learning
rate is set to 1e− 3 and decayed by 1/10 at epochs 6 and 9. The weight decay is set to 5e− 4. For the
loss term, we use λt = 1.0 and λp = 1.0 while the efficacy of λp = 1.0 is ablated with λp = 0.0 in
the ablation studies. For f (p)

GT , we take the feature embeddings fi extracted from E for each labeled
image in the training data, and average them per identity, with a flip augmentation.

B Norm Embedding

For an embedding vector fi, the norm is a model dependent quantity, we L2 normalize the feature
norm using batch statistics µf and σf and convert it to a bounded integer between [−qk, qk).

∥̂fi∥ =

⌊(
q ∗

(⌊
∥fi∥ − µf

σf

⌉k
−k

))⌋
. (1)

Two hyper-parameters, q and k controll the concentration of the ∥̂fi∥ distribution and ⌊·⌉k−k refers to
clipping the value between −k and k. ⌊·⌋ refers to the floor operation to convert the quantity to an
integer. Following the convention of Sinusoidal position embedding in [12], we let

nt(2t) = sin(∥̂fi∥/10000
2t
c ), nt(2t+ 1) = cos(∥̂fi∥/10000

2t
c ), (2)

where t is the channel index and c is the dimension of the norm embedding. The resulting ni ∈ Rc is
a 64-dim vector in our experiments.
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C Additional Performance Results

In this section, we provide additional performance results from IJB-A [6], IJB-B [13], IJB-C [10]
and IJB-S [4] dataset with additional backbones.

Table 1: A performance comparison of recent methods on the IJB-A [6] dataset. The ± sign refers to
the standard devidation calculated from the official 10-fold cross validation splits from the dataset.
For recent SoTA backbone models, the performance is saturated above 98.5.

IJB-A [6] Dataset Backbone E TAR@FAR=0.001 TAR@FAR=0.01
Naive Average VGGFace2(3.3M) [1] ResNet50 89.5 ± 1.9 95.0 ± 0.5

QAN [8] VGGFace2(3.3M) [1] CNN256 89.3 ± 3.9 94.2 ± 1.5
NAN [14] 3M Web Crawl [14] GoogleNet 88.1 ± 1.1 94.1 ± 0.8
RSA [7] VGGFace2(3.3M) [1] ResNet50 94.3 ± 0.8 97.6 ± 0.6

Naive Average WebFace4M [15] IResNet101+ArcFace [2] 98.5 ± 0.6 99.1 ± 0.2
PFE [11] WebFace4M [15] IResNet101+ArcFace [2] 98.5 ± 0.6 99.1 ± 0.2
CFAN [3] WebFace4M [15] IResNet101+ArcFace [2] 98.5 ± 0.5 99.2 ± 0.2
RSA [7] WebFace4M [15] IResNet101+ArcFace [2] 98.6 ± 0.5 99.1 ± 0.2
CAFace WebFace4M [15] IResNet101+ArcFace [2] 98.7 ± 0.4 99.2 ± 0.2

Table 2: A performance comparison of recent methods on the IJB-C [6] dataset. CAFace achieves the
best result in IJB-C dataset. We also compare two different backbones ArcFace [2] and AdaFace [5]
(CVPR’22). The performance gain is observed in both backbones.

IJB-C [10] Dataset Backbone E TAR@FAR=1e-3 TAR@FAR=1e-4 TAR@FAR=1e-5
Naive Average WebFace4M [15] IResNet101+ArcFace [2] 97.30 95.78 92.60

PFE [11] WebFace4M [15] IResNet101+ArcFace [2] 97.53 96.33 94.16
CFAN [3] WebFace4M [15] IResNet101+ArcFace [2] 97.55 96.45 94.40
RSA [7] WebFace4M [15] IResNet101+ArcFace [2] 97.49 96.49 94.58
CAFace WebFace4M [15] IResNet101+ArcFace [2] 97.99 97.15 95.78

Naive Average WebFace4M [15] IResNet101+AdaFace [5] 97.63 96.42 94.47
CAFace WebFace4M [15] IResNet101+AdaFace [5] 98.08 97.30 95.96

Table 3: An additional performance on the IJB-B [6] dataset. We compare two different backbones
ArcFace [2] and AdaFace [5] (CVPR’22).

IJB-B [13] Dataset Backbone E TAR@FAR=1e-3 TAR@FAR=1e-4 TAR@FAR=1e-5
Naive Average WebFace4M [15] IResNet101+ArcFace [2] 96.1 94.30 89.53

CAFace WebFace4M [15] IResNet101+ArcFace [2] 96.91 95.53 92.29

Naive Average WebFace4M [15] IResNet101+AdaFace [5] 96.66 94.84 90.86
CAFace WebFace4M [15] IResNet101+AdaFace [5] 96.97 95.78 92.78

Table 4: An additional performance result on IJB-S [4] dataset with two different backbones,
ArcFace [2] and AdaFace [5] (CVPR’22). AdaFace [5] combined with our proposed CAFace
achieves a large margin improvement in IJB-S.

Method E
Surveillance-to-Single Surveillance-to-Booking Surveillance-to-Surveillance

Rank-1 Rank-5 aa1%aa Rank-1 Rank-5 aa1%aa Rank-1 Rank-5 aa1%aa
Naive Average ArcFace 69.26 74.31 57.06 70.32 75.16 56.89 32.13 46.67 5.32

CAFace ArcFace 71.61 76.43 62.21 72.72 77.41 62.68 36.51 49.59 8.78

Naive Average AdaFace 70.42 75.29 58.27 70.93 76.11 58.02 35.05 48.22 4.96
CAFace AdaFace 72.91 77.14 62.96 73.39 78.04 63.61 39.25 50.47 7.65

The size of the probes N in each dataset increases in the order of IJBA [6], IJBB [13], IJB-C [10]
and IJB S [4]. As the probe size increases, the role of a feature fusion model also increases. As noted
in Fig.1 c) of the main paper, previous methods either fail to model the intra-set relationship or scale
to large N , which results in a suboptimal performance with an increasing probe size. The plot of
the relative performance increase over the naive average baseline shows that for CAFace, as the set
size increases, the performance gain also increases. The relative performance gain for Fig.1 c) is
calculated as Method−Naive

Naive ∗ 100% where the metrics for each dataset are TAR@FAR=0.001 for
IJB-A, TAR@FAR=1e− 4 for IJB-B and IJB-C, and the average of 9 metrics across all 3 protocols
for IJB-S.
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D Resource and Efficiency Comparison

We report the FPS (frames per second) to give the estimation of how much resource the feature
fusion framework takes with respect to the backbone E. For the table below, we use the backbone of
IResNet-101 [2]. We measured the FPS with Nvidia RTX3090. It is equipped with a GPU memory
of 24 GB. For measuring the time, we feed the random array as an input to the model and simulate
the run for 1, 000 times. In Tab. 5, we first show the FPS for the backbone E. The FPS increases with
batch-size due to the efficiency of GPU architecture. We take 1, 288 FPS as the FPS for the backbone
and measure the relative FPS of the fusion models F with respect to the backbone, i.e. FPS(F )

FPS(E) .

In Tab. 6, we show FPS(F )
FPS(E) of various feature fusion models with the varied set size N . First,

note that the feature fusion model’s inference speed is always faster than the backbone model, i.e.
FPS(F )
FPS(E) > 1. In practice, we would like the fusion time to be a fraction of the backbone inference
time. Secondly, we show the maximum set size N each method can take. Note that methods without
intra-set relationships, PFE [11] and CFAN [3], are computationally very fast and require little
memory. Therefore, it can take many samples together (large N ) during inference. In contrast, the
maximum set size N for RSA [7] is 384 because the intra-set attention with the feature map is a
memory-intensive module. CAFace is fast and uses relatively little memory, allowing the maximum
set number to be N = 12, 000.

Note the ability to perform sequential inference is different from large N . For instance, with CAFace,
we can split a set of size 64, 000 with a batch size of 64 and run 1, 000 sequential inferences, without
sacrificing the performance. It is evident in the high performance of IJB-S dataset, where we adopt
the batch size of 256.

Table 5: FPS for the face recognition backbone model IResNet-101. Higher the FPS, the faster the
inference speed per image.

Batch Size FPS
Backbone (Batchsize: 1) 1 91
Backbone (Batchsize: 256) 256 1,288

Table 6: A table of relative FPS of the fusion model w.r.t. the FPS of the backbone. We compare
various fusion models with varied input size N . As N increases, it requires more GPU memory as
well. Max N refers to the maximum number of images that can be in a set without causing the out of
memory error (OOM). The higher the FPS(F )

FPS(E) , the faster the fusion method.

FPS(F )
FPS(E) Max N N = 16 N = 32 N = 64 N = 256 N = 512

PFE 115, 200 21.8x 44.1x 86.3x 360.1x 2133.6x
CFAN 115, 200 82.6x 158.7x 268.8x 544.1x 664.2x
CAFace 12,000 4.2x 8.2x 16.4x 64.4x 129.3x
RSA 384 6.9x 13.1x 9.2x 3.1x OOM

3



E Training Progress and Learned Assignment

To see how the assignment behavior changes during training, we plot the entropy of the assignment
map A ∈ RM×N over the training epochs. We note that each j-th cluster is a weighted average of
individual N samples. Therefore, if all samples are contributing equally to the j-th cluster, then the
entropy of A for each row would be high. When a few samples’ contribution is larger than the others
(i.e., A is sparse) then the entropy would be low. We use entropy as a proxy of how sparse is the
influence of samples for each cluster.

The entropy is calcuated as
M∑
j=1

N∑
i=1

−pj,i log(pj,i),

where pj,i = Aj,i/
∑N

i=1 Aj,i. In other words, it is the mean of the row-wise entropy of the
normalized assignment map. Lower entropy value tells you that the cluster features are deviating
from a simple average of all samples. In Fig. 1, we show the plot of the mean entropy over the
training progression using the IJB-B dataset [13]. The value decreases steeply during the first few
epochs, indicating that the clustering mechanism is quickly deviating from the simple averaging of
the given samples.
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Figure 1: A plot of mean entropy during training. The samples used are random 200 probes taken
from the IJB-B [13] dataset.

F Weight Visualization

We show a few examples of the weight visualizations of different methods. The weights for CAFace
are calculated as

wi =

∑M
j Aj,i

∑C
c=1 (Pj,c/C)

z
,

the sum of the contributions each sample makes to each cluster, weigthed by the importance of the
cluster. C is the dimension of f , which is 512 in our backbone. M is the number of clusters. z

is the normalization constant to make the
∑N

i=1 wi = 1. For the Averaging, the weights are the
normalized feature norms. For PFE and CFAN, the weights are the output of the respective modules.
Note that RSA does not have a weight estimation, as it directly estimates the fused output as opposed
to estimating the weights. The circles in the plot represent individual probe images in IJB-S and
the color represents the magnitude of the weights. The horizontal axis represents the similarity of
individual probe images to the gallery shown on the right. The vertical axis exists only to scatter the
points. Note that for both PFE and CFAN, the weight estimation is based on a single image.
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G Comparison of Assignment Maps in Various Scenarios

To analyze the behavior of the assignment map A ∈ R4×N of CAFace in varied scenarios, we show
in Fig. 2, IJB-S [4] probe examples that come from 3 typical settings; mixed, poor and good quality
image scenarios. The mixed-quality probe is comprised of both low and high quality images as
illustrated in scenario 1. On the other hand, probes could contain all poor or all good quality images
as illustrated by scenarios 2 and 3. Note that each column of A sums to 1, and each row of A are the
relative weights responsible for creating each clustered vector in F ′ ∈ R4×512.

Cluster 1      Mean 𝑷𝟏 : 0.653   ←

Cluster 2      Mean 𝑷𝟐 : 0.258 ←

Cluster 3      Mean 𝑷𝟑 : 0.089 ←

Cluster 4      Mean 𝑷𝟒 : 0.000 ←
𝑷 ∈ ℝ𝟒×𝟓𝟏𝟐,  Mean 𝐏𝒋: ℝ𝟓𝟏𝟐 → ℝ𝟏

Cluster 1      Mean 𝑷𝟏 : 0.485   ←

Cluster 2      Mean 𝑷𝟐 : 0.323 ←

Cluster 3      Mean 𝑷𝟑 : 0.191 ←

Cluster 4      Mean 𝑷𝟒 : 0.001 ←

𝑷 ∈ ℝ𝟒×𝟓𝟏𝟐,  Mean 𝐏𝒋: ℝ𝟓𝟏𝟐 → ℝ𝟏

Cluster 1      Mean 𝑷𝟏 : 0.446   ←

Cluster 2      Mean 𝑷𝟐 : 0.376 ←

Cluster 3      Mean 𝑷𝟑 : 0.178 ←

Cluster 4      Mean 𝑷𝟒 : 0.000 ←

𝑷 ∈ ℝ𝟒×𝟓𝟏𝟐,  Mean 𝐏𝒋: ℝ𝟓𝟏𝟐 → ℝ𝟏

Scenario 1: Mixed-Quality Probe 

Scenario 2: All Poor-Quality Probe 

Scenario 3: All Good-Quality Probe 

Figure 2: The comparison of assignment maps depending on the probe image configurations.

Note that cluster 4 works as a place where bad quality images are strongly assigned to. Since the
mean P4 is close to zero, all images assigned to cluster 4 have very little contribution to the final
fused output f . For scenario 2 where all of the images are of bad quality, a few relatively better
images are still assigned to cluster 1, 2 and 3, making it possible to perform feature fusion with bad
quality images. This is possible because CAFace incorporates intra-set relationships that allow the
information to communicate among the inputs to determine which features are more usable than
the others. For scenario 3, we can observe that most of the images are quite similar to one another,
providing duplicating information. Therefore, the assignments are learned to discard many of the
duplicating images, as shown by the high (red) values in the last row of scenario 3.

H Effect of Sequence Length

In Fig. 3, to illustrate the importance of using all video sequences, we show how the IJB-S performance
of CAFace changes as we divide the probe videos into 10 partitions and use first 1:k partitions. The
increasing trend reveals that longer video sequences can provide more information for fusion.

1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10
IJB-S Perf. 0.5264 0.5382 0.5539 0.5603 0.5672 0.5682 0.5699 0.5731 0.574 0.5755
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Figure 3: The performance of IJB-S with increasing video sequence length. The metric for y-axis is
the average of all protocols in IJB-S and 1 : 10 is using all videos in the probe.
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