
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL COMMENTS ON EXPERIMENTS

Here we slightly expand on the comment about computational complexity in the main text, and give
more details about the cancer simulation we use from Bica et al. (2020); Geng et al. (2017); Seedat
et al. (2022); Vanderschueren et al. (2023).

A comment on computational complexity: As commented in the main text, the per-iteration runtime
of EDQ is similar to that of FQE, which is a common tool in large-scale offline RL problems; for
example, Paine et al. (2020); Voloshin et al. (2021) use it in benchmarks and evaluations. The
difference in computation times between EDQ and FQE is due to sampling from the target policy,
or more accurately P̃ a

t , in order to draw the treatments used in the Q-update, i.e., � and eHt+� in
algorithm 2. In most applications, the added complexity due to this difference is small relative to
the cost of evaluating the Q-function and its gradients. In turn, the cost of function evaluation is the
same for FQE and EDQ. The computational complexity of sampling from P̃ a

t depends on how it
is represented and implemented. For instance, we may specify policies by allowing evaluations of
�a(u|Hu), and sample using the thinning algorithm (Lewis and Shedler, 1979; Ogata, 1981); with
neural networks that allow sampling the time-to-next-event (e.g., see (McDermott et al., 2023; Nagpal
et al., 2021) for examples of event time prediction); or with closed-form decision rules. For instance,
in the simulation that follows, we sample exponential variables from times once a feature crosses a
certain threshold.

B PROOFS

We begin with some notation and additional definitions, in appendix B.2 we prove the consistency
result for our method, and in appendix B.3 we give its discrete-time version. To avoid cluttered
notation and longer proof, we will give the proof of theorem 1 for unmarked processes. Adding a
distribution of marks is a trivial extension that does not alter the main steps of the derivation.

B.1 NOTATION AND DEFINITIONS

For a multivariate point process we denote by �•(·) the sum
P

k �k(·), in our case this will include
the components {a, x, y}. For any distribution or intensity, e.g. �, and s > t, we will use the
conditioning �(·|Hs = Ht) to denote the event that jumps until time t are those that are in Ht and no
events occur in the interval (t, s]. Ht [ {(t+ �, k)} is the event where up until time t+ � all jumps
until time t agree with Ht, and the next jump after that happens in Nk at time t + �. We assume
that all processes have well-defined densities and intensity functions, and that P ⌧ Pobs so that the
conditional expectations we use in the derivation are well defined. The expectation E�k⇠Q(·|Ht)[·]
for k 2 {x, a, y} and a process Q denotes an expectation that draws the interval for next jump time
t+ �k of the Nk process, conditioned on Ht, the history up to time t. We also adopt the convention
where for the for the k-th event time Tk it holds that limk!1 Tk = 1 with probability 1. That is,
the number of events with time smaller than T is countable and all events after T take on time 1

(Andersen et al., 2012). We also use the notation 1[·] for the indicator function returning 1 if the
condition inside it is satisfied and 0 otherwise.

Given a trajectory H and time t, we define �x(t) = min{s� t : s > t, (s, ·) 2 H
x
} as the first jump

time for process Nx in trajectory H after time t, and likewise for y. We denote the first jump time for
Na by �obsa (t), and a trajectory eH sampled from eP a

t (·|H) we use �a(t) to refer to its first treatment
jump time, i.e. �a(t) = min{s� t : s > t, (s, ·) 2 eHa

}. Since x, y play the same role throughout
the derivation, as the parts of the process that are not part of the intervention, we will shorten notation
to �v(t+ �|Ht+�)EP [Y |Ht [ {(t+ �, v)}] := �x(t+ �|Ht+�)EP [Y |Ht [ {(t+ �, x)}] + �y(t+
�|Ht+�)EP [Y |Ht [ {(t+ �, y)}] and �v := �x ^ �y .

B.2 PROOF OF FORMAL RESULTS

Below we prove theorem 1 where the result, eq. (2), implies that performing dynamic programming
using the Q-function from the earliest disagreement time between observed data, and the data sampled
from the target distribution, results in a correct estimator. We start with a lemma that the rest of the
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derivation relies on, which is similar to a tower property of conditional expectations with respect to
the first jump that occurs in any component of the process.
Lemma 1. Let P, Pobs be multivariate marked decision point processes, t 2 [0, T ), and H a
trajectory of events, where H 2 supp(P ). It holds that

EP [Y |Ht] = EH⇠Pobs(·|Ht)

h
E eH⇠ ePa

t (·|H)

h
1
⇥
�a(t) < �v(t) ^ �obsa (t)

⇤
EP [Y |Ht [ (t+ �a(t), a)] +

1
⇥
�v(t) < �a(t) ^ �obsa (t)

⇤
EP [Y |Ht [ (t+ �v(t), v)] +

1
⇥
�obsa (t) < �a(t) ^ �v(t)

⇤
EP

⇥
Y |Ht+�obsa (t) = Ht

⇤
+

1
⇥
�obsa (t) ^ �a(t) ^ �v(t) > T � t

⇤
EP [Y |HT = Ht]

i

(3)

Proof. Note that all the conditional expectations in the above expression exist since P ⌧ Pobs. From
the law of total probability, since either no jumps occur in (t, T ], or Nx,y jumps first, or Na jumps
first,

EP [Y |Ht] = exp

(
�

Z T

t
�•(s|Hs = Ht)

)
EP [Y |HT = Ht] +

Z T�t

0
exp

(
�

Z t+�

t
�•(s|Hs = Ht)ds

)

⇣
�a(t+ �|Ht+� = Ht)EP [Y |Ht [ {(t+ �, a)}] +

�x(t+ �|Ht+� = Ht)EP [Y |Ht [ {(t+ �, x)}] +

�y(t+ �|Ht+� = Ht)EP [Y |Ht [ {(t+ �, y)}]
⌘
d�. (4)

Next we write down each item in eq. (3),

EH⇠Pobs(·|Ht)

h
E eH⇠ ePa

t (·|H)

h
1
⇥
�a(t) < �v(t) ^ �obsa (t)

⇤
· E [Y |Ht [ (t+ �a(t), a)]

ii
=

Z T�t

0
�a(t+ �|Ht+� = Ht) exp{�

Z t+�

t
�a(s|Hs = Ht)ds}

exp{�

Z t+�

t
�obs
•

(s|Hs = Ht)ds}E [Y |Ht [ (t+ �a, a)] d� =

Z T�t

0
�a(t+ �|Ht+� = Ht) exp{�

Z t+�

t
�•(s|Hs = Ht)ds}

exp{�

Z t+�

t
�obs
a (s|Hs = Ht)ds}E [Y |Ht [ (t+ �a, a)] d� =

Z T�t

0
�a(t+ �|Ht+� = Ht) exp{�

Z t+�

t
�•(s|Hs = Ht)ds}E [Y |Ht [ (t+ �a, a)]

· (1� 1 + exp{�

Z t+�

t
�obs
a (s|Hs = Ht)ds})d�. (5)

The first equality simply expands the expectation as an integration over all possible stopping times for
Na (according to the definition of eP , see definition 4). The second equality holds since the intensities
�obs
x ,�obs

y are equal to �x,�y respectively. Then finally we simply add and subtract 1 from the last
item. Similarly, for the second item in eq. (3)

EH⇠Pobs(·|Ht)

h
E eH⇠ ePa

t (·|H)

h
1
⇥
�v(t) < �a(t) ^ �obsa (t)

⇤
· E [Y |Ht [ (t+ �v(t), v)]

ii
=

Z T�t

0
�v(t+ �|Ht+� = Ht)E [Y |Ht [ (t+ �v, v)] exp{�

Z t+�

t
�•(s|Hs = Ht)ds}
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· (1� 1 + exp{�

Z t+�

t
�v(s|Hs = Ht)ds})d�. (6)

The last item in eq. (3) is

EH⇠Pobs(·|Ht)

h
E eH⇠ ePa

t (·|H)

h
1
⇥
�obsa (t) ^ �a(t) ^ �v(t) > T � t

⇤
· EP [Y |HT = Ht]

ii
=

exp

(
�

Z T

t
�obs
a (s|Hs = Ht)

)
exp

(
�

Z T

t
�•(s|Hs = Ht)ds

)
EP [Y |HT = Ht] (7)

Adding up eq. (5), eq. (6) and eq. (7), and matching the items with eq. (4), we get

EH⇠Pobs(·|Ht)

h
E eH⇠ ePa

t (·|H)

h
1
⇥
�a(t) < �v(t) ^ �obsa (t)

⇤
· EP [Y |Ht [ (t+ �a, a)] +

1
⇥
�v(t) < �a(t) ^ �obsa (t)

⇤
· EP [Y |Ht [ (t+ �v, v)] +

1
⇥
�obsa (t) ^ �a(t) ^ �v(t) > T � t

⇤
· EP [Y |HT = Ht]

i
=

EP [Y |Ht] + (8)

�

 
1� exp

(
�

Z T

t
�obs
a (s|Hs = Ht)ds

)!
exp

(
�

Z T

t
�•(s|Hs = Ht)

)
EP [Y |HT = Ht]

�

Z T�t

0

"⇣
�x(t+ �|Ht+� = Ht)EP [Y |Ht [ (t+ �, x)]+

�a(t+ �|Ht+� = Ht)EP [Y |Ht [ (t+ �, a)]
⌘
·

exp{�

Z t+�

t
�•(s|Hs = Ht)ds} ·

 
1� exp{�

Z t+�

t
�obs
a (s|Hs = Ht)ds}

!#
d�. (9)

Note that we have,

1� exp{�

Z t+�

t
�obs
a (s|Hs = Ht)ds} =

Z t+�

t
�obs
a (s|Hs = Ht) exp{�

Z s

t
�obs
a (s|Hs = Ht)du}ds, (10)

because the left-hand-side is 1 minus the probability that Nobs
a does not jump in the interval (t, t+ �],

and the integration on the right hand side is the probability that the process jumps at least once (where
the first jump is at time s).

Next, we write the first item of eq. (3) to see that it cancels the residual above in eq. (9).

EH⇠Pobs(·|Ht)

h
E eH⇠ ePa

t (·|H)

h
1
⇥
�obsa (t) < �a(t) ^ �v(t)

⇤
· E
⇥
Y |Ht+�obsa

= Ht

⇤ii
=

Z T�t

0
�obs
a (t+ �|Ht+� = Ht) exp{�

Z t+�

t
�obs
a (s|Hs = Ht)ds}

exp{�

Z t+�

t
�•(s|Hs = Ht)ds}EP [Y |Ht+� = Ht] d�. (11)

We expand EP [Y |Ht+� = Ht] again by towering expectations w.r.t to the first jump after t+ �,

EP [Y |Ht+� = Ht] =

Z T

t+�

⇣
�a(s|Hs = Ht)EP [Y |Hs = Ht [ (s, a)] +

�v(s|Hs = Ht)EP [Y |Hs = Ht [ (s, v)]
⌘
exp{�

Z s

t+�
�•(u|Hu = Ht)du}ds

+ EP [Y |HT = Ht] exp{�

Z T

t+�
�•(s|Hs = Ht)ds}
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Plugging this into eq. (11) and rearranging the integration order we arrive at

EH⇠Pobs(·|Ht)

h
E eH⇠ ePa

t (·|H)

h
1
⇥
�obsa (t) < �a(t) ^ �v(t)

⇤
E
⇥
Y |Ht+�obsa

= Ht

⇤ii
=

Z T�t

0

⇣
�a(t+ �|Ht+� = Ht)EP [Y |Ht� = Ht [ (t�, a)] +

�x(t+ �|Ht+� = Ht)EP [Y |Ht+� = Ht [ (t+ �, x)]
⌘

exp{�

Z t+�

t
�•(s|Hs = Ht)ds}

 Z t+�

t
�obs
a (s|HsHt) exp{�

Z s

t
�obs
a (u|Hu = Ht)du}ds

!
d�

+

 Z T�t

0
�obs
a (t+ �|Ht+� = Ht) exp{�

Z t+�

t
�obs
a (s|Hs = Ht)ds}

!
·

EP [Y |HT = Ht] exp�

Z T

t
�•(s|Hs = Ht)ds =

Z T�t

0

⇣
�a(t+ �|Ht+� = Ht)EP [Y |Ht� = Ht [ (t�, a)] +

�x(t+ �|Ht+� = Ht)EP [Y |Ht+� = Ht [ (t+ �, x)]
⌘

exp{�

Z t+�

t
�•(s|Hs = Ht)ds}

 
1� exp{�

Z t+�

t
�obs
a (s|Hs = Ht)ds}

!
d�

+

 
1� exp{�

Z T

t
�obs
a (s|Hs = Ht)ds}

!
· EP [Y |HT = Ht] exp{�

Z T

t
�•(s|Hs = Ht)ds}.

In the last equality we plugged in eq. (10). Now it can be seen that the above expression cancels with
the residual of eq. (9), which means that eq. (3) holds as claimed.

Next we prove a lemma from which theorem 1 follows directly. We first state the lemma below.
Lemma 2. For any H and t 2 [0, T ), define �k

H
(t) > 0 such that t+ �k

H
(t) is the time of the k-th

event in H after t, and defining �0
Hv

(t) = 0 as an edge case. That is, assuming H = {(tj , vj)}j2N
then �k

H
(t) := min{tj � t : tj�k+1 > t}. For all d 2 N+ we have that

EP [Y |Ht] = EH⇠Pobs(·|Ht)


E eH⇠ ePa

t (·|H)

h
(12)

dX

k=1

⇣
1
⇥
�k�1
Hv

(t)  �Ha(t) < �k
Hv

(t) ^ �obs
Ha

(t) ^ T � t
⇤
EP

⇥
Y | eHt+�Ha (t)

⇤

+ 1
⇥
�k�1
Hv

(t)  �obs
Ha

(t) < t+ �k
Hv

(t) ^ �Ha(t) ^ T � t
⇤
EP

⇥
Y | eHt+�

Hobs
a

(t)

⇤

+ 1
⇥
T � t < �k

Hv
(t) ^ �obs

Ha
(t) ^ �Ha(t)

⇤
EP [Y |HT = Ht]

⌘

+ 1
⇥
�d
Hv

(t) < �obs
Ha

(t) ^ �Ha(t) ^ T � t
⇤
EP

⇥
Y | eHt+�d

Hv
(t)

⇤i�
.

Now let us recall theorem 1 and prove it, assuming that lemma 2 holds. Then we will prove the
lemma and complete the proofs of our claims.
Theorem 1. Let P, Pobs be multivariate marked decision point processes, t 2 [0, T ), and Ht a list
of events up to time t. For any trajectory H, we let eP a

t (·|H), � eH(t), �H(t) as in definition 4. Under
Assumptions 1 and 2, we have that

EP [Y |Ht] = EH⇠Pobs(·|Ht)

h
E eH⇠ ePa

t (·|H)

h
EP

h
Y
�� eHt+�H(t)^�fH(t)

iii
. (2)

Proof of theorem 1. Examining eq. (12), we observe that the multipliers of the first 3 indicator
functions condition on the histories at times of the first treatment after time t, being taken either from
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H or eH (or conditioning on the complete trajectory, in case there were no treatments after time t and
then H and eH coincide). Taking d ! 1, the probability of the event �d

Hv
(t) < �obs

Ha
(t)^�Ha(t)^T�t

approaches 0 since we assumed the number of events in a trajectory is countable w.p. 1. Hence we
are left with the summation over products of indicators on earliest treatment times and corresponding
conditional expectations. definition 4 denotes � eH(t) = min{s� t : s > t, (s, ·) 2 eHa

} as the time of
the earliest treatment in eH after time t, and likewise for �H(t), hence eq. (2) coincides with eq. (12)
as d ! 1.

Next, let us complete the proof of the required lemma that we assumed to hold.

Proof of lemma 2. For d = 1, eq. (12) is exactly eq. (3) which we already proved in lemma 1, and we
will proceed by induction. Assume for some d� 1 > 1 that eq. (12) holds, and shorten the notation
t+ �d�1

Hv
(t) to td�1 from now on for convenience. Using lemma 1 again, it also holds that

EP

⇥
Y |Htd�1

⇤
=

EH⇠Pobs(·|Htd�1
)

h
(13)

E eH⇠ eP (·|H)

h
1
⇥
�a(td�1) < �v(td�1) ^ �obsa (td�1)

⇤
EP [Y |Ht [ (t+ �a(td�1), a)] +

1
⇥
�v(td�1) < �a(td�1) ^ �obsa (td�1)

⇤
EP [Y |Ht [ (t+ �v(td�1), v)] +

1
⇥
�obsa (td�1) < �a(td�1) ^ �v(d� 1)

⇤
EP

⇥
Y |Ht+�obsa (td�1) = Ht

⇤
+

1
⇥
�obsa ^ �a ^ �v(d� 1) > T � t

⇤
EP [Y |HT = Ht]

ii
(14)

Now let us write down the induction hypothesis,

EP [Y |Ht] = EH⇠Pobs(·|Ht)


E eH⇠ ePa

t (·|H)

h
(15)

d�1X

k=1

⇣
1
⇥
�k�1
Hv

(t)  �Ha(t) < �k
Hv

(t) ^ �obs
Ha

(t) ^ T � t
⇤
EP

⇥
Y | eHt+�Ha (t)

⇤

+ 1
⇥
�k�1
Hv

(t)  �obs
Ha

(t) < t+ �k
Hv

(t) ^ �Ha(t) ^ T � t
⇤
EP

⇥
Y | eHt+�

Hobs
a

(t)

⇤

+ 1
⇥
T � t < �k

Hv
(t) ^ �obs

Ha
(t) ^ �Ha(t)

⇤
EP [Y |HT = Ht]

⌘

+ 1
⇥
�d�1
Hv

(t)  �obs
Ha

(t) ^ �Ha(t) ^ T � t
⇤
EP

⇥
Y | eHt+�d�1

Hv
(t)

⇤i�

Since the argument of the expectation EH⇠Pobs(·|Ht)[E eH⇠ ePa
t (·|H)[·]] only contains events that oc-

cur in (t, t + �d�1
v (t)], we can condition the inner expectation on H stopped at t + �d�1

v (t),
i.e. E eH

t+�d�1
v (t)

⇠ ePa
t (·|H

t+�d�1
v (t)

)[·] (this also requires noticing that eP a
t samples increments in

(t, t + �d�1
v (t)] independently of events that occur after t + �d�1

v (t)). Now for a similar reason
we can sample H from Pobs and stop at the d � 1-th jump of Nv. Overall, below we replace
EH⇠Pobs(·|Ht)[E eH⇠ ePa

t (·|H)[·]] with EH
t+�d�1

Hv

⇠Pobs(·|Ht)[E eH
t+�d�1

Hv

⇠ ePa
t (·|H

t+�d�1
Hv

)[·]] in the last sum-

mand taken from eq. (15) and change again to the notation td�1 used at the beginning of the proof to
make terms a bit more compact.

EH⇠Pobs(·|Ht)


E eH⇠ ePa

t (·|H)

h
1
⇥
�d�1
Hv

(t)  �obs
Ha

(t) ^ �Ha(t) ^ T
⇤
EP

⇥
Y | eHt+�d�1

Hv
(t)

⇤i�

=EH
t+�d�1

Hv

⇠Pobs(·|Ht)


E eH

t+�d�1
Hv

⇠ ePa
t (·|H

t+�d�1
Hv

)

h

1
⇥
�d�1
Hv

(t)  �obs
Ha

(t) ^ �Ha(t) ^ T
⇤
EP

⇥
Y |Ht+�d�1

Hv
(t)

⇤i�

=EHtd�1
⇠Pobs(·|Ht)


E eHtd�1

⇠ ePa
t (·|Htd�1

)

h
1
⇥
�d�1
Hv

(t)  �obs
Ha

(t) ^ �Ha(t) ^ T
⇤
EP

⇥
Y |Htd�1

⇤i�
.
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The first transition also replaces conditioning on eHt+�d�1
v (t) with Ht+�d�1

v (t) which holds since when
1
⇥
�d�1
Hv

(t)  �obs
Ha

(t)^ �Ha(t)^ T
⇤
= 1 we know that Na, Nobs

a do not jump in (t, t�d�1
Hv

], and hence
these histories are equal. Next we plug-in eq. (13) into the last item.

EH⇠Pobs(·|Ht)


E eH⇠ ePa

t (·|H)

h
1
⇥
�d�1
Hv

(t)  �obs
Ha

(t) ^ �Ha(t) ^ T � t
⇤
EP

⇥
Y | eHt+�d�1

Hv
(t)

⇤i�
=

EHtd�1
⇠Pobs(·|Ht)


E eHtd�1

⇠ ePa
t (·|Htd�1

)

h
1
⇥
�d�1
Hv
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Ha

(t) ^ �Ha(t) ^ T � t
⇤
·

EH⇠Pobs(·|Htd�1
)

h
E eH⇠ ePa

td�1
(·|H)

h

1
⇥
�a(td�1) < �v(td�1) ^ �obsa (td�1) ^ T � td�1

⇤
· EP [Y |Ht [ (t+ �a(td�1), a)] +

1
⇥
�v(td�1) < �a(td�1) ^ �obsa (td�1) ^ T � td�1

⇤
· EP [Y |Ht [ (t+ �v(td�1), v)] +

1
⇥
�obsa (td�1) < �a(td�1) ^ �v(d� 1) ^ T � td�1

⇤
· EP

⇥
Y |Ht+�obsa (td�1) = Htd�1

⇤
+

1
⇥
�obsa _ �a _ �v(td�1) > T � td�1

⇤
· EP

⇥
Y |HT = Htd�1

⇤ ii�

Next we pull the expectations EH⇠Pobs(·|Htd�1
)[E eH⇠ ePa

td�1
(·|H)[·]] outside.
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⇠Pobs(·|Ht)


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)
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)

h
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(t) ^ �Ha(t) ^ T � t
⇤
·

⇣

1
⇥
�a(td�1) < �v(td�1) ^ �obsa (td�1) ^ T � td�1

⇤
· EP [Y |Ht [ (t+ �a(td�1), a)] +

1
⇥
�v(td�1) < �a(td�1) ^ �obsa (td�1) ^ T � td�1

⇤
· EP [Y |Ht [ (t+ �v(td�1), v)] +

1
⇥
�obsa (td�1) < �a(td�1) ^ �v(d� 1) ^ T � td�1

⇤
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⇥
Y |Ht+�obsa (td�1) = Htd�1

⇤
+

1
⇥
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⇤
· EP

⇥
Y |HT = Htd�1

⇤ ⌘iii�
=
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h
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⇥
�d�1
Hv

(t)  �obs
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(t) ^ �Ha(t) ^ T � t
⇤
·

⇣

1
⇥
�a(td�1) < �v(td�1) ^ �obsa (td�1) ^ T � td�1

⇤
· EP [Y |Ht [ (t+ �a(td�1), a)] +

1
⇥
�v(td�1) < �a(td�1) ^ �obsa (td�1) ^ T � td�1

⇤
· EP [Y |Ht [ (t+ �v(td�1), v)] +

1
⇥
�obsa (td�1) < �a(td�1) ^ �v(d� 1) ^ T � td�1

⇤
· EP

⇥
Y |Ht+�obsa (td�1) = Htd�1

⇤
+

1
⇥
�obsa _ �a _ �v(td�1) > T � td�1

⇤
· EP

⇥
Y |HT = Htd�1

⇤ ⌘i�
.

Now it is easy to simplify the multiples of indicator functions as conjunctions, for instance by
observing that,

1
⇥
�d�1
Hv

(t)  �obs
Ha

(t) ^ �Ha(t) ^ T � t
⇤
·

1
⇥
�a(td�1) < �v(td�1) ^ �obsa (td�1) ^ T � td�1

⇤
= 1

⇥
�d�1
v  �a(t)  �dv ^ �obsa (t) ^ T � t

⇤
.

Simplifying the rest of the terms in a similar manner we arrive at
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h
1
⇥
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⇤
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⇥
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Hv
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h
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1
⇥
�d�1
v (t)  �a(t)  �dv(t) ^ �obsa (t) ^ T � t

⇤
· EP

⇥
Y |Htd�1 [ (t+ �a(t), a)

⇤
+

1
⇥
�dv(t)  �a(t) ^ �obsa (t) ^ T � t

⇤
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⇥
Y |Htd�1 [ (td�1 + �v(td�1), v)

⇤
+

1
⇥
�d�1
v (t)  �obsa (t) < �dv(t) ^ �a(t) ^ T � t

⇤
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⇥
Y |Htd�1 [ (t+ �obsa (t), a)

⇤
+

1
⇥
�obsa (td�1) _ �a(td�1) _ �v(td�1) > T � td�1

⇤
· EP

⇥
Y |HT = Htd�1

⇤ i�
=

EH⇠Pobs(·|Ht)


E eH⇠ ePa

t (·|H)

h

1
⇥
�d�1
v (t)  �a(t)  �dv(t) ^ �obsa (t) ^ T � t

⇤
· EP

⇥
Y |Htd�1 [ (t+ �a(t), a)

⇤
+

1
⇥
�dv(t)  �a(t) ^ �obsa (t) ^ T � t

⇤
· EP

⇥
Y |Htd�1 [ (td�1 + �v(td�1), v)

⇤
+

1
⇥
�d�1
v (t)  �obsa (t) < �dv(t) ^ �a(t) ^ T � t

⇤
· EP

⇥
Y |Htd�1 [ (t+ �obsa (t), a)

⇤
+

1
⇥
�obsa (t) _ �a(t) _ �dv(t) > T � t

⇤
· EP

⇥
Y |HT = Htd�1

⇤ i�
.

Plugging this into the induction hypothesis at eq. (15) we arrive at the desired identity.

B.3 DISCRETE TIME VERSION

For the discrete time version we keep a similar notation, but take time increments of 1 and call the
target policy ⇡, which takes a history of the process and outputs a distribution over possible treat-
ments. The trajectory H now simplifies to the form {(x1,y1,a1), (x2,y2,a2), . . . , (xT ,yT ,aT )}
and similarly for the history Ht. The analogous claim to theorem 1 for these decision processes
follows from the lemma we prove below by setting d = T .
Lemma 3. For any H, t 2 [0, T ) and 1  d  T � t such that Ht 2 supp(P ) we have that

EP [Y |Ht] = EH⇠Pobs(·|Ht)

"
E eH⇠ ePa

t (·|H)

"
dX

k=1

 
1ãt+k 6=at+k

k�1Y

i=1

1ãt+k�i=at+k�iEP [Y | eHt+k]

!

+
dY

k=1

1ãt+k=at+kEP [Y | eHt+d]

##
.

Note that for d = 1, we define
Qk�1

i=1 1ãt+k�i=at+k�i = 1.

Proof. We will prove this by induction on d. The base case for d = 1 follows from some simple
manipulations and the equality P (Xt+1, Yt+1|Ht) = Pobs(Xt+1, Yt+1|Ht). To see this we first
claim that

EH⇠Pobs(·|Ht)

"
E eH⇠ ePa

t (·|H)

"
1ãt+1 6=at+1EP [Y | eHt+1] + 1ãt+1=at+1EP [Y | eHt+1]

##
= (16)

EHt+1⇠Pobs(·|Ht)

"
E eH⇠ ePa

t (·|Ht+1)

"
1ãt+1 6=at+1EP [Y | eHt+1] + 1ãt+1=at+1EP [Y | eHt+1]

##
.

The difference between the two sides is that we switch H with Ht+1 both for sampling Ht+1 ⇠

Pobs(·|Ht), and also in the conditioning eP a
t (·|Ht+1). This equality holds because the only treatment

sampled from eP a
t that appears inside the expectation is ãt+1, and it is sampled independently from

the future of H beyond time t+ 1. Hence we can drop the conditioning on events after time t+ 1,
then the future of H after time t+ 1 marginalizes with the expectation EH⇠Pobs(·|Ht)[·].

Next we note that the sampling eH ⇠ eP a
t (·|Ht+1) can be replaced with at+1 ⇠ ⇡(·|Ht, Xt, Yt).

Again, this is since only ãt+1 appears inside the expectation, and because at+1 is sample indepen-
dently from aobst+1 sampled from the outside expectation. This leaves us with the left hand side of the
following equality,

Ext+1,yt+1⇠P (·|Ht),aobs
t+1⇠⇡obs(·|Ht,xt+1,yt+1)

"
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Eãt+1⇠⇡(·|Ht,xt+1,yt+1)

"
1ãt+1 6=at+1EP [Y | eHt+1] + 1ãt+1=at+1EP [Y | eHt+1]

##
=

Ext+1,yt+1⇠P (·|Ht),ãt+1⇠⇡(·|Ht,xt+1,yt+1)

"

Eaobs
t+1⇠⇡obs(·|Ht,xt+1,yt+1)

"
1ãt+1 6=at+1EP [Y | eHt+1] + 1ãt+1=at+1EP [Y | eHt+1]

##

The equality holds since we can switch the order of expectations, as ãt+1 is not sampled conditionally
on at+1. Finally we note that clearly for any two ãt+1, at+1 it either holds that 1ãt+1 6=at+1 = 1, or
1ãt+1=at+1 = 1. Hence the inside of the expectation is simplified to EP [Y | eHt+1]. Equating this to
the left hand side of eq. (16), we arrive at the desired result.

EH⇠Pobs(·|Ht)

"
E eH⇠ ePa

t (·|H)

"
1ãt+1 6=at+1EP [Y | eHt+1] + 1ãt+1=at+1EP [Y | eHt+1]

##
=

Ext+1,yt+1⇠P (·|Ht),ãt+1⇠⇡(·|Ht,xt+1,yt+1)

h
Eaobs

t+1⇠⇡obs(·|Ht,xt+1,yt+1)

h
EP [Y | eHt+1]

ii
=

EHt+1⇠P (·|Ht)

h
Eaobs

t+1⇠⇡obs(·|Ht,xt+1,yt+1)

h
EP [Y | eHt+1]

ii
=

EHt+1⇠P (·|Ht)

hh
EP [Y | eHt+1

ii
= EP [EP [Y |Ht] .

Next, assume the claim holds for some d� 1. From the same considerations we gave for the base
case, we have that

EP [Y |Ht+d�1] = EH⇠Pobs(·|Ht+d�1)


E eH⇠ ePa

t+d�1(·|H)


EP


Y |Ht+d

�
· 1ãt+d 6=at+d (17)

+EP


Y |Ht+d

�
· 1ãt+d=at+d

��
.

Now let us write down the induction hypothesis,

EP [Y |Ht] = EH⇠Pobs(·|Ht)

"
E eH⇠ ePa

t (·|H)

"
d�1X

k=1

 
1ãt+k 6=at+k

k�1Y

i=1

1ãt+k�i=at+k�iEP [Y | eHt+k]

!

+
d�1Y

k=1

1ãt+k=at+kEP [Y | eHt+d�1]

##
. (18)

First we note that in eq. (18), the second appearance of the expectation EP [Y | eHt+d�1] (i.e. the
last item in the equation) is multiplied by

Qd�1
k=1 1ãt+k=at+k , hence we have eHt+d�1 = Ht+d�1

whenever the item is non-zero. The first equality we will write below uses this, and then we plug in
eq. (17).

d�1Y

k=1

1ãt+k=at+kEP [Y | eHt+d�1] =
d�1Y

k=1

1ãt+k=at+kEP [Y |Ht+d�1] =

EH⇠Pobs(·|Ht+d�1)


E eH⇠ ePa

t+d�1(·|H)


EP


Y | eHt+d

�
· 1ãt+d 6=at+d

d�1Y

k=1

1ãt+k=at+k+

EP


Y | eHt+d

�
·

dY

k=1

1ãt+k=at+k

��
. (19)

As we did for the first step, we now notice that for time larger than t + d � 1, the only
treatments and features that appear inside the first two expectations are from time t + d (i.e.
no later times appear). Hence we can condition only on Ht+d in the second expectation,
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i.e. E eH⇠ ePa
t+d�1(·|H)[·] = E eHt+d⇠

ePa
t+d�1(·|Ht+d)

[·] (as ãt+d is sampled conditionally on the past
and not the future). Furthermore, we can also sample just Ht+d in the outer expectation, i.e.
EH⇠Pobs(·|Ht+d�1)[·] = E

Ht+d⇠Pobs(·| eHt+d�1)
[·]. We start by replacing this in eq. (19),

d�1Y

k=1

1ãt+k=at+kEP [Y | eHt+d�1] =

EHt+d⇠Pobs(·|Ht+d�1)


E eHt+d⇠
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�
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EP
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�
·

dY

k=1

1ãt+k=at+k

��
.

Next we note that following the same reasoning we used for the last step, in the argument on removing
future times from the expectations, also holds for eq. (18) and time t+ d� 1. Hence we also replace
this in eq. (18),

EP [Y |Ht] = EH⇠Pobs(·|Ht)

"
E eH⇠ ePa

t (·|H)
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"
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##
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+
dY

k=1

1ãt+k=at+k · EP


Y | eHt+d

�##
.

The equality between the first and last expression is exactly our claim. The first equality is simply the
induction hypothesis eq. (18); in the second one we replace the times in expectations as mentioned
before the equation; the third equality plugs in eq. (19); in the fourth equality we pull out the
expectations over Ht+d and eHt+d and use the towering property of conditional expectations to write
the expectations w.r.t Ht+d, eHt+d fully on the outside; the fifth equality simply gather items to a
sum; finally, the last step adds back in the expectation on the future H, eH after time t+ d. The last
step is simply done to get back the form of our claim, as discussed earlier it is valid due to the law of
total probability and that no future features or treatments appear inside the expectation.

C ADDITIONAL DISCUSSION ON RELATED WORK

As outlined in section 4, several techniques have been proposed for scalable estimation of causal
effects in sequential decision-making, with more limited development in the case of irregular ob-
servation times. One set of approaches (Bica et al., 2020; Lim, 2018; Melnychuk et al., 2022), that
only apply to discrete time processes and static policies, can be roughly characterized as follows. A
prediction model f(Ht,Ha

T ;✓) for the outcome Y is learned, where Ht is the observed history of
events and H

a
T is the set of future treatments we would like to reason about. That is, in our notation

we would like f(Ht,Ha
T ;✓) to estimate EPH

a
T
[Y |Ht], where PH

a
T

assigns the treatments in H
a
T w.p.

1. In potential outcomes notation, this corresponds to E [Y a
|Ht], where Y a is a random variable

that outputs the outcome under a set of static future treatments a. All methods involve learning a
representation of history Zt = �(Ht; ⌘), and combine two important elements for achieving correct
estimates.

1. To yield correct causal estimates under an observational distribution that is not sequentially
randomized, methods either estimate products of propensity weights (Lim, 2018), or add a loss to
make Zt non-predictive of the treatment At, � is then called a balancing representation.

2. To facilitate prediction of Y under a set of future treatments in the interval (t, T ], either � is taken
as a sequence model, or a separate “decoder" network is learned (Bica et al., 2020; Lim, 2018).
A sequence model is trained with inputs where H

x,y
i,T \ H

x,y
i,t , i.e. the covariates in a projection

interval (t, T ] are masked, while the decoder takes Zt and H
a
T as inputs. Both are trained to

predict the outcome Y and serve as an estimator for EPobs [Y |Zt,Ha
T ], which recovers the correct

causal effect under sequential exchangeability. Notice that these techniques preclude estimation
with dynamic treatments, i.e. policies.

For irregular sampling, Seedat et al. (2022) follow the same recipe but choose a neural CDE archi-
tecture. This interpolates the latent path Zt in intervals between jump times of the processes, and is
shown empirically to be more suitable when working with data that is subsampled from a complete
trajectory of features in continuous time. The solution is not equipped to estimate interventions on
continuous treatment times (in our notation, �a). As mentioned earlier, Vanderschueren et al. (2023)
handle informative sampling times with inverse weighting based on the intensity �. However, this is
a different problem setting from ours, as they do not seek to intervene on sampling times but wish to
solve a case where outcomes, features and treatments always jump simultaneously. In our setting,
intervening on �a with such simultaneous jumps would result in �x,y

obs 6= �x,y , which is not the focus
of our work. Finally, we also note the required assumption for causal validity that is claimed in these
works is roughly Pobs(At = at|HT ) = Pobs(At = at|Ht). The assumption is unreasonable since
HT includes future factual outcomes that depend on the taken action, instead of the more standard
exchangeability assumption that posits independence of potential outcomes.

The G-estimation solution of (Li et al., 2021) for discrete time decision processes fits models for
both ⇡obs(A(t)|Ht�1, X(t)), and Pobs(X(t), Y (t)|Ht�1). Then at inference time, they replace ⇡obs

with the desired policy ⇡ and estimate trajectories or conditional expectations of Y with monte-
carlo simulations. A straightforward generalization of this approach to decision point processes
can be devised by fitting the intensities �obs and replacing �a for inference. While we believe
that this is an interesting direction for future work, we do not pursue it further in our experiments,
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since developing architectures and methods for learning generative models under irregular sampling
deserves a dedicated and in-depth exploration.
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