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ABSTRACT
In the realm of CLIP adaptation through prompt learning, it is im-
portant to emphasize the pivotal role that the proper alignment of
visual and textual representations plays when adapting the CLIP
to downstream tasks. We propose that the proper alignment for
downstream tasks is determined by the flexibility of the interac-
tion between cross-modal information, which compensates for the
absence of contrastive loss during the adaptation process. However,
the current prompt learningmethods, such as isolatedmodifications
to the visual or language branches of CLIP or the employment of
uni-directional cross-modal fusion, are not sufficient to explore the
full potential of the mutual interaction between visual and textual
modalities. To overcome this limitation, we propose a new para-
digm for the CLIP prompt learning community, named Bilateral
Adaptive Cross-Modal Fusion Prompt Learning (Bloom) which
includes two enhancements. First, we propose using projection
functions for bi-directional modality transformation and fusion
functions to encourage the mutual interaction between correspond-
ing layers within both the image and text encoders. Second, we
propose an adaptive manner that automatically searches the opti-
mal combination of cross-modal information at each layer. These
two improvements ensure a more efficient and flexible integration
of the two modalities, thereby achieving proper alignment for spe-
cific downstream tasks. We put our method to the test in terms of
base-to-novel, cross-dataset, and cross-domain evaluations on 15
image classification datasets. The results demonstrate a significant
performance enhancement achieved by Bloom.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.

KEYWORDS
Adaptive Cross-modal Fusion, Prompt Learning, CLIP

1 INTRODUCTION
The fundamental vision-language pre-trained models, particularly
the groundbreaking CLIP model [20], have demonstrated extraordi-
nary generalization capabilities across a wide array of downstream
computer vision tasks. Examples of these tasks include but are
not limited to, image classification [10, 12, 29, 30], semantic seg-
mentation [6, 15, 21, 31], object detection [4, 14, 28], and action
recognition [11, 17, 25, 26]. The primary objective of CLIP is to
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(a) Origin (b) CLIP ViT-B/16 (c) CoOp ViT-B/16 (d) Ours ViT-B/16

Figure 1: Comparison of gradient class attention maps for
ground-truth category. Both CLIP [20] and the prompt learn-
ing method CoOp [30] fail as they focus on irrelevant re-
gions, which results from the misalignment between visual
and textual representations. Bloom effectively addresses it
leveraging sufficient flexibility of cross-modal interaction.

effectively align language and vision representations into a unified
feature space, utilizing an extensive web-scale dataset comprising
approximately 400 million image-text description pairs. In con-
trast to the conventional approach of fine-tuning the entire model,
the prevailing research methodology primarily leverages prompt
learning, which is inspired by advancements in the field of natural
language processing (NLP), to adapt the capabilities of CLIP to
downstream tasks.

Current prompt learning methodologies can be broadly classi-
fied into two distinct categories. The first category encompasses
uni-modal prompt learning techniques [10, 29, 30], which exclu-
sively adjusts either the language or vision branch of the CLIP
model, as shown in Fig. 2 (a). The second category is multimodal
prompt learning (MaPLe) [12], which simultaneously adjusts both
language and vision branches, as shown in Fig. 2 (b). MaPLe incor-
porates a learnable textual prompt in conjunction with a layer-wise
coupling function, such as a single layer MLP, to facilitate language-
to-vision (𝐿 → 𝑉 ) transformation and generate a visual prompt.

Despite achieving a certain level of efficiency, the prompt learn-
ing adaptation process consistently exhibits a distinct objective
function compared to the pre-training process. For example, single-
label image classification tasks employ CrossEntropy loss for train-
ing, whereas contrastive loss is absent. This difference in optimiza-
tion objectives inevitably disrupts the original alignment between
language and visual representations. In Fig. 1, we analyze the failure
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Figure 2: Comparison of (a) Uni-modal prompt learning, (b) Uni-directional cross-modal fusion and our proposed (c) Bilateral
cross-modal fusion strategy. represents trainable parameters, represents frozen parameters.

cases of CLIP and prompt learning CoOp by examining the gradient
class attention maps for the ground-truth category (i.e., cat, TV, and
zebra, respectively). The misalignment of the two modalities causes
both CLIP and CoOp to concentrate on irrelevant regions. As a re-
sult, an efficient prompt learning method should strive to establish
proper alignment for a specific downstream task. In this paper, we
believe that the proper alignment is determined by the flexibility
of cross-modal information interaction. However, upon reviewing
existing prompt learning methods, we find that uni-modal prompt
learning inadvertently overlooks the multi-modal aligned struc-
ture inherent to the CLIP model. As a result, solely adjusting the
vision or language branch proves inadequate for the effective adap-
tation of CLIP. Although MaPLe has recognized the importance of
cross-modal interaction, the uni-directional prompt transformation
remains insufficient. Consequently, a key question arises: How can
we make prompt learning as flexible as possible?

To that end, we propose a new paradigm for prompt learning
community, named Bilateral Adaptive Cross-Modal Fusion Prompt
Learning (Bloom) with two enhancements to address these short-
comings. First, we ensure a bi-directional interaction between the
two modalities. Specifically, as shown in Fig. 2 (c), we simulta-
neously initialize individual vision and language prompts for the
corresponding branches at each layer. Subsequently, we employ
two bottleneck-style projection functions to achieve language-to-
vision (𝐿 → 𝑉 ) and vision-to-language (𝑉 → 𝐿) prompt transforma-
tions. Second, we use a fusion function with an adaptive strategy to
attain cross-modal fusion in an end-to-end manner, which allows
Bloom to automatically search an optimal convex combination of
bilateral cross-modal information at each layer, thereby ensuring
proper alignment.

We conduct a comprehensive experimental evaluation on 15 im-
age classification datasets to validate the generalization capabilities
of the Bloom in terms of base-to-novel generalization, cross-dataset,
and cross-domain generalization. The results provide evidence that
Bloom effectively enhances the prompt learning of the CLIP model
by improving the generalization performance for unseen classes,
as well as in varying data distribution and domain scenarios.

Our contributions can be summarized in three aspects:

• We propose a new Bilateral Adaptive Cross-Modal Fusion
Prompt Learning (Bloom) paradigm for prompt learning

that explores flexible cross-modal interactions to attain
appropriate alignment for specific downstream tasks.

• We propose an adaptive cross-modal fusion function to
ensure our proposed Bloom to automatically search the
optimal combination of cross-modal information, which
further enhances the flexibility of prompt learning.

• Through extensive experimentation, we demonstrate that
Bloom significantly advances the current state of multi-
modal prompt learning, achieving new state-of-the-art re-
sults across 15 image classification datasets.

2 RELATEDWORK
Contrastive Language-Image Pre-training. Contrasting the tra-
ditional approach in the computer vision field, which relies on pre-
training using manually annotated datasets, CLIP [20] introduces
a web-scale image-text pair dataset for noisy contrastive learning.
This approach empowers the model to acquire a broad spectrum of
computer vision tasks during the pre-training phase. CLIP show-
cases two notable strengths. Firstly, it exhibits exceptional repre-
sentation learning capabilities, achieving linear-prob performance
on par with fully supervised training models. For example, the zero-
shot classification results of CLIP outperform the fully supervised
ResNet-50 in 16 out of 27 image classification datasets, including
ImageNet [3]. Secondly, CLIP displays enhanced robustness against
natural distribution shifts, making it more adaptable and resilient
to varying domains. As a multifaceted cross-modality foundation
model, CLIP is extensively employed across a diverse range of
downstream tasks such as image classification [10, 12, 29, 30], ob-
ject detection [4, 14, 28], semantic segmentation [6, 15, 21, 31],
action recognition [11, 17, 25, 26].
Prompts Learning for CLIP. The key to adapting CLIP lies in nar-
rowing the gap between downstream tasks and pre-training tasks.
There are two strategies. The first, represented by fully fine-tuning,
involves adjusting the parameters of CLIP. However, this approach
not only entails substantial training costs but also undermines
the zero-shot capabilities of CLIP. The second strategy, known as
Prompt Learning, bridges the gap between downstream task data
and pre-training data. The foundation model remains unaltered
and retains the robustness and zero-shot capabilities inherent in
CLIP. Prompt learning methods can be broadly categorized into two

2
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Figure 3: Framework of bilateral adaptive cross-modal fusion prompt learning (Bloom). Bloom incorporates a bi-directional
modality transformation through the utilization of two projection functions and subsequently achieves cross-modal fusion via
fusion functions. Consequently, Bloom facilitates a mutual interaction between the two modalities and proper alignment.

main streams. First, uni-modal prompts focus on learning either
textual or visual prompts for CLIP. For instance, CoOp [30] aims to
learn prompts for the language branch of CLIP, while CoCoOp [29]
incorporates instance-dependent bias as a condition to guide the
learning of prompts, thereby enhancing the generalization abil-
ity to unseen classes. Additionally, [26] introduces motion-aware
prompts to adapt CLIP for action recognition tasks. VPT [10] in-
tegrates a small number of learnable parameters, which are then
prepended to the input sequence of each Transformer layer. Sec-
ond, multimodal prompt [12] involves learning prompts for both
language and vision branches to improve the alignment between
visual and textual representations.

3 REVISITING CLIP
Our method is built upon the Transformer-based CLIP [20], which
integrates both a text encoder and an image encoder with the pri-
mary objective of generating textual and visual representations,
respectively. To effectively understand our method, it is important
to revisit the structure and functionality of the CLIP model.

3.1 Image Encoder
The image encoder, denoted asV , is composed of 𝐾 transformer
layers. Given an RGB image as input, we initially partition the image
into 𝑁 non-overlapping patches, subsequently projecting these
image patches into image embeddings 𝐸0 = [𝑒00, 𝑒

1
0, · · · , 𝑒

𝑁
0 ] ∈

R𝑁×𝑑𝑣 . From the perspective of the 𝑖𝑡ℎ layer within V , the image
embeddings 𝐸𝑖−1 serve as input to V𝑖 , accompanied by a learnable
class token 𝑐𝑖−1. This class token is instrumental in capturing global
contextual information. This calculation can be represented as:

[ 𝑐𝑖 , 𝐸𝑖 ] = V𝑖 ( [ 𝑐𝑖−1, 𝐸𝑖−1 ]), (1)

where [·, ·] denotes concatenate operation. Lastly, the class token
𝑐𝐾 is projected by ImageProj(·) to obtain the final image represen-
tation:

𝑥 = ImageProj(𝑐𝐾 ), 𝑐𝐾 ∈ R𝑑𝑣 . (2)

3.2 Text Encoder
The text encoder, denoted as L, features a layer count that is
identical to that of the image encoder,V . The textual description
corresponding to the input image undergoes an initial projection
to text embeddings𝑊0 = [𝑤0

0 , 𝑤
1
0 , · · · , 𝑤

𝐻
0 ] ∈ R𝐻×𝑑𝑙 via the

Tokenizing process. In this context, 𝐻 is typically set to 77. With
respect to the 𝑖𝑡ℎ layer within L, the text embeddings𝑊𝑖−1 are
utilized as input to L𝑖 , namely that:

𝑊𝑖 = L𝑖 (𝑊𝑖−1), 𝑖 = 1, 2, · · · , 𝐾 . (3)

At last, the final text representation 𝑧 is obtained by projecting
the text embeddings corresponding to the last token of the 𝐾𝑡ℎ
transformer layer via TextProj(·):

𝑧 = TextProj(𝑤𝐻𝐾 ), 𝑤𝐻𝐾 ∈ R𝑑𝑙 . (4)

3.3 Zero-shot Prediction
The CLIP model is remarkably well-suited for zero-shot prediction
tasks. Given an image and a set of corresponding 𝐶 classes, we
first extract the image representation 𝑥 by leveraging the image
encoder. Subsequently, we construct𝐶 descriptions based on a hand-
crafted prompt, such as “a photo of a [CLS].”, and obtain the
corresponding text representations [𝑧0, 𝑧𝑖 , · · · , 𝑧𝐶 ]. Finally, we
derive the ultimate prediction𝑦 by selecting the category exhibiting
the highest cosine similarity, which is computed using the Softmax

3
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function with an accompanying temperature coefficient 𝜏 :

𝑝 (𝑦 |𝑥) =
exp(sim(𝑥, 𝑧�̂�)/𝜏)∑𝐶
𝑗=1 exp(sim(𝑥, 𝑧 𝑗 )/𝜏)

. (5)

4 BILATERAL ADAPTIVE CROSS-MODAL
FUSION PROMPT LEARNING

Prior research [12] has determined that uni-modal adaptation [10,
29, 30], which involves exclusively learning prompts for either the
vision or language branch, results in a sub-optimal solution. This is
due to the degradation of CLIP’s flexibility in aligning textual and
visual representations. Consequently, the primary principle for an
optimal prompt learning methodology is to establish a proper align-
ment for specific downstream tasks. Although MaPLe [12] proposes
the first multimodal prompt learning method to investigate cross-
modal interaction via a uni-directional coupling function, such as a
single layer of MLP, it still remains insufficient in terms of the flexi-
bility. In this section, we first bridge the image and text encoders at
each layer through a bi-directional transformation which consists
of two light-weight projectors. Then we introduce the adaptive
cross-modal fusion function in details.

4.1 Bilateral Cross-modal Fusion
We initially propose a comprehensive framework designed to facili-
tate bi-directional fusion across multimodal prompts, as illustrated
in Fig. 3. Specifically, at each Transformer layer, a visual prompt 𝑃𝑣
and a textual prompt 𝑃𝑙 are concurrently assigned to their respec-
tive branches. Both prompts comprise a series of learnable vectors,
with the vector length 𝐿 being consistent across 𝑃𝑣 and 𝑃𝑙 .

We utilize distinct methods to initialize the visual and the textual
prompts. In particular, textual prompts are initialized using hand-
crafted prompts, such as “a photo of a [CLS].”, while visual
prompts are established through a Gaussian distribution N(0, 0.2).
Formally, this can be expressed as:

𝑃𝑣 = {𝑝 𝑗𝑣 ∈ R𝑑𝑣 }𝐿𝑗=1,

𝑃𝑙 = {𝑝 𝑗
𝑙
∈ R𝑑𝑙 }𝐿𝑗=1 ∼ N(0, 0.2),

(6)

where 𝑑𝑣 and 𝑑𝑙 denote the dimensions of visual and textual repre-
sentations, respectively.
Projection Functions. To facilitate the transformations between
vision and language branches, a pair of projection functions is
employed, symbolized as Proj𝑣→𝑙 (·) and Proj𝑙→𝑣 (·). The projec-
tion functions serve a dual purpose: they facilitate cross-modal
transformations and simultaneously align the dimensions of the
prompts, thereby enabling the implementation of a cross-modal
fusion strategy during the fusion stage.

A straightforward approach would be to employ a single MLP,
analogous to the coupling function of MaPLe. However, the consid-
erable number of trainable parameters adversely impacts efficiency.
As a result, we design a bottleneck-style projection function. For
instance, in the case of Proj𝑣→𝑙 (·), the initial reduction layer 𝑆𝑟

𝑣→𝑙
compresses the dimension of 𝑃𝑣 from 𝑑𝑣 to 𝑑𝑚 , where 𝑑𝑚 is sig-
nificantly smaller than 𝑑𝑣 . This reduction layer is followed by a
non-linear ReLU and an expansion layer 𝑆𝑒

𝑣→𝑙
, which increases the

dimension from 𝑑𝑚 to 𝑑𝑙 . At this point, the 𝑉 → 𝐿 transformation
is complete and vice versa. As a result, the trainable parameters of

Proj𝑣→𝑙 (·) or Proj𝑙→𝑣 (·) is merely 𝑑𝑚 × (𝑑𝑣 + 𝑑𝑙 ), which is much
smaller than the one of MaPLe, i.e, 𝑑𝑣 × 𝑑𝑙 . The computation of
projection functions can be represented as:

Proj𝑣→𝑙 (𝑃𝑣) = 𝑆𝑒𝑣→𝑙
◦ ReLU ◦ 𝑆𝑟

𝑣→𝑙
,

Proj𝑙→𝑣 (𝑃𝑙 ) = 𝑆𝑒𝑙→𝑣
◦ ReLU ◦ 𝑆𝑟

𝑙→𝑣
.

(7)

Finally, these functions generate two transformed prompts, called
𝑃𝑣→𝑙 and 𝑃𝑙→𝑣 , namely that:

𝑃𝑣→𝑙 = Proj𝑣→𝑙 (𝑃𝑣) ∈ R𝐿×𝑑𝑙 ,

𝑃𝑙→𝑣 = Proj𝑙→𝑣 (𝑃𝑙 ) ∈ R𝐿×𝑑𝑣 .
(8)

Consequently, we propose employing a fusion function, denoted
as F (·, ·), to generate a synthesis of cross-modal prompts, ulti-
mately achieving mutual interaction between the two modalities.
This process can be mathematically represented as follows:

𝑀𝑣 = F (𝑃𝑣, 𝑃𝑙→𝑣),
𝑀𝑙 = F (𝑃𝑙 , 𝑃𝑣→𝑙 ).

(9)

Here,𝑀𝑣 and𝑀𝑙 symbolize the fused prompts, which encapsulate
information derived from both visual and language branches, effec-
tively bridging the gap between the two modalities and enhancing
the overall performance.

4.2 Adaptive Cross-modal Fusion Function
A prevalent approach for cross-modal fusion involves the direct ad-
dition of bilateral cross-modal information. However, this method
remains inflexible, as it presumes uniform interaction information
sharing across every layer between the two modalities. Our adap-
tive cross-modal fusion strategy is predicated on a hypothesis that
the adaptation process necessitates varying degrees of additional
information from other modalities at different layers. Consequently,
we propose an adaptive strategy designed to enable prompt learning
to autonomously search for an optimal combination of cross-modal
information, thereby offering maximum flexibility.

As shown in Fig. 3, we introduce a learnable gate vector, G𝑣 ∈ R2,
for the vision branch, and another learnable gate vector, G𝑙 ∈ R2,
for the language branch within each layer. These gate vectors are
initialized by uniform distribution, while produce binomial distri-
butions during training, generating convex combinations of multi-
modal prompts and allowing for flexibility in the search for optimal
solutions. This gating function, termed Fg, can be represented as:

F𝑔 (𝑃𝑣, 𝑃𝑙→𝑣) = softmax(G𝑣) ·
(
𝑃𝑣

𝑃𝑙→𝑣

)
,

F𝑔 (𝑃𝑙 , 𝑃𝑣→𝑙 ) = softmax(G𝑙 ) ·
(
𝑃𝑙

𝑃𝑣→𝑙

)
.

(10)

4.3 The Usage of Fused Prompts
The mixture of cross-modal prompts is subsequently appended to
the corresponding image or text tokens. Specifically, at the 𝑖𝑡ℎ layer
V𝑖 within the image encoder, 𝑀𝑖

𝑣 is first concatenated with the
image embeddings 𝐸𝑖−1 and the class token 𝑐𝑖−1 from the previous
layer. This concatenated output is then fed into V𝑖 to facilitate
𝐿 → 𝑉 interaction, namely:

[ 𝑐𝑖 , 𝐸𝑖 , ] = V𝑖 ( [ 𝑐𝑖−1, 𝐸𝑖−1, 𝑀𝑖
𝑣 ]), (11)

4
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(a) Average over 11 datasets

Base Novel HM

CLIP [20] 69.34 74.22 71.70
CoOp [30] 82.69 63.22 71.66
CoCoOp [29] 80.47 71.69 75.83
VPT [10] 80.17 73.60 76.47
MaPLe [12] 82.28 75.14 78.55

Bloom 83.24 76.87 79.68
+0.96 +1.73 +1.13

(b) ImageNet

Base Novel HM

CLIP [20] 72.43 68.14 70.22
CoOp [30] 76.47 67.88 71.92
CoCoOp [29] 75.98 70.43 73.10
VPT [10] 75.70 69.10 72.25
MaPLe [12] 76.66 70.54 73.47

Bloom 77.15 71.25 74.08
+0.49 +0.71 +0.61

(c) Caltech101

Base Novel HM

CLIP [20] 96.84 94.00 95.40
CoOp [30] 98.00 89.81 93.73
CoCoOp [29] 97.96 93.81 95.84
VPT [10] 97.73 93.10 95.36
MaPLe [12] 97.74 94.36 96.02

Bloom 98.60 96.28 97.43
+0.86 +1.92 +1.41

(d) OxfordPets

Base Novel HM

CLIP [20] 91.17 97.26 94.12
CoOp [30] 93.67 95.29 94.47
CoCoOp [29] 95.20 97.69 96.43
VPT [10] 94.03 94.03 94.03
MaPLe [12] 95.43 97.76 96.58

Bloom 98.47 96.78 97.62
+3.04 -0.98 +1.04

(e) StanfordCars

Base Novel HM

CLIP [20] 63.37 74.89 68.65
CoOp [30] 78.12 60.40 68.13
CoCoOp [29] 70.49 73.59 72.01
VPT [10] 69.83 74.23 71.97
MaPLe [12] 72.94 74.00 73.47

Bloom 74.34 76.64 75.47
+1.40 +2.64 +2.00

(f) Flowers102

Base Novel HM

CLIP [20] 72.08 77.80 74.83
CoOp [30] 97.60 59.67 74.06
CoCoOp [29] 94.87 71.75 81.71
VPT [10] 91.50 70.70 79.77
MaPLe [12] 95.92 72.46 82.56

Bloom 96.04 75.36 84.45
+0.08 +2.90 +1.89

(g) Food101

Base Novel HM

CLIP [20] 90.10 91.22 90.66
CoOp [30] 88.33 82.26 85.19
CoCoOp [29] 90.70 91.29 90.99
VPT [10] 90.07 91.13 90.60
MaPLe [12] 90.71 92.05 91.38

Bloom 92.54 94.46 93.49
+1.83 +2.41 +2.11

(h) FGVCAircraft

Base Novel HM

CLIP [20] 27.19 36.29 31.09
CoOp [30] 40.44 22.30 28.75
CoCoOp [29] 33.41 23.71 27.74
VPT [10] 33.50 34.47 33.98
MaPLe [12] 37.44 35.61 36.50

Bloom 36.64 38.99 37.78
-0.80 +3.38 +1.28

(i) SUN397

Base Novel HM

CLIP [20] 69.36 75.35 72.23
CoOp [30] 80.60 65.89 72.51
CoCoOp [29] 79.74 76.86 78.27
VPT [10] 78.33 77.57 77.95
MaPLe [12] 80.82 78.70 79.75

Bloom 82.85 79.33 81.05
+2.03 +0.63 +1.30

(j) DTD

Base Novel HM

CLIP [20] 53.24 59.90 56.37
CoOp [30] 79.44 41.18 54.24
CoCoOp [29] 77.01 56.00 64.85
VPT [10] 77.27 54.77 64.10
MaPLe [12] 80.36 59.18 68.16

Bloom 82.16 59.83 69.24
+1.80 +0.65 +1.08

(k) EuroSAT

Base Novel HM

CLIP [20] 56.48 64.05 60.03
CoOp [30] 92.19 54.74 68.69
CoCoOp [29] 87.49 60.04 71.21
VPT [10] 92.57 74.53 82.58
MaPLe [12] 94.07 73.23 82.35

Bloom 93.29 75.85 83.67
+0.72 +1.32 +1.09

(l) UCF101

Base Novel HM

CLIP [20] 70.53 77.50 73.85
CoOp [30] 84.69 56.05 67.46
CoCoOp [29] 82.33 73.45 77.64
VPT [10] 81.33 76.00 78.58
MaPLe [12] 83.00 78.66 80.77

Bloom 83.52 80.90 82.19
+0.52 +2.24 +1.42

Table 1: Comparison with state-of-the-art methods on base-to-novel generalization. The improvement of Bloom in green is
relative to the state-of-the-art method with the highest HM.

where [·, ·, ·] denotes concatenate operation. Conversely, at the 𝑖𝑡ℎ
layer L𝑖 within the text encoder, 𝑀𝑖

𝑙
is first concatenated with

the text embeddings𝑊𝑖−1 obtained from the (𝑖 − 1)𝑡ℎ layer. This
combined output is then fed into L𝑖 to enable 𝑉 → 𝐿 interaction:

[𝑊𝑖 , ] = L𝑖 ( [𝑊𝑖−1, 𝑀𝑖
𝑙
]). (12)

As a result, both 𝑃𝑣 and 𝑃𝑙 are updated by the language and vision
branches simultaneously, thereby enhancing the overall flexibility
of tuning process. In general, we apply Bloom to all 12 Transformer

layers, resulting in a prompt depth of 12. We also investigate var-
ious configurations to evaluate the impact of prompt depth and
placement position in experiments.

5 EXPERIMENTS
5.1 Experimental Protocol and Datasets
Building upon the foundation laid by previous research [12, 29,
30], we undertake a comprehensive evaluation of our method’s
generalization capabilities from three distinct perspectives.
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Source Target

Ima
geN

et

Cal
tech

101

Oxf
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Stan
ford

Car
s

Flow
ers1

02

Foo
d10

1
Air

craf
t

SUN
397

DTD Eur
oSA

T
UC

F10
1

Ave
rag

e

CoOp [30] 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp [29] 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
VPT [10] 69.43 93.53 89.73 64.43 68.50 84.77 24.17 66.53 45.57 36.23 65.93 63.94
MaPLe [12] 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30

Bloom 70.58 93.83 90.79 66.13 72.80 86.71 24.58 67.46 46.87 50.32 69.17 66.87

Table 2: Comparison of Bloom with state-of-the-art on cross-dataset evaluation.

Source Target

Ima
geN

et

Ima
geN

etV
2

Ima
geN

et-S

Ima
geN

et-A

Ima
geN

et-R

CLIP [20] 66.73 60.83 46.15 47.77 73.96
CoOp [30] 71.51 64.20 47.99 49.71 75.21
CoCoOp [29] 71.02 64.07 48.75 50.63 76.18
VPT [10] 69.43 62.80 48.03 45.90 75.83
MaPLe [12] 70.72 64.07 49.15 50.90 76.98

Bloom 70.58 64.50 50.37 51.56 77.13

Table 3: Comparison of Bloom with existing approaches in
cross-domain evaluation. Bloom outperforms existing meth-
ods on all Target datasets.

i) Base-to-Novel Generalization: Our evaluation of base-to-novel
generalization encompasses 11 diverse image classification datasets.
These include two generic-objects datasets, namely ImageNet [3]
and Caltech101 [5]; five fine-grained datasets, specifically Oxford-
Pets [19], StanfordCars [13], Flowers102 [18], Food101 [1], and
FGVCAircraft [16]; a scene recognition dataset, SUN397 [27]; an
action recognition dataset, UCF101 [23]; a texture dataset, DTD [2];
and a satellite image dataset, EuroSAT [7]. Each dataset’s categories
are bifurcated into “base” and “novel” classes. The “base” classes
serve as the training and evaluation ground for base performance,
while the “novel” classes are leveraged to assess the generalization
to unseen classes in a zero-shot setting. We present the Top-1 ac-
curacy for both the “base” and “novel” classes, along with their
Harmonic Mean (HM).
ii) Cross-dataset Generalization: To ascertain the robustness and
adaptability of our method across varied data distributions, we
employ a zero-shot learning approach. This involves the direct
transfer of the optimal model, initially trained on ImageNet, to
the aforementioned 10 classification datasets. This rigorous testing
process provides a comprehensive understanding of our method’s
effectiveness across various data landscapes.
iii) Cross-domain Generalization: Lastly, we scrutinize cross-domain
generalization capabilities of Bloom. This is achieved by transferring
the optimal model trained on ImageNet in a few-shot setting, to
its four variants, namely, ImageNetV2 [22], ImageNetSketch [24],
ImageNet-A [9], and ImageNet-R [8]. This final step of evaluation
further solidifies our understanding of the method’s adaptability
and effectiveness across different domains.

𝑃!→#$𝑃#$

Fa Fc

𝑀#
$

Fr

Gumbel-softmax
Stop-
gradient

(a) Addition (b) Concatenate (c) Routing

𝐺#% 𝐺#&

𝑀#
$𝑀#

$

𝑃!→#$𝑃#$ 𝑃#$ 𝑃!→#$

Figure 4: Illustrations of 3 variants of fusion functions F .
We only present the 𝐿 → 𝑉 fusion process, while the 𝑉 → 𝐿

fusion procedure follows a similar approach.

5.2 Implementation Details
We train all models using a single Tesla V100 GPU for 5 epochs,
employing a batch size of 4 and a learning rate of 0.0035 via the
SGD optimizer. As the foundational model, we select the pre-trained
ViT-B/16 CLIP model, in which the dimensions of the visual and
language representations, 𝑑𝑣 and 𝑑𝑙 , are set to 768 and 512, respec-
tively. We report the Top-1 accuracy for both base and novel classes,
as well as their harmonic mean (HM), averaged over three runs
with random seeds ∈ {1, 2, 3}. The language prompt 𝑃𝑙 is initial-
ized using a static prompt, such as “a photo of a [CLS].”. It is
worth noting that the model trained on all 1,000 classes of Ima-
geNet, which is utilized for evaluating cross-dataset generalization,
undergoes training for only 2 epochs with a learning rate of 0.0026.

5.3 Base-to-novel Generalization
In this study, we investigate the base-to-novel generalization capa-
bilities of Bloom across 11 image classification datasets. We employ
a basic setting in which the prompt depth is set to 12, signifying
the application of Bloom to every layer. The prompt length 𝐿 is
configured to 2, and the training is conducted in a 16-shot setting,
which entails randomly selecting 16 samples for each category. Ad-
ditionally, the middle dimension 𝑑𝑚 within the projection functions
is set to 64. The results are presented in Tab. 1. We benchmark the
performance of our approach against state-of-the-art prompt learn-
ing methods, which include CoOp [30], CoCoOp [29], VPT [10],
MaPLe [12], and the zero-shot CLIP model utilizing a hand-crafted
prompt. Specifically, with respect to the harmonic mean (HM) of
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Figure 5: Ablation study to investigate the impact of Bloom’s crucial designs and hyper-parameters on the ImageNet dataset
within the context of a base-to-novel training. The orange bar indicates the optimal setting.

the accuracy for both “base” and “novel” classes, Bloom surpasses
the state-of-the-art methods on all of 11 datasets, with significant
improvements in terms of “base” accuracy (+0.96%), “novel” gen-
eralization (+1.73%), and their HM (+1.13%), averaged across the
11 datasets. Although Bloom’s performance is sub-optimal in some
instances, such as a -0.80% decrease in “Base” accuracy on the
FGVCAircraft dataset, it demonstrates significant improvements
in “Novel” classes and attains the best Harmonic Mean (HM) com-
pared to state-of-the-art methods. This highlights the method’s
ability to adapt and excel in various scenarios, despite occasional
shortcomings.

5.4 Cross-dataset Generalization
We investigate the cross-dataset generalization capabilities of Bloom
by utilizing ImageNet as the source dataset and employing the re-
maining 10 datasets as target datasets. Following the recommenda-
tions from prior research [12], we adopt a shallow and slim prompt
configuration, setting the prompt depth to 2 and 𝐿 = 1. The results,
as depicted in Tab. 2, reveal that our Bloom surpasses the state-
of-the-art methods on 8 out of 10 datasets in terms of zero-shot
accuracy. On average, Bloom achieves an improvement of +0.57%,
signifying enhanced generalization performance in comparison to
existing state-of-the-art approaches.

5.5 Cross-domain Generalization
Analogous to the cross-dataset generalization evaluation, we di-
rectly transfer the source model trained on ImageNet to four cross-
domain datasets. As illustrated in Tab. 3, the Bloom outperforms
state-of-the-art methods on all of the tested datasets. This result
underscores the superior generalization capabilities of Bloom in
addressing domain shifts, highlighting its effectiveness in adapting
to diverse and challenging scenarios.

5.6 Ablation Study
We carry out an ablation study, delving into the effects of crucial
designs and hyper-parameters on the ImageNet dataset within the
context of a base-to-novel training setting.
The Formulation of Fusion Function. To validate the crucial
role of the adaptive cross-modal fusion function, we evaluate 3
additional fusion functions that exhibit lower flexibility compared to
Bloom: i) Addition (Fa), which entails the addition of corresponding
elements from the two prompts. ii) Concatenate (Fc), which involves
concatenating the two prompts. iii) Routing (Fr), which is built upon
Fg (Eq. 10). We propose a routing function that replaces G𝑣 and
G𝑙 with two binarized gate vectors via a differentiable Gumbel-
softmax function. Consequently, the routing strategy permits only
uni-modal prompts across each gate, while preserving the potential
for cross-modal interaction from a macroscopic perspective. An
illustration of the variations is provided in Fig. 4. We employ the
same basic setting across all variations of the fusion function,
with the results depicted in Fig. 5 (a). The superior performance of
Bloom is evident, thus corroborating the notion that a more flexible
cross-modal interaction leads to a more proper alignment.
Middle Dimension. The middle dimension 𝑑𝑚 within projection
functions plays a pivotal role in achieving a better trade-off be-
tween enhanced performance and minimal additional learnable
parameters. In the basic setting, we set 𝑑𝑚 to 16, 32, 64, 128, 256,
respectively, while maintaining other hyper-parameters constant.
As illustrated in Fig. 5 (b), the HM on ImageNet increases as 𝑑𝑚
becomes larger with diminishing marginal effects. When setting 𝑑𝑚
to 256, the HM surpasses 80%, but the learnable parameters double,
contradicting the desired trade-off objective.
Where to insert Bloom? In this study, we examine the impact
of varying the insertion position of Bloom. We establish 5 distinct
intervals, namely [1, 9), [2, 10), [3, 11), [4, 12), [1, 12), to de-
termine the placement of Bloom, where [𝑎, 𝑏) signifies that the
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Method Base Novel HM

Visual→Language (V→L) only 76.28 70.20 73.11
Language→Visual (L→V) only 76.53 69.96 73.09
Visual↔ Language (Bloom) 77.15 71.25 74.08

Table 4: The effect of cross-modal fusion direction.

Method Params Params %CLIP HM

CoOp [30] 2.048K 0.002 71.66
CoCoOp [29] 35.36K 0.03 75.83
VPT [10] 73.73K 0.06 72.25

MaPLe [12] 3.55M 2.85 78.55

Bloom 2.24M 1.80 79.68

Table 5: Comparison of the number of additional trainable
parameters and HM (%) on ImageNet dataset. Our proposed
Bloom yields the best trade-off.

prompt is inserted into (𝑏 − 𝑎) consecutive layers, spanning from
the 𝑎𝑡ℎ layer to the (𝑏 − 1)𝑡ℎ layer. The other hyper-parameters in
basic setting are constant. The results are depicted in Fig. 5 (c).
Our findings indicate that as the insertion position shifts further
toward the latter layers, there is a gradual decline in performance.
Consequently, we deduce the first principle for the usage of Bloom
that the earlier the mutual interaction, the better the alignment. This
implies that the Bloom plays a more crucial role during the initial
stages of CLIP. Incorporating cross-modal fusion at an earlier point
in the model leads to improved alignment.
Prompt Depth. In this study, we investigate the influence of
prompt depth by adjusting it to {1, 2, 5, 8, 12}, while remain
the other hyper-parameters in basic setting constant. The results
are presented in Fig. 5 (d). Our analysis reveals a positive correlation
between the prompt depth and the HM, indicating an improvement
in performance as the depth increases. Consequently, we deduce
the second principle for the application of Bloom that the deeper the
mutual interaction, the better the alignment. In particular, a more ef-
fective Bloom implementation, which integrates the two modalities
across multiple layers, promotes enhanced cross-modal alignment.
This, in turn, results in an optimized balance between performance
on “base” classes and generalization capabilities on “novel” classes.
Prompt Length. In our subsequent analysis, we examine the im-
pact of the prompt length 𝐿 in Eq. 6 by adjusting it to {1, 2, 4, 6, 8}.
The other hyper-parameters are identical to basic setting. As
shown in Fig. 5 (e), our findings indicate that, in the majority of
cases, an increase in prompt length results in a decline in the HM.
This suggests that employing a larger prompt length may not be
optimal. We postulate that the Bloom with an extended length exac-
erbates the challenges associated with cross-modal alignment due
to the absence of adequate prior information.
The Effect of Data Scaling for Few-shot Training. In our ongo-
ing investigation, we explore the impact of data scaling on model
performance by training the Bloom within a 𝑘-shot learning frame-
work, where 𝑘 encompasses {1, 4, 8, 16, 32}. The corresponding
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Figure 6: Visualization of gate vectors within fusion func-
tions, illustrating Bloom’s search decisions regarding cross-
modal information at various layers.

results are illustrated in Fig. 5 (f). Our analysis reveals a favorable
effect of data scaling, as evidenced by the increase in the HM when
more few-shot samples are incorporated. However, it is worth not-
ing that the benefits derived from augmenting the training dataset
exhibit diminishing marginal returns. As the number of training
samples increases, the incremental gains in performance become
progressively smaller.

5.7 Discussions
The Effect of Cross-modal Fusion Direction.We conduct a com-
parative analysis of the performance of two distinct uni-directional
cross-modal fusion strategies, designated as V→L and L→V, and
Bloom, denoted as V↔L. The comparison, as illustrated in Tab. 4,
reveals that Bloom outperforms both uni-directional strategies. The
superiority of Bloom can be attributed to its ability to leverage
the mutual information across two modalities, thereby facilitat-
ing a more comprehensive and proper alignment. In contrast, uni-
directional strategies may not fully capitalize on the potential ben-
efits of integrating information from both modalities, resulting in
sub-optimal performance.
The Trade-off between Performance and Parameters. In Tab. 5,
we compare the HM on ImageNet and additional trainable parame-
ters of Bloomwith state-of-the-art approaches, including CoOp [30],
CoCoOp [29], VPT [10], and MaPLe [12]. The results demonstrate
that Bloom achieves a superior trade-off, requiring only 1.8% of
additional CLIP parameters while attaining a 79.68% HM.
The Search Decision of Gate Vectors. We visualize the gate vec-
tors (after softmax) within the fusion functions of both the vision
and language branches in Fig. 6. This intuitively showcases Bloom’s
varying requirements for mutual information from the two different
modalities across distinct layers. Moreover, this observation corrob-
orates our hypothesis, suggesting that providing prompt learning
with greater autonomy positively impacts its performance.

6 CONCLUSIONS
In this paper, we introduce a new paradigm, termed Bloom, for
prompt learning community. Bloom exhibits more flexibility for
cross-modal interaction via a bilateral cross-modal fusion frame-
work and an adaptive fusion function ensuring Bloom to search
optimal combination of interaction information, ultimately result-
ing in new state-of-the-art performance in terms of base-to-novel
generalization, cross-dataset, and cross-domain generalization.
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