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Abstract
Clustering problems (such as k-means and k-
median) are fundamental unsupervised machine
learning primitives. Recently, these problems
have been subject to large interest in the privacy
literature. All prior work on private clustering,
however, has been devoted to the offline case
where the entire dataset is known in advance. In
this work, we focus on the more challenging pri-
vate data stream setting where the aim is to design
memory-efficient algorithms that process a large
stream incrementally as points arrive in a private
way. Our main contribution is to provide the first
differentially private algorithms for k-means and
k-median clustering in data streams. In particular,
our algorithms are the first to guarantee differen-
tial privacy both in the continual release and in
the one-shot setting while achieving space sub-
linear in the stream size. We complement our
theoretical results with an empirical analysis of
our algorithms on real data.

1. Introduction
Clustering is an essential primitive in unsupervised machine
learning, and its geometric formulations, such as k-means
and k-median, have been studied extensively, e.g., (Arya
et al., 2001; Charikar et al., 2002; Har-Peled & Mazumdar,
2004; Chen, 2006; 2008; Awasthi et al., 2010; Ostrovsky
et al., 2012; Li & Svensson, 2016; Ahmadian et al., 2020).
In this paper, we focus on the study of clustering in the
streaming model under the constraint of data privacy.

Differential privacy (DP) (Dwork et al., 2016) has become
the de facto standard for preserving data privacy due to its
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compelling privacy guarantees and mathematically rigorous
definition. There is a rich DP literature for clustering in the
polynomial-time setting, e.g., (Nissim et al., 2007; Feldman
et al., 2009; 2017; Gupta et al., 2010; Balcan et al., 2017;
Huang & Liu, 2018; Nissim & Stemmer, 2018; Stemmer &
Kaplan, 2018; Ghazi et al., 2020; Cohen et al., 2021) where
the focus has been to improve the approximation ratios and
achieve efficient algorithms in high-dimensional Euclidean
space. More recent works have studied this problem in other
models of computation, such as sublinear-time (Blocki et al.,
2021) and massively parallel computing (MPC) (Cohen-
Addad et al., 2022a;b). However, the study of DP clustering
in the streaming model remains vastly unexplored.

1.1. Our Results

In this paper we address the problem of clustering in the
streaming model in which the input x1, . . . , xT ∈ Rd ar-
rives in a stream. We the give the first pure DP k-means
and k-median clustering algorithms that use space sublinear
in the size in T for (1) continual release setting: where
the algorithm must output a clustering at every timestamp
t ∈ [T ], and (2) one-shot setting: where the algorithm must
output a clustering at the end of the stream. As is standard
in DP clustering literature, we assume Λ is an upper bound
on the diameter of the space of input points.

In the following two theorems we assume we are given a
non-DP algorithm in the offline setting that can compute
a ρ-approximation to k-means (or k-median)—many such
algorithms exists with constant approximation (e.g. (Ahma-
dian et al., 2020)).

Theorem 1.1. There exists an ε-DP algorithm for k-
means (or k-median) in the continual release model
such that for every timestamp t ∈ [T ] it out-
puts a clustering with Θ(ρ)dO(1)-multiplicative er-
ror and Õ(kρΛ

2

ε · (d log T )O(1)))-additive error in
O(k log2(Λ) log(k)poly (log (TΛk))) space.1

Theorem 1.2. There exists an ε-DP algorithm for k-
means (or k-median) in the one-shot model such that
it outputs a clustering with Θ(ρ)dO(1)-multiplicative
error and Õ(kρΛ

2

ε · (d log T )O(1)))-additive error in

1We use the Õ(·) notation to neglect poly-logarithmic factors
in (Λ, k, T ).
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O(k log2(Λ) log(k)poly (log (TΛk))) space at the end of
the stream of length T .

We observe that in both settings the memory used is Õ(k)
(ignoring poly-logarithmic factors in (Λ, k, T )) thus match-
ing the space requirements of non-DP streaming algo-
rithms (Charikar et al., 2003).

1.2. Technical Overview

Our techniques apply to both k-means and k-median clus-
tering, but we assume we are dealing with k-means for
simplicity. Before discussing our algorithm in more detail,
we first outline the challenges to designing a DP k-means
clustering algorithm in the continual release setting.

Natural space-efficient approaches fail. A natural first
approach towards this problem in the one-shot setting and
one that was employed in the sublinear-time model (Blocki
et al., 2021) is to maintain a random sample using the same
space as our proposed algorithm, i.e., Õ(k) and apply a state-
of-the-art DP clustering algorithm on this sample at the end
of the stream. One can easily show that this algorithm pre-
serves DP and is as space efficient as our method. However,
the accuracy of the resulting clustering achieved will be con-
siderably worse than our proposed algorithm. In the worst
case, this approach can lead to an additive error (ignoring
k,Λ, d dependencies) of O(

√
T ) (see Cohen-Addad et al.

(2022b) for a detailed exposition). In contrast, our approach
leads to an additive error of O(poly(log T )). We demon-
strate this experimentally by showing that our proposed
algorithm outperforms the random sampling algorithm we
use as a baseline.

Our Approach. For every timestamp t ∈ [T ], our algo-
rithm for both continual release and one-shot settings can
be split into two main steps — (1) Compute a weighted
DP coreset F in an online fashion that satisfies a bicriteria
approximation to k-means (see Theorem 1.3). (2) Compute
a non-DP k-means ρ-approximation algorithm on F in a
postprocessing step.

Theorem 1.3 (Bicriteria approximation). There exists an
ε-DP algorithm that for every timestamp t ∈ [T ], computes
a weighted set of O(k log(k) log2(Λ) log T ) centers with
dO(1)-multiplicative error to the best k-means (or k-median)
clustering and Õ(kρΛ

2

ε · (d log T )O(1)))-additive error in
O(k log2 Λ log(k)poly (log (TΛk))) space.

Quadtrees and Heavy Hitters. A quadtree creates a
nested series of grids that partitions Rd and can be used
to embed input points into a Hierarchically Separated Tree
(HST) metric, which often makes computing k-means cost
simpler. We use this embedding to map every input point
to the center of a grid (or cell) at every quadtree level. For
a fixed level, our goal is to approximately choose the O(k)

cells that have the most points, i.e., we want to find the
“heaviest” cells in a DP fashion and store them as candidate
centers in set F . We achieve this by hashing the cells into
O(k) substreams and running a continual release black-box
DP heavy hitter algorithm on each hash substream. Since
with large enough probability, the heavy cells will not col-
lide, this achieves our goal. Note that since we need to do
this over logarithmically many levels of the quadtree, we
will end up with a bicriteria approximation.

We stress that we need to run a continual release black-box
DP heavy hitter algorithm for both our continual release and
one-shot setting clustering algorithms. This is because we
need to assign xt to a candidate center in F (obtained from
computing the heavy-hitters) in an online fashion at every
timestep t ∈ [T ] in both settings. The main difference in
our algorithms for these two settings is that in the continual
release setting we release the resulting weighted coreset con-
sisting of candidate centers and their noisy weights at every
timestep t ∈ [T ], while in the one-shot setting we release
the weighted coreset at the end of the stream. Thus, we keep
track of the noisy weights in the continual release setting
via multiple instantiations of the binary mechanism (Dwork
et al., 2010; Chan et al., 2011) while we can add Laplace
noise to release the noisy weights at the end of the stream
in the one-shot setting.

2. Preliminaries
An event E occurs with high probability if for any c ≥ 1,
there is an appropriate choice of constants for which E
occurs with probability at least 1−O(1/kc) where k is the
k-clustering input parameter.

Norms and heavy hitters. Let p ≥ 1, the `p-norm of a vec-
tor x = (x1, . . . , xt) is defined as ‖x‖p = (

∑t
i=1 |xi|p)1/p.

Given a multiset S, denote the frequency of an item x ap-
pearing in S as f(x). We say that an item x is an α-heavy
hitter (α-HH for short) if f(x) ≥ α‖S‖1.

Differential Privacy. Streams S = (x1, . . . , xT ) and
S ′ = (x′1, . . . , x

′
T ) are neighboring if there exists at most

one timestamp t∗ ∈ [T ] for which xt∗ 6= x′t∗ and xt = x′t
for all t 6= t∗.

Definition 2.1 (Differential privacy Dwork et al. (2016)).
A randomized algorithm A is ε-DP if for every pair of
neighboring datasets D ∼ D′, and for all sets S of possible
outputs, we have that Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S]

Theorem 2.2 (Binary Mechanism BM Chan et al. (2011);
Dwork et al. (2010)). Let ε ≥ 0, γ ∈ (0, 0.5), there is an
ε-DP algorithm for the sum of the stream in the continual
release model. With probability 1 − γ, the additive error
of the output for every timestamp t ∈ [T ] is always at most
O( 1

ε log2.5(T ) log( 1
γ )) and uses O(log T ) space.
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See (Dwork & Roth, 2014) for more foundational concepts
in differential privacy.

Clustering. For points x, y ∈ Rd, we let d(x, y) = ‖x −
y‖2 be the Euclidean distance between x and y. Given a set
C, we define d(x, C) := minc∈C d(x, c).

For a set of centers C, we define the cost of clustering for
the set S wrt C as

cost(C,S) =
∑
x∈S

dz(x,C)

where z = 1 for k-median, and z = 2 for k-means.

Our goal in DP clustering is to produce a set of k centers
CS for input stream S such that (1) CS is ε-DP wrt S, and
(2) cost(CS ,S) ≤ α · cost(CoptS ,S) + β.

3. Bicriteria Approximation in Continual
Release Setting

We describe our algorithm in more detail here. We focus on
the k-means problem in the sequel, however we stress that
our techniques easily extend to the k-median problem and
the algorithm and analysis are nearly identical.

Algorithm. Our main algorithm is given by Algorithm 1
which initializes log Λ parallel instances of randomly shifted
quadtrees. At every timestep t ∈ [T ] the input point xt
is assigned to a cell in the log Λ many levels of every
quadtree. For a fixed quadtree, the subroutine DPFind-
Centers (see Algorithm 2) is called on every level. The
subroutine DPFindCenters returns a candidate set of cen-
ters F̂t which is first added to the current set of candidate set
of centers F , and xt is then assigned to the nearest center
in F . Finally, the DP counts of all centers in F are updated
via the Binary Mechanism.

The DPFindCenters subroutine (see Algorithm 2) finds the
approximate heaviest O(k) cells in a fixed level of a fixed
quadtree. It achieves this by first hashing all the cells in that
level to w := O(k) many substreams (or buckets) Bj for
all j ∈ [w] and then runs a continual release α-heavy hitter
algorithm DP-HH on each bucket.2 We use the `1-heavy
hitter algorithm from (Epasto et al., 2023) as DP-HH — it
returns a set H of α-heavy hitters and their approximate
counts f̂(c) for all c ∈ H . Since we are storing all the
cells marked as heavy hitters as candidate centers over at
most T timesteps, we need to ensure that we do not store
too many false positives, i.e., cells whose counts are much
smaller than α‖Bj‖1. To address this challenge, we have

2Notice that in the pseudo code Algorithm 2, ⊥ represents an
empty update that does not affect the counters of elements of the
stream and is ignored. This is needed for technical reasons to
ensure DP by avoiding the value of the hash affecting the number
of events in the sub-streams.

Algorithm 1 DP Clustering Algorithm in Continual Re-
lease Setting

Require: Privacy parameter ε, Threshold parameter for
heavy hitters α, Time bound T , Binary Mechanism
BM, Continual Release DP-HH algorithm, Stream S of
points x1, . . . , xT ∈ Rd

Ensure: Set of DP centers F and their noisy weights DP-
Coreset at every timestep t

1: ε′ := ε
log2 Λ log k

2: Initialize hashmap DPCoreset to empty{used to store
centers and noisy weights}

3: Initialize parallel quadtrees Q1, . . . , Qlog(Λ) as follows:
Initialize each quadtreeQq as S(q)

1 , . . . ,S(q)
log(Λ) parallel

streams or levels with the bottom stream/level having
grid size Θ(1)

4: Initialize F := ∅
5: for t = 1 to T do
6: for each S(q)

` where 0 ≤ ` ≤ log(Λ) and 1 ≤ q ≤
log(Λ) do

7: Add xt to S(q)
`

8: F̂t = DPFindCenters(ε′,S(q)
` )

9: F = F ∪ F̂t
10: {add new centers to hashmap DPCoreset and ini-

tialize their DP weights}
11: for c ∈ F̂t −F do
12: Add c as a key to DPCoreset
13: Initialize an instance of BMc(T, ε′, 0) for

DPCoreset(c)
14: end for
15: if F 6= ∅ then
16: Let c∗ := argminc∈F d(xt, c) {assign xt to the

nearest center; if F = ∅ then discard xt}
17: DPCoreset(c∗) = BMc∗(T, ε, 1)
18: end if
19: for c 6= c∗ do
20: DPCoreset(c) = BMc(T, ε, 0)
21: end for
22: end for
23: Output F ,DPCoreset
24: end for

an additional pruning step that eliminates any cell c whose
approximate count is less than Θ(α)T̂Bh(c)

where T̂Bh(c)

denotes the DP size of the hash stream Bh(c) at timestep
t ∈ [T ]. We keep track of T̂Bh(c)

via another instance of
the Binary Mechanism. Finally, only the cells that pass this
pruning step are added as candidate centers to the set F̂t.
Theorem 3.1. Let S := {x1, . . . , xT } be the stream of in-
put points in Euclidean space. For t = 1, . . . , T , let Ft
be the set of centers until time step t. Let cost(F ,S) :=∑T
t=1 cost(Ft) where cost(Ft) := minf∈Ft

dist2(xt, f).
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Algorithm 2 DPFindCenters

Require: Privacy parameter ε′, Stream S` with 2` cells
(representing the `-th level of quadtree instantiation),
Binary Mechanism BM

Ensure: Set of candidate centers F̂t at every timestep t ∈
[T ]

1: Initialize F̂t = ∅
2: Let w = O(k)
3: Initialize T̂B1 , . . . , T̂Bw{DP Count for the size of hash

bucket}
4: for p = 1, . . . , L, where L := O(log k) run in parallel

do
5: Initialize hash function h : [2`] → [w] s.t. ∀c,∀j ∈

[w],Pr[h(c) = j] = 1
w

6: Initialize empty hash streams B1, . . . ,Bw
7: for each cell c at level ` do
8: Append c to Bh(c) and append ⊥ to the end of

every stream Bj such that j 6= h(c).
9: T̂Bh(c)

= BMh(c)(T, ε
′, 1)

10: for j 6= h(c) do
11: T̂Bj

= BMj(T, ε
′, 0)

12: end for
13: end for
14: for j ∈ [w] do
15: f̂ , H ← DP-HH(ε′,Bj) {ε′ := ε

log2 Λ log k
}

16: for c ∈ H do
17: if f̂(c) ≥ α

1000 · T̂Bh(c)
then

18: Append c to F̂t as a center
19: end if
20: end for
21: end for
22: end for
23: Return F̂t

There exists an algorithmA (see Algorithm 1) that outputs a
set of centers F and their corresponding weights DPCore-
set at every timestep t ∈ [T ] such that

1. (Privacy) A is 3ε-DP.

2. (Accuracy) With high probability,

cost(F ,S) ≤ O(d3)cost(CoptS ,S)

+ Õ

(
d2Λ2k

ε
logC (T · k · Λ)

)
where cost(CoptS ,S) is the optimal k-means cost for
S.

3. (Space) A uses O(k log2(Λ) log(k)poly (log (TΛk)))
space.

4. (Size of F) F has at most O(k log(k) log2(Λ) log T )
centers.

Privacy. Since we are outputting the center point of the
cells marked as heavy hitters and their respective noisy
counts, we only need to show that DP is maintained wrt
these centers and noisy counts of centers and hash sub-
streams. An input point is assigned to a specific cell for a
specific level of the quadtree, and cells at the same level are
disjoint. Since there are log Λ levels per quadtree, a point is
a member of log Λ cells. Since there are log Λ log k parallel
processes, a single point participates in log2 Λ log k total
calls to DP-HH. Note that we do not account for the O(k)
buckets that the cells are hashed into, as DP-HH is called on
disjoint inputs for each bucket. Thus calling each DP-HH
instance with a privacy budget of ε

log2 Λ log k
preserves ε-DP.

We use the Binary Mechanism to keep track of the size of
each hash substream Bj ∀j ∈ [w]. Since the input cells (and
corresponding points within cells) are disjoint in each sub-
stream due to hashing, this preserves ε

log2 Λ log k
-DP which

over log2 Λ log k parallel processes preserves ε-DP. Finally,
we release the number of points per center via the Binary
Mechanism where each point can only contribute to a single
cell count which preserves ε-DP. Therefore by composition,
we get 3ε-DP for the entire algorithm.

Accuracy. We first state some geometric properties re-
garding the cells within the quadtree construction.

Proposition 3.2. (Cohen-Addad et al., 2022b) Let B be
an `∞ ball of radius r contained in [−Λ,Λ]d (it forms a
d-dimensional cube with each side length 2r). Then for a
randomly shifted quadtree and any level ` with grid size
at least r′ ≥ 2r, B is split by the grid in each dimension
j ∈ [d] independently with probability 2r

r′ .

Let CoptS = {c1, . . . , ck} be the optimal set of k centers
for the input set S = {x1, . . . , xT }. For any radius, define
nr as the number of points x ∈ S such that d(x,CoptS ) ≥
r. Note that the opt cost of k-means (and k-median) is
given by

∑
p∈Z 22p ·n2p and

∑
p∈Z 2p ·n2p (up to an O(1)-

approximation).

Fix some radius r = 2p where p ∈ Z and consider a ran-
domly shifted grid of size 20rd. The following lemma
characterizes cells containing ∪ki=1B(ci, r) with respect to
the grid size.

Lemma 3.3. (Cohen-Addad et al., 2022b) ∪ki=1B(ci, r) is
contained in at most 4k cells of grid length 20rd by the
corresponding level of the quadtree with probability at least
1/2.

Let G` where 0 ≤ ` ≤ log(Λ) be the set of 4k good cells
of length 20rd (equivalently `2-radius of 10rd3/2) at level
`. Let the number of points in S uncovered by G` be nG`

.
Observe that by Lemma 3.3, since G` contains ∪ki=1B(ci, r)
with probability at least 1/2, we have that nG`

≤ nr. It
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follows that
log(Λ)∑
`=0

(grid length at level `)2 · nG`

≤ O(d3)
∑

p∈Z : r=2p≤Λ

r2 · nr ≤ O(d3) · cost(CoptS ,S)

(1)

Observe that we can define a one-one mapping between the
level ` and the radius r, i.e., the radius r (ranging from 1 to
Λ) maps to the grid length of a cell which is at most Λ/2`

(level ` ranges from log(Λ) to 0). Since the grid length of a
cell in G` at level ` is 20rd which maps to 20d Λ

2` , we can
replace the leftmost term in the expression above as follows

O(d2)

log(Λ)∑
`=0

(Λ/2`)2nG`
≤ O(d3)

∑
p∈Z : r=2p≤Λ

r2 · nr

≤ O(d3) · cost(CoptS ,S) (2)

Recall that we defineFt as the set of centers until time step t.
For a fixed level `, let the set of cells the algorithm DP-HH
marks as heavy at timestep t at level ` as H`,t. Note that
although there is an extra pruning step in DPFindCenters
after the cells are marked heavy by DP-HH, we do not
account for this here — as if a cell is an α-HH and marked
heavy by DP-HH, and it survives the pruning step, it will
still be an α-HH. Then,

cost(Ft) ≤ O(d2)

log(Λ)∑
`=0

(Λ/2`)2 · 1[xt uncovered by H`,t]

Observe that

cost(F)

=

T∑
t=1

cost(Ft)

≤ O(d2)

log(Λ)∑
`=0

(Λ/2`)2 ·
T∑
t=1

1[xt uncovered by H`,t]

(3)

Lemma 3.4. For a fixed level `, with probability at least
1− 12

k ,

T∑
t=1

1[xt uncovered by H`,t] ≤ (1 + α)nG`

+
4k log2 Λ log k

εη
poly

(
log

(
T · 2`

αξη

))
(4)

Proof. Observe that

T∑
t=1

1[xt uncovered by H`,t]

=

T∑
t=1

(1[(xt uncovered by H`,t) ∧ (xt uncovered by G`)]

+ 1[(xt uncovered by H`,t) ∧ (xt covered by G`)])

=

T∑
t=1

1[(xt uncovered by H`,t) ∧ (xt uncovered by G`)]

+

T∑
t=1

1[(xt uncovered by H`,t) ∧ (xt covered by G`)]

The first sum in the above expression can be upper bounded
by nG`

, thus it remains to bound the second sum. In order
to bound the second sum, we will need some properties of
good cells that are hashed to buckets in DPFindCenters.
In the sequel, we denote N`,c as the number of points in the
cell c at level `. For simplicity, we consider the number of
hash buckets w := 40k. We first show that for any good
cell c, it is unlikely that the bucket it is hashed to contains
another good cell c′ 6= c.
Claim 1. Let c ∈ G`, then with probability at least 1/2, for
any c′ ∈ G` such that c′ 6= c, we have that h(c′) 6= h(c).

In the next claim we give a bound on the size of the hash
bucket in terms of the size of a good cell that is hashed to it
and nr.
Claim 2. For each c ∈ G`, suppose the hash bucket Bj
where j ∈ [w], contains only one good cell which is c.
Let N`,c := y. Then with probability at least 1/2, |Bj | ≤
2(y +

nG`

40k ).

Note that since the hashing procedure is run O(log k) times
in parallel, we can boost the success probabilities in the
above claims to be sufficiently high, e.g., 1− 1/k2.

Observe that for a fixed hash bucket Bj , any cell c such
that N`,c ≥ α · 2(y +

nG`

40k ) qualifies as an α-heavy hitter
since N`,c ≥ α · 2(y +

nG`

40k ) ≥ α|Bj | (by Claim 2). In
particular, for good cell cy such that N`,cy

= y, if cy is an
α-HH then y ≥ α · 2(y+

nG`

40k ) or y ≥ αnG`

20k . We formalize
this intuition in the claim below where we use the accuracy
guarantees of DP-HH given by Theorem A.1 to characterize
the good cells that are reported as α-HHs.
Claim 3. Let c ∈ G`. If N`,c ≥

αnG`

20k , and N`,c ≥
log2 Λ log k

εη poly(log(T ·k·2
`

αη )), then with probability at least
1− 12

k , c is reported as an α-heavy hitter by DP-HH.

Finally, we give an upper bound for the number of points
that are covered by good cells but for which DP-HH fails to
report as heavy.
Claim 4. With probability 1− 12

k ,

T∑
t=1

1[(xt uncovered by H`,t) ∧ (xt covered by G`)]
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≤ αnG`

+
4k log2 Λ log k

εη
poly

(
log

(
T · k · 2`

αη

))

Thus by combining Claim 4 with our observation about the
first sum being upper bounded by nG`

in the decomposition
of
∑T
t=1 1[xt uncovered by H`,t], we obtain our desired

statement in Lemma 3.4.

Not that we have shown Lemma 3.4 is true with probability
at least 1− 12

k , for a fixed level. Since we have log(Λ) many
levels in a specific quadtree, and log(Λ) many quadtree in-
stances in parallel — we can boost our probability of success
to be sufficiently high. It remains to bound the total k-means
cost for the set of centers F output by our algorithm. Com-
bining Equation (1), Equation (2) and Equation (3) along
with Lemma 3.4, we obtain the following.

cost(F ,S)

=

T∑
t=1

cost(Ft,S)

≤ O(d2)

log(Λ)∑
`=0

(Λ/2`)2 ·
T∑
t=1

1[xt uncovered by H`,t]

≤ O(d2)

log(Λ)∑
`=0

(Λ/2`)2 · ((1 + α)nG`

+
4k log2 Λ log k

εη
poly

(
log
(T · k · 2`

αη

))
)

= O(d2)

log(Λ)∑
`=0

(Λ/2`)2 · (1 + α)nG`

+O(d2)

log(Λ)∑
`=0

(Λ/2`)2 · 4k log2 Λ log k

εη
poly

(
log
(T · k · 2`

αη

))
≤ O(d3)(1 + α)

∑
p∈Z : r=2p≤Λ

r2 · nr

+O(d2)

log(Λ)∑
`=0

(Λ/2`)2 · 4k log2 Λ log k

εη
poly

(
log
(T · k · 2`

αη

))
≤ O(d3)(1 + α)cost(CoptS ,S)

+O(d2)

log(Λ)∑
`=0

(Λ/2`)2 · 4k log2 Λ log k

εη
poly

(
log
(T · k · 2`

αη

))
= O(d3)(1 + α)cost(CoptS ,S)

+O

(
d2Λ2 k log2 Λ log k

εη
poly

(
log
(T · k · Λ

αη

)))

Finally, we can set α (threshold for HHs) and η (approxi-
mation factor for frequency of a cell marked as heavy from

Theorem A.1) to some constants. The accuracy claim in
Theorem 3.1 follows.

Space. We analyze the total space usage for DP-HH in
Algorithm 2 as this dominates space usage for the entire
algorithm. From Theorem A.1, one instance of DP-HH uses
poly (log (TΛk)). Since we run DP-HH on O(k) many
hash substreams, and log2 Λ log k parallel processes, the
total space is O(k log2(Λ) log(k)poly (log (TΛk))).
Claim 5 (Upper bound on size of F). For all j ∈ [w],
suppose |Bj | = Ω( log2(Λ) log2(k)

ε log2.5 T ) then with high
probability, the total number of historical heavy hitters at
the end of the stream is O(k log(k) log2(Λ) log T ).

Proof. The algorithm runs independent instances of the
DP-HH algorithm for each bucket of each level in each
instantiation of the quadtree, thus it is sufficient to first
show that for a fixed quadtree Q, a fixed level `, and a fixed
bucket Bj where j ∈ [w], the total number of historical
heavy hitters is at most O( (1+η)

α log T ).

Let the timestamps of points that end up in Bj be ti =
2i, where 0 ≤ i ≤ log(T ). Let the state of the hash
bucket at time step t be B(t)

j . We set the failure proba-
bility in Theorem 2.2 as γ := 1

k2 . From Theorem 2.2
we know that with probability 1 − 1

k2 , the DP count
of the hash bucket T̂j at timestep t has additive error
O( log2(Λ) log2(k)

ε log2.5(T )). Thus for a fixed timestamp

t, if |B(t)
j | = Ω( log2(Λ) log2(k)

ε log2.5(T )), then we can see

that a cell c is added to Ft only if f̂(c) > 2α
1000 |B

(t)
j |. Recall

from Condition 1 of Theorem A.1 that N̂`,c ∈ (1± η)N`,c.
Thus if c ∈ Ft and |B(t)

j | = Ω( log2(Λ) log2(k)
ε log2.5(T ))

then it must be the case that with probability 1 − 1
k2 ,

N`,c ≥ 2α
1000(1+η)‖B

(i)
j ‖1 ≥ 2α

1000(1+η) ti−1.

Now, suppose for a contradiction, that the number of heavy
hitters between ti−1 and ti is at least 1000(1+η)

α . Then
for each such cell c, we have that N`,c ≥ 2α

1000(1+η) ti−2.

Since there are at least 2000(1+η)
2α such cells, this implies

that the total number of points between ti−1 and ti is
≥ 2α

1000(1+η) ti−2
2000(1+η)

2α = 2i = ti, which is a con-

tradiction. Thus there must be at most 1000(1+η)
α cells

marked as heavy hitters between consecutive intervals, and
since there are log(T ) such intervals, we have that the total
number of historical `1 heavy hitters for a fixed bucket is
O( (1+η)

α log T ).

Boosting the success probability over O(k) buckets,
O(log(k)) parallel processes, log(Λ) such levels, and
log(Λ) parallel processes of the quadtree instantiation,
accounting for the additional number of historical HHs,
and taking α and η as constants, we obtain the claim as
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stated.

4. From Bicriteria Approximation to
k-Clustering

Suppose we have a non-DP k-means algorithmA′ that gives
a ρ-approximation. We run A′(DPCoreset) where DP-
Coreset is the output of Algorithm 1. Note that by postpro-
cessing, this computation preserves privacy.

For simplicity we denote the centers and their correspond-
ing noisy weights in DPCoreset as a tuple (F , ŵ). Let
CF,ŵ denote the k-clustering obtained as output from
A′((F , ŵ)). We need to show that cost(CF,ŵ,S) is rea-
sonably bounded by the optimal cost of clustering of S
denoted as cost(CoptS ,S).

Theorem 4.1. Let S = {x1, . . . , xT }. Suppose CoptS is the
optimal set of centers for S. Then

cost(CF,ŵ,S) ≤ (2ρ+ 1)O(d3)cost(CoptS ,S)

+ Õ(
kρΛ2

ε
· (d log T )O(1))

Proof. Let (F , w) denote the set of centers F and their non-
DP weights and let the optimal cost of clustering for (F , w)
be CoptF,w. The proof proceeds as follows,

cost(CF,ŵ,S) < cost(CF,ŵ, (F , ŵ)) + cost(F ,S)

(5)

cost(CF,ŵ, (F , ŵ)) < cost(CF.w, (F , w))

+O(kΛ2 +
|F|Λ2

ε
log2.5(|T |) log(k))

(6)

cost(CF.w, (F , w)) < ρ · cost(CoptF,w, (F , w)) (7)

cost(CoptF,w, (F , w)) < 2cost(F ,S) + |F|Λ2 (8)

Note that Equation 5 follows from triangle inequality. Equa-
tion 6 follows from Claim 6. Equation 7 follows from A′
giving a ρ-approximation. And finally, Equation 8 follows
from Claim 7. Also, recall that we have an upper bound
for cost(F ,S) in terms of cost(CoptS ,S) from Theorem 3.1.
Using the upper bound on |F| from Claim 5 and simplifying
the additive error terms, the theorem statement follows.

5. Bicriteria Approximation in One-Shot
Setting

The algorithm in the one-shot setting is the same as in Algo-
rithm 1, except we do not need to release the noisy weights
of centers in DPCoreset via the Binary Mechanism at every
timestep t ∈ [T ]. Instead, we can output the DPCoreset
at the end of the stream by adding noise via the Laplace
Mechanism. Crucially, our one-shot algorithm still needs to

use the continual release algorithm for finding heavy-hitters
denoted as DP-HH as a subroutine. Thus, the guarantees of
this algorithm are the same as Theorem 3.1.

6. Experiments
In this section we provide an empirical evaluation of our
algorithms. First, we describe the methodology of our em-
pirical evaluation and then we present the results. To fos-
ter the reproducibility of our work, all datasets used are
publicly-available. Moreover, we will make our code avail-
able open-source before the camera-ready. We stress that
no dataset contains private user data.

In all our experiments we focus on the one-shot setting (as
opposed to the continual release one). All private algorithms
evaluated are one-shot and we report the cost of all algo-
rithms (private and non-private) at the end of the stream. We
repeat all experiments with randomized algorithms 10 times
and report mean and deviation statistics.

Datasets. In our experimental analysis we used real-world
datasets obtained from the public UCI Repository (Dheeru
& Karra Taniskidou, 2017) that have been used in various
experiments on k-clustering. We used skin (Bhatt & Dhall,
2010), n = 245057, d = 4, shuttle, n = 58000, d = 10,
and rangequeries (Savva et al., 2018), n = 200000, d = 6.
We stream all points in the natural order (as they are stored
in the dataset). In all datasets, we pre-process the points to
be in the `∞ bounding box of [0, 2]d.

Metrics. We report as metrics the k-means cost of the
clustering and the maximum space requirement of our al-
gorithms over the stream. In order to assess the memory
requirement in an implementation-independent way, we use
the number of points stored–this is consistent with prior
work Borassi et al. (2020).

Modifications to our algorithm. In our experiments we
implemented a simplified version of our one-shot algorithm,
where we made several modifications to make it more space
efficient. These changes are similarly to that in past stream-
ing clustering papers (Lattanzi & Vassilvitskii, 2017; Bo-
rassi et al., 2020) and have the additional advantage of re-
ducing the noise required for DP by limiting the splitting of
the privacy budget. We stress that these changes do not af-
fect the privacy guarantees. (1) We do not repeat O(log(Λ))
independent times the grid creation, but instead use a single
instance. The grid is fixed to have 5 levels only (instead
of log(Λ)). (2) We do not split the stream using the hash
function in w buckets (but use a single heavy hitter instance
for each layer).

One-shot DP heavy hitter subroutine. As DP-HH sub-
routine we implemented a version of the simpler DP Misra-
Gries-based algorithm of Chan et al. (2012) instead of the
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Figure 1. k-means cost vs k for different datasets at ε = 2, δ = 0.001 for various algorithms. Shades represent the 95% C.I..

ε Sample cost total memory

2.0 .5% 4999.5 .63%
5.0 .5% 5118.4 .62%
2.0 1% 5090.0 1.1%
5.0 1% 4912.5 1.1%

Table 1. Cost and total memory for different ε and sample rates for
the skin dataset, k = 10 and δ = .001.

algorithm in Epasto et al. (2023). In our experiments we set
the α = 1/32 for the α-HH parameter.

Finally, as we operate in the one-shot setting, we made a
further simplification to the method to assign weights to the
centers selected as heavy hitters. We keep a sample of sam-
pling rate fraction of the stream in memory, for sampling
rate ∈ [0.5%, 1%], and assign, at the end of the stream, all
points in the sample to the nearest heavy hitters. Then, we
use a DP count of the assigned point as weight of the heavy
hitter. We report the results of this modified version of our
algorithm as dp-stream.

Baselines. We consider as well the following baselines.
non-private: We use the standard non-private sklearn solver
for k-means. This is also the solver used in all private
algorithms as sub-routine when needed. This has access to
the whole dataset and has no privacy so we consider it the
gold standard for cost.

dp-offline: We consider an open-source DP k-means algo-
rithm part of a standard DP library3 that works in the offline
setting (i.e. accessing the whole dataset). This algorithm
establishes a good lower bound for DP cost while neglecting
space efficiency in streaming.

3Release announcement https:
//ai.googleblog.com/2021/10/
practical-differentially-private.html

dp-sampling: Finally, since there are no known DP stream-
ing algorithms, we consider a DP baseline which simulates
the same space efficiency of our algorithm. After running
our algorithm and measuring the number of points stored by
it, we collect a random sample of points (with the same size
of the ones stored by our algorithm) and use it as input of the
dp-offline algorithm. Notice that we account for the added
privacy given by the sampling procedure allowing higher
budget to the dp-offline sub-routine as shown in (Blocki
et al., 2021). This algorithm provides a fair baseline result
which has the same space and privacy constraints of our
algorithm.

Parameters. We vary the number of centers, k, from 5 to
20. We fix δ = 0.001 and vary ε (for the private algorithms).

6.1. Results

We report the results of running the various algorithms
in Figure 1 where we show the k-means cost on the 3
datasets for ε = 2 (for the private algorithms) and for dif-
ferent k’s. Notice that for all k’s and datasets that the non-
private baseline has the lowest cost — this is expected, as
it does not pay the price of DP. A higher cost is reported
for the (non-streaming) dp-offline baseline which, despite
being private, has access to the whole dataset in memory.

Interestingly, we observe that our algorithm dp-stream,
despite storing only a fraction of the input, has a cost that
is only slightly higher (and for one dataset, even lower)
than the dp-offline baseline. Moreover, in all cases our
algorithm outperforms (or is comparable to) the DP same-
space baseline dp-sampling.

Effect of the parameters on cost and memory We now
report the mean cost and total memory storage (as a fraction
of the input) for running our algorithm on the skin dataset
with k = 10 and different ε and sampling rates. The results
are reported in Table 1. Notice that ε and the sampling rate
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do not significantly affect the cost while the total memory is
(as expected) close to the sample rate. This shows that the
additional cost for storing the heavy hitters is quite small
compared to the sample.
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2018.

10



Differentially Private Clustering in Data Streams

A. Appendix.
A.1. Guarantees for DP-HH

Theorem A.1 (DP-HH algorithm (Epasto et al., 2023)). Let ε > 0, η ∈ (0, 0.5), 0 < α < 1, ξ ∈ (0, 0.5). There is an ε-DP
algorithm in the streaming continual release model such that with probability at least 1− ξ, it always outputs a set H ⊆ U
and a function f̂ : H → R for every timestamp t ∈ [T ] such that

1. ∀a ∈ H , f̂(a) ∈ (1± η) · fa where fa is the frequency of a in the stream S = (a1, a2, . . . , at)

2. ∀a ∈ U , if fa ≥ 1
εηpoly

(
log
(T ·|U|
αξη

))
and f1

a ≥ α‖S‖1 then a ∈ H

3. The size of H is at most O((log(T/ξ) + log |U|) · ( 1+η
1−η ) · 1

α )

The algorithm uses 1
η2α3 poly

(
log
(
T ·|U|
ξα

))
space.

A.2. Proofs for Bicriteria Approximation

Proof of Claim 1.

Proof. For any good cell c′ 6= c, define

Xc′ =

{
1 if c′ collides with c

0 otherwise

Now for a fixed c′ 6= c, the expected number of collisions with c is given by Eh[Xc′ ] = Pr[Xc′ = 1] = Pr[h(c) = h(c′)] =
1
w = 1

40k . Thus the total number of collisions for c′ with c, in expectation, is given by Eh[
∑

c′ Xc′ ] ≤ 4k/w = 1/10 ≤ 1/2.
Therefore, by Markov, Pr[

∑
c′ Xc′ > 1] ≤ 1/2. The claim follows.

Proof of Claim 2.

Proof.

E
h
|Bj | = E

h
[y +

∑
c6∈G`

N`,c] (9)

= y + E
h

[
∑
c6∈G`

N`,c] (10)

= y +
nG`

40k
(11)

The claim follows by Markov inequality.

Proof of Claim 3.

Proof. We set the failure probability of DP-HH (see Theorem A.1) to be ξ := 1
k2 . For c ∈ G`, define Ec := E1 ∧ E2 ∧ E3

where E1 is the event that DP-HH algorithm is correct on all instances, E2 is the event that there are no collisions between c
and other good cells, and E3 is the event that there exists a hash bucket that contains only c, and if N`,c := y, then the size of
that hash bucket is ≤ 2(y +

nG`

40k ). We know that Pr[E1] ≥ 1− ξ = 1− 1
k2 , by the accuracy guarantee of DP-HH algorithm,

Pr[E2] ≥ 1− 1
k2 by Claim 1 (and boosting the success probability), and Pr[E3] ≥ 1− 1

k2 , by Claim 2 (and boosting the
success probability). Thus by a union bound, we have that for a fixed c ∈ G`, Pr[Ec] ≥ 1− 3

k2 . By taking a union bound
over all 4k good cells, with probability at least 1− 12

k , the claim holds.
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Proof of Claim 4.

Proof. Recall that N (t)
`,c is the number of points in cell c at time step t. Because xt is covered in G`, this means that we only

need to care about the points covered by a good cell c ∈ G` but c 6∈ H`,t. Using Claim 3, we know that if N (t)
`,c ≥

αnG`

20k ,

and N (t)
`,c ≥

log2 Λ log k
εη poly(log(T ·k·2

`

αη )), then with probability at least 1− 12
k , we have that c ∈ H`,t.

If c ∈ G`, and c 6∈ H`,t, this means that either (1) N (t)
`,c <

log2 Λ log k
εη poly(log(T ·k·2

`

αη )), or, (2) c is not an α-HH. For case

(1), since there are 4k such good cells, the total number of uncovered points in such cells are 4k log2 Λ log k
εη poly(log(T ·k·2

`

αη )).

For case (2), this means that N (t)
`,c <

αnG`

20k . Again, since there are 4k such good cells, the total number of uncovered points
in such cells are < αnG`

20k · 4k < αnG`
.

A.3. Additional Claims from Section 4

Claim 6.

cost(CF,ŵ, (F , ŵ)) < cost(CF,w, (F , w)) +O(kΛ2 +
|F|Λ2

ε
log2.5(T ) log(k))

Proof.

cost(CF,ŵ, (F , ŵ))

=
∑
f∈F

ŵ(f)d2(f, CF,ŵ)

=
∑
f∈F

(w(f) +O(
1

ε
log2.5(T ) log(k))d2(f, CF,ŵ)

=
∑
f∈F

w(f)d2(f, CF,ŵ) +O(
1

ε
log2.5(T ) log(k)

∑
f∈F

d2(f, CF,ŵ)

≤ cost(CF,ŵ, (F , w)) +O(
|F|Λ2

ε
log2.5(T ) log(k))

≤ cost(CF,ŵ, CF,w) + cost(CF,w, (F , w)) +O(
|F|Λ2

ε
log2.5(T ) log(k))

≤ cost(CF,w, (F , w)) +O(kΛ2) +O(
|F|Λ2

ε
log2.5(T ) log(k))

Claim 7.

cost(CoptF,w, (F , w)) < 2cost(F ,S) + |F|Λ2

Proof. By triangle inequality,

cost(CoptF,w, (F , w)) < cost(F ,S) + cost(CoptF,w,S)

Observe that cost(CoptF,w,S) < cost(CoptF,w,F) + cost(F ,S), where

cost(CoptF,w,F) =
∑
f∈F

d2(f, CoptF,w) < |F|Λ2
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