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A Key concepts of Riemannian geometry.

In this part, we don’t claim to expose a rigorous nor comprehensive presentation of Riemannian
geometry. Our goal is to clarify the notion of geodesics and parallel transport for the understanding
of our model (see the book [1] for a comprehensive introduction). We assume that the reader has
basic knowledge on manifolds and tangent spaces. Nevertheless, for sake of simplicity, we choose M
to be an open subset of Rd instead of working with a general manifold.

Riemannian manifold

Definition 1. If for all point p in M gp(., .) is a scalar product on TMp and p→ gp is smooth, then
(M, g) is a Riemannian manifold. g is called the Riemannian metric.

The notion of Riemannian manifold generalizes the usual notions of geometry to manifold. Remark
that in an Euclidean space ∀p ∈ Rd, gp = 〈., .〉, thus, a Riemannian metric encodes a richer geometry
than an Euclidean geometry. An important notion in Riemannian geometry is the geodesic, which is
the "shortest" path (in the sens of the Riemannian metric) between two points of the manifold.
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Definition 2. Given a Riemannian manifold, we define the Riemannian distance d such that

∀p1, p2 ∈M, d(p1, p2) = inf
γ:[0,1]→M,γ(0)=p1,γ(1)=p2

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) d t (1)

If γ∗ minimize the previous problem, γ∗ is called geodesic.

In the Euclidean space, geodesics are straight lines such that γ̈ = 0. We want to have such a
characterization in Riemannian space. To get it, we need to know how to compute second order
trajectory in a Riemannian space (to apply method of variational calculus in the previous minimization
problem 1). Therefore, we should present the notion of connection.

Connection When we work with trajectories γ :] − 1, 1[→ M with their values in a manifold
M, we can compute their first order derivative for each time γ̇(t) = limε→0

γ(t+ε)−γ(t)
ε and this

element belong to the tangent space TMγ(t) (by definition). The tangent spaces (TMγ(t)) are vector
spaces with the same dimension (the codimension of the manifold), nevertheless, they could be all
geometrically different (think of the tangent vector spaces associated to the sphere S2). This is why, it
is not possible to define a "classic" second order derivative for γ, indeed, γ̈(t) = limε→0

γ̇(t+ε)−γ̇(t)
ε

can be undefined since γ̇(t+ ε) and γ̇(t) belong to two possibly different vector spaces (no guarantee
on the addition stability). If M is an euclidean space Rd, (TMx)x∈Rd are all "geometrically" equal,
that’s why we can define derivative with order higher than one. In the general case, we need to
connect the different tangent spaces to establish a correspondence between the value of a vector v1 in
TMp1 and v2 in TMp2 to compare them.

To do it, we reduce the problem to the vectors of the basis of each tangent space ((ei(p)) the basis
of TMp that we define for all p in M) and we define how the basis is varying locally with an affine
connection∇, in other words, how the tangents spaces are changing locally. Precisely, in each point
p, the affine connection∇ takes two vector fields v : p ∈M→ v(p) ∈ TMp, w : p ∈M→ w(p) ∈
TMp and returns a vector field∇vw (a vector field is a function taking a point p ∈M and returning
a vector in TMp) and follows three properties:

• left-linearity, for all three vector field X1, X2 and Y :

∀f, g ∈ C∞(M,R),∀p ∈M,∇fX1+gX2
Y (p) = f(p)∇XY (p) + g(p)∇X2

Y (p)

• the right-Leibniz-linearity, for all two vector field X,Y and Y :

∀f ∈ C∞(M,R),∀p ∈M,∇X(fY )(p) = f(p)∇X1
Y (p) +X(f)(p)Y (p)

where X(f)(p) = limε→0
f(γ(ε))−f(p)

ε and γ :] − 1, 1[→ M is a diffentiable curve such
that γ(0) = p, γ̇(0) = X(p).

• the R−right-linearity, forall three vector field X,Y1, Y2:

∀a, b ∈ R,∀p ∈M,∇X(aY1 + bY2)(p) = a∇XY1(p) + b∇XY2(p)

To define ∇vw, we set for all point p in M ∇eiej(p) =
∑
k Γki,j(p)ek(p) where the coefficients

Γki,j(p) ∈ R are characterizing the connection thanks to the linearity properties, they are called the
Christoffel’s symbols. Thus, if we write ∀p ∈ M, w(p) =

∑
i ψi(p)ei(p), v(p) =

∑
i φi(p)ei(p)

with φi, ψi ∈ C∞(M,R):

∀p ∈M,∇v(w)(p) =
∑
k

(v(ψk)(p) +
∑
i,j

φi(p)ψj(p)Γ
k
i,j(p))ek(p)

Now, we can compute second order derivative by considering that ∇γ̇ γ̇ (γ̇ seen as the restriction of a
vector field) is the analogue of γ̈.

∇γ̇ γ̇(γ(t)) =
∑
k

(γ̈k(t) +
∑
i,j

Γki,j(γ(t))γ̇i(t)γ̇j(t))ek(γ(t))

where γ̈k(t) = limε→0
γ̇k(t+ε)−γ̇k(t)

ε if γ̇(t) =
∑
i γ̇i(t)ei(γ(t)). Applying Variational calculus

method to the problem 1, we find as second order condition that∇γ̇ γ̇ = 0 which gives:

γ̈k(t) +
∑
i,j

Γki,j(γ(t))γ̇i(t)γ̇j(t) = 0 (2)
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Figure 1: a) sketch of exp-paralellisation in an abstract manifold. b) exp-parallelisation for the
unit square as a manifold with the metric g(p1,p2)((x1, x2), (y1, y2)) := x1y1

p21(1−p1)2
+ x2y2

p22(1−p2)2
. The

average trajectory in red and an individual trajectory in blue or purple.

This second order Ordinary Differential Equations (ODE) has solutions as soon as the Christoffel
symboles are smooth enough and the ODE can be characterized with the Cauchy conditions in 0
(γ(0) = p, γ̇(0) = v). Thus, the geodesics are characterized and we can define the Riemannian
exponential:

Definition 3. The Riemannian exponential is Exp : (p, v) ∈ M × TM → Expp(v) ∈ M where
Expp(v) is the point that is reached at time 1 by the geodesic starting at p with velocity v solution of
the ODE 2.

We say that a Riemannian space is complete if the map : Expp : TM → M is well-defined for all
point p in the manifold M (the ODE admits solutions defined on the open interval R).

The Riemannian exponential enables to manipulate geodesics by looking at solutions of ODEs 2
which is easier than looking at solutions of a minimization problem 1. Remark that in the Euclidean
case Expp(v) = p+ v.

Another notion which is essential in geometry is the notion of Parallel transport. It enables to define
parallel vectors in tangents space along a trajectory according to a given connection.

Definition 4. The parallel transport of a vector X0 ∈ Tγ(t0)M on a given curve γ is a time indexed
family of vectors X(t) ∈ Tγ(t)M which satisfies ∇γ̇(t)X(t) = 0 and X(t0) = X0. ∇γ̇(t)X(t) = 0
is an ODE on X =

∑
kXkek with the Cauchy condition X(t0) = X0 :

Ẍk(t) +
∑
i,j

Γki,j(γ(t))γ̇i(t)Xj(t) = 0 (3)

We denote Pγ,t0,t(X0) the isometry mapping X0 to X(t).

Remark that in the Euclidean space X(t) = X0 (parallel vector are colinear).

Equipped with this notion of parallel vector, now we see how to generate trajectories parallel according
to a transformation called the "exp-parallelisation".

Let (M, g) denotes as a geodisically complete Riemannian manifold equipped with its Levi-Cevita
connection∇g (a connection induced by the metric g with interesting properties).

Definition 5. Let γ be a curve on M defined for all time, a time-point t0 ∈ R and a vector
w ∈ Tγ(t0)M, w 6= 0. One defines the curve s → ηgw(γ, s), the exp-parallelisation of the curve γ,
as:

ηgw(γ, s) = Expgγ(t0)(P
g
(γ,t0,s)

(w))

Intuitively, the curve ηgw(γ, s) is a shift from γ in the direction w at t0. At t0, the point constructed is
simply the exponential of w starting from γ(t0). For the rest of the curve, the only thing changing is
that we don’t take directly w (as it leaves in TMγ(t0)), but the result of the transport of this vector w
parallel to the curve γ.
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A.1 Proofs

Proposition A.1 (Pushforward metrics). Provided (M, g) a Riemannian space, N a manifold and
φ : M→ N a C1 diffeomorphism, we can equip N with the Riemannian metric gφ defined as:

∀ p ∈ N, ∀w, v ∈ TNp, gφp (w, v) = gφ−1(p)(dφ
−1(p).w,dφ−1(p).v)

Moreover, φ is an isometry, which implies that for all (m, v) in TM and γ :] − 1, 1[→ M a
differentiable curve:

Expg
φ

φ(m)(dφ(m).v) = φ ◦ Expgm(v), P g
φ

φ◦γ,t0,s(dφ(γ(t0)).v) = dφ(γ(s)).P gγ,t0,s(v)

Proof. see [2] for the push-forward and see [3] at page 60 for the implication.

Proposition A.2. if φ = id +f , with f a bounded function in C1
(R

d,Rd) such that |||d f |||∞ < 1,
then φ is a C1 diffeomorphism.

Proof. Let f be a function verifying the previous conditions. We know that ∀A ∈ Md(R) s.t
|||A||| < 1, I +A is invertible. Thus, we have ∀x ∈ Rd,dφ(x) ∈ Gld(R). Therefore, φ, being C1,
is a local C1 diffeomorphism.

Let’s show that φ is injective. If φ(x) = φ(y) with x, y ∈ Rd distinct, we have |x−y| = |f(y)−f(x)|
which is absurd by the theorem of finite increments since |||d f |||∞ < 1. Let’s show that φ is
surjective by showing that =(φ) = {φ(x), x ∈ Rd} is an open ensemble and closed in Rd. =(φ) is
open since f is a local C1 diffeomorphism. To show that =(φ) is closed, we consider a sequence
(yn = f(xn)) of =(φ) converging to y and we want to prove the existence of x ∈ Rd s.t φ(x) = y. If
(xn) is bounded, we can consider a converging subsequence (x′n) to a point x and by continuity we
have φ(x) = y. If (xn) is not bounded, we have |yn − xn| = |f(xn)| which is absurd by hypothesis.
Therefore, φ is bijective and a local C1 diffeomorphism, φ is a global C1 diffeomorphism.

Lemma A.1. If k is a kernel such that k(x, y) = g(x − y) Id with g ∈ C2(Rd,R) and h(x, y) =
g(x − y) is a bounded kernel, then ∀f ∈ H s.t ||f ||H < 1√

|∇g(0)|
, ∀x ∈ M, |||d f(x)||| < 1.

Examples:

• The Gaussian kernel g(x) := exp(− |x|
2

2σ2 ), σ > 0 1
|∇g(0)| = σ√

d
.

• The Sobolev kernel g(x) := 1

(1+
|x|
2σ2

)a
, σ > 0, a > d, 1

|∇g(0)| = σ
a
√
d

Proof.
∂if(x).α = 〈∂ik(x, .)α, f〉

d f(x)T .α = (〈∂ik(x, .)α, f〉)i

|| d f(x)T .α||22 =

d∑
i=1

〈∂ik(x, .)α, f〉2

∀α ∈ Sd−1, ||d f(x)T .α||22 ≤ ||f ||2H
d∑
i=1

||∂ik(x, .)α||2H

∀α ∈ Sd−1, |||d f(x)|||2 ≤ ||f ||2H
d∑
i=1

||∂ik(x, .)α||2H

We can enforce ||f ||2H
∑d
i=1 ||∂ik(x, .)α||2H < 1 by assuming:

∀α ∈ Sd−1, ||f ||2H <
1∑d

i=1 ||∂ik(x, .)α||2H
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Using the properties of a C2 kernel, we have:

||∂ik(x, .)α||2H = αT∂2i,ik(x, .)α

If k(x, y) = h(x, y)Id, we have:

αT∂2i k(x, x)α = ||α||2∂2i,ih(x, x) = ∂2i,ih(x, x)

Then
||f ||2H <

1

∆h(x, x)

With h(x, y) = g(x− y), we have

||f ||2H <
1

∆g(0)

B Complexity

We comment here on the time complexity of the Alternating Optimization algorithm for the Geodesics
Bending model.

In each of the Ncomp steps of the algorithm, we perform nMCMC steps of the MCMC-SAEM algorithm
and one optimization of the metric. The time complexity T of the MCMC-SAEM for the mixed-effect
model is already a function of the dimension of the observations, the number of principal directions of
variance and the total number of observations. Our goal is not to evaluate the time complexity of the
mixed-effect estimation but to understand the impact of metric learning on this time. The GB method
adds a cost to the computation of the geodesics, which is proportional to the number of compositions
for the diffeomorphism, thus to the number of the current iteration, and also proportional to the
number of control points N(σ). So for each MCMC-SAEM optimization in an outer step, we have
a time complexity of O(nMCMCN(σ)NcompT ). The time complexity C of the metric optimization
depends on the solver, but it depends on the kernel matrix in the quadratic problem which has a
N(σ)×N(σ) size. However in our code the computation time of this step was negligible compared
to the MCMC-SAEM time (about 1s vs several minutes). So the overall complexity of the algorithm
is O(nMCMCN(σ)N2

compT +NcompC).

C Experiment details

C.1 Convergence and Stability parameters.

For both experiments, we selected as fixed effect

t0 = 70, v0 = (0.2, 0), log(p0) = (0, 1), σ2
τ = 5, σ2

ξ = 0.1

and for the principal direction A1, we took the vector orthonormal to v0.

We chose different values for the coordinates of velocities v0 and initial position p0 in order to see
the effect of asymmetric trajectories. The results are similar no matter the choice of the fixed effect
as soon as values are not "extreme".

The most important parameters are the number of subjects Npat, the average number of visits
ntmin + ntδ/2, the noise intensity σnoise and the standard deviation for time generation σt, they
influence directly the quality of the dataset. We try to select them to ressemble the TADPOLE dataset.

C.2 Choice of σ2

On Synthetic data, we observed that GB is likely to overfit if σ < 3σnoise. Thus, we have looked for
σ in [0.2,0.5] to reduce the time of computations for experiments on real dataset since we estimate
the noise to be around 0.05 on average. On the Alzheimer cohort, we have seen that σ = 0.24 is
a better choice than 0.2, 0.3, 0.4 but it is not statistically significant. For TADPOLE, we get the
same conclusion. Nevertheless, we think that it would be interesting to select σ dimension-wise as
multidmensional data my not respect the isotropy of a standard Gaussian kernel. In that way, we can
choose a smaller σ for features with faster variations and conversely.
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Figure 2: (a) The average trajectory γ0 evolving through steps of GB is shown for HIPP, VENTS
and ABETA in the Alzheimer cohort experiment.

Figure 3: On the x-axis, we measure the difference of predictions errors between GB and DCM, if
x is negative it means that GB is better than DCM and conversely. On the y-axis, we measure the
"real" score values yi,j and we color points according to the value predicted by GB. If there is a
correlation between the real and the predicted value, it motivates the use of ensemble methods to
improve predictions. On the left figure, the values are associated to the MMSE predictions and on the
right figure to the HIPP.

C.3 Variation of the effects θ through steps of GB.

We have observed the variation of the fixed-effect from one step to another in Geodesics Bending. In
general, the biggest variation is done between the first and the second step. When the iterations begin
to stabilize, there is always a variation which is due to the exploration of MCMC-SAEM, but it does
not affect a lot the global shape of the trajectory.

C.4 Compositions’ impact on neuro-psychological scores.

For the Alzheimer cohort experiment, we report the others figures where the effect of compositions
is shown fig. 2. It is interesting to observe that the scores’ trajectory are mainly changed on their
velocity v0 and little curved at their extremity. We can interpret it as follows : the transformation of
asymptots at the extremity enables the velocity v0 to increase the slope at the center. For example on
ABETA, the asymptots in 1 is reduced and the asymptots in 0 is increased, it enables the middle part
of the trajectory to have a higher slope to fit the "transition" between two states. This phenomenon
seems to improve predictions for patients with high scores (meaning that GB is better on long term
predictions), see figure 3.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The first three lines of the abstract are addressed in
the Introduction, the seven following lines are tackled in the Methodology and the last
lines of the abstract can be checked in the Experiments.

(b) Did you describe the limitations of your work? [Yes] Throughout the Experiments,
we mention the limitations and resume it in conclusion (data scarcity, over-fitting or
under-fitting according to the value of σ, time complexity in Supp. material )

(c) Did you discuss any potential negative societal impacts of your work? [Yes] In
conclusion, we mention the possible bias that can generate the method, but in essence
there is no direct negative societal impact related to this work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] .

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Assumptions
can be found in properties and lemma in the methodology.

(b) Did you include complete proofs of all theoretical results? [Yes] It is done in Supp.
material B.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] We give the
codes in a zip file before the release on a Git.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We specify it each time before presenting the associated results in
the Experiments section.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We report confidence intervals relative to the bootstrap
for the TADPOLE experiment.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We include it at the beginning of
the Experiments section.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We did it for ADNI
and TADPOLE.

(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

There is no new data in our work that is not already public.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] Not relevant since the data and code used are public.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No] Data are anonymized.
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