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1 THE CONCEPT OF CHANCE LEVEL
The "chance level" in experiments serves as a benchmark for assess-
ing whether the observed results are due to the specific intervention
or merely random occurrences. It’s essential for setting a baseline
expectation when evaluating the effectiveness or impact of an ex-
periment and helps to determine statistical significance beyond
chance.

2 IMPACT OF ENCODERS
The performance of the MB2C framework can be significantly im-
pacted by different EEG encoders and image encoders. To this end,
several classic methods are selected for comparison. The results
are shown in Table 1. EEG encoders included ShallowNet, Deep-
Net [1], EEGNet [2], and TSConv. TSConv was observed to be the
most effective at extracting both temporal and spatial information
from EEG, resulting in the best performance. Additionally, Shal-
lowNet and DeepNet were also observed to achieve excellent results
in a 200-way classification task, with ShallowNet demonstrating
an average top-1 accuracy of 4.55% lower than TSConv, DeepNet
demonstrating an average top-1 accuracy of 2.25% lower, and EEG-
Net demonstrating an average top-1 accuracy of 11.75% lower. We
believe that the performance of the MB2C framework could be
further enhanced by using other carefully designed EEG feature
extractors.

In the case of image encoders, the following models are em-
ployed: ResNet-50, which had been pre-trained on ImageNet-1k;
ViT-B/16, which had been pre-trained on ImageNet-21k and fine-
tuned on ImageNet-1k; and CLIP-ViT-L/14, which had been trained
on 400 million image-text pairs. In a 50-way classification task,
CLIP achieved an average top-1 accuracy of 50.47%, which is 23.07%
higher than ResNet and 19.67% higher than ViT. Even when tested
with 200 unseen classes, CLIP demonstrates its superior perfor-
mance, with an average top-1 accuracy of 28.45% and an average
top-5 accuracy of 60.37%, surpassing ResNet by 18.05% and ViT by
10.55%.

3 SUPERCLASSES
In high-level or coarse-grained visual classification tasks, there exist
categories that typically encompass multiple images that would be
considered different categories at the basic level. These categories
share a common label. For example, a superclass could be "animals,"
which might include various basic categories such as "cat", "lamb",
and "goose", even though these basic categories may be widely
separated in feature space.

The majority of the 200 novel classes in the test dataset were
selectively divided into six superclasses based on conceptual simi-
larity. These superclasses were defined as follows: animals, clothes,
food, household, tools, and transportation. The detailed results are
listed in Table 2. The partitioning of the classes into superclasses
was not only for aesthetic purposes in visualization but also to

investigate whether the model can automatically cluster similar
major categories more tightly in the feature space and separate
them from different superclasses.

4 EVALUATION METRICS
Inception score (IS) [3]: The Inception Score is a measure used
primarily in the field of evaluating the performance of generative
models.

The Inception Score is introduced as a way to quantify the quality
of the generated images. It is based on the Inception-v3 classifier [4],
which is a pre-trained deep neural network developed for image
classification.

IS = exp
(
Ex∼𝑝𝑔 [𝐷KL (𝑝 (y|x)∥𝑝 (y))]

)
, (1)

𝐷𝐾𝐿 represents the Kullback-Leibler divergence, 𝑃 (𝑦 |𝑥) is the pre-
dicted distribution of categories given the image 𝑥 , and 𝑃 (𝑦) is the
marginal probability of the predicted category distributions across
all images.

Frechet Inception Distance (FID) [5]: The Frechet Inception
Distance, is a metric that assesses the quality of generated images
by comparing the discrepancy in the feature space distributions
between synthetic and real images, thus evaluating the performance
of generative models.

FID = ∥𝜇1 − 𝜇2∥2 + Tr(Σ1 + Σ2 − 2(Σ1/21 Σ2Σ
1/2
1 )1/2) (2)

𝜇1 and 𝜇2 represent the mean vectors of the feature distributions for
generated and real images, respectively, while Σ1 and Σ2 are their
respective covariance matrices. Tr denotes the trace of a matrix,
which is the sum of its diagonal elements.

Kernel Inception Distance (KID) [6]: The Kernel Inception
Distance. utilizes the Maximum Mean Discrepancy (MMD) to quan-
tify the disparity between two probability distributions.

KID = max
∥ℎ∥≤1

|ℎ𝑇 (𝜇𝑔 − 𝜇𝑟 ) | (3)

In this equation, 𝜇𝑔 and 𝜇𝑟 represent the mean embeddings of gen-
erated and real images, respectively, in the feature space. ℎ is a
vector within the unit ball, with ∥ℎ∥ ≤ 1 indicating that the norm
of ℎ in the Hilbert space does not exceed 1.
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Table 1: Classification accuracy (%) of 𝑁 -way Top-𝐾 with different EEG encoder and Image encoder on ThingsEEG dataset

EEG encoder

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 AverageType Method

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

200-way

ShallowNet 17.5 52.5 25.5 51.0 28.5 60.5 31.0 61.5 18.5 46.5 28.5 58.5 20.0 50.0 37.5 64.0 6.5 23.5 25.0 59.0 23.9 52.7
DeepNet 17.0 46.5 23.0 54.0 24.5 57.0 31.0 67.0 24.0 53.5 27.0 58.5 24.5 54.0 36.0 67.0 26.0 54.5 28.5 68.0 26.2 58.0
EEGNet 12.0 37.0 6.5 25.5 9.5 29.5 29.5 63.5 4.5 13.5 6.0 27.0 21.5 47.0 35.5 63.5 13.5 36.5 28.5 64.0 16.7 40.7

TSConv(MB2C) 23.67 56.33 22.67 50.50 26.33 60.17 34.83 67.00 21.33 53.00 31.00 62.33 25.00 54.83 39.00 69.33 27.50 59.33 33.17 70.83 28.45 60.37

50-way

ShallowNet 40.0 82.0 38.0 78.0 46.0 82.0 50.0 88.0 46.0 72.0 64.0 90.0 34.0 76.0 60.0 92.0 20.0 48.0 36.0 88.0 43.4 79.6
DeepNet 40.0 80.0 46.0 84.0 38.0 82.0 46.0 86.0 48.0 74.0 56.0 84.0 44.0 80.0 50.0 82.0 40.0 80.0 56.0 86.0 46.4 81.8
EEGNet 20.0 76.0 18.0 44.0 26.0 62.0 42.0 90.0 18.0 46.0 26.0 60.0 30.0 82.0 58.0 88.0 36.0 74.0 44.0 88.0 31.8 71.0

TSConv(MB2C) 41.33 83.33 38.67 82.67 48.67 84.67 56.00 84.67 39.33 70.00 54.67 86.67 45.33 80.67 68.67 89.33 53.33 89.33 58.67 90.67 50.47 84.20

Image encoder

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 AverageType Method

top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

200-way
ResNet 6.5 25.0 6.0 27.0 10.5 31.0 17.5 43.0 5.0 16.5 9.5 33.5 13.0 36.5 14.5 48.5 8.5 33.0 12.5 42.0 10.4 33.6
ViT 16.0 33.5 13.5 35.5 16.0 37.5 17.5 41.0 10.0 35.0 17.5 42.5 20.5 44.5 23.5 53.5 15.5 37.0 28.5 52.0 17.9 41.2

CLIP(MB2C) 23.67 56.33 22.67 50.50 26.33 60.17 34.83 67.00 21.33 53.00 31.00 62.33 25.00 54.83 39.00 69.33 27.50 59.33 33.17 70.83 28.45 60.37

50-way
ResNet 22.0 54.0 20.0 56.0 32.0 66.0 34.0 74.0 12.0 46.0 26.0 74.0 26.0 58.0 42.0 86.0 20.0 64.0 40.0 68.0 27.4 64.6
ViT 24.0 64.0 22.0 60.0 22.0 58.0 32.0 74.0 28.0 56.0 30.0 68.0 36.0 62.0 46.0 78.0 32.0 56.0 36.0 82.0 30.8 65.8

CLIP(MB2C) 41.33 83.33 38.67 82.67 48.67 84.67 56.00 84.67 39.33 70.00 54.67 86.67 45.33 80.67 68.67 89.33 53.33 89.33 58.67 90.67 50.47 84.20

Table 2: To introduce more detailed information of the ThingsEEG test set for zero-shot classification task and its structures
inside, we list all the superclasses corresponding to each subclass.

Superclass classes label Superclass classes label Superclass classes label Superclass classes label Superclass classes label
animals antelope 0 clothes bonnet 1 food coconut 2 household television 3 transportation wheelchair 5
animals beaver 0 clothes chaps 1 food coffee-bean 2 household treadmill 3 transportation unicycle 5
animals cheetah 0 clothes cleat 1 food cookie 2 tools blowtorch 4 transportation cruise-ship 5
animals crab 0 clothes tube-top 1 food cordon-bleu 2 tools bottle-opener 4 transportation ferry 5
animals eel 0 clothes coat 1 food creme-brulee 2 tools bullet 4 transportation golf-cart 5
animals elephant 0 clothes coverall 1 food crepe 2 tools candlestick 4 transportation gondola 5
animals flamingo 0 clothes duffel-bag 1 food croissant 2 tools chain 4 transportation jeep 5
animals gopher 0 clothes glove 1 food cupcake 2 tools wok 4 transportation minivan 5
animals gorilla 0 clothes headscarf 1 food dessert 2 tools vise 4 transportation sailboat 5
animals grasshopper 0 clothes hoodie 1 food fruit 2 tools chopsticks 4 transportation scooter 5
animals lamb 0 clothes kneepad 1 food garlic 2 tools cleaver 4 transportation station-wagon 5
animals piglet 0 clothes muff 1 food hamburger 2 tools dagger 4 transportation submarine 5
animals possum 0 clothes pajamas 1 food orange 2 tools fork 4
animals rhinoceros 0 clothes pocket 1 food onion 2 tools hammer 4
animals turkey 0 clothes purse 1 food pear 2 tools handbrake 4
animals bug 0 clothes sandal 1 household bench 3 tools metal-detector 4
animals cat 0 clothes suit 1 household breadbox 3 tools music-box 4
animals caterpillar 0 clothes t-shirt 1 household cd-player 3 tools pickax 4
animals cobra 0 food top-hat 1 household chest2 3 tools pocketknife 4
animals crow 0 food banana 2 household coffeemaker 3 tools punch2 4
animals dalmatian 0 food birthday-cake 2 household crib 3 tools spatula 4
animals dragonfly 0 food bok-choy 2 household freezer 3 tools spoon 4
animals pug 0 food bread 2 household highchair 3 tools tongs 4
animals eagle 0 food bun 2 household lampshade 3 transportation aircraft-carrier 4
animals goose 0 food calamari 2 household laundry-basket 3 transportation bike 5
animals panther 0 food cashew 2 household nightstand 3 transportation buggy 5
animals pigeon 0 food cheese 2 household table 3 transportation cart 5
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