
Adaptive Gradient Methods with Local Guarantees

Anonymous Author(s)
Affiliation
Address
email

Abstract

Adaptive gradient methods are the method of choice for optimization in machine1

learning and used to train the largest deep models. In this paper we study the2

problem of learning a local preconditioner, that can change as the data is changing3

along the optimization trajectory. We propose an adaptive gradient method that has4

provable adaptive regret guarantees vs. the best local preconditioner. To derive this5

guarantee, we prove a new adaptive regret bound in online learning that improves6

upon previous adaptive online learning methods. We demonstrate the robustness7

of our method in automatically choosing the optimal learning rate schedule for8

popular benchmarking tasks in vision and language domains. Without the need to9

manually tune a learning rate schedule, our method can, in a single run, achieve10

comparable and stable task accuracy as a fine-tuned optimizer.11

1 Introduction12

Adaptive gradient methods have revolutionized optimization for machine learning and are routinely13

used for training deep neural networks. These algorithms are stochastic gradient based methods,14

that also incorporate a changing data-dependent preconditioner (multi-dimensional generalization of15

learning rate). Their empirical success is accompanied with provable guarantees: in any optimization16

trajectory with given gradients, the adapting preconditioner is comparable to the best in hindsight, in17

terms of rate of convergence to local optimality.18

Their success has been a source of intense investigations over the past decade, since their introduction,19

with literature spanning thousands of publications, some highlights are surveyed below. The common20

intuitive understanding of their success is their ability to change the preconditioner, or learning rate21

matrix, per coordinate and on the fly. A methodological way of changing the learning rate allows22

treating important coordinates differently as opposed to commonly appearing features of the data,23

and thus achieve faster convergence.24

In this paper we investigate whether a more refined goal can be obtained: namely, can we adapt the25

learning rate per coordinate, and also in short time intervals? The intuition guiding this search is the26

rising popularity in “exotic learning rate schedules" for training deep neural networks. The hope is27

that an adaptive learning rate algorithm can automatically tune its preconditioner, on a per-coordinate28

and per-time basis, such to guarantee optimal behavior even locally.29

To pursue this goal, we use and improve upon techniques from the literature on adaptive regret30

in online learning to create a provable method that is capable of attaining optimal regret in any31

subinterval of the optimization trajectory. We then test the resulting method and compare it to32

learning a learning rate schedule from scratch.33

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

1.1 Statement of our results34

The (stochastic/sub)-gradient descent algorithm is given by the following iterative update rule:
xτ+1 = xτ − ητ∇τ .

If ητ is a matrix, it is usually called a preconditioner. A notable example for a preconditioner is
when ητ is equal to the inverse Hessian (or second differential), which gives Newton’s method.
Let ∇1, ...,∇T be the gradients observed in an optimization trajectory, the AdaGrad algorithm (and
more general adaptive gradient methods) achieves the following convergence guarantee for convex
optimization:

∼
√

minH∈H
∑
τ ‖∇τ‖∗2H

T
,

where H is a family of matrix norms, most commonly those with a bounded trace. In this paper35

we improve upon this guarantee in terms of the local performance over any sub-interval of the36

optimization trajectory:37

Theorem 1 (Informal). The convergence rate of Algorithm 1 can be upper bounded by:38

Õ

mink minH1,...,Hk∈H
∑k
j=1

√∑
τ∈Ij ‖∇τ‖

∗2
Hj

T


The convergence result above is derived using the methodology of regret in online convex optimization39

(OCO). Our main technical contribution is a variant of the multiplicative weight algorithm, that40

achieves full-matrix regret bound over any interval by automatically selecting the optimal η. Previous41

methods came short of achieving this bound since the optimal η depends on future gradients and42

cannot be determined in advance. Our algorithm achieves Õ(minH∈H

√∑t
τ=s∇>τ H−1∇τ) regret43

over all intervals simultaneously. A comparison of our results in terms of adaptive regret is given in44

Table 1.45

Algorithm Regret over I = [s, t]

[17] Õ(
√
T)

[10], [22] Õ(
√
|I|)

[9] Õ(
√∑t

τ=s ‖∇τ‖2)

SAMUEL (ours) Õ(
√∑t

τ=s ‖∇τ‖∗2H)

Table 1: Comparison of results. We evaluate the regret performance of the algorithms on any interval
I = [s, t]. For the ease of presentation we hide secondary parameters. Our algorithm achieves the
regret bound of AdaGrad, which is known to be tight in general, but on any interval.

1.2 Related Work46

Our work lies in the intersection of two related areas: adaptive gradient methods for continuous47

optimization, and adaptive regret algorithms for regret minimization, surveyed below.48

Adaptive Gradient Methods. Adaptive gradient methods and the AdaGrad algorithm were pro-49

posed in [12]. Soon afterwards followed other popular algorithms, most notable amongst them are50

Adam [23], RMSprop [36], and AdaDelta [41].51

Numerous efforts were made to improve upon these adaptive gradient methods in terms of paralleliza-52

tion, memory consumption and computational efficiency of batch sizes [32, 2, 15, 8].53

A multitude of rigorous analyses of AdaGrad, Adam and other adaptive methods have appeared54

in recent literature, notably [38, 24, 11]. However, fully understanding the theory and utility of55

adaptive methods remains an active research area, with diverse (and sometimes clashing) philosophies56

[39, 31, 1].57

[6] used the multiplicative weights update method for training deep neural networks that is more58

robust to learning rates than vanilla adaptive gradient methods.59

2

Adaptive Regret Minimization in Online Convex Optimization. The concept of competing with60

a changing comparator was pioneered in the work of [20, 7] on tracking the best expert.61

Motivated by computational considerations for convex optimization, the notion of adaptive regret62

was first introduced by [17], which generalizes regret by considering the regret of every interval.63

They also provided an algorithm Follow-The-Leading-History which attains Õ(
√
T) adaptive regret.64

[10] considered the worst regret performance among all intervals with the same length and obtain65

interval-length dependent bounds. [10] obtained an efficient algorithm that achieves O(
√
|I| log2 T)66

adaptive regret. This bound was later improved by [22] to O(
√
|I| log T).67

Recently, [9] improved previous results to a more refined second-order bound Õ(
√∑

τ∈I ‖∇τ‖2),68

but in a more restricted setting assuming the loss is linear. These existing methods failed to achieve69

the optimal full-matrix rate, and we overcome this challenge by building a non-trivial variant of70

multiplicative weight algorithm which automatically chooses the optimal η.71

For other related work, some considered the dynamic regret of strongly adaptive methods [45, 43].72

[42] considered smooth losses and proposes SACS which achieves an O(
∑t
τ=s `τ (xτ) log2 T) regret73

bound. There are also works utilizing strongly adaptive regret in online control [46, 30].74

Learning Rate Schedules and Hyperparameter Optimization. On top of adaptive gradient meth-75

ods, a plethora of nonstandard learning rate schedules have been proposed. The most commonly76

used one is the step learning rate schedule, which changes the learning rate at fixed time-points. A77

cosine annealing rate schedule was introduced by [27]. Alternative learning rates were studied in [3].78

Learning rate schedules which increase the learning rate over time were proposed in [25]. Learning79

the learning rate schedule itself was studied in [40].80

Related to our paper are general approaches for hyperparameter optimization (HPO), not limited to81

learning rate. In critical applications, researchers usually use a grid search over the entire parameter82

space, but that becomes quickly prohibitive as the number of hyperparameters grows. More sophisti-83

cated methods include gradient-based methods such as [29, 28, 13, 4] are applicable to continuous84

hyperparameters, but not to schedules which we consider. Bayesian optimization (BO) algorithms85

[5, 33, 35, 34, 14, 37, 21] tune hyperparameters by assuming a prior distribution of the loss function,86

and then keep updating this prior distribution based on the new observations.87

2 Setting and Preliminaries88

Online convex optimization. Consider the problem of online convex optimization (see [16] for a
comprehensive treatment). At each round τ , the learner outputs a point xτ ∈ K for some convex
domain K ⊂ Rd, then suffers a convex loss `τ (xτ) which is chosen by the adversary. The learner
also receives the sub-gradients∇τ of `τ () at xτ . The goal of the learner in OCO is to minimize regret,
defined as

Regret =

T∑
τ=1

`τ (xτ)−min
x∈K

T∑
τ=1

`τ (x).

Henceforth we make the following basic assumptions for simplicity (these assumptions are known in89

the literature to be removable):90

Assumption 1. There exists D,D∞ > 1 such that ‖x‖2 ≤ D and ‖x‖∞ ≤ D∞ for any x ∈ K.91

Assumption 2. There exists G > 1 such that ‖∇τ‖2 ≤ G,∀τ ∈ [1, T].92

We make the notation of the norm ‖∇‖H , for any PSD matrix H to be:

‖∇‖H =
√
∇>H∇

And we define its dual norm to be ‖∇‖∗H =
√
∇>H−1∇. In particular, we denote H = {H|H �

0, tr(H) ≤ d}. An optimal blackbox online learning algorithm is also needed for our construction.
We consider Adagrad from [12], which is able to achieve the following regret if run on I = [s, t]:

Regret(I) = O

Dd 1
2 min
H∈H

√√√√ t∑
τ=s

∇>τ H−1∇τ


3

The multiplicative weight method. The multiplicative weight algorithm is the method to achieve93

vanishing regret in the prediction from expert advice problem. Similar to OCO, the regret is defined94

as how much worse the accumulated loss is compared with the best expert. For example, the classical95

Weighted Majority algorithm [26] achieves expected regret O(
√
T log(N)) for binary prediction96

with N experts. The basic idea is to choose experts according to their weights, which are updated97

each round by the performance of experts.98

3 An Improved Adaptive Regret Algorithm99

In this section, we give a variant of multiplicative weight algorithm 1, that given any black-box100

OCO algorithm A as experts, achieves an Õ
(√

minH∈H
∑t
τ=s∇>τ H−1∇τ

)
regret bound (w.r.t.101

the experts) over any interval J = [s, t] simultaneously. To be more specific, the total regret can be102

written as R0(J) +R1(J), where R0(J) is the regret of an expert AJ and R1(J) is the regret of the103

multiplicative weight part for which we give the improved upper bound. The formal guarantee is the104

following:105

Theorem 2. Under assumptions 1 and 2, the regret R1(J) of the multiplicative weight algorithm
part in Algorithm 1 satisfies that for any interval J = [s, t],

R1(J) = O

D log(T) max

G√log(T), d
1
2

√√√√min
H∈H

t∑
τ=s

‖∇τ‖∗2H




In contrast, vanilla weighted majority algorithm achieves Õ(
√
T) regret only over the whole interval106

[1, T], and we improve upon the previous best result Õ(
√
t− s) [10] [22].107

We introduce some definitions and notations needed in the algorithm. Without loss of generality, we108

assume T = 2k and define the geometric covering intervals following [10]:109

Definition 3. Define Si = {[1, 2i], [2i + 1, 2i+1], ..., [2k − 2i + 1, 2k]} for 0 ≤ i ≤ k. Define110

S = ∪iSi and S(τ) = {I ∈ S|τ ⊂ I}.111

For 2k < T < 2k+1, one can similarly define Si = {[1, 2i], [2i + 1, 2i+1], ..., [2ibT−12i c+ 1, T]}, see112

[10]. Henceforth at any time τ the number of ’active’ intervals is only O(log(T)), this guarantees113

that the running time and memory cost per round of SAMUEL is as fast as O(log(T)).114

It’s worth to notice that q doesn’t affect the behavior ofAI,q and only takes affect in the multiplicative115

weight algorithm, and that rτ (I, q) and xτ (I, q) doesn’t depend on q so we may write rτ (I) and116

xτ (I) instead for simplicity.117

Now we explain how our new technique overcomes the challenges we met. Previous methods failed118

to achieve the optimal full-matrix bound, because it requires setting η optimally in advance, however119

the optimal value depends on future gradients which we can’t anticipate.120

The naive way to get an optimal η is to run another meta MW algorithm to choose from different121

ηs (a similar idea was used in [44]), on top of any adaptive regret algorithm. However, though the122

meta MW improves the regret of internal MWs, its own regret is sub-optimal again. Instead, we123

incorporate the different ηs to the experts of the internal MW.124

We build our algorithm upon the framework of [10], but construct a set of candidate η such that one of125

them is guaranteed to be near-optimal, then make copies of each ’expert’ AI with different learning126

rates η in the multiplicative weight algorithm. The experts now no longer represent only different127

intervals, but carry different ηs as well. We prove Theorem 2 by first deriving an optimal full-matrix128

regret bound on R1(I) for any I ∈ S. Then we use Cauchy-Schwarz to extend the regret bound to129

any interval J .130

Remark 4. The reason we can use convex combination instead in line 8 is because the loss `τ and the131

domain K are both convex. The convexity of K guarantees that xτ still lies in K, and the convexity of132

`τ guarantees that the loss suffered `τ (xτ) is no larger than the expected loss of the random version:133 ∑
I∈S(τ),q wτ (I, q)`τ (xτ (I, q))/Wτ .134

4

Algorithm 1 Strongly Adaptive regret MUltiplicative-wEights (SAMUEL)
Input: OCO algorithm A, geometric interval set S, constant Q = 4 log(dTD2G2).
Initialize: for each I ∈ S, Q copies of OCO algorithm AI,q.
Set ηI,q = 1

2GD2q for q ∈ [1, Q].
Initialize w1(I, q) = min{1/2, ηI,q} if I = [1, s], and w1(I, q) = 0 otherwise for each I ∈ S.
for τ = 1, . . . , T do

Let xτ (I, q) = AI(τ)
Let Wτ =

∑
I∈S(τ),q wτ (I, q).

Let xτ =
∑
I∈S(τ),q wτ (I, q)xτ (I, q)/Wτ .

Predict xτ .
Receive loss `τ (xτ), define rτ (I) = `τ (xτ)− `τ (xτ (I, q)).
For each I = [s, t] ∈ S, update wτ+1(I, q) as follows,

w
(I,q)
τ+1 =

{
0 τ + 1 /∈ I
min{1/2, ηI,q} τ + 1 = s
wτ (I, q)(1 + ηI,qrτ (I)) else

end for

3.1 Proof of Theorem 2135

Proof. We define the pseudo weight w̃τ (I, q) = wτ (I, q)/ηI,q for τ ≤ t, and for τ > t we just set136

w̃τ (I, q) = w̃t(I, q). Let W̃τ =
∑
I∈S(τ),q w̃τ (I, q), we are going to show the following inequality137

W̃τ ≤ τ(log(τ) + 1) log(dTD2G2) log(T) (1)
We prove this by induction. For τ = 1 it follows since on any interval [1, t] the number of experts138

is exactly the number of possible qs, and the number of intervals [1, t] ⊂ S is O(log(T)). Now we139

assume it holds for all τ ′ ≤ τ . We have140

W̃τ+1 =
∑

I∈S(τ+1),q

w̃τ+1(I, q)

=
∑

I=[τ+1,t]∈S(τ+1),q

w̃τ+1(I, q) +
∑

I=[s,t],s≤τ∈S(τ+1),q

w̃τ+1(I, q)

≤ log(τ + 1) log(dTD2G2) log(T) + 1 +
∑

I=[s,t],s≤τ∈S(τ+1),q

w̃τ+1(I, q)

= log(τ + 1) log(dTD2G2) log(T) + 1 +
∑

I=[s,t],s≤τ∈S(τ+1),q

w̃τ (I, q)(1 + ηI,qrτ (I))

≤ log(τ + 1) log(dTD2G2) log(T) + 1 + W̃τ +
∑

I∈S(τ),q

wτ (I, q)rτ (I)

≤ (τ + 1)(log(τ + 1) + 1) log(dTD2G2) log(T) +
∑

I∈Sτ ,q
wτ (I, q)rτ (I)

We further show that
∑
I∈S(τ),q wτ (I, q)rτ (I) ≤ 0:141 ∑

I∈S(τ),q

wτ (I, q)rτ (I) = Wτ

∑
I∈S(τ),q

pτ (I, q)(`τ (xτ)− `τ (xτ (I, q)))

≤Wτ

∑
I∈S(τ),q

pτ (I, q)(
∑

J∈S(τ),q

wτ (J, q)`τ (xτ (J, q))/Wτ − `τ (xτ (I, q)))

= 0

which finishes the proof of induction.142

Based on this, we proceed to prove that for any I = [s, t] ∈ S,

t∑
τ=s

rτ (I) = O

√log(T) max

DG√log(T),

√√√√ t∑
τ=s

(∇>τ (xτ − xτ (I)))2




5

By inequality 1, we have that

w̃t+1(I, q) ≤ W̃t+1 ≤ (t+ 1)(log(t+ 1) + 1) log(dTD2G2) log(T)

Taking the logarithm of both sides, we have

log(w̃t+1(I, q)) ≤ log(t+ 1) + log(log(t+ 1) + 1) + log(log(dTD2G2)) + log(log(T))

Recall the expression

w̃t+1(I, q) =

t∏
τ=s

(1 + ηI,qrτ (I))

By using the fact that log(1 + x) ≥ x− x2,∀x ≥ −1/2 and

|ηI,qrτ (I)| ≤ 1

4GD
‖xτ − xτ (I, q)‖2G ≤ 1/2

we obtain for any q

log(w̃t+1(I, q)) ≥
t∑

τ=s

ηI,qrτ (I)−
t∑

τ=s

η2I,qrτ (I)2

Now we upper bound the term
∑t
τ=s rτ (I)2. By convexity we have that rτ (I) = `τ (xτ) −

`τ (xτ (I)) ≤ ∇>τ (xτ − xτ (I)), hence
t∑

τ=s

rτ (I) ≤ 4 log(T)

ηI,q
+ 4ηI,q

t∑
τ=s

(∇>τ (xτ − xτ (I)))2

The next step is to upper bound the term ∇>τ (xτ − xτ (I)). By Hölder’s inequality we have that
∇>τ (xτ − xτ (I)) ≤ ‖∇τ‖H−1‖xτ − xτ (I)‖H for any H . As a result, we have that for any H which
is PSD and tr(H) ≤ d,

(∇>τ (xτ − xτ (I)))2 ≤ ∇>τ H−1∇τ‖xτ − xτ (I)‖2H ≤ ∇>τ H−1∇τ4D2d

where ‖xτ − xτ (I)‖2H ≤ 4D2d is by elementary algebra: let H = V −1MV be its diagonal143

decomposition where B is a standard orthogonal matrix and M is diagonal. Then144

‖xτ − xτ (I)‖2H = (xτ − xτ (I))>H(xτ − xτ (I))

= (V (xτ − xτ (I)))>MV (xτ − xτ (I))

≤ (V (xτ − xτ (I)))>dIV (xτ − xτ (I))

≤ 4D2d

Hence
t∑

τ=s

rτ (I) ≤ 4 log(T)

ηI,q
+ 4ηI,qD

2dmin
H

t∑
τ=s

∇>τ H−1∇τ

The optimal choice of η is of course

4

√
log(T)

D2dminH
∑t
τ=s∇>τ H−1∇τ

WhenD2dminH
∑t
τ=s∇>τ H−1∇τ ≤ 64G2D2 log(T), ηI,1 gives the boundO(GD log(T)). When145

D2dminH
∑t
τ=s∇>τ H−1∇τ > 64G2D2 log(T), there always exists q such that 0.5ηI,q ≤ η ≤146

2ηI,q by the construction of q so that the regret R1(I) is upper bounded by147

O

D√log(T) max

G√log(T), d
1
2

√√√√min
H∈H

t∑
τ=s

∇>τ H−1∇τ


 (2)

Now we have proven an optimal regret for any interval I ∈ S, it’s left to extend the regret bound to148

any interval J . We show that by using Cauchy-Schwarz, we can achieve the goal at the cost of an149

additional
√

log(T) term. We need the following lemma from [10]:150

6

Lemma 5 (Lemma 5 in [10]). For any interval J , there exists a set of intervals SJ such that SJ151

contains only disjoint intervals in S whose union is exactly J , and |SJ | = O(log(T))152

We now use Cauchy-Schwarz to bound the regret:153

Lemma 6. For any interval J which can be written as the union of n disjoint intervals ∪iIi, its
regret Regret(J) can be upper bounded by:

Regret(J) ≤

√√√√n

n∑
i=1

Regret(Ii)2

Proof. The regret over J can be controlled byRegret(J) ≤
∑n
i=1Regret(Ii). By Cauchy-Schwarz

we have that

(

n∑
i=1

Regret(Ii))
2 ≤ n

n∑
i=1

Regret2(Ii)

which concludes our proof.154

We can now upper bound the regret R1(J) using Lemma 6, replacing Regret by R1 and n by
|SJ | = O(log(T)). For any interval J , its regret R1(J) can be upper bounded by:

R1(J) ≤
√
|SJ |

∑
I∈SJ

R1(I)2

Combining the above inequality with the upper bound on R1(I) 2, we reach the desired conclusion.155

156

3.2 Optimal Adaptive Regret with Adagrad Experts157

In this subsection, we prove our main result as an application of Theorem 2, together with other158

extensions. Theorem 2 bounds the regret R1 of the multiplicative weight part, while the total regret is159

R0 +R1. To get the optimal total regret bound, we only need to find an expert algorithm that also160

haves the optimal full-matrix regret bound matching that of R1. As a result, we choose Adagrad as161

our expert algorithm A, and prove regret bounds for both full-matrix and diagonal-matrix versions.162

Full-matrix adaptive regularization Our main result of this paper can be derived as a corollary163

from Theorem 2.164

Corollary 7 (Main Result). Under assumptions 1 and 2, when Adagrad is used as the blackbox A,
the total regret Regret(I) of the multiplicative weight algorithm in Algorithm 1 satisfies that for any
interval I = [s, t],

Regret(I) = O

D log(T) max

G√log(T), d
1
2

√√√√min
H∈H

t∑
τ=s

‖∇τ‖∗2H




Remark 8. We notice that the log(T) overhead is brought by the use of S and Cauchy-Schwarz. We165

remark here that by replacing S with the set of all sub-intervals, we can achieve an improved bound166

with only a
√

log(T) overhead using the same analysis. On the other hand, such improvement in167

regret bound is at the cost of efficiency, that each round we need to make Θ(T) computations.168

Diagonal-matrix adaptive regularization If we restrict our expert optimization algorithm to be169

diagonal Adagrad, we can derive a similar guarantee for the adaptive regret.170

Corollary 9. Under assumptions 1 and 2, when diagonal Adagrad is used as the blackbox A, the
total regret Regret(I) of the multiplicative weight algorithm in Algorithm 1 satisfies that for any
interval I = [s, t],

Regret(I) = Õ

(
D∞

d∑
i=1

‖∇s:t,i‖2

)

Here ∇s:t,i denotes the ith coordinate of
∑t
τ=s∇τ .171

7

4 Experiments172

We demonstrate the effectiveness of our method on popular vision and language benchmarks: image173

classification on CIFAR-10 and ImageNet, and sentiment classification on SST-2. On all tasks,174

SAMUEL stably achieves high accuracy without learning rate schedule tuning.175

For experiments, we made a few adjustments to our theoretical algorithm 1 to be computationally176

efficient in practice. We take a fixed number of experts with exponential decay factor on the history177

as shown below. Additionally, we sample experts instead of taking convex combination of them. In178

the original algorithm every expert’s state is initialized once it becomes active, now that we don’t179

have ’hard intervals’ any longer, we change it to reinitialize all experts at fixed time-points. The180

below equation is the update rule of the Adagrad variant which we use for experiments. We use a181

parameter α to represent the memory length, which can be seen as a ’soft’ version of Algorithm 1.182

xt+1 = xt −
η√

εI +
∑t
τ=1 α

t−τ∇τ∇>τ
∇t

Figure 1: Comparison of exhaustive searched step learning rate schedule (top) and SAMUEL (bottom)
on CIFAR-10, ImageNet and SST-2.

4.1 Vision tasks183

CIFAR-10 classification: We compare a ResNet-18 model trained with SAMUEL to ResNet-18184

trained with AdaGrad using brute-force searched learning rate schedules. We processed and aug-185

mented the data following [18]. All experiments were conducted on TPU-V2 hardware. For training,186

we used a batch size of 256 and 250 total epochs with a step learning rate schedule. We fixed the187

learning rate stepping point at epoch 125 and 200, and provided five possible candidate learning188

rates {0.0001, 0.001, 0.01, 0.1, 1} for each region. Thus an exhaustive search yielded 125 different189

schedules for the baseline AdaGrad method. For a fair comparison, we adopted the same learning190

rate changing point for our method.191

We compared the test accuracy curves of the baselines and our methods in Fig.1. The left plot in192

Fig.1 displays 125 runs using AdaGrad for each learning rate schedule, where the highest accuracy is193

94.95%. A single run of SAMUEL achieves 94.76% with the same random seed (average among194

10 different random seeds is 94.50%), which ranks in the top 3 of 125 exhaustively searched schedules.195

196

ImageNet: We continue examining the performance of SAMUEL on the large-scale ImageNet197

dataset. We trained ResNet-50 with exhaustive search of learning rate schedules and compare with198

SAMUEL. We also consider a more practical step learning rate scheduling scheme where the learning199

rate after each stepping point decays. Specifically, the candidate learning rates are {0.2, 0.4, 0.6,200

0.8, 1.0} in the first phase and decay by 10× when stepping into the next phase. The total training201

epochs are 100 and the stepping position is set at epoch 50 and 75. We adopted the pipeline from [19]202

8

0 10000 20000 30000 40000
iteration

20

30

40

50

60

70

80

90

100

te
st

 a
cc

ur
ac

y
(%

)

SAM hypermater tuning on CIFAR-10

Figure 2: stability study of SAMUEL with different hyperparameters.

for image pre-processing and model training. For both baselines and SAMUEL, we used the SGD203

optimizer with nesterov momentum of 0.9. All experiments were conducted on TPU-V2 hardware204

with training batch size of 1024.205

The second column of Fig.1 displays the comparison of the exhaustive search baseline (top) to206

SAMUEL (bottom). The best validation accuracy out of exhaustively searched learning rate schedules207

is 76.32%. SAMUEL achieves 76.22% in a single run (average among 5 different random seeds is is208

76.15%).209

4.2 Language task210

We consider tasks in the language domain and conducted experiments on the Stanford Sentiment211

Treebank SST-2 dataset. We used the pipeline from [19] for pre-processing the SST-2 dataset and212

trained a simple bi-directional LSTM text classifier. The total training epoch is 25 with stepping213

learning rate position at epoch 15 and 20. We used SGD with momentum of 0.9 and additive weight214

decay of 3e-6. The training batch size in both baseline and SAMUEL is 64. The learning rate215

schedule setting is the same as that of CIAR-10.216

The right column of Fig. 1 shows that the best accuracy of exhaustive search is 86.12%, and the217

accuracy of SAMUEL using the same seed is 85.55% (average is 85.58% among 10 different random218

seeds), showing that our algorithm can achieve comparable performance not only on vision datasets219

but also on language tasks.220

4.3 Stability of SAMUEL221

We demonstrated the stability of SAMUEL with hyperparameter tuning. Since our algorithm will222

automatically selects the optimal learning rate, the only tunable hyperparameters are the number of η223

and the number of history decaying factor α. We conducted 18 trials with different hyperparameter224

combinations and display the test accuracy curves in Fig.2. Specifically, we considered the number225

of decaying factors α with values {2, 3, 6} and the number of η with values {5, 10, 15, 20, 25, 30}.226

As Fig.2 shows, all trials in SAMUEL converge to nearly the same final accuracy regardless of the227

exact hyperparameters.228

5 Conclusion229

In this paper we study adaptive gradient methods with local guarantees. The methodology is based on230

adaptive online learning, in which we contribute a novel twist on the multiplicative weight method that231

we show has better adaptive regret guarantees than state of the art. This, combined with known results232

in adaptive gradient methods, gives an algorithm SAMUEL with optimal full-matrix local adaptive233

regret guarantees. We demonstrate the effectiveness and robustness of SAMUEL in experiments,234

where we show that SAMUEL can automatically adapt to the optimal learning rate and achieve235

comparable task accuracy as a fine-tuned optimizer, in a single run. While these experiments do not236

show improvement in state-of-the-art, they show potential of local adaptive gradient methods to be237

more robust to hyperparameter tuning.238

9

References239

[1] Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Disentangling240

adaptive gradient methods from learning rates. arXiv preprint arXiv:2002.11803, 2020.241

[2] Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and242

Yi Zhang. Efficient full-matrix adaptive regularization. In International Conference on Machine243

Learning, pages 102–110. PMLR, 2019.244

[3] Naman Agarwal, Surbhi Goel, and Cyril Zhang. Acceleration via fractal learning rate schedules.245

arXiv preprint arXiv:2103.01338, 2021.246

[4] Yoshua Bengio. Gradient-based optimization of hyperparameters. Neural Computation,247

12(8):1889–1900, 2000.248

[5] James S. Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-249

parameter optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.250

Weinberger, editors, Advances in Neural Information Processing Systems 24, pages 2546–2554.251

Curran Associates, Inc., 2011.252

[6] Jeremy Bernstein, Jiawei Zhao, Markus Meister, Ming-Yu Liu, Anima Anandkumar, and Yisong253

Yue. Learning compositional functions via multiplicative weight updates. In NeurIPS, 2020.254

[7] Olivier Bousquet and Manfred K. Warmuth. Tracking a small set of experts by mixing past255

posteriors. J. Mach. Learn. Res., 3:363–396, 2003.256

[8] Xinyi Chen, Naman Agarwal, Elad Hazan, Cyril Zhang, and Yi Zhang. Extreme tensoring for257

low-memory preconditioning. In International Conference on Learning Representations, 2019.258

[9] Ashok Cutkosky. Parameter-free, dynamic, and strongly-adaptive online learning. In Interna-259

tional Conference on Machine Learning, pages 2250–2259. PMLR, 2020.260

[10] Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive online learning. In261

International Conference on Machine Learning, pages 1405–1411. PMLR, 2015.262

[11] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. On the convergence of263

adam and adagrad. arXiv e-prints, pages arXiv–2003, 2020.264

[12] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning265

and stochastic optimization. Journal of machine learning research, 12(7), 2011.266

[13] Jie Fu, Hongyin Luo, Jiashi Feng, Kian Hsiang Low, and Tat-Seng Chua. Drmad: Distilling267

reverse-mode automatic differentiation for optimizing hyperparameters of deep neural networks.268

CoRR, abs/1601.00917, 2016.269

[14] Jacob R. Gardner, Matt J. Kusner, Zhixiang Eddie Xu, Kilian Q. Weinberger, and John P.270

Cunningham. Bayesian optimization with inequality constraints. In Proceedings of the 31th271

International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014,272

pages 937–945, 2014.273

[15] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor274

optimization. In International Conference on Machine Learning, pages 1842–1850. PMLR,275

2018.276

[16] Elad Hazan. Introduction to online convex optimization. Foundations and TrendsÂ® in277

Optimization, 2(3-4):157–325, 2016.278

[17] Elad Hazan and Comandur Seshadhri. Adaptive algorithms for online decision problems. In279

Electronic colloquium on computational complexity (ECCC), volume 14-088, 2007.280

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image281

recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,282

pages 770–778, 2016.283

10

[19] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas284

Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2020.285

[20] Mark Herbster and Manfred K. Warmuth. Tracking the best expert. Mach. Learn., 32(2):151–286

178, 1998.287

[21] Ilija Ilievski, Taimoor Akhtar, Jiashi Feng, and Christine Annette Shoemaker. Efficient hyper-288

parameter optimization for deep learning algorithms using deterministic RBF surrogates. In289

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017,290

San Francisco, California, USA., pages 822–829, 2017.291

[22] Kwang-Sung Jun, Francesco Orabona, Stephen Wright, and Rebecca Willett. Improved strongly292

adaptive online learning using coin betting. In Artificial Intelligence and Statistics, pages293

943–951. PMLR, 2017.294

[23] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint295

arXiv:1412.6980, 2014.296

[24] Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with297

adaptive stepsizes. In The 22nd International Conference on Artificial Intelligence and Statistics,298

pages 983–992. PMLR, 2019.299

[25] Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning. arXiv300

preprint arXiv:1910.07454, 2019.301

[26] Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and302

computation, 108(2):212–261, 1994.303

[27] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv304

preprint arXiv:1608.03983, 2016.305

[28] Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based306

tuning of continuous regularization hyperparameters. CoRR, abs/1511.06727, 2015.307

[29] Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hyperparameter308

optimization through reversible learning. In Proceedings of the 32Nd International Conference309

on International Conference on Machine Learning - Volume 37, ICML’15, pages 2113–2122.310

JMLR.org, 2015.311

[30] Edgar Minasyan, Paula Gradu, Max Simchowitz, and Elad Hazan. Online control of unknown312

time-varying dynamical systems. Advances in Neural Information Processing Systems, 34,313

2021.314

[31] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In315

International Conference on Learning Representations, 2018.316

[32] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory317

cost. In International Conference on Machine Learning, pages 4596–4604. PMLR, 2018.318

[33] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical bayesian optimization of machine319

learning algorithms. In Advances in Neural Information Processing Systems 25: 26th Annual320

Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held321

December 3-6, 2012, Lake Tahoe, Nevada, United States., pages 2960–2968, 2012.322

[34] Jasper Snoek, Kevin Swersky, Richard S. Zemel, and Ryan P. Adams. Input warping for bayesian323

optimization of non-stationary functions. In Proceedings of the 31th International Conference324

on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 1674–1682, 2014.325

[35] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Multi-task bayesian optimization. In326

Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural327

Information Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake328

Tahoe, Nevada, United States., pages 2004–2012, 2013.329

11

[36] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running330

average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–331

31, 2012.332

[37] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and Nando de Freitas. Bayesian333

optimization in high dimensions via random embeddings. In IJCAI 2013, Proceedings of the334

23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013,335

pages 1778–1784, 2013.336

[38] Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over337

nonconvex landscapes. In International Conference on Machine Learning, pages 6677–6686.338

PMLR, 2019.339

[39] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The340

marginal value of adaptive gradient methods in machine learning. In Advances in Neural341

Information Processing Systems, pages 4151–4161, 2017.342

[40] Xiaoxia Wu, Rachel Ward, and Léon Bottou. Wngrad: Learn the learning rate in gradient343

descent. arXiv preprint arXiv:1803.02865, 2018.344

[41] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,345

2012.346

[42] Lijun Zhang, Tie-Yan Liu, and Zhi-Hua Zhou. Adaptive regret of convex and smooth functions.347

In International Conference on Machine Learning, pages 7414–7423. PMLR, 2019.348

[43] Lijun Zhang, Shiyin Lu, and Tianbao Yang. Minimizing dynamic regret and adaptive regret349

simultaneously. In International Conference on Artificial Intelligence and Statistics, pages350

309–319. PMLR, 2020.351

[44] Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments.352

Advances in neural information processing systems, 31, 2018.353

[45] Lijun Zhang, Tianbao Yang, Zhi-Hua Zhou, et al. Dynamic regret of strongly adaptive methods.354

In International conference on machine learning, pages 5882–5891. PMLR, 2018.355

[46] Zhiyu Zhang, Ashok Cutkosky, and Ioannis Ch Paschalidis. Adversarial tracking control via356

strongly adaptive online learning with memory. arXiv preprint arXiv:2102.01623, 2021.357

Checklist358

1. For all authors...359

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s360

contributions and scope? [Yes]361

(b) Did you describe the limitations of your work? [Yes] See Conclusion362

(c) Did you discuss any potential negative societal impacts of your work? [No] We believe363

there isn’t any364

(d) Have you read the ethics review guidelines and ensured that your paper conforms to365

them? [Yes]366

2. If you are including theoretical results...367

(a) Did you state the full set of assumptions of all theoretical results? [Yes]368

(b) Did you include complete proofs of all theoretical results? [Yes]369

3. If you ran experiments...370

(a) Did you include the code, data, and instructions needed to reproduce the main experi-371

mental results (either in the supplemental material or as a URL)? [Yes]372

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they373

were chosen)? [Yes]374

(c) Did you report error bars (e.g., with respect to the random seed after running experi-375

ments multiple times)? [Yes]376

12

(d) Did you include the total amount of compute and the type of resources used (e.g., type377

of GPUs, internal cluster, or cloud provider)? [Yes]378

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...379

(a) If your work uses existing assets, did you cite the creators? [Yes]380

(b) Did you mention the license of the assets? [Yes]381

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]382

383

(d) Did you discuss whether and how consent was obtained from people whose data you’re384

using/curating? [N/A]385

(e) Did you discuss whether the data you are using/curating contains personally identifiable386

information or offensive content? [N/A]387

5. If you used crowdsourcing or conducted research with human subjects...388

(a) Did you include the full text of instructions given to participants and screenshots, if389

applicable? [N/A]390

(b) Did you describe any potential participant risks, with links to Institutional Review391

Board (IRB) approvals, if applicable? [N/A]392

(c) Did you include the estimated hourly wage paid to participants and the total amount393

spent on participant compensation? [N/A]394

A Appendix395

B Proof of Corollary 7396

Proof. Using Theorem 2 we have that R1(I) is upper bounded by

R1(I) = O

D log(T) max

G√log(T), d
1
2

√√√√min
H∈H

t∑
τ=s

‖∇τ‖∗2H




Because on each interval J ∈ S, one of the Adagrad experts achieve the bound

R0(J) = O

Dd 1
2

√√√√min
H∈H

t∑
τ=s

‖∇τ‖∗2H


For any interval I , using the result from [10] (Lemma 5) and Lemma 6 by replacing Regret by R0,
it follows

R0(I) = O

D√log(T)d
1
2

√√√√min
H∈H

t∑
τ=s

‖∇τ‖∗2H


Combining both bounds give the desired bound on Regret(I).397

C Proof of Corollary 9398

Proof. The proof is almost identical to that of the previous corollary, observing that399

the regret R0(I) is Õ(D∞
∑d
i=1 ‖∇s:t,i‖2) due to [12], and the regret R1(I) remains400

Õ(D
√

minH∈H
∑t
τ=s∇>τ H−1∇τ), which is upper bounded by Õ(D∞

∑d
i=1 ‖∇s:t,i‖2).401

D Deriving Local Optima from Regret402

Though our theory so far is mostly for the convex setting, most practical optimization problems have403

non-convex loss functions, and it’s important to derive convergence guarantees for the non-convex404

setting as well. The goal is now to find an approximate first order stationary point xτ with small405

13

Algorithm 2 Finding Stationary Point with SAMUEL

Input: non-convex loss function `, horizon T , λ ≥ β
2 .

for τ = 1, . . . , T do
Let `τ (x) = `(x) + λ‖x− xτ‖22.
Update xτ+1 to be the output of Algorithm 1 with A to be Adagrad, starting at xτ , for wτ steps.

end for

‖∇τ‖2. In this section, we give a brief discussion on how to reduce the convergence rate of finding a406

first-order stationary point of a non-convex function `, to the regret bound of `.407

In a nutshell, we adopt a method like GGT in [2] which is a proximal-point like algorithm that solves408

a sequence of convex sub-problems and guarantees to output an approximate stationary point. We409

assume that `(x) is β-smooth and `(x1)−minx `(x) ≤M . The use of Algorithm 1 can accelerate410

the convergence of each sub-problem, i.e. making wτ smaller. The following proposition is direct411

from Theorem 1.412

Proposition 10. `τ (xτ+1)−minx `τ (x) =

Õ

mink minH1,...,Hk∈H
∑k
j=1

√∑
τ∈Ij ‖∇τ‖

∗2
Hj

wτ


And we define the adaptive ratio µ(wτ) to be

µ(wτ) =
mink minH1,...,Hk∈H

∑k
j=1

√∑
τ∈Ij ‖∇τ‖

∗2
Hj√

wτ (`(x0)−minx `(x))

which quantifies the improvement of our adaptive algorithm by its advantage over the usual worst-case413

bound of vanilla SGD/Adagrad in wτ rounds, see [2] for more details whose proof idea we follow.414

We are now ready to analyze the convergence rate of Algorithm 2. We begin by proving the following415

useful property for any η > 0:416

`τ (xτ)−min
x
`τ (x) ≥ `(xτ)− `τ (xτ − η∇τ)

≥ η‖∇τ‖22 −
βη2

2
‖∇τ‖22 − λη2‖∇τ‖22

Setting η = 1
β+2λ , we have that417

`τ (xτ)−min
x
`τ (x) ≥ ‖∇τ‖22

2(β + 2λ)
(3)

Meanwhile, we have the following bound418

`(xτ)− `(xτ+1) ≥ `τ (xτ)− `τ (xτ+1)

= `τ (xτ)−min
x
`τ (x)− (`τ (xτ+1)−min

x
`τ (x))

≥ `τ (xτ)−min
x
`τ (x)− µ(wτ)

√
`τ (xτ)−minx `τ (x)

wτ

Fix ε > 0, denote wτ (ε) to be the smallest integer that makes

mink minH1,...,Hk∈H
∑k
j=1

√∑
τ∈Ij ‖∇τ‖

∗2
Hj

wτ (ε)(`(x0)−minx `(x))
≤

√
ε2

8(β + 2λ)

Suppose for contradiction now, that for all τ , ‖∇τ‖2 > ε, then `(xτ) − `(xτ+1) ≥
`τ (xτ)−minx `τ (x)

2 ≥ ‖∇τ‖22
4(β+2λ) by property 3 and the definition of wτ (ε). Summing over [1, T]

14

0 5000 10000 15000 20000 25000 30000 35000 40000
iteration

20

30

40

50

60

70

80

90

100

te
st

 a
cc

ur
ac

y
(%

)

SAMUEL over geometric intervals

lr 0.01
lr 0.1
SAMUEL

Figure 3: SAMUEL over geometric intervals on CIFAR-10.

we get

`(x1)− `(xT+1) ≥ Tε2

4(β + 2λ)

If we set T = 4M(β+2λ)
ε2 , then the above inequality will lead to contradiction. Therefore, within419 ∑T

τ=1 wτ (ε) calls of Algorithm 2, it’s guaranteed that our algorithm will output some xτ that420

‖∇τ‖ ≤ ε. We can rewrite the number of calls in terms of the adaptive ratio: O(µ(wτ (ε))
2

ε4),421

concerning only ε and letting µ(wτ (ε)) denote the average of all µ(wτ (ε)). Comparing with the422

convergence rate O(1
ε4) of SGD, we make improvement when the optimization trajectory is more423

adaptive.424

Theorem 11 (Informal). The convergence rate of Algorithm 2, is O(µ(wτ (ε))
2

ε4) ignoring parameters425

except ε.426

E Additional Experiments427

E.1 Experiments with online switching428

In this section we conduct a preliminary sanity check to test SAMUEL ability to switch learning rates429

on the fly. For this purpose we tested the full SAMUEL implementation with the original Algorithm430

1 on CIFAR-10 classification. We compared training ResNet-18 with SAMUEL to training with431

AdaGrad with constant learning rate multiplier as shown in Fig3. For the baseline learning rate432

multiplier, we considered multiplier of 0.01 and 0.1. For SAMUEL, we constructed the geometric433

interval set with the minimum length of 100 training iterations and provided multipliers 0.01 and434

0.1 as candidate learning rate multipliers to SAMUEL. Although SAMUEL can only alternate435

between two candidate learning rate multipliers, it demonstrates superior performance. Baselines436

and SAMUEL over geometric intervals were both trained for 220 epochs with batch size of 256.437

We conducted experiments with 5 different random seeds for each of three schedules 0.01, 0.1 and438

SAMUEL . We report the average final test accuracy: 88.98% with lr 0.01, 92.08% with lr 0.1, and439

92.43% with SAMUEL .440

15

In this experiment SAMUEL prefers lr 0.1 at first, then switch to lr 0.01 automatically around iteration441

2500, where it starts to outperform the lr 0.1 baseline. It demonstrates the ability of SAMUEL to442

switch between learning rates on the fly.443

This shows the promise of interpolating different algorithms in a manner that improves upon the444

individual methods. However, this implementation not as efficient as the heuristic we test in the other445

experiments.446

It remains to test how quickly we can shift optimizers in more challenging online tasks, such as447

domain shift and online reinforcement learning.448

E.2 CIFAR-100 Experiment449

We conducted image classification on the CIFAR-100 dataset. We compare a ResNet-18 [18] model450

trained with our optimization algorithm to a model trained with AdaGrad using brute-force searched451

learning rate schedulers. Following [18], we applied per-pixel mean subtraction, horizontal random452

flip, and random cropping with 4 pixel padding for CIFAR data processing and augmentation. All453

experiments were conducted on TPU-V2 hardware. For training, we used a batch size of 256 and 250454

total epochs with a step learning rate schedule. We fixed the learning rate stepping point at epoch455

125 and 200, and provided five possible candidate learning rates {0.0001, 0.001, 0.01, 0.1, 1} for456

each region. Thus an exhaustive search yielded 125 different schedules for the baseline AdaGrad457

method. For a fair comparison, we adopted the same learning rate changing point for our method.458

Our method automatically determined the optimal learning rate at the transition point without the459

need to exhaustively search over learning rate schedules.460

We display the CIFAR-100 test accuracy curves of AdaGrad with 125 exhaustively-searched learning461

rate schedules and our method in only one single run in Fig.4. Fig.4 shows that the best accuracy of462

exhaustive search is 76.77%, and the accuracy of SAMUEL using the same seed is 75.66%.463

E.3 Comparison with Baselines464

We conducted additional experiments on CIFAR-10 with off-the-shelf learning rate schedulers from465

the optax library. We considered the same model and training pipeline as detailed in the experiment466

section. Instead of using the three phase learning rate stepping scheme, we tried more varieties of467

schedulers available in the optax library. Specifically, we finetuned the cosine annealing scheduler, the468

linear warmup followed by cosine decay scheduler, and the linear warmup followed by exponential469

decay scheduler. Their test accuracy curves together with different learning rate schedules are470

displayed in Fig.5, Fig.6 and Fig.7, respectively.471

For finetuning the cosine annealing scheduler, we experimented with 45 different initial learning rates472

in the range of 1e-5 to 0.9.473

For the linear warmup followed by cosine decay scheduler, we finetuned the initial learning rate, the474

peak learning of the warmup and the duration of the warmup. We considered possible initial learning475

rate {0, 1× 10−5, 1× 10−4}, peak learning rate {0.001, 0.01, 0.05, 0.1, 0.5, 1}, and warmup epochs476

{5, 10} for the grid search.477

For the linear warmup followed by exponential decay scheduler, we finetuned the initial learning rate,478

the peak learning of the warmup and the duration of the warmup, the exponential decay rate, and the479

transition steps. We considered possible initial learning rate {0, 1× 10−5, 1× 10−4}, peak learning480

rate {0.05, 0.1, 0.5, 1}, warmup epochs {5, 10}, exponential decay rate {0.5, 0.8, 0.9}, and transition481

step {5, 10} for the grid search.482

As the figures demonstrate, the final test accuracy depend heavily on the learning rate schedules. For483

off-the-shelf learning rate schedulers, tuning the schedule associated hyperparameters is not trivial.484

16

0 10000 20000 30000 40000
iteration

0

10

20

30

40

50

60

70

80

te
st

 a
cc

ur
ac

y
(%

)

exhaustive search of step learning rate on CIFAR-100

0 10000 20000 30000 40000
iteration

0

10

20

30

40

50

60

70

80

te
st

 a
cc

ur
ac

y
(%

)

SAMUEL on CIFAR-100

Figure 4: CIFAR-100 comparison of exhaustive searched learning rate schedule and SAMUEL . Top:
125 parallel experiments with exhaustively searched learning rate schedules. Bottom: SAMUEL on
one run with 10 different random seeds, no tuning needed.

17

0 10000 20000 30000 40000
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

le
ar

ni
ng

 ra
te

cosine annealing finetuning

0 10000 20000 30000 40000
iteration

0

10

20

30

40

50

60

70

80

90

100

te
st

 a
cc

ur
ac

y
(%

)

Figure 5: Tuning cosine annealing schedules on CIFAR-10. The best test accuracy out of all 45 trials
is 95.37%.

18

0 10000 20000 30000 40000
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

le
ar

ni
ng

 ra
te

warmup with cosine annealing finetuning

0 10000 20000 30000 40000
iteration

0

10

20

30

40

50

60

70

80

90

100

te
st

 a
cc

ur
ac

y
(%

)

Figure 6: Tuning the linear warmup followed by cosine decay scheduler on CIFAR-10. The best test
accuracy out of 36 trials is 95.31%.

19

0 10000 20000 30000 40000
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

le
ar

ni
ng

 ra
te

warmup with exponential decay finetuning

0 10000 20000 30000 40000
iteration

0

10

20

30

40

50

60

70

80

90

100

te
st

 a
cc

ur
ac

y
(%

)

Figure 7: Tuning the linear warmup followed by exponential decay scheduler on CIFAR-10. The best
test accuracy out of 144 trials is 95.27%.

20

	Introduction
	Statement of our results
	Related Work

	Setting and Preliminaries
	An Improved Adaptive Regret Algorithm
	Proof of Theorem 2
	Optimal Adaptive Regret with Adagrad Experts

	Experiments
	Vision tasks
	Language task
	Stability of SAMUEL

	Conclusion
	Appendix
	Proof of Corollary 7
	Proof of Corollary 9
	Deriving Local Optima from Regret
	Additional Experiments
	Experiments with online switching
	CIFAR-100 Experiment
	Comparison with Baselines

