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Abstract
In this paper, we develop a progressive local and non-local interac-
tive network with multi-scale cross-content deeply discriminative
learning to solve image deraining. The proposed model contains
two key techniques: 1) Progressive Local and Non-Local Interac-
tive Network (PLNLIN) and 2) Multi-Scale Cross-Content Deeply
Discriminative Learning (MCDDL). The PLNLIN is a U-shaped
encoder-decoder network, where the proposed new Progressive Lo-
cal and Non-Local Interactive Module (PLNLIM) is the basic unit in
the encoder-decoder framework. The PLNLIM fully explores local
and non-local learning in convolution and Transformer operation
respectively and the local and non-local content are further interac-
tively learned in a progressive manner. The proposed MCDDL not
only discriminates the output of the generator but also receives the
deep content from the generator to distinguish real and fake fea-
tures at each side layer of the discriminator in a multi-scale manner.
We show that the proposedMCDDL has fast and stable convergence
properties that lack in existing discriminative learning manners.
Extensive experiments demonstrate that the proposed method out-
performs state-of-the-art methods on five public synthetic datasets
and one real-world data. The source codes will be made available
at https://github.com/supersupercong/PLNLIN-MCDDL.
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1 Introduction
Image deraining aims to restore a clean image from a given rainy
image, which is a typical and challenging image processing prob-
lem. Most existing image deraining algorithms depend on the rainy
physical model, where the rainy image 𝑂 can be modeled as the
linear combination between the clean background image 𝐵 and the
rain streaks component 𝑅:

𝑂 = 𝐵 + 𝑅. (1)
Image deraining is a highly ill-posed problem as there exist numer-
ous 𝐵 and 𝑅 pairs for a given rainy image 𝑂 . To make this problem
well-posed, some priors about rain streaks and rain-free images are
proposed [3, 30, 34]. Although these prior-based approaches are
effective to some extent, they will fail to work when these priors
do not hold on as the priors are usually based on empirical statisti-
cal properties of clear images or rain streaks, which do not model
inherent properties of the latent clear images.

Current image deraining algorithms are mainly built with deep
convolutional neural networks. Although thesemethods have shown
promising results, they still have the following limitations. On the
one hand, most existing approaches [7, 29, 36, 50] are designed to
learn deep features in a local window by a CNN, which is less effec-
tive for modeling non-local information that is important for image
deraining [1]. Although some methods [1] model the non-local in-
formation by designing Transformers, the single non-local window
may not be useful enough as too long-range features may be not
relevant enough for the local pixel. On the other hand, generating
realistic derained images is still challenging. Although Generative
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Table 1: Summary of different discriminative manners and
their properties."and%respectively denote that themethod
has and does not have the component. Final and Side respec-
tively denote that the adversarial loss is defined on the final
layer and each side layer in the discriminator. Cross-content
means that the hierarchical features in the generator are
transmitted to the discriminator.

Methods Discriminative Manners Convergence Properties
Final Side Cross-content Fast Stable

[35, 69] " % % % %

[71] " " % % %

Ours " " " " "

Adversarial Networks (GAN) [9] can provide an effective way for
realistic image restoration [35, 69, 70], most existing GAN-based
models, e.g., [23, 27, 69], only discriminate the final output of the
discriminator to form the adversarial loss, which is a global discrim-
inative manner while neglecting local details discrimination [71].
Moreover, existing GAN-based models usually take the output of
the generator as the input of the discriminator, which does not
fully explore useful information about the intermediate features
of the generator. As the intermediate features from the generator
are mainly used for image reconstruction, it is of great interest to
develop an algorithm to better explore useful information of the in-
termediate features to facilitate the estimations of the discriminator
for realistic image restoration.

In this paper, we propose a progressive local and non-local inter-
active deraining network (PLNLIN) with multi-scale cross-content
deeply discriminative learning (MCDDL) to solve the image de-
raining problem. The PLNLIDN is used to learn local and non-
local patterns in a progressive interactive manner. Specifically, the
PLNLIN is a U-shaped encoder-decoder network with multi-scale
hierarchical supervision, where the basic unit in the network is
the newly proposed progressive local and Non-Local interactive
module (PLNLIM). The PLNLIM fully exploits the convolution and
Transformer to respectively learn local and non-local information
and the local and non-local content are further interactively learned
in a progressive manner. In addition, we introduce multi-scale hi-
erarchical supervision that enforces the multi-scale encoder and
decoder features to close with ground-truth, which can make the
network more compact for better rain streak removal.

MCDDL is used to overcome unstable training problems and
generate better deraining results. The MCDDL not only inputs the
output of the generator to the discriminator but also transmits the
hierarchical features to the layer in the discriminator. Such a design
can make the discriminator deeply discriminate between real and
fake features in the generator. Moreover, multi-scale supervised
discrimination is also utilized, where adversarial losses are built
at each side layer in the discriminator to better help rain streak
removal. By designing theMCDDL, the proposed new discriminator
has better rain-free image generation ability and fast and stable
convergence properties. Table 1 provides the summary of different
discriminative manners and their properties.

We summarise the main contributions of this paper as follows:
• We propose a progressive local and non-local interactive
network that fully exploits the advantages of convolution
and Transformer to solve the image deraining problem.

• Wepropose amulti-scale cross-content deeply discriminative
learning that can discriminate not only the output of the
generator but also the deep features of the generator in a
multi-scale manner for realistic rain-free image generation.
• We both quantitatively and qualitatively evaluate the pro-
posed method and show that the proposed method out-
performs several state-of-the-art methods on five synthetic
datasets and one real-world dataset.

2 Related Work
ctionLearning-Based Image Deraining With the excellent learning
representation ability of CNN in computer vision [14–20, 49, 49, 57–
59, 64, 64], CNNs have dominated recent deraining research and
achieved great success. Fu et al. [7] first introduce a CNN-based
method for image draining. They first use a guided filter to extract
high-frequency details and then remove rain content by an end-
to-end trainable deep network with residual learning. After that, a
series of deep convolutional neural networks are developed [7, 12,
29, 36, 41, 42, 44–48, 61, 62, 72]. The transformer is first introduced
by Vaswani et al. [37] for natural language processing. After that,
various Transformers are designed for a series of vision tasks, such
as image recognition [6], segmentation [56], detection [33, 51], and
also image restoration [1, 11, 31, 38, 39, 53, 66].

2.1 GAN-Based Image Restoration
Previous research has been demonstrated that GAN [9] can help
generate realistic details for image restoration tasks, such as im-
age deblurring [23, 24], low-light image enhancement [13], image
super-resolution [25, 70], image dehazing [5, 27, 67], and also image
deraining [69, 71]. Different from the above works that only dis-
criminate the final output in discriminator, Zhu et al. [71] explore
the multi-scale deeply supervised discriminative manner by impos-
ing constraints at each side layer output of the discriminator to
generate the multiple adversarial losses to better discriminate local
details and global appearance. Although these GAN-based tech-
niques are able to improve realistic detail restoration to some extent,
they ignore the use of intermediate features of the generator, which
are vital for realistic image generation. Karnewar and Wang [21]
introduces a multi-scale gradient-based GAN for image synthesis
by inputting multi-scale images generated by intermediate layers
to a single discriminator. We find that this manner fails to work
for image restoration as the transferred images are not accurate,
limiting to generate high-quality results.

Different from existing GAN-based models, we propose a multi-
scale cross-content deeply discriminative learning manner, where
we transmit the content features from the generator to the discrim-
inator and discriminate at each side layer in a multi-scale manner.

3 Methodology
3.1 Overall Framework
Figure 1 shows the proposed progressive local and non-local interac-
tive network with multi-scale cross-content deeply discriminative
learning, which is a GAN-based framework. The generator G is
a U-shaped encoder-decoder framework with multi-scale hierar-
chical supervision. Each block in the encoder and decoder stage is
our proposed progressive local and non-local interactive module
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Figure 1: Overall of Progressive Local andNon-Local InteractiveNetworkswithMulti-Scale Cross-ContentDeeplyDiscriminative
Learning, which is a GAN-based framework that contains a generator G and a discriminatorD. G is a U-shaped encoder-decoder
network with multi-scale hierarchical supervision. The multi-scale hierarchical supervision makes the intermediate layers
to be more compact for better rain streak removal. D receives not only the output of the generator but also the hierarchical
features from the generator and discriminates on each side layer so that it can help the generator generate more natural
features for better rain-free image generation. The basic unit in G and D is the proposed Progressive Local and Non-Local
Interactive Module that fully explores the local and non-local information and helps better learning for each other.

(PLNLIM). The PLNLIM adequately explores the advantage of local
and non-local operations achieved by residual block [10] and Swin
Transformer block [33], respectively. The multi-scale hierarchical
supervision is utilized in the generator so that the fusing features
at the same level in the encoder and decoder stage are supervised
in a multi-scale manner to make the network more compact for
better rain streak removal.

The discriminator D is used to generate realistic results [69],
where we propose a new discriminative learning manner that not
only takes the output of the generator as the input of the discrimina-
tor but also transmits the intermediate features from the generator
to the discriminator.

3.2 Progressive Local and Non-Local Interactive
Module

The Progressive Local and Non-Local Interactive Module (PLNLIM)
adequately exploits the advantages of convolution and Transformer
to respectively learn the local and non-local information that is
further interactively learned in a progressive manner. The PLNLIM
has three branches: local branch, non-local branch, and fusion
branch. The local branch uses a local window in the residual block

and receives the transferred non-local features from the non-local
branch to enhance local features, while the non-local branch learns
non-local features and interacts with the features from the local
branch to enrich the non-local features. The fusion branch is to
fuse local and non-local features to learn useful features. Next, we
will introduce the PLNLIM.

We denote𝑋 0 as the input feature in the PLNLIM. We first utilize
residual block (RB) [10] and Swin Transformer block (STB) [33] to
respectively learn the local and non-local information:

𝑋 1
𝑙𝑜𝑐𝑎𝑙

= RB(𝑋 0),
𝑋 1
𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 = STB(𝑋 0), (2)

where 𝑋 1
𝑙𝑜𝑐𝑎𝑙

and 𝑋 1
𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 respectively denote the output of RB

and STB at the 1𝑠𝑡 stage. Then, the learned local and non-local
features are cascaded and fused by 1 × 1 convolution in the fusion
branch:

𝑋 1
𝑓 𝑢𝑠𝑖𝑜𝑛

= Conv1×1
(
Cancat[𝑋 1

𝑙𝑜𝑐𝑎𝑙
, 𝑋 1

𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 ]
)
, (3)

whereConv1×1 denotes the 1×1 convolution andCancatmeans the
concatenation operation. 𝑋 1

𝑓 𝑢𝑠𝑖𝑜𝑛
denotes the output of the fusion

branch at the 1𝑠𝑡 stage.
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Next, to help local features better utilize non-local information
and non-local features better learn useful content from local in-
formation, we use Spatial Feature Transform (SFT) layer [52] that
can generate affine transformation parameters for spatial-wise fea-
ture modulation to interactively boost the learning of local and
non-local branch respectively:

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡1
𝑙𝑜𝑐𝑎𝑙&𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 = SFT(𝑋 1

𝑙𝑜𝑐𝑎𝑙
, 𝑋 1

𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 ),
𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡1

𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙&𝑙𝑜𝑐𝑎𝑙 = SFT(𝑋 1
𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 , 𝑋

1
𝑙𝑜𝑐𝑎𝑙
), (4)

where 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡1
𝑙𝑜𝑐𝑎𝑙&𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 and 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡

1
𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙&𝑙𝑜𝑐𝑎𝑙 respec-

tively denote the output of local branch interacted with non-local
branch and non-local branch interacted with local branch at the
1𝑠𝑡 stage.

Then, the local and non-local contents are interactively learned
and the fusion branch is further learned, and all of them are learned
in a progressive manner:

𝑋 𝑖
𝑙𝑜𝑐𝑎𝑙

= SFT
(
RB(𝑋 𝑖−1

𝑙𝑜𝑐𝑎𝑙
, 𝑋 𝑖−1

𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 )
)
,

𝑋 𝑖
𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 = SFT

(
STB(𝑋 𝑖−1

𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 , 𝑋
𝑖−1
𝑙𝑜𝑐𝑎𝑙
)
)
,

𝑋 𝑖
𝑓 𝑢𝑠𝑖𝑜𝑛

= Conv1×1
(
Cancat[𝑋 𝑖−1

𝑓 𝑢𝑠𝑖𝑜𝑛
, 𝑋 𝑖

𝑙𝑜𝑐𝑎𝑙
, 𝑋 𝑖

𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 ]
)
,

(5)

where 𝑋 𝑖
𝑙𝑜𝑐𝑎𝑙

, 𝑋 𝑖
𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 , and 𝑋

𝑖
𝑓 𝑢𝑠𝑖𝑜𝑛

(𝑖 = 2, · · · , 𝑁 ) respectively
denote the output of the local branch, the non-local branch, and
the fusion branch at the i𝑡ℎ progressive stage.

Finally, the learned features of these three branches are added
by respective learning manner at the final stage:

𝑋final = RB(X𝑁
𝑙𝑜𝑐𝑎𝑙
) + STB(X𝑁

𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 )+
Conv1×1

(
Cancat[𝑋𝑁

𝑓 𝑢𝑠𝑖𝑜𝑛
, 𝑋𝑁

𝑙𝑜𝑐𝑎𝑙
, 𝑋𝑁

𝑛𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 ]
)
,

(6)

where 𝑋final is the output of the PLNLIM.
By such a design, the local window not only captures local pat-

terns but also interacts with non-local information to learn useful
features in the long-range content meanwhile the non-local win-
dow can not only perceive global information but also receive local
content from the local window. The local and non-local features
are interactively learned, which can remedy the shortage of each
other for better rain streak removal.

3.3 Multi-Scale Cross-Content Deeply
Discriminative Learning

Different from existing discriminators [9, 69, 71] that only take the
output of the generator as the input of the discriminator, we develop
a new multi-scale cross-content deeply discriminative learning
(MCDDL) by transmitting the content of intermediate layers in
the generator to the discriminator and discriminating on each side
layer in the discriminator.

With the hierarchical contents from the generator, the MCDDL
fuses them to help the discriminator better discriminate between
real and fake content from the generator, which can be expressed
as:

𝐹
𝑗

𝐷
= PLNLIM

(
Concat[𝐹 𝑗

𝐻
, 𝐹

𝑗

𝐷
]
)
,

𝐹
𝑗+1
𝐷

= Pooling(𝐹 𝑗

𝐷
), 𝑗 = 0, 1, 2, 3, 4,

(7)

where 𝐹 𝑗

𝐷
denotes the output features at 𝑗𝑡ℎ layer in the discrim-

inator; 𝐹 𝑗+1
𝐷

denotes the input features of ( 𝑗 + 1)𝑡ℎ layer that is

Algorithm 1 Training Process of the Proposed PLNLIN-MCDDL
Preparation: Rainy images 𝑂 and corresponding rain-free
ground-truth images 𝐵
Input: 𝑂
Output: Derained images �̂�
1: While epoch ≤ epochmax do:
2: Obtain fake label images and features: Y = G(𝑂); Obtain

real label images and features: Z = G(𝐵),
3: if epoch % 𝑟 == 0:
4: Update G via (9)
5: Update D via (12)
6: else:
7: Update G via (9)
8: epoch← epoch +1
9: End while
Output derained images: �̂�

pooled by 𝑗𝑡ℎ layer in the discriminator; 𝐹 𝑗

𝐻
denotes the hierarchi-

cal features at 𝑗𝑡ℎ layer in generator. Similar to [69], we use Pooling
operation with the size of 2 × 2 stride and 2 × 2 kernel between
two adjacent layers. Here, we have 4 layers in the discriminator.
When 𝑗 = 0, (7) is defined as: 𝐹 1

𝐷
= PLNLIM(𝐼𝑚𝑎𝑔𝑒) that takes the

image as the input of the discriminator. When 𝑗 = 4, (7) is defined
as: 𝐹 4

𝐷
= PLNLIM

(
Concat[𝐹 4

𝐻
, 𝐹 4

𝐷
]
)
.

Note that (7) is different from existing discriminators [69, 71]
that only take the output image of the generator as the input of
the discriminators without considering the feature content from
the generator, which can be expressed as: 𝐹 𝑗

𝐷
= PLNLIM(𝐹 𝑗

𝐷
) and

𝐹
𝑗+1
𝐷

= Pooling(𝐹 𝑗

𝐷
), ( 𝑗 = 0, 1, 2, 3, 4). Hence, our discriminator

achieves cross-content discrimination by transmitting the content
from the generator to the discriminator, which can help the dis-
criminator deeply discriminate between real and fake features so
that the generator can generate more natural features for better
rain-free image generation.

We utilize multi-scale supervised adversarial losses to discrimi-
nate the features at each side layer:

L𝑙adversarial = −EZ
[
log

(
1 − 𝐷𝑟𝑎 (Z𝑙 ;Y𝑙 )

) ]
−

EY

[
log

(
𝐷𝑟𝑎 (Y𝑙 ;Z𝑙 )

) ]
, 𝑙 = 1, 2, 3, 4,

(8)

where Y denotes the fake label that is the joint of derained images
and reconstructed features, while Z is the corresponding real label
that is the joint of rain-free images and rain-free features. Y𝑙 and
Z𝑙 respectively denote the fake and real features at 𝑙𝑡ℎ side layer
in the discriminator. 𝐷𝑟𝑎 (P;Q) = sigmoid

(
D(P) − EQ

[
D(Q)

] )
.

D(·) is the discriminator. However, we can only obtain real-label
images with no means to acquire rain-free features. To this end,
we generate rain-free features as real features by inputting the
rain-free image to the generator.
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Table 2: Quantitative results on five synthetic datasets. ↑ denotes higher is better. The best results are marked in bold.

Methods Rain200H Rain200L Rain1200 Rain1400 Rain12 # Parameters
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

RESCAN [29] 26.661 0.8419 36.993 0.9788 32.127 0.9028 30.969 0.9117 32.965 0.9545 0.15M
NLEDN [26] 27.315 0.8904 36.487 0.9792 32.473 0.9198 31.014 0.9206 33.028 0.9615 1.01M
SSIR [54] 14.420 0.4501 23.476 0.8026 24.427 0.7713 25.772 0.8224 24.138 0.7768 0.06M
PreNet [36] 27.525 0.8663 34.266 0.9660 30.456 0.8702 30.984 0.9156 35.095 0.9400 0.17M
SpaNet [50] 25.484 0.8584 36.075 0.9774 27.099 0.8082 29.000 0.8891 33.217 0.9546 0.28M
DCSFN [44] 28.469 0.9016 37.847 0.9842 32.275 0.9228 31.493 0.9279 35.803 0.9683 6.45M
MSPFN [12] 25.553 0.8039 30.367 0.9219 30.382 0.8860 31.514 0.9203 34.253 0.9469 21.00M
RCDNet [48] 28.698 0.8904 38.400 0.9841 32.273 0.9111 31.016 0.9164 31.038 0.9069 3.67M
Syn2Real [63] 14.495 0.4021 31.035 0.9365 28.812 0.8400 28.582 0.8586 28.434 0.9038 2.62M
MPRNet [65] 29.949 0.9151 36.610 0.9785 33.655 0.9310 32.257 0.9325 36.578 0.9696 3.64M
DualGCN [8] 28.758 0.9026 38.415 0.9818 32.033 0.9163 30.567 0.9148 35.805 0.9687 2.73M
SwinIR [32] 29.574 0.9049 39.282 0.9869 32.974 0.9298 31.997 0.9304 36.362 0.9698 11.5M
SSID-KD [4] 28.706 0.9005 38.778 0.9864 32.424 0.9202 30.540 0.9136 35.473 0.9682 4.43M
RadNet [55] 30.080 0.9150 38.680 0.9850 - - - - - - -
Wang et al. [40] 29.985 0.9218 39.284 0.9875 33.718 0.9327 32.617 0.9334 36.851 0.9714 2.04M
HCT-FFN [2] 28.987 0.8933 37.426 0.9798 - - - - 34.570 0.9453 0.87M
Ours 30.164 0.9227 39.289 0.9893 33.731 0.9338 32.643 0.9341 37.211 0.9734 2.25M

3.4 Loss Function
To train the network, we utilize the following objective loss func-
tions including image pixel reconstruction loss, multi-scale hierar-
chical supervision loss, and adversarial loss:

L = Lpixel + 𝛼Lhierarchical + 𝛽Ladversarial, (9)

where 𝛼 and 𝛽 denote the hyper-parameters. In the following, we
explain each term in detail.
Image pixel reconstruction loss Lpixel. Followed [36, 44] that
SSIM-based loss has achieved better performance, we use it as the
image pixel reconstruction loss:

Lpixel = 1 − SSIM
(
B̂, B

)
, (10)

where B̂ and B denote the estimated derained image and corre-
sponding ground-truth.
Multi-scale hierarchical supervision loss Lhierarchical. As the
image pixel reconstruction loss only constrains the network output
that may not generate satisfactory results, we propose a multi-scale
hierarchical supervision loss on the intermediate layers to enforce
the network more compact for better rain streak removal:

Lhierarchical =
4∑︁

𝑘=1
𝜆𝑘

(
1 − SSIM

(
B̂ 1

2𝑘−1
, B 1

2𝑘−1

) )
, (11)

where B̂ 1
2𝑘−1

= Conv(PLNLIM(Concat(𝐸𝑘 , 𝐷𝑘 ))) is the 1
2𝑘−1 scale

output, while B 1
2𝑘−1

is the corresponding ground-truth. Conv de-
notes a 3×3 convolution. 𝐸𝑘 and𝐷𝑘 respectively refer to the feature
at k𝑡ℎ stage of encoder and decoder. 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are set as 0.1,
0.05, 0.02, and 0.01, respectively.
Multi-scale cross-content deeply discriminative adversarial
losses Ladversarial. As defined each adversarial loss at each side
layer in the discriminator in (8), the total adversarial loss is:

Ladversarial =
4∑︁

𝑙=1
𝜇𝑙L𝑙adversarial, (12)

where 𝜇1, 𝜇2, 𝜇3, and 𝜇4 are respectively set as 0.0005, 0.001, 0.0025,
and 0.005.

4 Experiments
In this section, we provide more experiments to demonstrate the
effectiveness of our proposed approach.

4.1 Implementation Details
We set the number of channels as 32 in each layer except the last
one in both generator and discriminator. We respectively set the
number of the channel of the last layer as 3 in the generator and
1 in the discriminator. The radio 𝑟 of updating the generator and
discriminator is 5. In the encoder stage of the generator, 𝑁 in the
PLNLIM is respectively set as 8, 4, 2, 2, and the decoder stage has a
symmetric structure with the encoder. In the discriminator, 𝑁 is set
as 2 for all PLNLIMs. We randomly crop an image patch of the size
112×112 pixels. The batch size is 2. We use the ADAM [22] optimizer
with default parameters to train the proposed network. The initial
learning rate is 0.0001, which is respectively divided by 10 at 300
and 400 epochs, and the model training terminates after 500 epochs,
i.e., epochmax = 500. The values of 𝛼 and 𝛽 are empirically set to be
1. The training process is illustrated in Algorithm 1.

4.2 Datasets
Synthetic Dataset. We adopt five widely used synthetic datasets:
Rain200H [60], Rain200L [60], Rain1200 [68], Rain1400 [7], and
Rain12 [30] to evaluate the deraining performance. As Rain12 only
contains 12 testing samples, we use the models trained on Rain200H
to evaluate the restoration quality of this dataset.
Real-world Data. [28, 43, 60] collect a mass of real-world rainy
images from the Internet. We use them as the real-world dataset.

4.3 Results on Synthetic Datasets
Table 2 summarises the deraining performance on the five synthetic
datasets, where our method performs better than state-of-the-art
methods in terms of PSNR and SSIM. We also provide several visual
examples on the most challenging Rain200H dataset in Figure 2.
Note that our method is able to generate clearer results with better
texture and details, while other state-of-the-art approaches generate
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(a) Rainy (b) RESCAN (c) DCSFN (d) MSPFN (e) RCDNet (f) SSID-KD

(g) DualGCN (h) MPRNet (i) SwinIR (j) HCT-FFN (k) Ours (l) GT
Figure 2: Results on the most challenging dataset Rain200H [60]. The proposed algorithm is able to preserve better structures.

(a) Rainy (b) RESCAN (c) NLEDN (d) DCSFN (e) MSPFN (f) SSID-KD

(g) RCDNet (h) DualGCN (i) MPRNet (j) SwinIR (k) HCT-FFN (l) Ours
Figure 3: Results on one real-world data. The proposed algorithm is able to generate results with fewer artifacts.

the results with some artifacts. These quantitative and qualitative
results demonstrate the effectiveness of the proposed method.

4.4 Results on Real-World Data
To examine the generalization of the proposed algorithm in real-
world scenarios, we present two real-world rainy examples in Fig-
ure 3. We note that the proposed method is able to generate cleaner
deraining results than state-of-the-art methods, especially in the
marked regions.

4.5 Ablation Study
This section provides ablation studies about the proposed method.

4.5.1 Analysis on Progressive Local and Non-Local Interactive Mod-
ule. As the proposed progressive Local and Non-Local interactive
module (PLNLIM) contains the local branch, the non-local branch,
the fusion branch, and the interactive learning operation between
local and non-local branches (i.e., the SFT layer), we need to ex-
amine the effect of these components by disabling them in the
proposed method. For fair comparisons, different models have an
almost equal number of parameters by adjusting the number of
channels. Table 3 shows the evaluation results. The comparisons
between the baselines show that our module (i.e., (f)) has a better
performance compared with the module without the fusion branch
(i.e., (a)). The results get worse when we use the concatenation
operation (i.e., (b)) to replace the SFT layer or remove the SFT layer
(i.e., (e) means that the local branch and the non-local branch are

(a) Rainy (b) Local (c) Non-Local

(d) Interactive (e) Derained (f) GT
Figure 4: Feature visualization on the effect of the progressive
local and non-local interactive module.

independent). Furthermore, we observe that the interactive learn-
ing between local and non-local branches is able to help improve
deraining quality compared with the models of using both single
local learning (i.e., (c) that is to replace Swin Transformer blocks as
residual blocks) or both single non-local learning (i.e., (d)) that is to
replace residual blocks as Swin Transformer blocks) in the PLNLIM.
This demonstrates that the proposed interactive learning between
local and non-local information plays an important role in image
deraining. The above results show that each component we used is
beneficial to image deraining.

We further show some intermediate features to demonstrate
the effect of the PLNLIM. Figure 4 shows that the local operation
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Table 3: Ablation results on our progressive local and non-local interactive module.

Experiments (a) (b) (c) (d) (e) (f) (Ours)
Fusion branch % % " " " "

SFT→ Concatenation % " % % % %

SFT layer " % " " % "

Both local learning, i.e, STB→ RB % % " % % %

Both non-local learning, i.e, RB→ STB % % % " % %

Independent learning in local and non-local branches, i.e., w/o SFT layer % % % % " %

Interactive learning between local and non-local branches " " % % % "

PSNR ↑ 30.051 30.012 29.360 29.553 29.957 30.164
SSIM ↑ 0.9212 0.9208 0.9137 0.9142 0.9169 0.9227

(a) Rainy (b) Both local learning

(c) Both non-local learning (d) Interactive learning
Figure 5: A real-world comparison example of both local
learning, both non-local learning, and interactive learning.

Table 4: Effectiveness on progressive local and non-local in-
teractive module.

Model Local Non-Local Ours
PSNR ↑ 29.866 29.948 30.164
SSIM ↑ 0.9190 0.9194 0.9227

cannot capture global attention information well (i.e., Figure 4(b)).
Although the non-local operation can capture global attention in-
formation, it tends to lose some local structures (i.e., Figure 4(c)).
The interactive learning between the local and non-local operations
is able to produce better structures and contents (i.e., Figure 4(d)),
which will help produce a better deraining result.

Figure 5 shows the effect of single local learning, single non-local
learning, and interactive learning on a real-world example. Note
that both single local learning (i.e., Figure 5(b)) and single non-local
learning (i.e., Figure 5(c)) always hand down some rain streaks,
while the proposed interactive learning between local and non-
local branches is able to produce a cleaner result (Figure 5(d)). This
example also demonstrates that the proposed interactive learning
plays a positive role in rain-free image generation in real-world
conditions.

To further examine the effectiveness of the PLNLIM, we use
residual blocks [10] or Swin Transformer blocks [33] to replace the
PLNLIMs in the generator. Note that we also adjust the number of

Table 5: Effect on the multi-scale hierarchical supervision.

Model w/o (11) w/ (11)
PSNR ↑ 29.922 30.164
SSIM ↑ 0.9192 0.9227

(a) Rainy (b) w/o (11) (c) w/ (11)
Figure 6: Two real-world examples on the effect of multi-
scale hierarchical supervision.

channels so that different models have an almost equal number of
parameters for fair comparisons. Table 4 shows that our PLNLIM is
a better module, while both residual blocks or Swin Transformer
blocks are not as good as ours. This demonstrates that both single
convolution operation and single Transformer architecture cannot
effectively generate high-quality rain-free images, while the inter-
active learning between convolution and Transformer is a powerful
tool for improving deraining performance.

4.5.2 Analysis on Different Discriminative Manners. As we pro-
pose a new discriminative manner with multi-scale cross-content
deeply discriminative learning, we need to compare it with exist-
ing manners [9, 71]. Furthermore, we also provide the adversarial
loss curves of the generator in Figure 7. It is worth noting that
our proposed discriminative manner has more stable and faster
convergence properties on each side layer that are lacking in other
discriminative manners. This also shows that our proposed discrim-
inative manner can effectively solve the unstable training process
problem that exists in most existing discriminative manners. Fig-
ure 8 shows two real-world examples of different discriminative
manners, where the proposed discriminative manner is able to help
produce cleaner results. These results and examples demonstrate
the effectiveness of our proposed discriminative manner that not
only has fast and stable convergence properties but also improves
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(a) 1𝑠𝑡 side layer (b) 2𝑛𝑑 side layer (c) 3𝑟𝑑 side layer (d) 4𝑡ℎ side layer (final)
Figure 7: Loss curves for different adversarial losses of the generator. 𝑖𝑡ℎ side layer denotes the 𝑖𝑡ℎ side layer in the discriminator.

(a) (b) (c) (d) (e)
Figure 8: One real-world example of different discriminative manners. (a)-(e) are respectively the rainy input, the results of
traditional discriminative learning [9], multi-scale deeply discriminative learning [71], ours w/o multi-scale deeply discrimina-
tive learning, and our proposed final discriminative learning.

Table 6: Effect on progressive local and non-local interactive
module in the discriminator.

Model Local Non-local Ours
PSNR ↑ 29.983 29.992 30.164
SSIM ↑ 0.9174 0.9175 0.9227

Table 7: Effect on the updated radio 𝑟 between the training
generator and discriminator.

𝑟 1 2 3 5 10
PSNR ↑ 29.824 29.932 30.012 30.164 30.004
SSIM ↑ 0.9098 0.9102 0.9193 0.9227 0.9187

the deraining quality.We also hope that the proposed discriminative
manner can help other vision problems for better vision learning.

4.5.3 Effect on Multi-Scale Hierarchical Supervision. One may won-
der what is the effect of the multi-scale hierarchical supervision
(i.e., (11)) and which effect it produces if we remove the supervision.
Table 5 answers this question, where we find that multi-scale hi-
erarchical supervision has a positive effect on rain streak removal.
We also provide several real-world examples of the effect of the
multi-scale hierarchical supervision in Figure 6. Observe that the
multi-scale hierarchical supervision can help recover cleaner re-
sults in real-world conditions. These results demonstrate that the
introduced multi-scale hierarchical supervision is meaningful for
image deraining on both synthetic and real-world images.

4.5.4 Effect on Progressive Local and Non-Local Interactive Module
in the Discriminator. As we also use PLNLIM in the discriminator,
we need to verify its effect compared with convolution-based and
Transformer-based discriminators. Table 6 summarises the results.
We note that using PLNLIM is better than both convolution and

Transformer in the discriminator for rain streak removal. Hence,
we conclude that the proposed PLNLIM is a better basic unit in
neural networks for deraining.

4.5.5 Effect on the Updated Radio 𝑟 between the Training Generator
and Discriminator. Table 7 shows the effect on the updated radio
𝑟 between the training generator and discriminator. We note that
the model obtains better performance when 𝑟 is 5.

5 Conclusion
We have proposed a progressive local and non-local interactive
deraining network (PLNLIN) with multi-scale cross-content deeply
discriminative learning (MCDDL) for image deraining. The PLNLIN
fully exploits the advantages of convolution and Transformer oper-
ations to respectively learn local and non-local information that is
further interactively learned in a progressive manner. The MCDDL
that not only receives the features from the generator but also
deeply discriminates each side layer in the discriminator has been
verified to help rain streak removal and has fast and stable con-
vergence properties that lack in existing discriminative learning
manners. Extensive experiments have demonstrated that our al-
gorithm outperforms state-of-the-art methods on both synthetic
datasets and real-world data.
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