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A PRELIMINARY
The work most relevant to our work investigates the unsupervised
domain adaptation problem, known as MCD (Maximum Classifier
Discrepancy) [2]. Employing a semi-supervised learning frame-
work, it utilizes source domain data and ground truth labels for
supervised training. For the target domain, it maximizes the discrep-
ancy between two predictions to update classifiers and minimizes
the discrepancy to update feature extractors. To be specific, there
are source domain data 𝑋𝑠 = {(𝑥𝑖𝑠 )}

𝑁𝑠

𝑖=1 with corresponding ground
truth labels 𝑌𝑠 = {(𝑦𝑖𝑠 )}

𝑁𝑠

𝑖=1, where 𝑁𝑠 denotes the number of source
domain samples. The unlabeled target domain data is represented
as 𝑋𝑡 = {(𝑥𝑖𝑡 )}

𝑁𝑡

𝑖=1, with number 𝑁𝑡 samples. The shared label space
is C = {1, 2, ..., 𝐾}. MCD utilizes one feature extractor and two
classifiers, denoted as 𝑓 (·), ℎ1 (·), ℎ2 (·) respectively. The training
process typically consists of three steps.

The first step involves training the model using source domain
data and ground truth labels to ensure that the model can correctly
classify the source domain. The cross entropy is used as follows:

min
𝑓 ,ℎ1,ℎ2

L𝑐𝑒 (𝑋𝑠 , 𝑌𝑠 ) . (1)

In the second step, the feature extractor is fixed, and two clas-
sifiers are trained to maximize the difference between themselves.
Concurrently, supervised training on the source domain data is also
needed. This step helps identify challenging samples not supported
by the source domain. The loss function is as follows:

min
ℎ1,ℎ2

L𝑐𝑒 (𝑋𝑠 , 𝑌𝑠 ) − L𝑎𝑑𝑣 (𝑋𝑡 ),

L𝑎𝑑𝑣 (𝑋𝑡 ) = E𝑥𝑖𝑡∼𝑋𝑡

[
𝑑 (𝑝1 (𝑥𝑖𝑡 ), 𝑝2 (𝑥𝑖𝑡 ))

]
,

(2)

where 𝑑 (𝑝1, 𝑝2) = 1
𝐾

∑𝐾
𝑘=1 |𝑝1𝑘 − 𝑝2𝑘 | is a measurement of distri-

bution divergence. In the third step, the two classifiers are fixed
while the feature extractor is trained to minimize the discrepancy
of the outputs. This encourages that the extracted features are
indistinguishable for the two classifiers. The objective is as follows:

min
𝑓

L𝑎𝑑𝑣 (𝑋𝑡 ) (3)

Although MCD has made breakthrough progress in the problem
of unsupervised domain adaptation (UDA), the highly reliance on
accessing source domain data and labels is entirely unsuitable for
black-box domain adaptation setting.

B FURTHER ANALYSIS
Due to page limitations, we present further experimental analyses
in the appendix.

B.1 Visualization on GRAD-CAM.
The visualization on GRAD-CAM [3] are shown in Fig.1. Specifi-
cally, we randomly selected four images from different classes of
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(a) Origin             (b) Source            (c) w/o_adv (d) AEM

Figure 1: The GRAD-CAM visualization of A→D on Office-31
dataset.

(a) Source (b) AEM

Figure 2: Confusionmatrix on task D→A of Office-31 dataset.

Table 1: Comparison results of FLOPs and model parameters.
K: class number.

K=31 K=65
FLOPs(M) Params(M) FLOPs(M) Params(M)

CLIP 63017.58 84.23 128901.71 84.23
AEM 4132.23 24.04 4123.24 24.05

Office-31 dataset for visualization. From left to right, the visualiza-
tion results represent the original image, source domain (black-box)
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Figure 3: Accuracy comparison of CLIP, CLIP_adptPmt and AEM on Office-31 and Office-Home datasets.

model, AEM variant without adversarial(w/o_adv), and AEM. Com-
pared to the source model, the introduction of external high-level
semantic information in the w/o_adv variant demonstrates slightly
better performance. However, solely utilizing consistency learn-
ing enables the w/o_adv variant to additionally focus attention on
objects, building upon the foundation of the source model. AEM
conducts adversarial learning between the feature extractor and the
classifier. Consequently, compared to the non-adversarial variant,
our model better integrates the knowledge from black-box experts
and ViL experts. This is specifically reflected in the visualization
by introducing attention that does not exist in the black-box model
and demonstrating a more continuous phenomenon of attention.

B.2 Visualization of confusion matrix.
The confusion matrix for the task D→A on the Office-31 dataset
is presented in Fig.3. The sum of each row represents the total
number of instances in the true class, and the sum of each column
represents the total number of instances in the predicted class. It
can be observed that comparing with source (black-box) model,
the number of correct predictions by AEM has been significantly
improved.

B.3 Comparison with CLIP.
Comparison on accuracy.We further conduct experimental anal-
ysis on CLIP. As shown in Fig.??, we compared three models: us-
ing only the pre-trained CLIP model (CLIP) [1], the pre-trained
CLIP model with target domain adapted prompts (CLIP_adptPmt),
and our adapted target domain model AEM. Overall, AEM has
demonstrated the best performance across all tasks. To be spe-
cific, comparing CLIP and CLIP_adptPmt, the average accuracy of
CLIP_adptPmt on Office-31 and Office-Home are higher by 9.8%
and 2.9% than CLIP, respectively. CLIP_adptPmt outperforms CLIP
on almost all sub-tasks. In particular, on the D→W and W→D of
Office-31 dataset, the accuracy of CLIP_adptPmt increased by 16.7%
and 15.5%, respectively. This is because in the knowledge feedback
stage, we use the target domain information to update the prompt,
making the ViL model more tailored to the current task. Compari-
son between CLIP_adptPmt and AEM shows that AEM achieves an

average accuracy higher by 2.0% and 1.9% on Office-31 and Office-
Home, respectively. Because we use the outputs of the ViL-guided
classifier as the final results, the prediction accuracy upper is lim-
ited by the constraint of the corresponding expert. However, in
AEM, the adversarial learning between the feature extractor and
the two classifiers enables our feature extractor to better extract
discriminative features suitable for the target domain. Also, the
target model implicitly integrates knowledge from the black-box
model. Therefore, AEM achieves a slightly higher accuracy than
CLIP_adptPmt.

Comparison of model parameters. Table1 shows the com-
parison results of FLOPs (floating point operations) and model
parameters between the trained AEM model and the CLIP model.
The table provides the following insights. First, as the number of
categories increases, the FLOPs of CLIP also increase. This is be-
cause the ViL model connects images with text, necessitating more
computational resources to process category label text. In contrast,
for AEM, since the classifier is a fully connected layer, variations
in the number of categories have minimal impact on the model’s
computational complexity. Vertically, the FLOPs of CLIP are at least
10 times larger than that of AEM, with its parameter count around
3.5 times that of AEM. This signifies a greater demand for compu-
tational resources in the ViL model. Moreover, as depicted in Fig.??,
AEM achieves approximately 2% higher average accuracy than
CLIP_adptPmt. This observation shows the necessity of research
on the black-box domain adaptation.

B.4 More ablation studies.
In this part, we conduct ablation studies on Office-Home dataset.
Setup details have been provided in the Section 4.3 of main text.

Ablation study on knowledge feedback strategy. As men-
tioned in Section 4.3, we set three additional variants: training
without knowledge feedback strategy (w/o_bv), training without
updating the black-box labels (w/o_b), and training without up-
dating the prompt of the ViL model (w/o_v). Let 𝑝1 and 𝑝2 denote
predictions of classifiers ℎ1 and ℎ2 guided by black-box and ViL
model, respectively. 𝑝𝑚𝑖𝑥 denotes the prediction obtained by av-
eraging the outputs of both classifiers. The values in the table
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Table 2: Ablation study on knowledge feedback strategy on tasks Ar→Cl, Cl→Pr, Pr→Rw and Rw→Ar in Office-Home dataset.

Ar→ Cl Cl→ Pr Pr→ Rw Rw→ Ar
𝑝1 𝑝2 𝑝𝑚𝑖𝑥 Avg. 𝑝1 𝑝2 𝑝𝑚𝑖𝑥 Avg. 𝑝1 𝑝2 𝑝𝑚𝑖𝑥 Avg. 𝑝1 𝑝2 𝑝𝑚𝑖𝑥 Avg.

w/o_bv 51.3 60.2 59.2 56.9 74.6 86.1 84.2 81.6 79.8 86.6 85.3 83.9 69.8 77.1 73.8 73.6
w/o_b 52.4 60.6 57.0 56.7 75.8 86.3 84.4 82.2 80.3 87.0 84.7 84.0 70.8 78.2 76.6 75.2
w/o_v 52.9 63.9 60.3 59.0 79.3 86.3 83.9 83.2 83.2 87.9 86.1 85.7 70.7 77.3 75.8 74.6
AEM 61.9 65.8 64.4 64.0 85.0 90.7 89.7 88.5 85.1 89.9 88.7 87.9 73.8 78.9 77.5 76.7

(a) Ar→Cl                                                   (b) Cl→Pr (c) Pr→Rw (d) Rw→Ar

Figure 4: Accuracy curves of different predictions on 4 tasks for Office- Home dataset.

Figure 5: Ablation study on adversarial learning for Office-
Home dataset. w/o_adv and AEM represent training without
and with adversarial learning, respectively.

represent the prediction accuracy under different updating strategy.
The results are shown in Table 2. Compared to the three variants,
AEM demonstrated the best performance across all four tasks, with
accuracy surpassing the second-best by 5.0%, 5.3%, 2.2%, and 1.5%,
respectively. Due to the lack of updating black-box noisy labels and
prompts for ViL, the performance of w/o_bv is the worst. Updat-
ing either expert will lead to an improvement. Furthermore, AEM
achieved the best results, demonstrating the effectiveness of the
proposed knowledge feedback strategy.

Ablation study on different classifier combination. Fig.4
shows the accuracy curve of three different predictions, i.e., 𝑝1, 𝑝2
and 𝑝𝑚𝑖𝑥 . The accuracy curves for all 4 tasks reach the peak around
the 10th epoch and then converge. Overall, classifier guided by the

Figure 6: Accuracy using different classifier consistency loss
on Office-Home dataset.

ViL model shows the best performance. This is attributed to the ViL-
guided classifier harboring richer high-level semantic information.

Ablation study on adversarial learning. Fig.5 shows the com-
parison of accuracy between AEM without adversarial learning
and AEM. The average accuracy of AEM is higher by 9.4%. This is
because solely employing consistency loss fails to address the issues
of ambiguous samples and decision boundaries. AEM alleviates this
problem through adversarial training between the feature extractor
and the classifier.

Ablation study on classifier consistency loss. From Fig.6,
it can be observed that the proposed CM loss achieves the best
performance on 12 specific tasks. In terms of average accuracy, CM
loss outperforms L1 loss and KL loss by 4.5% and 4.7%, respectively.
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