
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REBUTTAL:
METAMIZER: A VERSATILE NEURAL OPTIMIZER FOR
FAST AND ACCURATE PHYSICS SIMULATIONS

Anonymous authors
Paper under double-blind review

1 COMPARISON TO GPU SOLVERS

To make a better comparison, we run Metamizer against various GPU based solvers of the CuPy
package on the same NVidia Geforce RTX 4090. Here, Metamizer shows a similar convergence
speed for the Laplace equation on a 100 × 100 grid (see Figure 1) and about 2 times faster conver-
gence on a 400× 400 grid (see Figure 2) compared to conjugate gradient and minres.

This is remarkable because Metamizer is a more general optimizer that relies only on local gradients
and can be used to solve for example nonlinear PDEs or cloth simulations as well. Conjugate
gradient methods on the other hand require full knowledge of the underlying (symmetric) matrix A
to orthogonalize update steps and compute appropriate step sizes α.

Figure 1: Performance comparison of Metamizer with various GPU based solvers of the CuPy
package on a 100 × 100 grid. The loss corresponds to the mean squared residuals of the Laplace
equation.

Figure 2: Performance comparison of Metamizer with various GPU based solvers of the CuPy
package on a 400× 400 grid. Metamizer is about 2× faster than CG on the same GPU.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 COMPARISON TO CPU SOLVERS

Since our original implementation of the Dirichlet boundary conditions resulted in an asymmetric
matrix A, conjugate gradient methods did not converge properly. While Metamizer as well as GM-
RES and GCROT do not have this limitation, we implemented a symmetric matrix version of A to
allow for comparisons with CG. On a 100× 100 grid, this led to faster convergence (see Figure 3).
However, on a 400 × 400 grid, GPU parallelization pays off resulting in 10× faster convergence
speed of Metamizer (see Figure 4).

Figure 3: Performance comparison of Metamizer with various CPU based solvers of the SciPy
package on a 100× 100 grid.

Figure 4: Performance comparison of Metamizer with various CPU based solvers of the SciPy
package on a 400× 400 grid. Metamizer is about 10× faster than CG on a CPU.

3 COMPARISON TO NEWTON-CG, NONLINEAR CG AND L-BFGS-B

We added further comparisons for optimizers that, like Metamizer, rely only on local gradients of
the loss. As can be seen in Figure 5, optimizers like Newton-CG, Nonlinear CG or L-BFGS exhibit
much slower convergence.

4 COMPARISON OF DIFFERENT LEARNING RATES

We compared various different learning rates for all gradient descent solvers and only reported re-
sults for learning rates that resulted in good trade-offs between convergence speed and accuracy.
Figure 6 shows a performance comparison of Metamizer with Adagrad, Adam and AdamW at dif-
ferent learning rates.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 5: Performance comparison of Metamizer with various optimizers that, like Metamizer, rely
only on local gradients of the loss. Here, we make use of the SciPy package on a 100× 100 grid on
a CPU.

5 COMPARISON TO GROUND TRUTH

We compared the mean squared errors of Metamizer and various GPU based linear system solvers
to analytical ground truth values of the Laplace equation. Figure 7 shows fast convergence to highly
accurate results as already indicated by the mean residual errors in Figure 2.

6 TURBULENT FLOW SIMULATION AT Re = 2000

We trained Metamizer on a 400× 400 grid to enable fluid simulations at higher Reynolds numbers.
Figure 8 demonstrates that Metamizer is able to simulate complex turbulent fluid dynamics at Re =
2000.

7 PRECONDITIONERS

7.1 INCOMPLETE LU (ILU) AND ALGEBRAIC MULTI GRID (AMG) PRECONDITIONERS

We compared Metamizer with preconditioned conjugated gradient methods based on incomplete LU
factorization and algebraic multigrids. To this end, we used the pyAMG library. AMG precondi-
tioning resulted in a significant speed-up over non-preconditioned solvers on the CPU (see Figure
9). A GPU based algebraic multigrid implementation will most likely outperform Metamizer on the
Poisson equation, however, Metamizer is a more general approach that only requires local gradients
and can be applied for example to non-symmetric Matrices, nonlinear PDEs or cloth simulations as
well.

7.2 JACOBI PRECONDITIONER

We tested the diagonal Jacobi preconditioner for CG, GMRES and MINRES. Since the diagonal of
the Laplace operator on a regular grid corresponds closely to the identity matrix, this preconditioner
did not help to significantly reduce the number of iterations but resulted in a slight computational
overhead and thus a slowdown of convergence (see Figure 10).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 6: Performance comparison of Metamizer with various GPU based Gradient Descent Meth-
ods at different learning rates on a 100× 100 grid.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 7: Mean squared errors of Metamizer and various GPU based solvers of the CuPy package
on a 400× 400 grid compared to analytical ground truth values of the Laplace equation.

Figure 8: Simulation of turbulent fluid dynamics at Re = 2000 (µ = 0.1, ρ = 4, D = 100, ||v⃗|| =
0.5) performed by Metamizer on a 400× 400 grid.

Figure 9: Performance comparison of Metamizer with conjugated gradients preconditioned on the
incomplete LU factorization and the algebraic multigrid method (pyAMG) on a 400x400 grid.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 10: Performance comparison of Metamizer with various GPU based solvers of the CuPy
package that make use of a Jacobi Preconditioner on a 400x400 grid. In comparison to non-
preconditioned solvers (Figure 2) this resulted in a slight slowdown of convergence.

6

	Comparison to GPU solvers
	Comparison to CPU solvers
	Comparison to Newton-CG, nonlinear CG and L-BFGS-B
	Comparison of different learning rates
	Comparison to Ground Truth
	Turbulent Flow simulation at Re=2000
	Preconditioners
	Incomplete LU (ILU) and Algebraic Multi Grid (AMG) Preconditioners
	Jacobi Preconditioner

