
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

METAMIZER: A VERSATILE NEURAL OPTIMIZER FOR
FAST AND ACCURATE PHYSICS SIMULATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient physics simulations are essential for numerous applications, ranging
from realistic cloth animations in video games, to analyzing pollutant dispersion
in environmental sciences, to calculating vehicle drag coefficients in engineering
applications. Unfortunately, analytical solutions to the underlying physical equa-
tions are rarely available, and numerical solutions are computationally demand-
ing. Latest developments in the field of physics-based Deep Learning have led to
promising efficiency gains but still suffer from limited generalization capabilities
across multiple different PDEs.
Thus, in this work, we introduce Metamizer, a novel neural optimizer that iter-
atively solves a wide range of physical systems without retraining by minimiz-
ing a physics-based loss function. To this end, our approach leverages a scale-
invariant architecture that enhances gradient descent updates to accelerate conver-
gence. Since the neural network itself acts as an optimizer, training this neural
optimizer falls into the category of meta-optimization approaches. We demon-
strate that Metamizer achieves high accuracy across multiple PDEs after training
on the Laplace, advection-diffusion and incompressible Navier-Stokes equation as
well as on cloth simulations. Remarkably, the model also generalizes to PDEs that
were not covered during training such as the Poisson, wave and Burgers equation.

Figure 1: Metamizer is able to simulate various linear and non-linear physical systems. All of the
depicted results were produced by the same neural model (same architecture and same weights).
PDEs marked in red were not considered during training.

1 INTRODUCTION

Countless physical systems can be described by partial differential equations (PDEs). For example,
electrostatic or gravitational fields can be described by the Poisson equation, heat diffusion or pol-
lutant dispersion can be described by the advection-diffusion equation, pressure waves by the wave
equation, fluids by the incompressible Navier-Stokes equation, and so on. Unfortunately, most of
these equations do not have analytical solutions, so numerical solvers must be used. To reduce the
computational burden of numerical methods, numerous neural surrogate models have been devel-
oped in recent years that achieve fast and highly efficient physics simulations (Thuerey et al., 2021;
Cuomo et al., 2022). Moreover, recent developments Kaneda et al., 2023; Chen et al., 2024 show
that neural networks do not fall behind numerical solvers in terms of accuracy anymore. However,
neural surrogate models are usually tailored to specific PDEs and do not generalize well across mul-
tiple different PDEs without retraining. Zero-shot PDE solvers, analogous to current endeavours

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

in foundational models for natural language processing (Brown, 2020) or computer vision (Rad-
ford et al., 2021; Kirillov et al., 2023), could be of great benefit for instant realisitc animations in
computer games or computer aided engineering.

Thus, in this work, we propose Metamizer, a neural optimizer to accelerate gradient descent for fast
and accurate physics simulations. To this end, we introduce a novel scale-invariant architecture
that suggests improved gradient descent update steps that are independent of arbitrary scalings of
the loss function or loss domain. We train Metamizer without any training data directly on the
physics-based loss that it is supposed to optimize. After training, unlike traditional gradient descent
methods, Metamizer requires no tuning of parameters such as learning rate or momentum, and
allows tradeoffs between runtime and accuracy for fast and highly accurate results. We evaluate
the very same network (same architecture and same weights) across a wide range of linear and non-
linear PDEs and showcase its generalization capabilites - even to PDEs that were not covered during
training.

Code as well as a pretrained model will be made available upon acceptance.

2 RELATED WORK

Numerical Methods typically rely on a discretization scheme (e.g. Finite Differences, Finite Vol-
umes, Finite Elements etc (Peiró & Sherwin, 2005)) in order to transform PDEs into large systems
of equations. Depending on properties such as symmetry or linearity of this system, various nu-
merical solvers such as (nonlinear) CG, GMRES, MINRES etc can be employed. To alleviate their
computational burden (Farmaga et al., 2011), already in the last century, several specialized meth-
ods have been developed to accelerate for example fluid simulations (Chen & Doolen, 1998; Stam,
1999) or cloth simulations (Baraff & Witkin, 1998). More recently, neural preconditioners (Kaneda
et al., 2023; Lan et al., 2023) significatly accelerated conjugate gradient methods for the Poisson
equation. However, these specialized methods exploit domain-specific assumptions and, thus, do
not generalize well across different linear and nonlinear PDEs.

Gradient Descent based methods like AdaGrad (Duchi et al., 2011), Adam (Kingma & Ba, 2017;
Reddi et al., 2019), AdamW (Loshchilov, 2017) and many more (Norouzi & Ebrahimi, 2019) build
the backbone of most Deep Learning approaches. These optimization methods can be generally ap-
plied to a wide range of differentiable minimization problems including solving PDEs (Nurbekyan
et al., 2023). However, Gradient Descent methods require tuning of hyperparameters such as learn-
ing rate or momentum and many iterations until convergence. As a result, they are not yet efficient
enough for real-time physics simulations.

Meta-Learning, and in particular “Learning to Optimize” (L2O), is the field of research that deals
with the automatic improvement of optimization algorithms, typically by means of machine learning
techniques. Pytorch libraries such as “higher” (Grefenstette et al., 2019) or “learn2learn” (Arnold
et al., 2020) allow for example to automatically optimize hyperparameters of optimizers like ADAM
through gradient descent. Andrychowicz et al. (2016) train LSTMs to optimize neural networks for
classification tasks and style transfer and Chen et al. (2020) present several training techniques that
suggest there is still room for potential improvement in the field L2O. However, to the best of our
knowledge, L2O has not yet been applied in the context of physics simulations.

Data-driven Deep Learning approaches have been widely established to generate neural surro-
gate models for efficient physics simulations for example in context of fluid dynamics (Tompson
et al., 2017; Sanchez-Gonzalez et al., 2020), cloth simulations (Pfaff et al., 2020), weather forecast-
ing (Bonev et al., 2023; Lam et al., 2023) or aerodynamics (Li et al., 2024). While these methods
allow efficient simulations at coarse spatial and temporal resolutions or on physical systems without
knowledge of the underlying mathematical equations, they require large amounts of high-quality
training data, which can be expensive to generate. Furthermore, generalization and accuracy beyond
the training data is often fairly limited.

Physics-driven Deep Learning approaches in contrast, require only little or no ground truth data
and rely on physics-based loss. Here, 2 major strands of research can be discerned:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

First, implicit neural representations (often referred to as PINNs) as popularized by Raissi et al.
(2019) have become a new and quickly growing field of research (Cuomo et al., 2022) ranging from
climate simulations (Chen et al., 2022; Lai et al., 2024) to highly accurate simulations of Burgers
equation (Chen et al., 2024) and fluid dynamics (Cai et al., 2021; Ghosh et al., 2023), all the way to
robotics (Sanyal & Roy, 2023; Liu et al., 2024). Unfortunately, the learned implicit representations
need to be retrained for every physical simulation and thus are not real-time capable.
Second, neural surrogate model that evolve an explicit state representation in time as presented by
Zhu et al. (2019). This method has been successfully applied to the coupled 2D Burgers equation
(Geneva & Zabaras, 2020), incompressible fluid dynamics in 2D and 3D (Wandel et al., 2021a;b)
and cloth simulations (Santesteban et al., 2022; Stotko et al., 2024). While these methods do not
require any training data and show good generalization performance within their PDE domain, so
far, they do not generalize across multiple PDEs.

3 FOUNDATIONS

In this chapter, we introduce some basic concepts and definitions for PDEs, explain, how finite dif-
ference schemes can be used to formulate a physics-based loss, and give some intuition to motivate
our gradient-based optimization approach.

Partial Differential Equations (PDEs) Partial differential equations are equations that constrain
the partial derivatives of a multivariate function. In its most general form, a PDE can be written as:

F (x1, ..., xn, u, ∂x1u, ..., ∂xnu, ∂
2
x1
u, ...) = 0 ∀(x1, ..., xn) ∈ Ω (1)

where u(x1, ..., xn) is the unknown function that we want to solve, x1, ..., xn are the independent
variables inside a domain Ω, and ∂xi

u denotes the partial derivative of u with respect to xi. If one
of the independent variables corresponds to time t, F is called a time-dependent PDE. If u does not
depend on t, it is called stationary. If F is linear in u and its derivatives, F is called a linear PDE.
Otherwise, F is called a non-linear PDE.

Boundary and Initial Conditions Usually, additional constrains at the domain boundaries are
given such as boundary or initial conditions. Although various types of different boundary con-
ditions could be considered, in this work, for simplicity, we focus solely on Dirichlet boundary
conditions:

u(x1, ..., xn) = d(x1, ..., xn)∀(x1, ..., xn) ∈ ∂Ω (2)
Here, d(x1, ..., xn) directly specifies the values of u at the domain boundary ∂Ω. Typically, time-
dependent PDEs also require an initial state (or initial condition) from which the solution of a PDE
evolves over time.

Finite Differences To compute u and its partial derivatives in a numerical manner, u needs to be
discretized. Here, we consider a regular grid in space (and time). This allows to compute derivatives
like gradients (∇), divergence (∇·), Laplace (∆) or curl (∇×) numerically by performing convolu-
tions with finite difference kernels. By plugging the results of these finite difference convolutions
for every grid point into the general formulation of PDEs (Equation 1), we obtain a large system of
equations. If the PDE is linear, this set of equations becomes a (typically sparse) linear system of
equations.

Time-Integration Schemes In case of time-dependent PDEs, a strategy must be chosen to inte-
grate the simulation in time for given initial conditions. There exist several strategies to calculate
and integrate the time derivative with finite differences. The most popular strategies are:

• Forward Euler: Here, the computation of the time derivative depends only on the current
time step. This explicit strategy makes computations easy and efficient, but tends to cause
unstable simulation behavior for many physical systems if the time step is chosen too large.
Therefore, explicit schemes are not considered in this work.

• Backward Euler: Here , the computation of the time derivative depends on the following
time step. This implicit strategy results in stable simulations, but can suffer from numerical
dissipation and requires solving large systems of equations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• Crank-Nicolson: Here, the centered finite difference of the current and the following time
step is used to calculate the time derivative. This implicit strategy results in more accurate
computations compared to forward or backward Euler, but requires, like backward Euler,
solving large systems of equations.

Physics-Based Loss Solving large (potentially non-linear) systems of equations obtained by finite
differences is a challenging task that is typically computationally expensive. Thus, we formulate a
physics-constrained loss, that penalizes the mean squared residuals (left-hand side of Equation 1) as
follows:

L(u) =
1

|Ω|
∑

(x1,...,xn)∈Ω

|F (x1, ..., xn, u, ∂x1u, ..., ∂xnu, ∂
2
x1
u, ...)|2 (3)

This way, we can search for a solution u∗ of the PDE by minimizing L:

u∗ = argmin
u

L

Dirichlet Boundary conditions (Equation 2) can be typically applied directly by setting the corre-
sponding boundary grid points of u equal to d. However, sometimes, this is not possible and we
have to consider an additional loss term for the Dirichlet boundary conditions:

LD(u) =
1

|∂Ω|
∑

(x1,...,xn)∈∂Ω

|u(x1, ..., xn)− d(x1, ..., xn)|2 (4)

In this case, we have to minimize L+ LD to solve Equation 1 and Equation 2.

Figure 2: Exemplary visualization of
a 2D loss function with a steep valley.
Naive gradient descent fails since it ei-
ther converges very slowly (blue curve
1) or diverges (red curve 2). Ideally, we
would like to adapt the step size and
direction for accelerated convergence
(green curve 3).

Gradient Descent Intuition In order to minimize the physics-based loss L (Equation 3 and 4),
we follow a gradient descent approach. Figure 2 provides some intuition on common problems
with naive gradient descent in the vicinity of ill conditioned minima and how convergence could
be improved: If we take too small steps along the gradients (blue curve 1), convergence becomes
very slow. If we take too large steps (red curve 2), the gradient descent scheme diverges. Ideally
(green curve 3), we would first take some small initial steps to check the local gradients and avoid
initial divergence. Then, the step size can be carefully increased. Instead of directly following the
gradients, a better step direction can be found by taking the gradients of the previous steps into
account as well. Once we come close to the minimum, the step size should be decreased again
to achieve higher accuracy. As discussed by Holl et al. (2022), scaling the loss function L and
thus its gradients by a constant factor c does not affect its minima (argminu L(u) = argminu c ·
L(u)). Thus, the gradient descent procedure should be invariant with respect to constant gradient
scalings. Similarly, scaling the coordinate system of L should result in equally scaled update steps
(argminu L(u) = c · argminu L(c · u), see solid vs dashed lines in Figure 2). This motivates
our scale invariant Metamizer architecture that can deal with arbitrarily scaled gradients and can
automatically adapt its step size (see Figure 3 a).

4 METHOD

Our approach aims to accelerate convergence of a gradient descent scheme by proposing improved
update steps with a neural network.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: a) Scale invariant architecture of the neural optimizer (Metamizer). b) Training Cycle.

Metamizer Architecture The neural network architecture as depicted in Figure 3 a) works as
follows: First, the gradient ∇uLi of the current iteration i as well as the gradient ∇uLi−1 and update
step ∆ui−1 of the previous iteration i− 1 are taken as input. Then, the gradients of the current and
previous iteration are normalized by the standard deviation of the current gradient and the step size
is normalized by its standard deviation as well. These values are then concatenated and fed into
a U-Net (Ronneberger et al., 2015) in order to predict an update scale factor for si and an update
direction that gets multiplied with si to obtain the update step ∆ui for the next iteration. The U-
Net architecture was chosen since it allows to model long-range dependencies at coarse resolutions
while preserving small details at fine resolutions, reflecting the various domains of dependence of
different PDEs. Finally, the computed update step is applied to u to obtain ui+1 = ui + ∆ui. For
the initial state, we set u0 = ∇uL0 = ∆u0 = 0 and set s0 = 0.05 to avoid initial divergence by
making only small steps at the beginning.

These normalization and scaling measures make the network invariant with respect to arbitrary scal-
ings of the loss or domain and allow the network to make reasonable progress at all stages of the
optimization: At the beginning, when large update steps must be made in the presence of large gra-
dients, as well as in later optimization stages, when fine adjustments must be made in the presence
of small gradients. To allow for very high accuracies, the gradient computations and update steps
need to be calculated in double precision. Nevertheless, due to the input normalizations, the U-Net
can be evaluated using a more efficient regular float precision. Since the outputs of the network
get scaled by si, the training gradients get scaled as well. This would result in huge gradients for
the first optimization iterations compared to basically no training signal at later optimization iter-
ations. Thus, we employ gradient normalization (Chen et al., 2018) to normalize gradients during
backpropagation and provide the network with an evenly distributed training signal during all opti-
mization stages and across all different PDEs that we train on in parallel. Since we want to reuse the
same network for different PDEs that might also contain different numbers of channels, Metamizer
optimizes all channels separately (e.g. the Laplace equation requires only 1 channel while incom-
pressible fluids require 2 channels for the velocity and pressure field and cloth dynamics require 3
channels to describe motions in x/y/z directions).

Training The neural optimizer was trained in a cyclic Meta-learning manner inspired by Wandel
et al. (2021a): As visualized in Figure 3 b), we first 0-initialize a training pool of randomized PDEs
(e.g. randomized boundary conditions for the Laplace / advection-diffusion / Navier-Stokes equa-
tions). Note that in contrast to data-driven methods, no pre-generated ground truth data is needed.
Then, we draw a random mini-batch that contains the current gradient ∇uLi of the physics-based
loss as well as optimizer state information (i.e. ∇uLi−1,∆ui−1, si−1) and feed it into the Metamizer
architecture to compute an update step ∆ui. This update step, together with updated state informa-
tion (i.e. ∇uLi,∆ui, si) is fed back into the training pool to update the training environments with
more realistic data and to recompute the physics-based loss L based on the updated values of u.
This recomputed loss is then used to optimize the Metamizer with Adam (lr=0.001). By iterating
this training cycle, the training pool becomes filled with more and more realistic training data and
the neural optimizer becomes better and better at minimizing physics-based losses. Furthermore,
since this way the training pool constantly generates new training data on the fly, its memory foot-
print is small enough such that the entire training pool can be kept in GPU memory. After training

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

for about 6 hours on a NVidia Geforce RTX 4090, we obtained a single model that was able to solve
various PDEs at high precision and produced all of the results shown in the following section.

5 RESULTS

In this section, we show that the very same model (same architecture and same weights) can deal
with a wide variety of PDEs - linear as well as non-linear, stationary as well as time-dependent.

5.1 LINEAR SECOND ORDER PDES

Linear second order PDEs can be grouped into 3 categories: Elliptic PDEs (e.g., Poisson or Laplace
equation), Parabolic PDEs (e.g., advection-diffusion equation) and Hyperbolic PDEs (e.g., wave
equation). Here, we show that our model excels in all 3 categories:

5.1.1 POISSON AND LAPLACE EQUATION

The Poisson equation is a stationary, elliptic PDE and is important to find e.g. minimal surfaces,
steady state equilibria of the Diffusion-Equation (see Section 5.1.2) or to calculate energy potentials
of electrostatic or gravitational fields (see Figure 12 in Appendix):

F = ∆u− f = 0 (5)

The Laplace Equation is the homogeneous (f = 0) special case of the Poisson equation.

Figure 4: Iterative refinements by Metamizer to solve the Laplace equation. Top row: Intermediate
solutions of u. Middle row: corresponding gradients of the physics-based loss. Bottom row: update
steps computed by Metamizer. An animation of this process is presented in the supplemental video.

Figure 4 depicts intermediate solutions ui of the Laplace equation, the gradients of the physics-based
loss ∇uLi, and update steps ∆ui computed by Metamizer at iterations 0,1,2,3,20 and 50. At the
beginning, u is 0-initialized. Thus, high gradients of L only appear at the domain boundaries where
the boundary conditions result in discontinuities of u. Nevertheless, Metamizer is able to anticipate
better update steps that also affect the surroundings of the boundaries to achieve faster convergence.
After only 3 update steps, the shape of u is visually close to the final solution. After 20 iterations,
the gradients of L are already in the range of 10−7 and after 50 steps, Metamizer hits the limits
of machine precision (see noise in ∇uL50 in Figure 4) rendering further improvements impossible.
Figure 5 a shows how Metamizer automatically adjusts the scaling si: At the very beginning, s0
starts at a relatively small value (0.05) to avoid initial divergence. Then, for the next 5 iterations,
Metamizer increases si to lower L more efficiently. After that, si is steadily decreased for finer
and finer adjustments. Remarkably, this learned behavior corresponds very well with our “natural”
gradient descent intuition provided in Section 3. After around 50 iterations, when machine level
precision is reached, no further progress is possible and si remains at a constant very low level.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We compared our approach to several gradient descent based methods of the pytorch optimizer
package (SGD, Adam, AdamW, RMSprop, Adagrad, Adadelta) and iterative sparse linear system
solvers from CuPy (conjugate gradients, minres, gmres, lsmr). Figure 6 shows that traditional gradi-
ent based approaches are not competitive with current sparse linear system solvers regarding runtime
or accuracy. Furthermore, these gradient based optimizers require tuning of hyperparameters such
as learning rate or momentum (more information is provided in Appendix E). Metamizer on the
other hand shows competitive performance to sparse linear system solvers like CG, MINRES or
GMRES and reaches a MSR of 6.7× 10−33 after only 0.08 while maintaining the generality of gra-
dient based approaches. Thus, it can be directly applied for example to nonlinear and nonsymmetric
PDEs as well. On top of that, Metamizer shows better scaling behavior on larger grid sizes (see also
Appendix B).

Figure 5: The scale parameter si (see Figure 3 a) is automatically adjusted by Metamizer to make
appropriate update steps. a) stationary Laplace Equation b) time-dependent advection-diffusion
equation with 10 iterations per time step.

Figure 6: Comparison of mean squared residual errors for the Laplace equation on an 100×100 grid
as a function of time (left) and number of iterations (right) between Metamizer and various iterative
sparse linear system solvers of the CuPy package (Okuta et al., 2017) and gradient based optimizers
from pytorch (various learning rates are investigated in Appendix E). The goal is to lower the loss
in as little time as possible (bottom left corner of the left plot).

5.1.2 ADVECTION-DIFFUSION EQUATION

The Advection-Diffusion equation is an important parabolic PDE that describes for example heat
transfer or the dispersion of pollutants. For an unknown function u, it can be written as:

F = ∂tu−D∆u+∇ · (v⃗ u)−R = 0 (6)

Here,D denotes the diffusivity, v⃗ denotes the velocity field for the advection term andR corresponds
to the source / sink term. In contrast to the stationary Poisson equation, the advection-diffusion equa-
tion is time-dependent. Thus, we use the implicit backward Euler scheme for a stable unfolding of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

the simulation in time. For every simulation time step, we perform a certain number of optimization
steps to reduce L. By choosing the right number of iterations per time step we can make a trade-off
between speed and accuracy. Figure 5 b) shows how Metamizer automatically adjusts the scaling si
when simulating the advection-diffusion equation at 10 iterations per time step. At the beginning of
each time step, the neural optimizer increases its stepsize to quickly adjust u. Then, si is decreased
again for fine adjustments.

Figure 1 shows results for a constant localized source field R and a rotating velocity field v⃗ (for
example a laser that heats a spinning disk). More examples with different diffusivity parameters are
shown in Appendix A. Table 1 shows how accuracy increases with the number of iterations per time
step.

5.1.3 WAVE EQUATION

The wave equation is an important hyperbolic PDE that describes wave like phenomena such as
water waves, pressure waves, electro-magnetic waves and many more. It can be written as:

F = ∂2t u− c2∂2xu = 0 (7)

Here, c corresponds to the wave propagation speed. Figure 7 shows results for different values
of c that were obtained by Metamizer using an implicit Crank-Nicolson scheme. Note, that the
wave equation was not included during training. Table 1 shows accuracy levels for 1,5,20 and 100
iterations per timestep. Using only 1 iteration results in divergent simulations, 20 iterations yield
fairly accurate results and at 100 iterations, the simulation runs close to machine precision.

Figure 7: Metamizer is capable of simulating waves at different propagation speeds cwithout having
seen the wave equation during training.

5.2 NON-LINEAR PDES

Non-linear PDEs are particularly hard to solve as the underlying systems of equations become non-
linear as well. In this section, we demonstrate Metamizers capabilities to deal with non-linear PDEs.

5.2.1 INCOMPRESSIBLE NAVIER-STOKES EQUATION

The incompressible Navier-Stokes equation describes the dynamics of an incompressible fluid by
means of a velocity field v⃗ and a pressure field p:

F = ρ (∂tv⃗ + (v⃗ · ∇) v⃗) +∇p− µ∆v⃗ − f⃗ext = 0 (8)

Here, ρ denotes the fluids density, µ its viscosity and f⃗ext external forces. The incompressibility
equation ∇ · v⃗ = 0 can be automatically fulfilled by utilizing a vector potential a and setting the
velocity field v⃗ = ∇× a. However, using a vector potential prohibits us from directly manipulating
the velocity field. Thus, we need an additional boundary loss term (Equation 4) to deal with the
Dirichlet boundary conditions for the velocity field at the domain boundaries. To compute the partial
derivatives of a, v⃗ and p efficiently with centered finite differences, we rely on a staggered marker
and cell (MAC) grid (Harlow et al., 1965; Holl et al., 2020; Wandel et al., 2021a).

Figure 8 shows results for various Reynolds numbers. The Reynolds number Re is a unit less
quantity defined as:

Re =
ρ||v⃗||D
µ

(9)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

PDE \ Iterations
Time Step 1 5 20 100 Iterations

Second
Advection-Diffusion 7.9× 10−5 2.0× 10−7 5.6× 10−11 2.2× 10−33 420

Wave Equation 4.4× 1024 4.6× 10−4 3.2× 10−8 3.5× 10−31 420
Navier-Stokes Lp 7.4× 10−6 2.0× 10−5 2.4× 10−8 2.4× 10−16 230

Ld 1.7× 10−7 3.7× 10−7 9.5× 10−9 1.9× 10−17

2D coupled Burgers 4.1× 10−3 8.5× 10−6 2.5× 10−10 5.0× 10−32 330

Table 1: Mean Squared Residuals for different time-dependent PDEs at different iterations per time
step

where D corresponds to the diameter of the obstacle and ||v⃗|| to the flow velocity. The Reynolds
number has a big effect on the qualitative behavior of the flow field. For example, in case of very
small Reynolds numbers, the flow-field becomes stationary and the Navier-Stokes equation can
be approximated by the Stokes equation. In case of very high Reynolds numbers, the flow-field
becomes turbulent and can be approximated by the Euler equation for inviscid fluids.

Figure 8: Fluids of various viscosities µ and densities ρ at a wide range of Reynolds numbers can
be simulated by Metamizer. The obstacle diameter is D = 10 and the fluid velocity is ||v⃗|| = 0.5

Table 1 shows results for Lp (mean squared residuals of Equation 8) and Ld (mean squared residuals
of ∇· v⃗ that capture if the Dirichlet boundary conditions are not properly met). Lp and Ld are lower
for only 1 iteration compared to 5 iterations per time step, because 1 iteration per time step results
in an incorrect steady-state solution for the wake dynamics. Compared to Wandel et al. (2021a),
Metamizer reaches a similar performance at 5 iterations per time step. At 20 or even 100 iterations,
our approach is orders of magnitudes more accurate while still being reasonably fast.

5.2.2 BURGERS EQUATION

The 2D coupled Burgers equation is an important non-linear PDE to study the formation of shock
patterns.

F = ∂tv⃗ + (v⃗ · ∇) v⃗ − µ∆v⃗ = 0 (10)

Here, µ is a viscosity parameter. Figure 1 shows an exemplary simulation result by Metamizer that
exhibits clear shock discontinuities at µ = 0.3. Additional qualitative results are shown in Figure 10
of Appendix A. Note that the Burgers equation was not considered during training. Mean squared
residuals for different iterations per time step are shown in Table 1.

5.2.3 CLOTH DYNAMICS

To describe cloth dynamics, we closely follow the approach of Santesteban et al. (2022) and Stotko
et al. (2024). Instead of using a classical PDE formulation, their approach relies on a spring-mass
system consisting of a regular grid of vertex positions x⃗, velocities v⃗ and accelerations a⃗ that get
integrated by a backward Euler scheme:

v⃗t = v⃗t−1 +∆t a⃗t and x⃗t = x⃗t−1 +∆t v⃗t (11)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

To obtain the accelerations a⃗t, the following physics-based loss Lmust be minimized by Metamizer:

L = Eint(x⃗
t)−∆t2⟨F⃗ext, a⃗

t⟩+ 1

2
(∆t)2⟨⃗at,Ma⃗t⟩ (12)

Here, F⃗ext corresponds to external forces (such as gravity or wind), M is the mass matrix and Eint
are the internal energies of the cloth specified as follows:

Eint = cstiff
1

2

∑
e⃗∈edges

(||e⃗|| − 1)
2
+ cshear

1

2

∑
ψ∈right angles

(ψ − 90◦)2 + cbend
1

2

∑
θ∈straight angles

(θ − 180◦)2

where cstiff, cshear, cbend are parameters that describe stiffness, shearing and bending properties of the
cloth.

Figure 9: Cloth with various material parameters (cstiff/cshear/cbend) can be simulated.
a) (1000/10/0.01) b) (1000/1000/10) c) (1000/10/1000)

Figure 9 shows results by Metamizer for various cloth parameters. The simulations were performed
at 20 iterations per time step and around 185 iterations per second. Note that L can take negative
values and cannot be interpreted as easily as the mean squared residuals of the previous PDEs.
Thus we ommited L in Table 1 for our cloth simulations. Instead, we provide visualizations for the
reduction of the gradient norm ||∂a⃗L||2 for different iterations per timestep in Appendix G.

6 CONCLUSION

In this work, we introduced Metamizer, a novel neural optimizer for fast and accurate physics sim-
ulations. To this end, we propose a scale-invariant architecture that suggests improved gradient
descent update steps to speed up convergence on a physics-based loss at arbitrary scales. Metamizer
was trained without any training data but directly on the mean square residuals of PDEs such as the
Laplace, advection-diffusion or Navier-Stokes equations and cloth simulations in a meta-learning
manner. Remarkably, our method also generalizes to PDEs that were not covered during train-
ing such as the Poisson, wave and Burgers equation. By choosing a proper number of iterations
per timestep, a trade-off between speed and accuracy can be made. Our results demonstrate that
Metamizer produces fast as well as highly accurate results across a wide range of linear and nonlin-
ear physical systems.

In the future, further physical constrains such as Neumann or Robin boundary conditions and self-
collisions for cloth-dynamics could be included. At the moment, Metamizer is trained for a single
grid size. Thus, increased flexibility could be achieved by training Metamizer on multiple grid
sizes simultaneously or by extending the network architecture to Mesh- or Graph-Neural Networks.
For simulations on Mesh structures, a physics-informed loss based on Galerkin neural networks
(Gao et al., 2022) could be practical. Furthermore, multiple PDEs such as the Navier-Stokes and
advection-diffusion equation could be coupled.

We believe that our approach may have applications in future numerical solvers and speed up ac-
curate simulations in computer games or computer-aided engineering. Since gradient descent ap-
proaches are ubiquitous, our approach may also serve as an inspiration for other gradient-based
applications outside of physics, such as style transfer, scene reconstruction, or optimal control.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Sébastien M R Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas
Zarkias. learn2learn: A library for Meta-Learning research. August 2020. URL http://
arxiv.org/abs/2008.12284.

David Baraff and Andrew Witkin. Large steps in cloth simulation. In Proceedings of the 25th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’98, pp. 43–54, New
York, NY, USA, 1998. Association for Computing Machinery. ISBN 0897919998. doi: 10.1145/
280814.280821. URL https://doi.org/10.1145/280814.280821.

Nathan Bell, Luke N. Olson, Jacob Schroder, and Ben Southworth. PyAMG: Algebraic multigrid
solvers in python. Journal of Open Source Software, 8(87):5495, 2023. doi: 10.21105/joss.05495.
URL https://doi.org/10.21105/joss.05495.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical fourier neural operators: Learning stable dy-
namics on the sphere. In International conference on machine learning, pp. 2806–2823. PMLR,
2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review, 2021. URL https://arxiv.
org/abs/2105.09506.

Linwei Chen, Bowen Fang, Lei Zhao, Yu Zang, Weiquan Liu, Yiping Chen, Cheng Wang, and
Jonathan Li. Deepurbandownscale: A physics informed deep learning framework for high-
resolution urban surface temperature estimation via 3d point clouds. International Journal of
Applied Earth Observation and Geoinformation, 106:102650, 2022. ISSN 1569-8432. doi:
https://doi.org/10.1016/j.jag.2021.102650. URL https://www.sciencedirect.com/
science/article/pii/S0303243421003573.

Shiyi Chen and Gary D Doolen. Lattice boltzmann method for fluid flows. Annual review of fluid
mechanics, 30(1):329–364, 1998.

Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Chang, Sijia Liu, Lisa Amini, and Zhangyang
Wang. Training stronger baselines for learning to optimize. Advances in Neural Information
Processing Systems, 33:7332–7343, 2020.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Zhuo Chen, Jacob McCarran, Esteban Vizcaino, Marin Soljacic, and Di Luo. TENG: Time-evolving
natural gradient for solving PDEs with deep neural nets toward machine precision. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=v1I4zRAjMb.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Ihor Farmaga, Petro Shmigelskyi, Piotr Spiewak, and Lukasz Ciupinski. Evaluation of computa-
tional complexity of finite element analysis. In 2011 11th International Conference The Experi-
ence of Designing and Application of CAD Systems in Microelectronics (CADSM), pp. 213–214,
2011.

11

http://arxiv.org/abs/2008.12284
http://arxiv.org/abs/2008.12284
https://doi.org/10.1145/280814.280821
https://doi.org/10.21105/joss.05495
https://arxiv.org/abs/2105.09506
https://arxiv.org/abs/2105.09506
https://www.sciencedirect.com/science/article/pii/S0303243421003573
https://www.sciencedirect.com/science/article/pii/S0303243421003573
https://openreview.net/forum?id=v1I4zRAjMb
https://openreview.net/forum?id=v1I4zRAjMb

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin networks:
A unified framework for solving pde-governed forward and inverse problems. Computer Methods
in Applied Mechanics and Engineering, 390:114502, 2022.

Nicholas Geneva and Nicholas Zabaras. Modeling the dynamics of pde systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics, 403:109056, 2020.

Shinjan Ghosh, Amit Chakraborty, Georgia Olympia Brikis, and Biswadip Dey. Rans-pinn based
simulation surrogates for predicting turbulent flows, 2023. URL https://arxiv.org/abs/
2306.06034.

Edward Grefenstette, Brandon Amos, Denis Yarats, Phu Mon Htut, Artem Molchanov, Franziska
Meier, Douwe Kiela, Kyunghyun Cho, and Soumith Chintala. Generalized inner loop meta-
learning. arXiv preprint arXiv:1910.01727, 2019.

Francis H Harlow, J Eddie Welch, et al. Numerical calculation of time-dependent viscous incom-
pressible flow of fluid with free surface. Physics of fluids, 8(12):2182, 1965.

Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. phiflow: A differentiable pde solving
framework for deep learning via physical simulations. In NeurIPS workshop, volume 2, 2020.

Philipp Holl, Vladlen Koltun, and Nils Thuerey. Scale-invariant learning by physics inversion.
Advances in Neural Information Processing Systems, 35:5390–5403, 2022.

Ayano Kaneda, Osman Akar, Jingyu Chen, Victoria Alicia Trevino Kala, David Hyde, and Joseph
Teran. A deep conjugate direction method for iteratively solving linear systems. In International
Conference on Machine Learning, pp. 15720–15736. PMLR, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Ching-Yao Lai, Pedram Hassanzadeh, Aditi Sheshadri, Maike Sonnewald, Raffaele Ferrari, and
Venkatramani Balaji. Machine learning for climate physics and simulations, 2024. URL https:
//arxiv.org/abs/2404.13227.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful
medium-range global weather forecasting. Science, 382(6677):1416–1421, 2023.

Kai Weixian Lan, Elias Gueidon, Ayano Kaneda, Julian Panetta, and Joseph Teran. A neural-
preconditioned poisson solver for mixed dirichlet and neumann boundary conditions. arXiv
preprint arXiv:2310.00177, 2023.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-
informed neural operator for large-scale 3d pdes. Advances in Neural Information Processing
Systems, 36, 2024.

Jingyue Liu, Pablo Borja, and Cosimo Della Santina. Physics-informed neural networks to
model and control robots: A theoretical and experimental investigation. Advanced Intelligent
Systems, 6(5):2300385, 2024. doi: https://doi.org/10.1002/aisy.202300385. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202300385.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Sajad Norouzi and M Ebrahimi. A survey on proposed methods to address adam optimizer deficien-
cies. Department of Electrical and Computer Engineering, University of Toronto, 2019.

Levon Nurbekyan, Wanzhou Lei, and Yunan Yang. Efficient natural gradient descent methods for
large-scale pde-based optimization problems. SIAM Journal on Scientific Computing, 45(4):
A1621–A1655, 2023.

12

https://arxiv.org/abs/2306.06034
https://arxiv.org/abs/2306.06034
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2404.13227
https://arxiv.org/abs/2404.13227
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202300385
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202300385

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis. Cupy: A
numpy-compatible library for nvidia gpu calculations. In Proceedings of Workshop on Machine
Learning Systems (LearningSys) in The Thirty-first Annual Conference on Neural Information
Processing Systems (NIPS), 2017. URL http://learningsys.org/nips17/assets/
papers/paper_16.pdf.

Joaquim Peiró and Spencer Sherwin. Finite difference, finite element and finite volume methods
for partial differential equations. In Handbook of Materials Modeling: Methods, pp. 2415–2446.
Springer, 2005.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond, 2019.
URL https://arxiv.org/abs/1904.09237.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Igor Santesteban, Miguel A Otaduy, and Dan Casas. Snug: Self-supervised neural dynamic gar-
ments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8140–8150, 2022.

Sourav Sanyal and Kaushik Roy. Ramp-net: A robust adaptive mpc for quadrotors via physics-
informed neural network. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1019–1025, 2023. doi: 10.1109/ICRA48891.2023.10161410.

Jos Stam. Stable fluids. 1999.

David Stotko, Nils Wandel, and Reinhard Klein. Physics-guided shape-from-template: monocular
video perception through neural surrogate models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11895–11904, 2024.

Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Ki-
won Um. Physics-based Deep Learning. WWW, 2021. URL https://
physicsbaseddeeplearning.org.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
fluid simulation with convolutional networks. In International conference on machine learning,
pp. 3424–3433. PMLR, 2017.

Nils Wandel, Michael Weinmann, and Reinhard Klein. Learning incompressible fluid dynamics
from scratch–towards fast, differentiable fluid models that generalize. ICLR, 2021a.

Nils Wandel, Michael Weinmann, and Reinhard Klein. Teaching the incompressible navier–stokes
equations to fast neural surrogate models in three dimensions. Physics of Fluids, 33(4), 2021b.

13

http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/1904.09237
https://physicsbaseddeeplearning.org
https://physicsbaseddeeplearning.org

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394:56–81, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL QUALITATIVE RESULTS

In this Section we provide additional qualitative results for Burgers equation with µ = 0.3/1 (Figure
10), the advection-diffusion equation with D = 0.1/0.5/2/10 (Figure 11) and the Poisson equation
(Figure 12) on a 100 × 100 grid. Furthermore, we trained Metamizer on a larger 400 × 400 grid
to enable fluid simulations at higher Reynolds numbers. Figure 13 demonstrates that Metamizer is
able to simulate complex turbulent fluid dynamics at Re = 2000.

Figure 10: Burgers equation with µ = 0.3/1

Figure 11: Advection-Diffusion equation with D = 0.1/0.5/2/10. (Domain Boundaries have
Dirichlet BC = 0.)

Figure 12: Solution of the Poisson equation for the electrostatic potential of two oppositely charged
particles within a box with 0-boundary conditions. Note, that Metamizer was only trained on the
Laplace equation (f = 0) while, here, f ̸= 0 at the particle positions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 13: Simulation of turbulent fluid dynamics at Re = 2000 (µ = 0.1, ρ = 4, D = 100, ||v⃗|| =
0.5) performed by Metamizer on a 400× 400 grid.

B DOMAIN-SIZE DEPENDENT PERFORMANCE

In order to investigate the domain size dependent performance scaling of Metamizer, we trained
another network on a 400 × 400 grid to solve the Laplace equation. In the following, we compare
Metamizers performance scaling to GPU and CPU based solvers.

B.1 COMPARISON TO GPU BASED SOLVERS

We run Metamizer against various GPU based solvers of the CuPy package on the same NVidia
Geforce RTX 4090. As shown in Figure 6, Metamizer shows a similar convergence speed for the
Laplace equation on a 100 × 100 grid. On a larger 400 × 400 grid (see Figure 14), Metamizer
demonstrates improved scaling behavior compared to sparse linear system solvers resulting in about
2× faster convergence than conjugate gradients or MINRES.

This is remarkable because Metamizer is a more general optimizer that relies only on local gradients
and can be used to solve for example nonlinear PDEs or cloth simulations as well. Conjugate
gradient methods on the other hand require full knowledge of the underlying (symmetric) matrix A
to orthogonalize update steps and compute appropriate step sizes α.

Figure 14: Performance comparison of Metamizer with various GPU based solvers of the CuPy
package on a 400× 400 grid. Metamizer is about 2× faster than CG on the same GPU.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.2 COMPARISON TO CPU BASED SOLVERS

We compared Metamizer to CPU based solvers as well. On a 100×100 grid, CPU based solvers are
actually slightly faster than GPU based solvers and Metamizer (see Figure 15). This is because CPUs
exhibit a smaller computational overhead to GPUs and run at a higher clockrate. However, on a
larger 400×400 grid, GPU parallelization pays off significantly resulting in 10× faster convergence
speed of Metamizer compared to CPU based solvers (see Figure 16).

Figure 15: Performance comparison of Metamizer with various CPU based solvers of the SciPy
package on a 100× 100 grid.

Figure 16: Performance comparison of Metamizer with various CPU based solvers of the SciPy
package on a 400× 400 grid. Metamizer is about 10× faster than CG on a CPU.

C PRECONDITIONERS

C.1 INCOMPLETE LU (ILU) AND ALGEBRAIC MULTI GRID (AMG) PRECONDITIONERS

We compared Metamizer with preconditioned conjugated gradient methods based on incomplete
LU factorization and algebraic multigrids. To this end, we used the pyAMG library (Bell et al.,
2023). AMG preconditioning resulted in a significant speed-up over non-preconditioned solvers on
the CPU (see Figure 17). While a GPU based algebraic multigrid implementation will most likely
outperform Metamizer on the Poisson equation, Metamizer is a more general approach that only
requires local gradients and can be applied for example to non-symmetric Matrices, nonlinear PDEs
or cloth simulations as well.

C.2 JACOBI PRECONDITIONER

We tested the diagonal Jacobi preconditioner for CG, GMRES and MINRES. Since the diagonal of
the Laplace operator on a regular grid corresponds closely to the identity matrix, this preconditioner
did not help to significantly reduce the number of iterations but resulted in a slight computational
overhead and thus a slowdown of convergence (see Figure 18).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 17: Performance comparison of Metamizer with conjugated gradients preconditioned on the
incomplete LU factorization and the algebraic multigrid method (pyAMG (Bell et al., 2023)) on a
400x400 grid.

Figure 18: Performance comparison of Metamizer with various GPU based solvers of the CuPy
package that make use of a Jacobi Preconditioner on a 400x400 grid. In comparison to non-
preconditioned solvers (Figure 14) this resulted in a slight slowdown of convergence.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D COMPARISON TO NEWTON-CG, NONLINEAR CG AND L-BFGS-B

We added further comparisons for optimizers that, like Metamizer, rely only on local gradients of
the loss. As can be seen in Figure 19, optimizers like Newton-CG, Nonlinear CG or L-BFGS exhibit
much slower convergence.

Figure 19: Performance comparison of Metamizer with various optimizers that, like Metamizer, rely
only on local gradients of the loss. Here, we make use of the SciPy package on a 100× 100 grid on
a CPU.

E COMPARISON OF DIFFERENT LEARNING RATES

We compared various different learning rates for all gradient descent solvers and only reported
results for learning rates that resulted in good trade-offs between convergence speed and accuracy
in Figure 6. Figure 20 shows a performance comparison of Metamizer with Adagrad, Adam and
AdamW at different learning rates.

F COMPARISON TO GROUND TRUTH

We compared the mean squared errors of Metamizer and various GPU based linear system solvers to
analytical ground truth values of the Laplace equation. Figure 21 shows fast convergence to highly
accurate results as already indicated by the mean residual errors in Figure 14.

G RESIDUAL LOSS GRADIENTS FOR CLOTH SIMULATIONS

Figure 22 shows how Metamizer reduces the gradient norm ||∂a⃗L||2 of the physics-based Loss
defined in Equation 12 with respect to the accelerations of the cloth for 10, 20 and 50 iterations
per timestep. With 10 iterations, Metamizer reaches a gradient norm of around 3 × 10−2, with 20
iterations, it reaches a gradient norm of around 1×10−2 and with 50 iterations, it reaches a gradient
norm of around 4× 10−3.

H SCALING PARAMETERS

In Figure 23, we show additional results how Metamizer scales si for 3, 5, 10, 20, 50, 100 iterations
per timestep on the Advection-Diffusion equation. For 50 and 100 iterations, a significant amount
of iterations is “wasted” to scale up si for the next timestep. This could be improved in the future by
automatically scaling si to a certain percentage (e.g. 20 %) of the maximum scale of the previous
time step when starting with a new time step.

I LAPLACE OPERATOR DETAILS

During our experiments, we found that naively applying the finite-difference Laplace operator results
in very small gradients - even if the residuals are still quite large. Intuition on this problem is

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 20: Performance comparison of Metamizer with various GPU based Gradient Descent Meth-
ods at different learning rates on a 100× 100 grid.

provided in Figure 24: If we want to lower the Laplacian for the center vertex (marked in black),
we could increase the value of that vertex (marked in green) but we could also decrease the values
of its neighboring vertices (marked in red). The same is true for all vertices, such that in the end
the gradients pointing upwards get canceled out fairly exactly be the neighboring gradients pointing
downwards. To avoid this issue, we detach (and thereby remove) all the neighbor-gradients (marked
in red) so that we are only left with the green gradients and can make much better progress in solving
the Laplace operator.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 21: Mean squared errors of Metamizer and various GPU based solvers of the CuPy package
on a 400× 400 grid compared to analytical ground truth values of the Laplace equation.

Figure 22: Metamizer iteratively decreases the gradient norm of a physics-based loss for nonlinear
cloth simulations on a 100× 100 grid. The more iterations per timestep are taken the more accurate
is the simulation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 23: Scaling parameters for Advection-Diffusion for different numbers of iterations per time
step

Figure 24: Implementation detail for Laplace operator - example in 1D

J TRAINING POOL DETAILS

The training pool strategy as described in Section 4 does not require any precomputed training data.
Instead, Metamizer learns to solve the PDEs purely based on the physics-constrained loss and ran-
domized boundary conditions that can be generated on the fly similar to Wandel et al. (2021a),
Stotko et al. (2024) or Geneva & Zabaras (2020). For example, in case of fluid simulations we gen-
erate random boundaries by placing randomly moving boxes within the fluid domain, randomizing
µ and ρ or changing the flow velocity. In case of cloth simulations, we randomize cloth parameters
such as cstiff, cshear and cbend as well as the points at which the cloth is fixed. For the advection-
diffusion equation, we randomized the diffusivity parameter D as well as the velocity field v⃗ and
the domain boundary. Full details about the different randomization strategies will be provided with
our code. After training, Metamizer shows good performance across a wide range of PDEs and
even generalizes to PDEs that were not covered during training such the wave, Poisson or Burgers
equation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

K VIDEO

The supplementary video demonstrates how Metamizer solves the Laplace, diffusion-advection,
wave, Navier-Stokes and Burgers equations as well as cloth simulations. The time-dependent PDEs
are visualized at the speed of the simulation.

23

	Introduction
	Related Work
	Foundations
	Method
	Results
	Linear Second Order PDEs
	Poisson and Laplace equation
	Advection-Diffusion equation
	Wave equation

	Non-Linear PDEs
	Incompressible Navier-Stokes equation
	Burgers equation
	Cloth dynamics

	Conclusion
	Additional qualitative results
	Domain-size dependent performance
	Comparison to GPU based solvers
	Comparison to CPU based solvers

	Preconditioners
	Incomplete LU (ILU) and Algebraic Multi Grid (AMG) Preconditioners
	Jacobi Preconditioner

	Comparison to Newton-CG, nonlinear CG and L-BFGS-B
	Comparison of different learning rates
	Comparison to Ground Truth
	Residual loss gradients for cloth simulations
	Scaling parameters
	Laplace operator Details
	Training Pool Details
	Video

