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7 APPENDIX

Figure 6: Average test loss of MAML as a function of the learning rate αt (training) on mixed linear
regression, showing the transition from strongly overparameterized (a), to weakly overparameterized
(b), weakly underparameterized (c) and strongly underparameterized (d). As expected, predictions
of theory are accurate only in panels a and d. The amount of validation data increases from panels
a to d, with the following values: m = 1, nv = 2 (a), m = 5, nv = 5 (b), m = 10, nv = 10 (c),
m = 10, nv = 40. Other parameters are equal to: nt = 40, nr = 40, p = 50, σ = 0.5., ν = 0.5,
αr = 0.2, ω0 = 0, w0 = (0.1, 0.1, . . . , 0.1) (note that overfitting occurs since ω0 6= w0). In the
experiments, each run is evaluated on 100 tasks of 50 data points each, and each point is an average
over 100 runs.

7.1 DEFINITION OF THE LOSS FUNCTION

We consider the problem of mixed linear regression y = Xw + z with squared loss, where X is
a n × p matrix of input data, each row is one of n data vectors of dimension p, z is a n × 1 noise
vector, w is a p× 1 vector of generating parameters and y is a n× 1 output vector. Data is collected
for m tasks, each with a different value of the parameters w and a different realization of the input
X and noise z. We denote by w(i) the parameters for task i, for i = 1, . . . ,m. For a given task i, we
denote by Xt(i), Xv(i) the input data for, respectively, the training and validation sets, by zt(i), zv(i)

the corresponding noise vectors and by yt(i),yv(i) the output vectors. We denote by nt, nv the data
sample size for training and validations sets, respectively.

For a given task i, the training output is equal to

yt(i) = Xt(i)w(i) + zt(i) (18)
Similarly, the validation output is equal to

yv(i) = Xv(i)w(i) + zv(i). (19)

We consider MAML as a model for meta-learning (Finn et al 2017). The meta-training loss is equal
to

Lmeta =
1

2nvm

m∑
i=1

∣∣∣yv(i) −Xv(i)θ(i)(ω)
∣∣∣2 (20)

13



Under review as a conference paper at ICLR 2021

where vertical brackets denote euclidean norm, and the estimated parameters θ(i)(ω) are equal to
the one-step gradient update on the single-task training loss L(i) = |yt(i) − Xt(i)θ(i)|2/2nt, with
initial condition given by the meta-parameter ω. The single gradient update is equal to

θ(i)(ω) =

(
Ip −

αt
nt
Xt(i)TXt(i)

)
ω +

αt
nt
Xt(i)Tyt(i) (21)

where Ip is the p × p identity matrix and αt is the learning rate. We seek to minimize the meta-
training loss with respect to the meta-parameter ω, namely

ω? = arg min
ω
Lmeta (22)

We evaluate the solution ω? by calculating the meta-test loss

Ltest = E
w′

E
zs

E
Xs

E
zr

E
Xr

1

2ns
|ys −Xsθ?|2 (23)

Note that the test loss is calculated over test data Xs, zs, and test parameters w′, namely

ys = Xsw′ + zs (24)

Furthermore, the estimated parameters θ? are calculated on a separate set of target data Xr, zr,
namely

θ? =

(
Ip −

αr
nr
XrTXr

)
ω? +

αr
nr
XrTyr (25)

yr = Xrw′ + zr (26)

Note that the learning rate and sample size can be different at testing, denoted by αr, nr, ns. We
are interested in calculating the average test loss, that is averaged over all possible realizations of
meta-training data, equal to

Ltest = E
w
E
zt

E
Xt

E
zv

E
Xv
Ltest = E

w
E
zt

E
Xt

E
zv

E
Xv

E
w′

E
zs

E
Xs

E
zr

E
Xr

1

2ns
|ys −Xsθ?|2 (27)

7.2 DEFINITION OF PROBABILITY DISTRIBUTIONS

We assume that all random variables are Gaussian. In particular, we assume that the rows of the
matrix X are independent, and each row, denoted by x, is distributed according to a multivariate
Gaussian with zero mean and unitary covariance

x ∼ N (0, Ip) (28)

where Ip is the p × p identity matrix. Similarly, the noise is distributed following a multivariate
Gaussian with zero mean and variance equal to σ2, namely

z ∼ N
(
0, σ2In

)
(29)

Finally, the generating parameters are also distributed according to a multivariate Gaussian of vari-
ance ν2, namely

w ∼ N
(
w0,

ν2

p
Ip

)
(30)

The generating parameter w is drawn once and kept fixed within a task, and drawn independently
for different tasks. The values of x and z are drawn independently in all tasks and datasets (train-
ing, validation, target, test). In order to perform the calculations in the next section, we need the
following results.
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Lemma 1. Let X be a Gaussian n × p random matrix with independent rows, and each row has
covariance equal to Ip, the p× p identity matrix. Then:

E
[
XTX

]
= nIp (31)

E
[(
XTX

)2]
= n (n+ p+ 1) Ip = n2µ2Ip (32)

E
[(
XTX

)3]
= n

(
n2 + p2 + 3np+ 3n+ 3p+ 4

)
Ip = n3µ3Ip (33)

E
[(
XTX

)4]
= n

(
n3 + p3 + 6n2p+ 6np2+ (34)

+6n2 + 6p2 + 17np+ 21n+ 21p+ 20
)
Ip = n4µ4Ip (35)

E
[
XTX Tr

(
XTX

)]
=
(
n2p+ 2n

)
Ip = pn2µ1,1Ip (36)

E
[(
XTX

)2
Tr
(
XTX

)]
= n

(
n2p+ np2 + np+ 4n+ 4p+ 4

)
Ip = pn3µ2,1Ip (37)

E
[
XTXTr

((
XTX

)2)]
= n

(
n2p+ np2 + np+ 4n+ 4p+ 4

)
Ip = pn3µ1,2Ip (38)

E
[(
XTX

)2
Tr
((
XTX

)2)]
= n

(
n3p+ np3 + 2n2p2 + 2n2p+ 2np2+ (39)

+8n2 + 8p2 + 21np+ 20n+ 20p+ 20
)
Ip = pn4µ2,2Ip (40)

where the last equality in each of these expressions defines the variables µ. Furthermore, for any
n× n symmetric matrix C and any p× p symmetric matrix D, independent of X:

E
[
XTCX

]
= Tr (C) Ip (41)

E
[
XTXDXTX

]
= n (n+ 1)D + nTr (D) Ip (42)

Proof. The Lemma follows by direct computations of the above expectations, using Isserlis’ theo-
rem. Particularly, for higher order exponents, combinatorics plays a crucial role in counting products
of different Gaussian variables in an effective way.

Lemma 2. Let Xv(i), Xt(i) be Gaussian random matrices, of size respectively nv × p and nt × p,
with independent rows, and each row has covariance equal to Ip, the p × p identity matrix. Let p
and nt be large, both of order o(ξ), where ξ is a large number. Then:

Xv(i)Xv(i)T = p Inv + o
(
ξ1/2

)
(43)

Xv(i)Xt(i)TXt(i)Xv(i)T = pnt Inv + o
(
ξ3/2

)
(44)

Xv(i)Xt(i)TXt(i)Xt(i)TXt(i)Xv(i)T = pnt(nt + p+ 1)Inv + o
(
ξ5/2

)
(45)

Note that the order o (ξ) applies to all elements of the matrix in each expression. For i 6= j

Xv(i)Xv(j)T = o
(
ξ1/2

)
(46)

Xv(i)Xt(i)TXt(i)Xv(j)T = o
(
ξ3/2

)
(47)

Xv(i)Xt(i)TXt(i)Xt(j)TXt(j)Xv(j)T = o
(
ξ5/2

)
(48)
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Furthermore, for any p×p symmetric matrixD independent of X, where the trace Tr(D2) is of order
o(ξδ)

Xv(i)DXv(i)T = Tr (D) Inv + o
(
ξδ/2

)
(49)

Xv(i)Xt(i)TXt(i)DXv(i)T = Tr (D)ntInv + o
(
ξ1+δ/2

)
(50)

Xv(i)Xt(i)TXt(i)DXt(i)TXt(i)Xv(i)T = Tr (D)nt(nt + p+ 1)Inv + o
(
ξ2+δ/2

)
(51)

Xv(i)DXv(j)T = o
(
ξδ/2

)
(52)

Xv(i)Xt(i)TXt(i)DXv(j)T = o
(
ξ1+δ/2

)
(53)

Xv(i)Xt(i)TXt(i)DXt(j)TXt(j)Xv(j)T = o
(
ξ2+δ/2

)
(54)

Proof. The Lemma follows by direct computations of the expectations and variances of each term.

Lemma 3. Let Xv , Xt be Gaussian random matrices, of size respectively nv × p and nt × p, with
independent rows, and each row has covariance equal to Ip, the p × p identity matrix. Let nv and
nt be large, both of order o(ξ), where ξ is a large number. Then:

XvTXv = nv Ip + o
(
ξ1/2

)
(55)

XtTXtXvTXv = ntnv Ip + o
(
ξ3/2

)
(56)

XtTXtXvTXvXtTXt = nvnt(nt + p+ 1)Ip + o
(
ξ5/2

)
(57)

Note that the order o (ξ) applies to all elements of the matrix in each expression.

Proof. The Lemma follows by direct computations of the expectations and variances of each term.

7.3 PROOF OF THEOREMS 1 AND 2

We calculate the average test loss as a function of the hyperparameters nt, nv, nr, p,m, αt, αr, σ, ν.
Using the expression in Eq.24 for the test output, we rewrite the test loss in Eq.27 as

Ltest = E
1

2ns
|Xs (w′ − θ?) + zs|2 (58)

We start by averaging this expression with respect to Xs, zs, noting that θ? does not depend on test
data. We further average with respect to w′, but note that θ? depends on test parameters, so we
average only terms that do not depend on θ?. Using Eq.31, the result is

Ltest =
σ2

2
+
ν2

2
+
|w0|2

2
+ E

[
|θ?|2

2
− (w0 + δw′)

T
θ?

]
(59)

where we define δw′ = w′ − w0. The second term in the expectation is linear in θ? and can be
averaged over Xr, zr, using Eq.25 and noting that ω? does not depend on target data. The result is

E
Xr

E
zr
θ? = (1− αr)ω? + αr (w0 + δw′) (60)

Using Eq.60 we average over w′ the second term in the expectation of Eq.59 and find

Ltest =
σ2

2
+

(
1

2
− αr

)(
ν2 + |w0|2

)
− (1− αr)wT

0 E ω? + E
|θ?|2

2
(61)
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We average the last term of this expression over zr,w′, using Eq.25 and noting that ω? does not
depend on target data and test parameters. The result is

E
w′

E
zr
|θ?|2 = |ω?|2 +

α2
r

n2r
(ω? −w0)

T
(
XrTXr

)2
(ω? −w0)− (62)

− 2αr
nr

XrTXrω?T (ω? −w0) +
α2
rσ

2

n2r
Tr
[
XrXrT

]
+
α2
rν

2

n2rp
Tr
[(
XrXrT

)2]
(63)

We now average over Xr, again noting that ω? does not depend on target data. Using Eqs.31, 32,
we find

E
Xr

E
w′

E
zr
|θ?|2 = |ω?|2 + α2

r

(
1 +

p+ 1

nr

)(
ν2 + |ω? −w0|2

)
− 2αrω

?T (ω? −w0) +
α2
rσ

2p

nr
(64)

We can now rewrite the average test loss 61 as

Ltest =
σ2

2

(
1 +

α2
rp

nr

)
+

1

2

[
(1− αr)2 + α2

r

p+ 1

nr

](
ν2 + E |ω? −w0|2

)
(65)

In order to average the last term, we need an expression for ω?. We note that the loss in Eq.20
is quadratic in ω, therefore the solution of Eq.22 can be found using standard linear algebra. In
particular, the loss in Eq.20 can be rewritten as

Lmeta =
1

2nvm
|γ −Bω|2 (66)

where γ is a vector of shape nvm× 1, and B is a matrix of shape nvm× p. The vector γ is a stack
of m vectors

γ =


Xv(1)

(
Ip − αt

nt
Xt(1)TXt(1)

)
w(1) − αt

nt
Xv(1)Xt(1)T zt(1) + zv(1)

...
Xv(m)

(
Ip − αt

nt
Xt(m)TXt(m)

)
w(m) − αt

nt
Xv(m)Xt(m)T zt(m) + zv(m)

 (67)

Similarly, the matrix B is a stack of m matrices

B =


Xv(1)

(
Ip − αt

nt
Xt(1)TXt(1)

)
...

Xv(m)
(
Ip − αt

nt
Xt(m)TXt(m)

)
 (68)

We denote by Ip the p × p identity matrix. The expression for ω that minimizes Eq.66 depends on
whether the problem is overparameterized (p > nvm) or underparameterized (p < nvm), therefore
we distinguish these two cases in the following sections.

7.3.1 OVERPARAMETERIZED CASE (THEOREM 1)

In the overparameterized case (p > nvm), under the assumption that the inverse of BBT exists, the
value of ω that minimizes Eq.66 is equal to

ω? = BT
(
BBT

)−1
γ +

[
Ip −BT

(
BBT

)−1
B
]
ω0 (69)

The vector ω0 is interpreted as the initial condition of the parameter optimization of the outer loop,
when optimized by gradient descent. Note that the matrix B does not depend on w, zt, zv , and
Ew Ezt Ezv γ = Bw0. We denote by δγ the deviation from the average, and we have

ω? −w0 = BT
(
BBT

)−1
δγ +

[
Ip −BT

(
BBT

)−1
B
]

(ω0 −w0) (70)

We square this expression and average over w, zt, zv . We use the cyclic property of the trace and
the fact that BT

(
BBT

)−1
B is a projection. The result is

|ω? −w0|2 = Tr
[
Γ
(
BBT

)−1]
+ (ω0 −w0)

T
[
Ip −BT

(
BBT

)−1
B
]

(ω0 −w0) (71)
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The matrix Γ is defined as

Γ = E
w
E
zt
E
zv
δγ δγT =

Γ(1) 0 0

0
. . . 0

0 0 Γ(m)

 (72)

Where matrix blocks are given by the following expression

Γ(i) =
ν2

p
Xv(i)

(
Ip −

αt
nt
Xt(i)TXt(i)

)2

Xv(i)T + σ2

(
Inv +

α2
t

n2t
Xv(i)Xt(i)TXt(i)Xv(i)T

)
(73)

It is convenient to rewrite the scalar product of Eq.71 in terms of the trace of outer products

|ω? −w0|2 = Tr
[(
BBT

)−1 (
Γ−B (ω0 −w0) (ω0 −w0)

T
BT
)]

+ |ω0 −w0|2 (74)

In order to calculate E |ω? −w0|2 in Eq.65 we need to average this expression over training and
validation data. These averages are hard to compute since they involve nonlinear functions of the
data. However, we can approximate these terms by assuming that p and nt are large, both of order
o(ξ), where ξ is a large number. Furthermore, we assume that |ω0 −w0| is of order o(ξ−1/4). Using
Lemma 2, together with the expressions of B (Eq.68) and Γ (Eqs.72,73), we can prove that

1

p
BBT =

[
(1− αt)2 + α2

t

p+ 1

nt

]
Invm + o

(
ξ−1/2

)
(75)

Γ =

{
ν2
[
(1− αt)2 + α2

t

p+ 1

nt

]
+ σ2

(
1 +

α2
tp

nt

)}
Invm + o

(
ξ−1/2

)
(76)

B (ω0 −w0) (ω0 −w0)
T
BT = |ω0 −w0|2

[
(1− αt)2 + α2

t

p+ 1

nt

]
Invm + o

(
ξ−1/2

)
(77)

Using Eq.75 and Taylor expansion, the inverse
(
BBT

)−1
is equal to

(
BBT

)−1
=

1

p

[
(1− αt)2 + α2

t

p+ 1

nt

]−1
Invm + o

(
ξ−3/2

)
, (78)

Substituting the three expressions above in Eq.74, and ignoring terms of lower order, we find

E |ω? −w0|2 =

(
1− nvm

p

)
|ω0 −w0|2 +

nvm

p

ν2 + σ2
1 +

α2
tp
nt

(1− αt)2 + α2
t
p+1
nt

+ o
(
ξ−3/2

)
(79)

Substituting this expression into in Eq.65, we find the value of average test loss

Ltest =
σ2

2

(
1 +

α2
rp

nr

)
+ (80)

+hr

ν2
2

(
1 +

nvm

p

)
+

1

2

(
1− nvm

p

)
|ω0 −w0|2 +

σ2nvm

2p

1 +
α2
tp
nt

ht

+ o
(
ξ−3/2

)
(81)

where we define the following expressions

ht = (1− αt)2 + α2
t

p+ 1

nt
and hr = (1− αr)2 + α2

r

p+ 1

nr
(82)

7.3.2 UNDERPARAMETERIZED CASE (THEOREM 2)

In the underparameterized case (p < nvm), under the assumption that the inverse of BTB exists,
the value of ω that minimizes Eq.66 is equal to

ω? =
(
BTB

)−1
BTγ (83)
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Note that the matrix B does not depend on w, zt, zv , and Ew Ezt Ezv γ = Bw0. We denote by δγ
the deviation from the average, and we have

|ω? −w0|2 = Tr
[(
BTB

)−1
BT δγ δγTB

(
BTB

)−1]
(84)

We need to average this expression in order to calculate E |ω? −w0|2 in Eq.65. We start by aver-
aging δγ δγT over w, zt, zv , since B does not depend on those variables. Note that w, zt, zv are
independent on each other and across tasks. As in previous section, we denote by Γ the result of this
operation, given by Eq.s72, 73. Finally, we need to average over the training and validation data

E |ω? −w0|2 = E
Xt

E
Xv

Tr
[(
BTB

)−1
BTΓB

(
BTB

)−1]
(85)

It is hard to average this expression because it includes nonlinear functions of the data. However,
we can approximate these terms by assuming that either m or ξ (or both) is a large number, where
ξ is defined by assuming that both nt and nv are of order o(ξ). Using Lemma 3, together with the
expression of B (Eq.68), and noting that each factor in Eq.85 has a sum over m independent terms,
we can prove that

1

nvm
BTB =

(
1− 2αt + α2

tµ2

)
Ip + o

(
(mξ)−1/2

)
(86)

The expression for µ2 is given in Eq.32. Using this result and a Taylor expansion, the inverse is
equal to

nvm
(
BTB

)−1
=
(
1− 2αt + α2

tµ2

)−1
Ip + o

(
(mξ)−1/2

)
(87)

Similarly, the term BTΓB is equal to its average plus a term of smaller order
1

nvm
BTΓB =

1

nvm
E
(
BTΓB

)
+ o

(
(mξ)−1/2

)
(88)

We substitute these expressions in Eq.85 and neglect lower orders. Here we show how to cal-
culate explicitly the expectation of BTΓB. For ease of notation, we define the matrix At(i) =

I − αt
nt
Xt(i)TXt(i). Using the expressions of B (Eq.68) and Γ (Eqs.72,73), the expression for

BTΓB is given by

BTΓB = σ2
m∑
i=1

At(i)
T
Xv(i)TXv(i)At(i) +

ν2

p

m∑
i=1

(
At(i)

T
Xv(i)TXv(i)At(i)

)2
+

+
α2
tσ

2

n2t

m∑
i=1

At(i)
T
Xv(i)TXv(i)Xt(i)TXt(i)Xv(i)TXv(i)At(i) (89)

We use Eqs.31, 32 to calculate the average of the first term in Eq.89

E
Xt

E
Xv

m∑
i=1

At(i)
T
Xv(i)TXv(i)At(i) = nvm

(
1− 2αt + α2

tµ2

)
Ip (90)

We use Eqs.31, 32, 33, 41, 36, 37, 38, 39 to calculate the average of the second term

E
Xt

E
Xv

m∑
i=1

(
At(i)

T
Xv(i)TXv(i)At(i)

)2
= E
Xt

m∑
i=1

[
nv (nv + 1)At(i)

4
+ nvA

t(i)2Tr
(
At(i)

2
)]

=

(91)

= mnv (nv + 1)
(
1− 4αt + 6α2

tµ2 − 4α3
tµ3 + α4

tµ
4
)
Ip+

+mnvp
(
1− 4αt + 2α2

tµ2 + 4α2
tµ1,1 − 4α3

tµ2,1 + α4
tµ2,2

)
Ip (92)

Finally, we compute the average of the third term, using Eqs.31, 32, 33, 34, 41, 36, 37

E
Xt

E
Xv

m∑
i=1

At(i)
T
Xv(i)TXv(i)Xt(i)TXt(i)Xv(i)TXv(i)At(i) = (93)

= E
Xt

m∑
i=1

[
nv (nv + 1)At(i)

T
Xt(i)TXt(i)At(i) + nvA

t(i)TAt(i)Tr
(
Xt(i)TXt(i)

)]
= (94)

= mnv (nv + 1)nt
(
1− 2αtµ2 + α2

tµ3

)
Ip +mnvntp

(
1− 2αtµ1,1 + α2

tµ2,1

)
Ip (95)
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Putting everything together in Eq.85, and applying the trace operator, we find the following expres-
sion for the meta-parameter variance

E |ω? −w0|2 =
p

nvm

(
1− 2αt + α2

tµ2

)−2{
σ2
(
1− 2αt + α2

tµ2

)
+

+
α2
tσ

2

nt

[
(nv + 1)

(
1− 2αtµ2 + α2

tµ3

)
+ p

(
1− 2αtµ1,1 + α2

tµ2,1

)]
+
ν2

p

[
(nv + 1)

(
1− 4αt + 6α2

tµ2 − 4α3
tµ3 + α4

tµ
4
)

+

+ p
(
1− 4αt + 2α2

tµ2 + 4α2
tµ1,1 − 4α3

tµ2,1 + α4
tµ2,2

) ]}
+ o

(
(mξ)−3/2

)
(96)

We rewrite this expression as

E |ω? −w0|2 =
p

ht2nvm

{
σ2

[
ht +

α2
t

nt
[(nv + 1) g1 + pg2]

]
+
ν2

p
[(nv + 1) g3 + pg3]

}
+

+ o
(

(mξ)−3/2
)

(97)

where we defined the following expressions for gi

g1 = 1− 2αtµ2 + α2
tµ3 (98)

g2 = 1− 2αtµ1,1 + α2
tµ2,1 (99)

g3 = 1− 4αt + 6α2
tµ2 − 4α3

tµ3 + α4
tµ

4 (100)

g4 = 1− 4αt + 2α2
tµ2 + 4α2

tµ1,1 − 4α3
tµ2,1 + α4

tµ2,2 (101)

and µi are equal to

µ2 =
1

nt
(nt + p+ 1) (102)

µ3 =
1

n2t

(
n2t + p2 + 3ntp+ 3nt + 3p+ 4

)
(103)

µ4 =
1

n3t

(
n3t + p3 + 6n2tp+ 6ntp

2 + 6n2t + 6p2 + 17ntp+ 21nt + 21p+ 20
)

(104)

µ1,1 =
1

n2tp

(
n2tp+ 2nt

)
(105)

µ2,1 =
1

n2tp

(
n2tp+ ntp

2 + ntp+ 4nt + 4p+ 4
)

(106)

µ2,2 =
1

n3tp

(
n3tp+ ntp

3 + 2n2tp
2 + 2n2tp+ 2ntp

2 + 8n2t + 8p2 + 21ntp+ 20nt + 20p+ 20
)

(107)

Substituting this expression back into Eq.65 returns the final expression for the average test loss,
equal to

Ltest =
σ2

2

(
1 +

α2
rp

nr

)
+
hrν2

2
+

+
hr

2ht2
p

nvm

{
σ2

[
ht +

α2
t

nt
[(nv + 1) g1 + pg2]

]
+
ν2

p
[(nv + 1) g3 + pg4]

}
+ o

(
(mξ)−3/2

)
(108)

7.4 PROOF OF THEOREM 3

In this section, we release some assumption on the distributions of data and parameters. In particular,
we do not assume a specific distribution for input data vectors x and generating parameter vector
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w, besides that different data vectors are independent, and so are data and parameters for different
tasks. We further assume that those vectors have zero mean, and denote their covariance as

Σ = ExxT (109)

Σw = EwwT (110)

We will also use the following matrix, including fourth order moments

F = E
(
xTΣx

)
xxT (111)

We do not make any assumption about the distribution of x, but we note that, if x is Gaussian, then
F = 2Σ3 + ΣTr

(
Σ2
)
. We keep the assumption that the output noise is Gaussian and independent

for different data points and tasks, with variance σ2. Using the same notation as in previous sections,
we will also use the following expressions (for any p× p matrix A)

E
[
XTX

]
= nΣ (112)

E Tr
[
ΣXTXAXTX

]
= Tr

{
A
[
n2Σ3 + n

(
F − Σ3

)]}
(113)

We proceed to derive the same formula under these less restrictive assumptions, in the overparam-
eterized case only, following is the same derivation of section 7.3. We further assume ω0 = 0,
w0 = 0. Again we start from the expression in Eq.24 for the test output, and we rewrite the test loss
in Eq.27 as

Ltest = E
1

2ns
|Xs (w′ − θ?) + zs|2 (114)

We average this expression with respect to Xs, zs, noting that θ? does not depend on test data. We
further average with respect to w′, but note that θ? depends on test parameters, so we average only
terms that do not depend on θ?. Using Eq.112, the result is

Ltest =
σ2

2
+

1

2
Tr (ΣΣw) + E

[
1

2
θ?TΣ θ? −w′

T
Σ θ?

]
(115)

The second term in the expectation is linear in θ? and can be averaged over Xr, zr, using Eq.25 and
noting that ω? does not depend on target data. The result is

E
Xr

E
zr
θ? = (I − αrΣ)ω? + αrΣw′ (116)

Furthermore, we show below (Eq.128) that the following average holds

E
w
E
zt
E
zv
ω? = 0 (117)

Combining Eqs.116, 117, we can calculate the second term in the expectation of Eq.115 and find

Ltest =
σ2

2
+

1

2
Tr (ΣΣw)− αrTr

(
Σ2Σw

)
+ E

1

2
θ?TΣ θ? (118)

We start by averaging the third term of this expression over zr,w′, using Eq.25 and noting that ω?
does not depend on target data and test parameters. The result is

E
w′

E
zr
θ?TΣ θ? = Tr

[
Σ

(
I − αr

nr
XrTXr

)
ω?ω?T

(
I − αr

nr
XrTXr

)]
+ (119)

+
α2
rσ

2

n2r
Tr
[
XrΣXrT

]
+
α2
r

n2r
Tr
[
ΣXrTXrΣwX

rTXr
]

(120)

We now average over Xr, again noting that ω? does not depend on target data. Using Eqs.112, 113,
we find

E
Xr

E
w′

E
zr
θ?TΣ θ? = Tr

{
ω?ω?T

[
Σ (I − αrΣ)

2
+
α2
r

nr

(
F − Σ3

)]}
+ (121)

+
α2
rσ

2

nr
Tr
(
Σ2
)

+ α2
rTr
{

Σw

[
Σ3 +

1

nr

(
F − Σ3

)]}
(122)
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We can now rewrite the average test loss in Eq.118 as

Ltest =
σ2

2

[
1 +

α2
r

nr
Tr
(
Σ2
)]

+
1

2
Tr
[(

Σw + E ω?ω?T
)
Hr
]

(123)

where we define the following matrix

Hr =

[
Σ (I − αrΣ)

2
+
α2
r

nr

(
F − Σ3

)]
(124)

In order to average the last term, we need an expression for ω?. We note that the loss in Eq.20
is quadratic in ω, therefore the solution in Eq.22 can be found using standard linear algebra. In
particular, the loss in Eq.20 can be rewritten as

Lmeta =
1

2nvm
|γ −Bω|2 (125)

where γ is a vector of shape nvm× 1, and B is a matrix of shape nvm× p. The vector γ is a stack
of m vectors

γ =


Xv(1)

(
I − αt

nt
Xt(1)TXt(1)

)
w(1) − αt

nt
Xv(1)Xt(1)T zt(1) + zv(1)

...
Xv(m)

(
I − αt

nt
Xt(m)TXt(m)

)
w(m) − αt

nt
Xv(m)Xt(m)T zt(m) + zv(m)

 (126)

Similarly, the matrix B is a stack of m matrices

B =


Xv(1)

(
I − αt

nt
Xt(1)TXt(1)

)
...

Xv(m)
(
I − αt

nt
Xt(m)TXt(m)

)
 (127)

In the overparameterized case (p > nvm), under the assumption that the inverse of BBT exists, the
value of ω that minimizes Eq.125, and that also has minimum norm, is equal to

ω? = BT
(
BBT

)−1
γ (128)

Note that the matrix B does not depend on w, zt, zv , and Ew Ezt Ezv γ = 0, therefore Eq.117
holds. In order to finish calculating Eq.123, we need to average the following term

Tr
(
Hrω?ω?T

)
= Tr

[(
BBT

)−1
γγT

(
BBT

)−1 (
BHrBT

)]
(129)

where we used the cyclic property of the trace. We start by averaging γγT over w, zt, zv , since B
does not depend on those variables. Note that w, zt, zv are independent on each other and across
tasks. We denote by Γ the result of this operation, which is equal to a block diagonal matrix

Γ = E
w
E
zt
E
zv
γγT =

Γ(1) 0 0

0
. . . 0

0 0 Γ(m)

 (130)

Where matrix blocks are given by the following expression

Γ(i) = Xv(i)

(
I − αt

nt
Xt(i)TXt(i)

)
Σw

(
I − αt

nt
Xt(i)TXt(i)

)
Xv(i)T+ (131)

+ σ2

(
Inv +

α2
t

n2t
Xv(i)Xt(i)TXt(i)Xv(i)T

)
(132)

Finally, we need to average over the training and validation data

E Tr
(
Hrω?ω?T

)
= E
Xt

E
Xv

Tr
[(
BBT

)−1
Γ
(
BBT

)−1 (
BHrBT

)]
(133)
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These averages are hard to compute since they involve nonlinear functions of the data. However, we
can approximate these terms by assuming that p and nt are large, both of order o(ξ), where ξ is a
large number. Furthermore, we assume that Tr

(
Σ2
w

)
is of order o

(
ξ−1
)
, and that the variances of

matrix products of the rescaled inputs x/
√
p, up to sixth order, are all of order o

(
ξ−1
)
, in particular

Var
(

1

p
Xv(i)Xv(j)T

)
= o

(
ξ−1
)

(134)

Var
(

1

p2
Xv(i)Xt(i)TXt(i)Xv(j)T

)
= o

(
ξ−1
)

(135)

Var
(

1

p3
Xv(i)Xt(i)TXt(i)Xt(j)TXt(j)Xv(j)T

)
= o

(
ξ−1
)

(136)

Then, using Eqs.112, 113 and the expressions ofB (Eq.127) and Γ (Eqs.130,131), we can prove that

BBT = Tr
(
Ht
)
Invm + o

(
ξ1/2

)
(137)

Γ =

{
Tr
(
ΣwH

t
)

+ σ2

[
1 +

α2
t

nt
Tr
(
Σ2
)]}

Invm + o
(
ξ1/2

)
(138)

BHrBT = Tr
(
HrHt

)
Invm + +o

(
ξ1/2

)
(139)

where, similar to Eq.124, we define

Ht =

[
Σ (I − αtΣ)

2
+
α2
t

nt

(
F − Σ3

)]
(140)

Note that all these terms are of order o (ξ). The inverse of BBT can be found by a Taylor expansion(
BBT

)−1
= Tr

(
Ht
)−1

Invm + o
(
ξ−3/2

)
(141)

Substituting these expressions in Eq.133, we find

E Tr
(
Hrω?ω?T

)
= nvm

Tr (HrHt)
{

Tr (ΣwH
t) + σ2

[
1 +

α2
t

nt
Tr
(
Σ2
)]}

Tr (Ht)
2 + o

(
ξ−3/2

)
(142)

Substituting this expression into in Eq.123, we find the value of average test loss

Ltest =
1

2
Tr (ΣwH

r) +
σ2

2

[
1 +

α2
r

nr
Tr
(
Σ2
)]

+ (143)

+
1

2
nvm

Tr (HrHt)
{

Tr (ΣwH
t) + σ2

[
1 +

α2
t

nt
Tr
(
Σ2
)]}

Tr (Ht)
2 + o

(
ξ−3/2

)
(144)
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