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Figure 6: Average test loss of MAML as a function of the learning rate a; (training) on mixed linear
regression, showing the transition from strongly overparameterized (a), to weakly overparameterized
(b), weakly underparameterized (c) and strongly underparameterized (d). As expected, predictions
of theory are accurate only in panels a and d. The amount of validation data increases from panels
a to d, with the following values: m = 1, n, = 2 (a), m = 5, n, = 5 (b), m = 10, n,, = 10 (¢),
m = 10, n,, = 40. Other parameters are equal to: n; = 40,n, = 40,p = 50,0 = 0.5.,v = 0.5,
ar = 0.2, wg = 0, wg = (0.1,0.1,...,0.1) (note that overfitting occurs since wy # wy). In the
experiments, each run is evaluated on 100 tasks of 50 data points each, and each point is an average
over 100 runs.

7.1 DEFINITION OF THE LOSS FUNCTION

We consider the problem of mixed linear regression y = Xw + z with squared loss, where X is
an X p matrix of input data, each row is one of n data vectors of dimension p, z is an x 1 noise
vector, w is a p x 1 vector of generating parameters and y is a n X 1 output vector. Data is collected
for m tasks, each with a different value of the parameters w and a different realization of the input
X and noise z. We denote by w(?) the parameters for task i, for i = 1,..., m. For a given task i, we
denote by X*(V) X (%) the input data for, respectively, the training and validation sets, by z*(), z(*)
the corresponding noise vectors and by y*(*) y¥(9) the output vectors. We denote by n, n,, the data
sample size for training and validations sets, respectively.

For a given task ¢, the training output is equal to

y! ) = Xt 0w(@) 4 7t (18)
Similarly, the validation output is equal to
yU () = XD 4 000, (19)

We consider MAML as a model for meta-learning (Finn et al 2017). The meta-training loss is equal

to
m

1 . L 2
[meta _ R Z ‘yv(z) — xv@) g (w) (20)
v i=1
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where vertical brackets denote euclidean norm, and the estimated parameters () (w) are equal to
the one-step gradient update on the single-task training loss £(?) = [y*(?) — Xt |2 /2p,, with
initial condition given by the meta-parameter w. The single gradient update is equal to

00 (w) — (Ip _ O‘tXt(nTXt(i)) w 4 CLxt@ Tyt o

Tt Tt

where I, is the p x p identity matrix and oy is the learning rate. We seek to minimize the meta-
training loss with respect to the meta-parameter w, namely

w* = arg min £L™¢° (22)
w
We evaluate the solution w* by calculating the meta-test loss

1
rtest — EEEEE 7|ys _X36*|2 (23)
w'zs Xsz" X 2N

Note that the test loss is calculated over test data X, z*®, and test parameters w’, namely
vy =X°w +2° (24)

Furthermore, the estimated parameters 8* are calculated on a separate set of target data X" z",

namely

0" — (Ip - Z’”XTTXT> w* + %XTTyT (25)
y = X"w +2" (26)

Note that the learning rate and sample size can be different at testing, denoted by o, n,., ns. We
are interested in calculating the average test loss, that is averaged over all possible realizations of
meta-training data, equal to

tes 1
L"=EEEEEL'=EEEEEEEEEE 5|y’ — X0 @)

w ozt Xt z¥ XV

7.2 DEFINITION OF PROBABILITY DISTRIBUTIONS

We assume that all random variables are Gaussian. In particular, we assume that the rows of the
matrix X are independent, and each row, denoted by x, is distributed according to a multivariate
Gaussian with zero mean and unitary covariance

x ~ N (0,1,) (28)

where I, is the p x p identity matrix. Similarly, the noise is distributed following a multivariate
Gaussian with zero mean and variance equal to o2, namely

z ~ N (0,0%1,) (29)

Finally, the generating parameters are also distributed according to a multivariate Gaussian of vari-
ance 2, namely

2

Y (wo, ;1p> (30)

The generating parameter w is drawn once and kept fixed within a task, and drawn independently
for different tasks. The values of x and z are drawn independently in all tasks and datasets (train-
ing, validation, target, test). In order to perform the calculations in the next section, we need the
following results.
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Lemma 1. Let X be a Gaussian n X p random matrix with independent rows, and each row has
covariance equal to I, the p X p identity matrix. Then:

E[X"X] =nI, (31)
E[(XTX)*] =n(n+p+1)1, = n?ual, (32)
E[(XTX)"] = n(n? + 0%+ 3np + 30+ 3p+ 4) I, = ’pual, (33)
E [(XTx)“] — n (n® + p* + 6n°p + Gnp>+ (34)
+6n2 + 6p? + 17np + 21n + 21p + 20) I, = n* 4, (35)
E[XTX Tr(X"X)] = (n®p+2n) I, = pn’u1 1, (36)

E[(XTX)* 7 (XTX)] =n (0% +np? + np+ dn + dp+4) I, = pn*uza L, G7)
E {XTXTr ((XTX)Q)} —n (n®p+np® +np+An+4p+4) I, = pnPunal,  (38)
E[(X7X)" 1 (X7X)")] = n (np+ np® + 20%p® + 20%p + 2np*+ (39)
+8n® + 8p® + 21np + 20n + 20p + 20) I, = pn'pa o1, (40)

where the last equality in each of these expressions defines the variables . Furthermore, for any
n X n symmetric matrix C and any p X p symmetric matrix D, independent of X :

E[XTCX] =1r(0) 1, (41)
E[X"XDX"X]| =n(n+1)D+nTr(D)I, (42)

Proof. The Lemma follows by direct computations of the above expectations, using Isserlis’ theo-
rem. Particularly, for higher order exponents, combinatorics plays a crucial role in counting products
of different Gaussian variables in an effective way.

O

Lemma 2. Let X" X' pe Gaussian random matrices, of size respectively n, x p and ny X p,
with independent rows, and each row has covariance equal to I, the p X p identity matrix. Let p
and ny be large, both of order o(§), where £ is a large number. Then:

X OX O —p1,, +o(¢?) 43)
Xv(i)Xt(i)TXt(i)Xv(i)T = png In, + 0 (53/2) (44)
X0 x0T xt@ x0T xt0) xvOT — py (n, 4 p+ 1), + o0 (55/2) 45)

Note that the order o (£) applies to all elements of the matrix in each expression. For i # j

X0 xv@»T — (51/2> (46)
o) xt@ T xt@) xoi) T _ (53/2> (47)
Xv(i)Xt(i)TXt(i)Xt(j)TXt(j)XU(j)T —0 (55/2) (48)
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Furthermore, for any p X p symmetric matrix D independent of X, where the trace Tr(D?) is of order

o(¢”)

x*Opx*@" = (D) I, +o (55/2> (49)
Xv(i)Xt(i)TXt(i)DX'u(i)T — T+ (D)L, + 0 (§1+5/2) (50)
X OO X0 p O XD XD = T (D) ny(ny +p+ 1), +0 (€4972) (51)
x @O pxv@T — (§6/2> (52)
xv@ x0T xt0) pxv@ T — (§1+5/2) (53)
xv@ xtOT xt6) pxth) T xt6) xo T — (52+5/2) (54)

Proof. The Lemma follows by direct computations of the expectations and variances of each term.
O
Lemma 3. Let X°, X! be Gaussian random matrices, of size respectively n, x p and n; X p, with

independent rows, and each row has covariance equal to I,,, the p X p identity matrix. Let n,, and
ny be large, both of order o(§), where € is a large number. Then:

XUTXY =, I+ o (€12) (55)
X T Xt X TX" = ngny I + 0 (53/2) (56)
XtTXtXUTXvXtTXt _ nv”t(”t +p+ ]-)Ip +o <£5/2> (57)

Note that the order o (§) applies to all elements of the matrix in each expression.

Proof. The Lemma follows by direct computations of the expectations and variances of each term.

O

7.3 PROOF OF THEOREMS 1 AND 2

We calculate the average test loss as a function of the hyperparameters n;, n,, n,, p, m, a, .., o, V.
Using the expression in Eq[24]for the test output, we rewrite the test loss in Eq[27]as

—test 1
L= —|X* (W — 0" +2z° (58)

2N

We start by averaging this expression with respect to X °, z°, noting that 8* does not depend on test
data. We further average with respect to w’, but note that 6* depends on test parameters, so we
average only terms that do not depend on 6*. Using Eq[31] the result is

6|
2

Ftest _ o? n 2 N |wo > iR
22 2

— (wo + ow')" 6* (59)

where we define 5w’ = w’ — wq. The second term in the expectation is linear in * and can be
averaged over X", z", using Eq[25|and noting that w* does not depend on target data. The result is

EE 6" =(1-a)w" +a, (wo+dw) (60)
Xz

Using Eq we average over w’ the second term in the expectation of Eq and find
0"
2

—test

2 1
7rest _ + <_ar> (y2+|w0\2) —(1—-o,)WiEw* +E

g
5 5 61)
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We average the last term of this expression over z", w’, using Eq[25] and noting that w* does not
depend on target data and test parameters. The result is

a? 2
E, E |0*‘2 _ |w*|2 + nig (w* _ WO)T (XT'TxT‘) (w* _ WO) _ (62)

9 ) . . 2 92 ' - 2,2 ) ) 2
= 20 Ty T (w0 — wo) + ST Tk [XTX’T] + Oy [(X’X’T) } (63)
Ny n; T

We now average over X", again noting that w* does not depend on target data. Using Eqs[31] 32}
we find
2 2

* * Jr 1 * * * .0
)I(E IE,I@|0 ? = |w*|* + a? <1+pn> (1/2+\w —w0|2> — 20w (w* — wp) + —~ P
(64)
We can now rewrite the average test loss[61]as
—test 07 ; 1 1
e =% (14 2) 4 - a 22 (P a Bt owil) @
n, iy

In order to average the last term, we need an expression for w*. We note that the loss in Eq[20]
is quadratic in w, therefore the solution of Eq[22] can be found using standard linear algebra. In
particular, the loss in Eq[20|can be rewritten as

1
£rett = —— |y — Bwl’ (66)

where -y is a vector of shape n,m X 1, and B is a matrix of shape n,m x p. The vector - is a stack
of m vectors

X0 (1, - e xOT X ) wlb) — 2t X0 x0T 50 4 o)
7= : 67)
Xv(m) (Ip — %Xt(m)TXt(m)) w(m %:XU(Trl)Xt('rrL)TZt(m) 4 gv(m)
Similarly, the matrix B is a stack of m matrices
X (Ip - %:Xt(l)TXt(l))
B= : (68)
xv(m) (Ip —  xtm) Xt(m))

We denote by I, the p X p identity matrix. The expression for w that minimizes Eq@] depends on
whether the problem is overparameterized (p > n,m) or underparameterized (p < n,m), therefore
we distinguish these two cases in the following sections.

7.3.1 OVERPARAMETERIZED CASE (THEOREM 1)

In the overparameterized case (p > n,m), under the assumption that the inverse of BB exists, the
value of w that minimizes Eq[66]is equal to

w* = BT (BBT) " v+ [1, - BT (BBT) " B|w, (69)

The vector wy is interpreted as the initial condition of the parameter optimization of the outer loop,
when optimized by gradient descent. Note that the matrix B does not depend on w,z!,z", and
Ew Ezt Ez» v = Bwg. We denote by d~ the deviation from the average, and we have

w* = wo =BT (BBT) ' oy + I, - BT (BB") " B (wo — wo) (70)

We square this expression and average over w, z!, z. We use the cyclic property of the trace and
-1 . r .
the fact that BT (BB™) B is a projection. The result is

lw* — wo|> =Tr [F (BBT)_l} + (wo — wo)" [Ip - BT (BBT)_l B} (wo—wo)  (71)
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The matrix I is defined as

r® o 0
F=IEI[§IE%5767T: 0 .0 (72)
} 0 0 Tm

Where matrix blocks are given by the following expression

2 2 2
£ = Yoxo@ (- Y x0T x| xe@T g2 (10 Yyl x0T xt6) xoi T
p Py g
(73)

It is convenient to rewrite the scalar product of Eq[71]in terms of the trace of outer products
-1
jw' —wol” =Te [(BBT) ™" (T = B (wo — wo) (wo — wo)" BT )| +|wo —wol”  (4)

In order to calculate E |w* — W0|2 in Eq we need to average this expression over training and
validation data. These averages are hard to compute since they involve nonlinear functions of the
data. However, we can approximate these terms by assuming that p and n; are large, both of order
o(€), where £ is a large number. Furthermore, we assume that |wo — wo| is of order o(¢~1/4). Using
Lemmal[2] together with the expressions of B (Eq[68)) and I" (Eqs[72][73)), we can prove that

1 1
~BBT = {(1 —)? + a2k i } Lyym +o0 (5‘1/2) (75)
D g
2
I {yz [(1 C o)+ a2l 1} +o? (1 + “”’) } Lo+ 0 (€777) (76)
[ ny

+1 _
B (wp — wop) (wp — WO)T BT = |wo — w0|2 [(1 — 04,5)2 + afpn } Inym+o (f 1/2> (77)
t

Using Eq{75|and Taylor expansion, the inverse (BB7) ~!is equal to

-1 _ 1 2 ap+1]7" -3/2
(BBT) = |10+ ad Invm—ko(f ) (78)

ny

Substituting the three expressions above in Eq[74] and ignoring terms of lower order, we find

14 2

E|w*—w0|2: <1nvm> |w0*W0‘2+M I/2+0'2 5 ng - +0(£,3/2)
P P (1= )" +apB=
(79
Substituting this expression into in Eq[65] we find the value of average test loss
2 2
Ztest :1 (1 + W) + (8())
2 Ny
2 2 1 aip
v Nym 1 Nym o  o?ny,ml+ = _
(1 v (1= v _ v ng ( 3/2)
+ 2(+p)+2( p)|w0 wo|” + 5 X +o(¢&
8D
where we define the following expressions
1 1
=(1-a)+ ozfp + and h"=(1—a,) + oz%p + (82)
T Ny

7.3.2 UNDERPARAMETERIZED CASE (THEOREM 2)

In the underparameterized case (p < mn,m), under the assumption that the inverse of BT B exists,
the value of w that minimizes Eq[66]is equal to

w* = (B"B)”' BTy (83)

18
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Note that the matrix B does not depend on w, z°, 2", and E E,: Ezv v = Bwg. We denote by d~
the deviation from the average, and we have

' —wol* = Te [(BTB) ™" BToy 54" B (B7B) '] (84)

We need to average this expresswn in order to calculate E |w* — W0| in qu We start by aver-
aging 0y 6~ over w,z’,z", since B does not depend on those variables. Note that w, z’, z" are
independent on each other and across tasks. As in previous section, we denote by I' the result of this
operation, given by Eq.§72] [73] Finally, we need to average over the training and validation data

Elw’ —wi* = & E Tr[(B"B) ' B'TB(B"B) | (85)

It is hard to average this expression because it includes nonlinear functions of the data. However,
we can approximate these terms by assuming that either m or & (or both) is a large number, where
¢ is defined by assuming that both n; and n,, are of order o(£). Using Lemma together with the
expression of B (Eq[68), and noting that each factor in Eq[85]has a sum over m independent terms,
we can prove that

nUmBTB = (1 -2 +ofp2) I, + 0 ((m&)‘lm) (86)

The expression for 115 is given in Eq32] Using this result and a Taylor expansion, the inverse is
equal to

-1 -1 _
m (BTB) = (1 — a4 + atzuz) I,+o ((mg) 1/2) (87)
Similarly, the term BTT' B is equal to its average plus a term of smaller order
1 1
BTTB = —E (B"TB) +o0 ((mg)*lﬂ) (88)
NyM Nym

We substitute these expressions in Eq[85] and neglect lower orders. Here we show how to cal-
culate explicitly the expectation of BTT'B. For ease of notation, we define the matrix A*(*) =

I— X t@)T xt00), Using the expressions of B (Eq and I" (Eqs ,i the expression for
BTT B is given by

m 2 mMm

BTI'B = ¢? ZAt(i)TXv(i)TXv(i)At(i) Lz 3 (At(i)TXv(i)TXv(i)At(i)>2 "
; b -
i=1 i=1

2 m
4 0‘;70 3 AT o) T o) gt T
to=1

xt@) xv0) T xv6) gt6) (89)
We use Eqs[3T] 32 to calculate the average of the first term in Eq[89]
}E}EZ“” DT x0T X004 Z (1 - 204 + 02pa) I, (90)

We use Eqs 31} 32] 33] #1] 6] [37} [38] [39] to calculate the average of the second term

BB D (400 040 = g 3 ) 40 a0 (4007)] -

oD
=mn, (ny, + 1) (1 — doy + 6aipe — 4o s + o ) I+
+ mny,p (1 —4day + Zafug + 404?,u1,1 - 40[?#2,1 + Ozf,ug,z) I, (92)
Finally, we compute the average of the third term, using Eqs[31} [32} [33] 34} £1] 36l B7]

E E Z At )TXu(i)TXv(i)Xt(z‘)TXt(i)Xv(i)TXv(i)At(i) = (93)

X =1
=5 [n (ny + 1) AT xt@T X80 410) 4y 46T g0y ( xt@T Xt(i))} - (94)

Xt 4

=1

=mn, (ny, + 1) ny (1 — 200 + afug) I, + mn,nep (1 — 21,1 + 0[?/1/2’1) I, (95)
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Putting everything together in Eq[83] and applying the trace operator, we find the following expres-
sion for the meta-parameter variance

E|w* — wo|> = pm (172at+a?u2)_2 {02 (1— 20 + afps) +
Q%UQ 2 2
+ nt [(nv +1) (1 —2au o + ,ug) +p (1 — 204 1,1 + atﬂ2,1)]

2
+ n {(nv +1) (1 — 4oy + 6aips — daj s + afpt) +

+p (1 — 4oy + Za?ug + 4afu1,1 — 404?/@,1 + afug,g) ] } +o0 ((m§)‘3/2) (96)

We rewrite this expression as

2

2
x p o v
E w* — wo|* = 3 {02 [ht+t[(nv+1)gl +p92}] +—[(no+1) g3 +p93]}+
ht“n,m g p
+o((mg) ) ©7)
where we defined the following expressions for g;
g1 =1 — 210 + afps (98)
g2 = 1-— 20&15#1’1 + OétzlLLQJ (99)
g3 =1—4day + 6(1?#2 — 4a§’u3 + afu‘l (100)
g1 =1 — 4oy + 202 s + 40y 1 — 4o + ot s o (101)
and p; are equal to
1
po=— (e +p+1) (102)
t
Lo o
e = — (ni 4+ p* + 3np + 3n, + 3p + 4) (103)
t
1
iy = s (n? + p® + 6nZp + 6nyp? + 607 + 6p* + 1Tngp + 21ny + 21p + 20) (104)
t
1
11 = 2 (nip + 2n,) (105)
t
1 2 2
H21 = oo (mip + up® + rup - dny + dp +4) (106)
t
1
po2= o (nfp + mp® + 2nfp* + 2nip + 2np” + 807 + 8p* + 21nyp + 20n; + 20p + 20)
t
(107)

Substituting this expression back into Eq[63] returns the final expression for the average test loss,
equal to

2 2 r 2
—test O azp h™v
L =—|1 z

2<+ T)-i— 2—1—

2 2

h"_p 2 [pt 4 Yt v —3/2
Lo [+ 2 o+ g+ + 2 D 0+ paal 40 () )
(108)

7.4 PROOF OF THEOREM 3

In this section, we release some assumption on the distributions of data and parameters. In particular,
we do not assume a specific distribution for input data vectors x and generating parameter vector
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w, besides that different data vectors are independent, and so are data and parameters for different
tasks. We further assume that those vectors have zero mean, and denote their covariance as

Y = Exx! (109)
Y = Eww’ (110)

We will also use the following matrix, including fourth order moments

F=E(x"2x) xx" (111)
We do not make any assumption about the distribution of x, but we note that, if x is Gaussian, then
F =233 4+ 3Tr (22). We keep the assumption that the output noise is Gaussian and independent

for different data points and tasks, with variance o2. Using the same notation as in previous sections,
we will also use the following expressions (for any p X p matrix A)

E[XTX] =nY% (112)
ETr[EXTXAXTX] =Tr {A[n*S® +n (F - $%)]} (113)
We proceed to derive the same formula under these less restrictive assumptions, in the overparam-

eterized case only, following is the same derivation of section We further assume wg = 0,
wo = 0. Again we start from the expression in Eq[24]for the test output, and we rewrite the test loss

in Eq[27)as
—=Lles 1
' t:ETn X (W — 0%) +2°| (114)

We average this expression with respect to X *®, z°, noting that 8* does not depend on test data. We
further average with respect to w’, but note that 8* depends on test parameters, so we average only
terms that do not depend on 8*. Using Eq112] the result is

—test 0'2

1 1
L =5 +;Tr(E8) +E 5@”2 6" —w's 6 (115)

The second term in the expectation is linear in 8* and can be averaged over X", z", using Eq[25|and
noting that w* does not depend on target data. The result is

EE 0" =(—-aY)w" +a.Xw (116)
Xra"
Furthermore, we show below (Eq[128)) that the following average holds
EEE w*=0 (117)

Combining Eqs[T16] [TT7] we can calculate the second term in the expectation of Eq[IT5]and find

—test 0'2

1 Lt
L7 =5 +5Tr(S%) — o, Tr (¥25,) + ES67 % 67 (118)

We start by averaging the third term of this expression over z", w’, using Eq and noting that w*
does not depend on target data and test parameters. The result is

EE 6T 0" =Tr [2 (1 - O“"X”XT) ww*T (I - O""XTTXTH T 119

w' z" Ny Ny
2. 2 0[2

+ 57y [X’”EX’”T} + 2T [ZX”TXTEH,X”TXT} (120)
n"‘ n"‘

We now average over X", again noting that w* does not depend on target data. Using Eqs[112] [T13]
we find

2
EEE 7S 6" =Tr {w*w*T [2 (I—a,2)? + 22 (F - 23)} } T (121)
X" w'z" Ny
0‘302 2 2 3 1 3
+ Tr (%) + afTr{ 8y | 2% 4+ — (F - %) (122)
ny Ny
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We can now rewrite the average test loss in Eq[TT8]as

—test 02 a? 9 1 o *T\ rrr
C _2[1+mTr(z )}+2Tr[<2w+Eww )H} (123)
where we define the following matrix
2, aF
H" = [z (I—-0,%)" 4+ (F - 23)} (124)
Ty

In order to average the last term, we need an expression for w*. We note that the loss in Eq[20]
is quadratic in w, therefore the solution in Eq[22] can be found using standard linear algebra. In
particular, the loss in Eq[20|can be rewritten as

1
Lrete — . |y — Bwl|? (125)

where -y is a vector of shape n,m X 1, and B is a matrix of shape n,m x p. The vector - is a stack
of m vectors

xv) (1 _ %Xtu)TXt(l)) w(® — er xyv) xt)T4t(1) 4 5o()
v= : (126)
xv(m) ( 7 — o xtm)T Xt(m)) w(m) _ s xo(m) xtm) T gt(m) | go(m)
Similarly, the matrix B is a stack of m matrices
xo() (I _ %Xt(l)TXt(l))
B= : (127)
X v(m) ([ — %Xt(m)TXt(m)>

In the overparameterized case (p > n,m), under the assumption that the inverse of BBT exists, the
value of w that minimizes Eq[I25] and that also has minimum norm, is equal to

w* =BT (BBT) 'y (128)

Note that the matrix B does not depend on w,z!,z%, and Ew Ey¢ Ez» v = 0, therefore Eq
holds. In order to finish calculating Eq[I23] we need to average the following term

Tr (Hww™”) =Te [(BBT) "2 (BBT) " (BH'BT)] (129)

where we used the cyclic property of the trace. We start by averaging vy over w, z*, z”, since B
does not depend on those variables. Note that w, z!, z" are independent on each other and across
tasks. We denote by I' the result of this operation, which is equal to a block diagonal matrix

r® o 0
F:EF;H%,Y,YT: 0 - 0 (130)
‘ 0 0 T

Where matrix blocks are given by the following expression

r® — xv@® (I _ atXt(i)TXt(i)> Y <[ _ atXt(i)TXt(i)) Xv(i)T+ (131)
N T
T (Inv n ﬁxv(”xt(i)TXt(i)X“(i)T) (132)
t
Finally, we need to average over the training and validation data
ETr(H'w'w”) = & BT [(BB") T (BB") " (BH"B")] (133)
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These averages are hard to compute since they involve nonlinear functions of the data. However, we
can approximate these terms by assuming that p and n; are large, both of order o(§), where & is a
large number. Furthermore, we assume that Tr (£2)) is of order o (£7!), and that the variances of
matrix products of the rescaled inputs x/,/p, up to sixth order, are all of order o (E *1) , in particular

1. .
Var (X”(’)X”(J)T> —o(¢Y) (134)
p
1 - . ,
Var (2X”(”Xt(”TXt(”X”U)T> —o(c) (135)
p
Var (13,X“”)Xt(“TXt(“Xt(j)TXt(j)X”(j)T> =o(¢) (136)
p
Then, using Eqs[TT2] [TT3]and the expressions of B (Eq[I27) and I" (Eqs[I30|[T3T])), we can prove that
BB =Tr (H'") Iy, m + 0 (51/2) (137)
_ t 2 of 2 1/2
L =T (SuH") +0? |14+ =LTr (32)| ¢ Inym +0 (€ (138)
Tt
BH'BT =Tt (H" H') I,,,, + +0 (§1/2) (139)
where, similar to Eq[T24] we define
t 2 of 3
H'=|S(I—aX)" + =L (F - %) (140)
T

Note that all these terms are of order o (£). The inverse of BB can be found by a Taylor expansion
(BBT) ' =T (H") " Ly + 0 (5—3/2) (141)
Substituting these expressions in Eq[I33] we find

ey o) o 1 )

E Tr (HTw*w*T) = num +o (5*3/2) (142)

Tr (Ht)?
Substituting this expression into in Eq[T23] we find the value of average test loss
—test 1 0'2 042 2
L = 5Tr(szT) + [1 + —LTr (T )] + (143)
Ny

L\ Tr(HTHY) {Tr (SoH) + 02 [1 + Oy (22)} }
+ SNy 2 -
2 Tr (H?)

to (5*3/2) (144)
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