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ABSTRACT

Controlled generation with pre-trained Diffusion and Flow Matching models has
vast applications. One strategy for guiding ODE-based generative models is
through optimizing a target reward R(x1) while staying close to the prior distri-
bution. Along this line, some recent work showed the effectiveness of guiding
flow model by differentiating through its ODE sampling process. Despite the
superior performance, the theoretical understanding of this line of methods is still
preliminary, leaving space for algorithm improvement. Moreover, existing methods
predominately focus on Euclidean data manifold, and there is a compelling need for
guided flow methods on complex geometries such as SO(3), which prevails in high-
stake scientific applications like protein design. We present OC-Flow, a general
and theoretically grounded training-free framework for guided flow matching using
optimal control. Building upon advances in optimal control theory, we develop
effective and practical algorithms for solving optimal control in guided ODE-based
generation and provide a systematic theoretical analysis of the convergence guaran-
tee in both Euclidean and SO(3). We show that existing backprop-through-ODE
methods can be interpreted as special cases of Euclidean OC-Flow. OC-Flow
achieved superior performance in extensive experiments on text-guided image
manipulation, conditional molecule generation, and all-atom peptide design.

1 INTRODUCTION AND RELATED WORK

SDE and ODE-based generative models such as diffusion and continuous normalizing flow (CNF)
have exhibited excellent performance on various domains such as images (Ho et al., 2020; Esser
et al., 2024), audio (Zhang et al., 2023; Défossez et al., 2022), and discrete data (Lou et al., 2023;
Cheng et al., 2024). Particularly, the simplicity of Riemannian Flow Matching on SO(3) manifold
(Chen & Lipman, 2023) empowers de novo generation of small molecules (Song et al., 2024; Xu
et al., 2023) and proteins (Yim et al., 2023; Bose et al., 2023; Li et al., 2024), leading to enormous
advancement in biomedicine. Controlled generation from pre-trained diffusion and flow matching
priors has gained growing interest in numerous fields, as it encompasses a wide range of practical
tasks including constrained generation (Giannone et al., 2023), solving inverse problems (Liu et al.,
2023; Ben-Hamu et al., 2024), and instruction alignment (Black et al., 2023; Esser et al., 2024).

There are several lines of work for guiding diffusion and flow models. Classifier-free guidance (CFG)
(Ho & Salimans, 2022) trains conditional generative models that take conditions as input. Reward
fine-tuning approaches update the generative model parameters to align with certain target objective
functions (Black et al., 2023). Both methods require specialized training routines, which are costly
and not extendable to new tasks. Training-free guidance on diffusion (Kawar et al., 2022; Chung
et al., 2024; Song et al., 2023) alters the scores in the SDE generation process with the gradients from
the target function to achieve posterior sampling. These guidances often rely on strong assumptions
of the denoising process and require estimating target function gradients w.r.t noised samples which
are often intractable. Accurate posterior sampling is only guaranteed for a limited family of objective
functions such as linear. Therefore, efforts that deploy such guidance to flow models by bridging the
ODE path and SDE path share similar constraints (Pokle et al., 2023; Yim et al., 2024).
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Notably, two recent works showed the effectiveness of guiding pre-trained flow models by differ-
entiating through the ODE sampling process, outperforming popular guidance-based approaches.
Particularly, Ben-Hamu et al. (2024) differentiates a loss R(x) through the forward-ODE w.r.t the ini-
tial noise x0, which induces implicit regularization by projecting the gradient onto the “data manifold”
under Gaussian path assumption. This strong confinement to the prior might hinder optimization
when the target reward function diverges from the prior distribution. Liu et al. (2023) formulates
an optimal control problem where a control term ut at each timestep is solved to guide the ODE
trajectory. However, the gradient decomposition trick used in Liu et al. (2023) ignores the running
cost of control terms and thus could lead to suboptimal behavior. Despite the good performance, there
is a lack of systematic theoretical analysis on the convergence behavior and explicit regularization of
the differentiate-through-ODE approaches to better guide algorithm design in this space. Furthermore,
existing works predominantly focus on the Euclidean manifold due to its simplicity, and there is a
compelling need for a theoretically grounded guided flow matching framework on more complex
geometries such as SO(3) which is heavily used in scientific applications.

To fill the gap between the practical applications of guided generation and theoretical grounds, we
propose OC-Flow, a general, practical, and theoretically grounded framework for training-free guided
flow matching under optimal control formulation. Our key contributions are as follows:

1. We formulate “controlled generation with pre-trained ODE-based priors” as an optimal control
problem with a control term ut and a running cost that regulates the trajectory proximity to the prior
model while optimizing for target loss. Building upon advances in optimal control theory, we develop
effective optimization algorithms for both Euclidean and SO(3) space through iterative updates of a
co-state flow and control term, with theoretical guarantees under continuous-time formulation.

2. In Euclidean space, we show that running cost bounds the KL divergence between prior and
OC-Flow-induced joint distribution. We develop a simple algorithm for OC-Flow through iterative
gradient update and provide convergence analysis. We further demonstrate that Dflow and Flow-grad
can be interpreted as special cases of Euclidean OC-Flow, providing a unified view of the problem.

3. We present one of the first guided flow-matching algorithm on the SO(3) manifold with theoretical
grounds. Our approach extends the Extended Method of Successive Approximations (E-MSA) to
SO(3) with a rigorous convergence analysis. Additionally, we propose approximation techniques to
enable computationally efficient OC-Flow on SO(3).

4. We provide an efficient and practical implementation of OC-Flow, by introducing the vector-
Jacobian product and asynchronous update scheme. We show the effectiveness of our method with
extensive empirical experiments, including text-guided image manipulation, controllable generation
of small molecules on QM9, and energy optimization of flow-based all-atom peptide design.

2 PRELIMINARIES AND PERSPECTIVES ABOUT FLOW MATCHING

Euclidean Flow Matching. Flow matching (Lipman et al., 2022; Liu et al., 2022) provides an
efficient framework for training a generative model by approximating the time-dependent vector field
associated with the flow represented as ψt : [0, 1]×Rd → Rd. This vector field ut : [0, 1]×Rd → Rd

defines a probability path of the evolution of an initial noise distribution, denoted by p0, towards
a target distribution, p1, with the pushforward probability as pt := (ψt)∗p0. The dynamics of the
vector field that governs this flow can be described by the flow ordinary differential equation (ODE)
of the form ẋt = ut(xt), where we follow the convention to use Newton’s notation with respect
to time t and the state at time t is given by xt := ψt(x0). Lipman et al. (2022) demonstrates
that a tractable flow matching objective can be obtained by conditioning on the target data x1.
The primary goal of conditional flow matching is to train a model, fpt : [0, 1] × Rd → Rd, such
that it minimizes the difference between its output and the ground truth conditional vector field as
LCFM = Et,p(x0,x1)∥f

p
t (xt) − ut(xt | x1, x0)∥2. The trained model fp can be employed as the

marginal vector field during the inference phase. In this context, once a noise sample x0 is drawn, the
system’s evolution can be described by the following differential equation:

ẋt = fpt (xt), x0 ∼ p0(x). (1)

Rotation Group SO(3). The formulation of flow matching can naturally extend to Riemannian
manifolds (Chen & Lipman, 2023). On the Riemannian manifold, a flow is defined as a time-
dependent diffeomorphisms φt : G→ G, which describe the continuous evolution of points on the
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Figure 1: Comparison of backpropagation-through-ODE algorithms. For D-Flow (left) and FlowGrad
(middle), the black curves represent the state trajectory at the k-th iteration, while the red curves show
the updated trajectories at the (k + 1)-th iteration, using gradient updates (blue dashed arrows). D-
Flow updates the state at t0 only, while FlowGrad propagates updates across all time steps. OC-Flow
(right) incorporates the running cost and reward-weighting factor α into the terminal reward. The
co-state flow µt (green curves) combines gradient information and system dynamics to iteratively
update the control terms {θt}, which in turn updates the states.

manifold over time, generated by a vector field V , with V (p) ∈ TpG for each p ∈ G where Tp is
the tangent space at point p ∈ G. The flow evolves according to: d

dtxt = V (xt) = Lxt
V (e). The

CFM objective in Equation 1 can also be adapted for Riemannian flow matching, in which the ground
truth vector field can be calculated as the time derivative using the exponential and logarithm maps.
Details about rotation group SO(3) can be found in Appendix A. In this work, we focus specifically
on the SO(3), the Riemannian manifold of all 3D rotations equipped with the canonical Frobenius
inner product. In previous flow-based protein design models, each amino acid is associated with a
rotation that defines its orientation (Yim et al., 2023; Bose et al., 2023; Li et al., 2024). Guiding such
pre-trained generative models toward the desirable protein properties can potentially have a profound
impact on the pharmaceutical industry.

3 OPTIMAL CONTROL FRAMEWORK FOR GUIDED FLOW MATCHING

The key challenge in guided generation is balancing optimization and faithfulness to the prior
distribution. To address such a need, we propose the following framework. Given a pre-trained flow
model, fpt (x), parameterized by a neural network, our goal is to determine the optimal control terms
θt that maximize the reward R(x) while maintaining the proximity of the resulting vector field to
the original vector field induced by fpt (x). The reward can be customized for diverse tasks such
as inverse problem R = ∥H(x) − y∥2, conditional generation R = (f(x) − c)2, and constrained
generation R = ∥x− y∥2. To ensure proximity, we incorporate a penalty on the state trajectory or
control terms

∫ T

0
L(θt), also known as the running cost. Optionally, one may also introduce a metric

d(·, ·) to penalize the deviation between the new terminal state xθ1 and the prior terminal state xp1.
The modified terminal reward function is then defined as: Φ(xθ1) = R(xθ1)− d(xθ1, x

p
1). and scaling

the terminal reward by a constant α, we can formulate the problem as a standard optimal control task:

J(θ) := αΦ(xθT ) +

∫ T

0

L(θt) dt subject to ẋθt = ht(x
θ
t , θt). (2)

A fundamental result in optimal control theory is Pontryagin’s Maximum Principle (PMP) (Pon-
tryagin (2018)), which provides the necessary conditions for optimal solutions in control problems.
Specifically, at the core of PMP is the introduction of the Hamiltonian function, H . This Hamiltonian
is defined in terms of the state of the system, the control, and a new entity called the co-state µ, which
resides in the cotangent space of the state manifold:

H(t, x, µ, θ) = ⟨µ, ht(xθt , θt)⟩ − L(θ). (3)

The co-state µt, also known as the adjoint variable, encodes the influence of the terminal cost function.
Their evolution captures how the sensitivity of the system impacts the cost function, ensuring that the
state variables evolve in accordance with the system dynamics. Consequently, in optimal control, the
Hamiltonian must be maximized by jointly evolving the states and costates according to a system of
coupled differential equations. The details of PMP conditions can be found in Appendix B.1.
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3.1 OC-FLOW ON EUCLIDEAN MANIFOLD

We first develop the algorithm and theoretical analysis for OC-flow in Euclidean space. One of the
simplest choices for the control term is an additive control (Kobilarov & Marsden (2011)), which
directly perturbs the prior trajectory. In fact, with the linear expansion, the additive control could be
seen as a general case and is widely used in optimal control. Specifically, with θt representing the
control input, the new state dynamics and the corresponding running cost can be defined as:

ẋt = ht(x
θ
t , θt) = fpt (xt) + θt L(θt) = −1

2
∥θt∥2. (4)

The running cost effectively acts as a constraint on the trajectory to encourage proximity to the
original prior distribution. To better understand the effect of running costs on the guided distribution,
we provide the following proposition to formally prove that it can control deviation from the prior
distribution measured by KL-divergence.

Proposition 1. For Affine Gaussian Probability Path, the expectation of the running cost upper
bounds the KL divergence between the prior joint distribution p1(xp, x1) = p1(x

p|x1)pdata(x1) and
the joint distribution after guidance p1(xθ, x1) = p1(x

θ|x1)pdata(x1), with x1 ∼ pdata, xp induced
by prior conditional vector field upt (x|x1) and xθ sampled by applying control θt(x1) on upt :

Ex1∼pdata(x1)

[
1

2

∫ 1

0

∥θt(x1)∥2 dt
]
≥ C · KL

(
p1(x

θ, x1)∥p1(xp, x1)
)
. (5)

Furthermore, for square-shaped data x with non-zero probability path, the expectation of the running
cost, combined with the L1-distance between the prior sample xp1 and the corresponding guided
sample xθ1, upper bounds the KL divergence between the marginal distributions of the prior model pp1
and the guided model pθ1:

Exp
1∼pp

1(x)

[
A∥xp1 − xθ1∥+B

∫ 1

0

∥θt(xp1)∥2 dt
]
≥ KL(pp1 ∥ pθ1). (6)

Algorithm 1 OC-Flow on Euclidean Space
1: Given: Pre-trained model: fp, initial state: x0
2: Initialize: Control terms θ0, learning rate η,

weight decay β
3: for k = 0 to MaxIterations do
4: Solve for the state trajectory:

Xθk

t+∆t = Xθk

t +
(
fp(t,Xθk

t ) + θk
)
∆t

5: Update control:
θk+1
t = βθkt + η∇xtΦ(X

k
1 )

6: end for

One effective approach for directly apply-
ing PMP to optimal control tasks is the Ex-
tended Method of Successive Approximations
(E-MSA) (Li et al., 2018). E-MSA builds
upon the basic MSA algorithm (Chernousko &
Lyubushin (1982)), which iteratively updates the
terms in the PMP conditions (Appendix B.2).
The primary enhancement of E-MSA over the
basic MSA is its ability to extend convergence
guarantees beyond a limited class of linear
quadratic regulators (Aleksandrov (1968)).

A key assumption is the global Lipschitz condition for the functions involved. However, note
that this assumption can be relaxed to a local Lipschitz condition if we can demonstrate that xθt
is bounded, which can be safely assumed provided that appropriate regularization techniques are
applied. Furthermore several prior work has shown the Lipschitz continuity for the deep learning
models. (Gouk et al. (2021),Khromov & Singh (2024))

When the E-MSA algorithm is applied to the guided controlled generation task on Euclidean space,
the trajectory of the co-states µt can be calculated in closed form. Specifically, they can be expressed
as ∇xt

Φ(Xk
1 ) which enables us to derive the following update rule with convergence guarantees:

Theorem 2: Assume that the reward function, the prior model, and their derivatives satisfy Lipschitz
continuity, bounded by a Lipschitz constant L. Utilizing the E-MSA, for each iteration k, for each
constant γ > 2C with C is a function of L, such that under the addictive control and the running
cost defined in Equation 4, the optimal update is following:

θk+1
t =

γ

1 + γ
θkt +

α

1 + γ
∇xtΦ(X

k
1 ). (7)

This update rule for the control term θt guarantees an increase in the objective function defined in
Equation 2:

J(θk+1)− J(θk) ≥
(
1− 2C

γ

)
ϵkγ , ϵkγ ≥ 0. (8)
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In practice, solving continuous ODEs requires discretization. The discretized version of the proposed
algorithm is outlined in Algorithm 1. In this formulation, the weight decay term is parameterized
as β = γ

1+γ , and the learning rate is defined as η = α
1+γ . As demonstrated in Appendix C.3, the

discretization error introduced by the Euler method is of the order O(∆t). This error diminishes as
the number of ODE steps increases, ensuring the algorithm converges to the global optimum.

3.2 PRACTICAL IMPLEMENTATION AND ACCELERATION

3.2.1 ADJOINT METHOD AND VECTOR-JACOBIAN PRODUCT

A significant portion of the computational time in the OC-Flow algorithm is spent on evaluating
the gradient ∇xt

Φ(x1). The computational cost of directly back-propagating through ODE with
vanilla Autograd requires saving all intermediate computation values, which results in a demanding
memory complexity of O(ND2) (Pan et al., 2023; Chen et al., 2018) where N is the ODE steps. We
instead employ the adjoint method where the gradient ∇xt

Φ(x1) is computed using a vector-Jacobian
product by the double-backwards trick, which reduces the memory cost to O(D2).

∇xk/N
Φ =

(
∇x(k+1)/N

Φ
)
· Φx(k+1)/N

(
xk/N

)
. (9)

3.2.2 ASYNCHRONOUS SETTING FOR FLEXIBLE UPDATE SCHEDULING

In practice, discretization techniques are employed to simulate the ODEs governing both the state
trajectory xt and the co-states µt and operate in a synchronous setting, where the number of time
steps for the state trajectory xt coincides with the number of control terms θt.

Here we show that OC-Flow can be extended to an asynchronous framework, providing greater
flexibility in scheduling. We subdivide the time interval ∆t into N equally spaced subintervals. Let
{xt} denote the state trajectory over the time interval [t, t+∆t], and {xθt } represent the trajectory
when the control term θt is applied in the first subinterval. The trajectory can be approximated as:

xt+∆t = xt +
∆t

N

N−1∑
l=1

fp
(
xθ
t+ l∆t

N

)
+

∆t

N
θt ≈ xt +∆t

(
1

N

N−1∑
l=1

fp
(
xt+ l∆t

N

)
+

1

N
θt

)
. (10)

Consequently, the asynchronous setting allows the algorithm to be applied without modification while
enabling finer updates to both the control terms and state trajectories by adjusting the frequency N
of control term updates relative to the state trajectory simulation (see Appendix C.4 for the proof
and justification of the approximations in Equation 10). In our peptide design experiment, the
asynchronous setting is applied for efficient computing.

Table 1: Comparison of runtime and memory complexity of different methods used in backprop-
through guided-ODE in Euclidean and SO(3) manifold. For complexity, N is the number of ODE
steps, n is the number of effective control terms with synchronized and in the range [1, N ] and D2 is
the complexity of computing 1-step gradient (VJP or Autograd), D depends on data and model size.

Number of Running Memory Runtime Convergence Generalization
Control Terms Cost Complexity Complexity to Optimal to SO(3)

OC-Flow n ∥θ2t ∥ O(D2) O(nD2) ✓ ✓
FlowGrad n 0 O(D2) O(nD2) ✗ ✗
D-Flow 1 Implicit O(ND2) O(ND2) ✗ ✗

3.3 CONNECTION TO OTHER BACKPROP-THROUGH GUIDED-ODE APPROACHES

Several previous works discussed backprop-through-ODE guidance in flow-matching models. Notable
examples include D-Flow (Ben-Hamu et al., 2024) and FlowGrad (Liu et al., 2023). An illustration
of their algorithms and ours is shown in Figure 1. In this section, we demonstrate that our framework
is more general, and both of these methods can be viewed as special cases of our algorithm.

FlowGrad formulates the optimization task in a manner similar to our optimal control target in
Equation 2. Specifically, it directly applies gradient descent to the control variables:

θk+1
t = θkt + α∇θtΦ(X

k
1 ) = θkt +

α

N
(∇xtXt+∆t)

−1∇xtΦ(X
k
1 ), (11)

which can be interpreted as a limiting case of our algorithm in Equation 7, where γ → ∞ and given
with dt→ 0, ∇xtXt+∆t → I . However, as shown in Equation 8, the convergence rate is a complex
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function of γ, so in practice, γ is treated as a tunable parameter. FlowGrad’s setting γ → ∞ may
undermine the convergence speed. D-Flow optimizes the reward by applying gradient descent to the
initial noise x0:

Xk+1
0 = Xk

0 + LBFGS(∇x0
Φ(Xk

1 )). (12)

In fact, with the update rule xt+dt = x0 + f(x0) dt + θt dt, the update of θ0 can be seen as
an increment to x0. The LBFGS algorithm provides a dynamic learning rate, aligning with our
framework, where γ is allowed to vary across iterations. Hence, D-Flow can be viewed as a special
case of our asynchronous algorithm when the number of control terms is 1. A more detailed
comparison of the algorithms can be found in Table 6 and additional discussion on computation
efficiency is in Appendix D.

4 OPTIMAL CONTROL FRAMEWORK FOR GUIDED FLOW MATCHING ON
SO(3)

Most optimization algorithms are primarily designed for Euclidean spaces and face significant
challenges when applied to non-Euclidean settings, such as the SO(3) manifold, which plays a crucial
role in drug discovery and peptide design (Huguet et al. (2024)). This section extends the E-MSA
algorithm to the SO(3) manifold and presents a rigorous proof of its convergence.

4.1 OC-FLOW FOR SO3

To begin, we define the vector field governing the system dynamics. The state trajectory, influenced
by control terms θt ∈ so(3), evolves according to the following differential equation:

ẋθt = xθt
(
ft(x

θ
t ) + θt

)
. (13)

In this work, the left-invariant vector field is utilized, under which the Hamiltonian can be shown to
reduce to a linear functional in so(3)∗ (Jurdjevic (1996), Colombo & Dimarogonas (2020)). Given
the co-state µt ∈ so(3)∗, the Hamiltonian function is redefined as:

H : [0, T ]× SO(3)× so(3)∗ × so(3) → R, (t, x, µ, θ) 7→ µt

(
ft(x

θ
t ) + θt

)
− L(θ). (14)

A direct approach to apply PMP conditions on the SO(3) manifold involves iteratively updating the
cotangent vector µt and the state trajectory xt as shown in Step 4 and Step 5 in Algorithm 2 and then
apply an update rule to determine the control term θt for the subsequent iteration with weight decay
β and learning rate η the update for θt can be written as:

θk+1
t = βθkt + ηµ̃θk

t , (15)

where µ̃θk

t is defined by ⟨µ̃θk

t , v⟩ = µθk

t (v) with µ̃t ∈ so(3) for all v ∈ so(3). The existence of µ̃θk

t
can be derived from the Riesz Representation Theorem (Goodrich (1970)). This formulation leads to
the introduction of the OC-FLow algorithm on SO(3),as detailed in Algorithm 2.

Algorithm 2 OC-Flow on SO(3)

1: Given: Pre-trained model: fpe , initial state: x0
2: Initialize: Control term θ0 ∈ so(3), learning rate η, weight decay β
3: for k = 0 to MaxIterations do
4: Solve for the state trajectory: Ẋθk

t = Xθk

t

(
fp(t,Xθk

t ) + θk
)
, Xθk

0 = x0

5: Solve for the adjoint variables: µ̇θk

t = −ad∗∂H
∂µ
µθk − (dLxθ

T
)∗ ∂H

∂x , µ
θk

T = (dLxθ
T
)∗∇Φ(xθT )

6: Update control: θk+1
t = βθkt + ηµ̃θk

t
7: end for

4.2 CONVERGENCE OF OC-FLOW ON SO3

To derive the proof of the convergence of our Algorithm 2, we first establish that under the PMP
conditions on SO(3), the objective function J(θ), as defined in Equation 2, can be bounded. This is
formalized in the following proposition:
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Proposition 3: Assume that the reward function, the prior model, and their derivatives satisfy
Lipschitz continuity, bounded by a Lipschitz constant L. Then, there exists a constant C > 0 such
that for any θ, ϕ ∈ so(3), the following inequality holds:

J(θ) +

∫ 1

0

∆ϕ,θH(t) dt− C∥ϕt − θt∥2 dt ≤ J(ϕ), (16)

where Xθ and P θ satisfy the PMP conditions on SO(3) manifold, and ∆Hϕ,θ denotes the change in
the Hamiltonian, defined as:

∆Hϕ,θ(t) := H(t, xθt , µ
θ
t , ϕt)−H(t, xθt , µ

θ
t , θt). (17)

Proposition 2 provides a lower bound for the difference in the objective function values under two
distinct control terms that satisfy the PMP conditions described by the Hamiltonian equations in
Appendix B.1.

However, applying this result directly as an optimization algorithm presents several challenges. First,
the difference in the Hamiltonian ∆Hϕ,θ(t) is not inherently bounded. Second, the term ||ϕ− θ||2 is
non-negative, which complicates the minimization process. To address these issues, inspired by the
method of E-MSA, we introduce a positive constant γ and define an Extended Hamiltonian:

H̃(t, x, µ, θ, ϕ) := H(t, x, µ, θ)− γ

2
∥θ − ϕ∥2 = ⟨µ, ft(x) + θ⟩ − 1

2
∥θ∥2 − γ

2
∥θ − ϕ∥2. (18)

The introduction of the extended Hamiltonian enables the combination of the original Hamiltonian
with the penalty term ∥ϕ − θ∥2 into a unified expression that can be optimized jointly. A natural
approach to achieve this is by updating θ to maximize the Extended-Hamiltonian. The resulting
update rule is given by:

θk+1
t = argmax

θ
H̃(t, xθ

k

, µθk

, θ, θk) =
γ

1 + γ
θk +

1

1 + γ
µθ
t = βθk + ηµθk

t . (19)

By performing this maximization step at each iteration, we ensure that the change in the Extended-
Hamiltonian, ∆H̃ , is non-negative, indicating that the algorithm progresses towards an optimal
solution. Furthermore, we can show that when the update process converges, i.e., when ∆H̃ = 0 or
equivalently ∆H = 0, the algorithm has reached the optimal control point. These insights can be
formalized in the following proposition:

Proposition 4: Let Xθ and P θ satisfy the PMP conditions . If the update rule follows Algorithm 2,
we define ϵk :=

∫ 1

0
∆θk+1,θkH(t) dt, and ϵk is bounded as:

ϵk :=

∫ 1

0

∆θk+1,θkH(t) dt, lim
k→∞

ϵk = 0. (20)

Furthermore, when ϵk = 0, we have θ = θ∗ := argmaxθ J(θ)

With these results, we can now extend the result in E-MSA to the SO(3) manifold and establish a
bound for the optimization algorithm based on the derived theoretical properties:

Theorem 5: Assume that the reward function, the prior model, and their derivatives satisfy Lipschitz
continuity, bounded by a Lipschitz constant L. Let θ0 ∈ so(3) be any initial measurable control with
J(θ0) < +∞. Suppose also that infθ∈so(3) J(θ) > −∞. If the update of θ satisfies equation 19, for
sufficiently large γ, the following inequality holds for some constant D > 0:

Dϵk ≤ J(θk+1)− J(θk). (21)

Therefore, by invoking Proposition 3, we can conclude that after each update, the target function is
non-decreasing and when the update process terminates, the optimal solution has been attained. This
establishes the convergence of the OC-Flow algorithm on the SO(3) manifold.

4.3 PRACTICAL IMPLEMENTATION

In practice, directly optimizing Algorithm 2 using existing ODE methods is challenging due to the
nature of the adjoint variable µ̇t, which is a linear functional in the dual space so(3)∗. Instead, we
can optimize µ̃t as defined in Section 4.1. We can decompose ˙̃µt into its projections onto a set of
orthogonal bases within the so(3) group.
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Figure 2: Visualization of text-guided generated faces with different expressions.

A frequently used choice for the basis in so(3) is the canonical basis {E1, E2, E3} (McCann et al.
(2023)) satisfying the condition ⟨v,Ei⟩ = 2 for all v ∈ so(3). Thus we can decompose the time
derivative of the adjoint variable ˙̃µt as: ˙̃µi = ⟨ ˙̃µ,Ei⟩ and ˙̃µ = 1

2

∑3
i=1

˙̃µiEi. Thus, with the closed
forms for the partial derivatives related to Hamiltonian, the practical update for µt in Algorithm 2 can
be written as follows. The vector-Jacobian method can be applied to compute the term ∂fp

t

∂x (xktEj) in
Algorithm 2, which significantly reduces complexity from O(D4) to O(D2). Meanwhile, the method
of asynchronous can also be applied. See Appendix C.4.

˙̃µk
t,i = −⟨µ̃k

t , [f
p
t + θt, Ei]⟩ −

〈
µ̃k
t ,
∂fpt
∂x

xktEi

〉
,

〈
µ̃t,

∂fpt
∂x

xktEj

〉
= Tr

(
µ̃T
t

∂fpt
∂x

(xktEj)

)
µ̃k
t−∆t = µ̃k

t − ∆t

2

3∑
i=1

˙̃µk
t,iEi, µ̃k

T,i = ⟨∇Φ(xkT ), x
k
TEi⟩. (22)

5 EXPERIMENTS

5.1 TEXT-GUIDED IMAGE MANIPULATION

We first validate our OC-Flow on the traditional text-to-image generation task. Previous work has
demonstrated the importance of alignment with the given text prompt using either automatic metrics
or human preference as the reward (Black et al., 2023; Esser et al., 2024). In our text-guided image
manipulation task, we want to guide the generative model pre-trained on the celebrity face dataset
CelebA-HQ (Karras, 2017) to text guidance {sad, angry, curly hair} showing different
facial expressions or traits. Following the same setup in Liu et al. (2023), given an input image xg , the
reward for alignment with the text prompt can be effectively evaluated by the CLIP model (Radford
et al., 2021) pre-trained in a contrastive way to score the similarity between arbitrary image-text pairs.
Following (Liu et al., 2023), we adopt the pre-trained Rectified Flow (RF) (Liu et al., 2022) as the
generative prior. Inspired by Proposition 1, for this image task where the square-like assumption is
satisfied, an extra terminal constraint xp1 − xθ1 is added as part of the terminal reward function.

Table 2: Comparison of methods on LPIPS,
ID, and CLIP metrics. Lower LPIPS and ID
indicate better performance, while higher ID
and CLIP values are preferred.

Method LPIPS ↓ ID ↑ CLIP ↑

CG + RF 0.346 0.643 0.292
CG + LDM 0.383 0.513 0.298
DiffusionCLIP 0.398 0.659 0.285
StyleCLIP + e4e 0.359 0.704 0.267

FlowGrad + RF 0.302 0.737 0.299
OC-Flow (Ours) 0.207 0.732 0.302

We choose two state-of-the-art text-guided image
manipulation baselines, StyleCLIP (Patashnik et al.,
2021) and FlowGrad (Liu et al., 2023). We run Style-
CLIP and FlowGrad with their official implementa-
tion and default parameter configurations. For ours,
we set time step of 100, step size η = 2.5, weight
decay of 0.995, the weight of the extra constraint of
0.4, and the number of optimization steps of 15. For
qualitative comparison, we show generated examples
of different text-guided expressions in Figure 2. Due
to the large gap between reference and guided dis-
tributions, StyleCLIP fails to manipulate with sad.
Lacking in regularization, FlowGrad may change the content too much with curly hair. Our
OC-Flow generally produces the best results with a good alignment with the text prompt while
preserving the generative prior so as to produce reasonable faces that are not distorted much.

5.2 MOLECULE GENERATION FOR QM9

We further instantiate our OC-Flow for controllable molecule generation on the QM9 dataset (Rud-
digkeit et al., 2012; Ramakrishnan et al., 2014), a commonly used molecular dataset containing small
molecules with up to 9 heavy atoms from C, O, N, F. Following Hoogeboom et al. (2022); Ben-Hamu
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Figure 3: Visualization of OC-Flow generated molecules with various dipole moments condition.

et al. (2024), we target for conditional generation of molecules with specified quantum chemical
property values including polarizability α, orbital energies εHOMO, εLUMO and their gap ∆ε, dipole
moment µ, and heat capacity cv. Such a conditional generation setting of molecules with desired
properties has profound practical applications in drug design and virtual screening. To define the
loss function, separate classifiers for each property are first trained to predict the property value
for the generated molecule (Hoogeboom et al., 2022), and the loss can be then calculated as the
mean absolute error (MAE) between the predicted and the reference property values. The pre-trained
unconstrained generative model is taken from Song et al. (2024) (EquiFM), a flow-based generative
model that uses an equivariant vector field parameterization for generating the atom coordinates and
types via the learned flow dynamics. To demonstrate the zero-shot guidance performance on such a
conditional generation task, we compare our approach with other gradient-based methods of D-Flow
(Ben-Hamu et al., 2024) and FlowGrad (Liu et al., 2023) on the same pre-trained EquiFM. To be
comparable to D-Flow, we follow its setting to use the L-BFGS optimizer with 5 optimization steps
with linear search. We generate 1000 molecules for each property and report the MAE in Table 3.
The unconditional EquiFM is also included as an upper bound for the guided models. It can be seen
that our approach consistently outperforms both of them with lower MAEs, which better balances
the reward optimization and the faithfulness to the prior. We provide guided generation samples in
Figure 3 with respect to different target dipole moments. A clear trend from hydrocarbons with more
symmetric structures to molecules with more high-electronegativity atoms of oxygen and nitrogen
can be observed, indicating an increase in the dipole moment.

Table 3: MAE for guided generations on QM9 (lower is
better).
Property α ∆ε εHOMO εLUMO µ cv
Unit Bohr³ meV meV meV D cal

K·mol

OC-Flow(Ours) 1.383 367 183 342 0.314 0.819
D-Flow 1.566 355 205 346 0.330 0.893
FlowGrad 2.484 517 273 429 0.542 1.270
EquiFM 8.969 1439 622 1438 1.593 6.873

Classifier 0.095 64 40 35 0.046 0.041

As we have theoretically demonstrated the
impact of the regularization strength from
the optimal control perspective, we further
experiment with a different γ and examine
the quality of the conditionally generated
molecules by evaluating additional met-
rics following Song et al. (2024). Specif-
ically, we calculate the atom stability per-
centage (ASP), molecule stability percent-
age (MSP), and valid & unique percentage
(VUP). Ideally, these metrics should not be greatly lower than the pre-trained model, and a higher
strength of regularization should lead to higher scores. Indeed, as demonstrated in Table 4, in which
we provide these scores for two different settings of γ = 0.01 and 10, all scores are higher with
a higher strength of regularization at the cost of also a higher MAE. In this way, our OC-Flow
effectively prevents exploitation from direct gradient descent that may hack the loss function and
provides more flexible and fine-grained control over the guided generation.

Table 4: MAE and other evaluation metrics for our approach with γ = 0.01 / γ = 10.
Property α ∆ε εHOMO εLUMO µ cv

MAE ↓ 1.383 / 1.557 367 / 365 183 / 188 342 / 339 0.314 / 0.320 0.819 / 0.852
ASP ↑ 94.8 / 96.0 95.2 / 96.1 95.2 / 96.1 95.3 / 96.1 95.8 / 96.1 95.2 / 96.1
MSP ↑ 64.4 / 69.9 67.9 / 70.5 65.8 / 69.8 68.5 / 70.8 68.0 / 70.1 67.1 / 68.9
VUP ↑ 86.2 / 88.6 88.2 / 89.8 86.2 / 87.7 87.6 / 88.7 88.2 / 89.0 89.4 / 88.5

5.3 PEPTIDE DESIGN

We evaluate our OC-Flow approach for peptide backbone design using a test set derived from
(Li et al., 2024), which includes 162 complexes clustered based on 40% sequence identity using
mmseqs2 (Steinegger & Söding, 2017). Our experiments focus on PepFlow w/Bb, a model designed
to exclusively sample peptide backbones while optimizing translations in Euclidean space and
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Figure 4: Visualization of OC-Flow generated peptide and unconditional generated peptide (5djd_C).

rotations in SO(3) space. The model employs the MadraX force field (Orlando et al., 2024) for energy
optimization, and performance is evaluated using several key metrics. These metrics include MadraX
energy, which assesses the total energy of the generated peptide structures, along with Rosetta-based
measures of stability and affinity. Currently, our stability and affinity metrics are represented by
their respective means: stability quantifies the energy states of peptide-protein complexes, while
affinity measures the binding energies. In addition, we employ an existing metric, denoted as IMP,
which measures the percentage of generated peptides that exhibit lower energy than the original
ground truth. Additionally, we use the root-mean-square deviation (RMSD) to evaluate structural
accuracy by aligning the generated peptides to their native structures and calculating the Cα RMSD.
To further analyze structural characteristics, we compute the secondary-structure similarity ratio
(SSR), which reflects the proportion of shared secondary structures, and the binding site ratio (BSR),
which quantifies the overlap between the binding sites of the generated and native peptides on the
target protein. Structural diversity is assessed using the average of one minus the pairwise TM-Score
(Zhang & Skolnick, 2005) among the generated peptides, representing their dissimilarities.

We compare our method to the pre-trained unconditional PepFlow model (Li et al., 2024), serving
as a baseline. We also include ablations where our model guides only translations (Euclidean) or
rotations (SO(3)). As shown in Table 5, our OC-Flow method, applied to both Euclidean and SO(3)
spaces, consistently outperforms the baseline, even though we only optimize for the Madrax target
function. This indicates that our algorithm not only achieves higher target function scores but also
captures more natural structural configurations. It generates peptide backbones that are more stable,
energetically favorable, and diverse, while improving key metrics such as stability, affinity, IMP,
diversity, SSR, and BSR. In comparison, optimizing in Euclidean space alone yields only marginal
improvements in IMP, while optimizing rotations alone achieves comparable performance. More
experimental details and ablation can be found in Appendix E.3.

Table 5: Evaluation of OC-Flow peptide design.
MadraX ↓ RMSD ↓ SSR % ↑ BSR % ↑ Stability ↓ Affinity ↓ Diversity ↑ imp(%) ↑

Ground-truth -0.588 - - - -84.893 -36.063 - -
PepFlow -0.195 1.645 0.794 0.874 -45.660 -26.538 0.310 14.3
OC-Flow(trans) -0.229 1.774 0.797 0.876 -48.380 -27.328 0.323 14.4
OC-Flow(rot) -0.221 1.643 0.794 0.872 -48.636 -27.211 0.310 14.5
OC-Flow(trans+rot) -0.263 2.127 0.797 0.869 -48.853 -27.468 0.338 15.0

6 CONCLUSIONS AND DISCUSSION

In this paper, we propose OC-Flow, a general and theoretically grounded framework for training-
free guided flow matching under optimal control formulation. Our framework provides a unified
perspective on existing backprop-through-ODE approaches and lays the foundation for systematic
analysis of the optimization dynamics of this setting. Extensive empirical experiments demonstrate
the effectiveness of OC-Flow. Future extensions of OC-Flow include generalizing beyond additive
control terms and bridging connection with fine-tuning regimes where control terms can be solved
as learning updates to the model parameters. Another extension could be scaling up the SO(3)
OC-Flow to guide generative tasks for larger molecular systems such as protein motif scaffolding.
One potential limitation of backprop-through-ode approaches, despite its superior result, is the higher
computation cost compared to posterior sampling approaches. Such tradeoff has been demonstrated in
Dflow/FlowGrad as well. Our practical implementations of OC-Flow improve the time and memory
complexity (see analysis in Appendix D), where sampling on the image takes 216s compared to 15
minutes in D-Flow. We hope that our findings can guide algorithm design and motivate further model
improvement in guided flow matching.
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A BACKGROUND OF RIEMANNIAN MANIFOLD AND SO(3) GROUP

A Lie group G is a smooth manifold equipped with group operations, such as multiplication and
inversion, which are smooth maps. Specifically, G is considered smooth when it possesses a C∞

differential structure. When G is endowed with a left-invariant Riemannian metric, it becomes a
Riemannian manifold, where the inner product of any two tangent vectors v, w ∈ ThG at a point
h ∈ G is preserved under left multiplication. This property is expressed as:

⟨Lh(v), Lh(w)⟩ = ⟨v, w⟩, (23)
where Lh : G → G is the left multiplication map, and ⟨·, ·⟩ : TG× TG → R represents the inner
product. Moreover, the tangent space at any point x ∈ G is given by TxG = LxTeG, where TeG is
the tangent space at the identity element e, which is identified with the Lie algebra g. Consequently,
the full tangent bundle TG can be written as G× g.

At each point x ∈ G, a tangent space TxG is attached, representing the space of tangent vectors at
that point. The collection of these tangent spaces forms the tangent bundle TG, which itself is a
smooth manifold. Additionally, for any point h ∈ G, the cotangent space T ∗

hG is defined as the dual
space of ThG, consisting of linear functionals (co-states) that act on the tangent vectors.

Rotation Group SO(3): The special orthogonal group SO(3), describing 3D rotations, is a compact
3-dimensional Lie group. Its Lie algebra so(3) consists of skew-symmetric matrices. The group
SO(3) is defined as:

SO(3) = {r ∈ R3×3 : r⊤r = rr⊤ = I, det(r) = 1}. (24)
It is a matrix Lie group, and its Lie algebra is given by:

so(3) = {r ∈ R3×3 : r⊤ = −r}. (25)

Parametrizations of SO(3): The skew-symmetric matrices r ∈ so(3) can be uniquely represented
by a vector ω ∈ R3, such that for any v ∈ R3, rv = ω × v, where × denotes the cross product. This
vector is known as the rotation vector, where its magnitude ∥ω∥ represents the angle of rotation, and
its direction eω = ω/∥ω∥ defines the axis of rotation. The mapping from R3 to the skew-symmetric
matrix is referred to as the hat operation, (̂·).
Another common parametrization of SO(3) is through Euler angles, described using three angles
(ϕ, θ, ψ). In the x-convention, the rotation is expressed as a sequence of three rotations: a rotation
about the z-axis by ϕ, followed by a rotation about the updated x-axis by θ, and finally, a rotation
about the updated z-axis by ψ.

One common inner product on so(3) is the induced Frobenius inner product, given by:
⟨A,B⟩ = Tr(A⊤B), ∀A,B ∈ so(3), (26)

which equips SO(3) with a Riemannian structure. The manifold SO(3) has constant Gaussian
curvature and is diffeomorphic to a solid ball with antipodal points identified. The exponential map
exp : so(3) → SO(3), originating from the identity element, is defined as matrix exponentiation:

exp(A) =

∞∑
k=0

Ak

k!
, ∀A ∈ so(3), (27)

and can be represented more compactly via Rodrigues’ rotation formula:

exp(A) = I +
sin θ

θ
A+

1− cos θ

θ2
A2, ∀A ∈ so(3), (28)

where θ = ∥A∥so(3) = 1
2∥A∥F is the rotation angle. Similarly, the logarithm map log : SO(3) →

so(3), also originating from the identity, is the matrix logarithm:

log(R) =

∞∑
k=1

(−1)k+1 (R− I)k

k
, (29)

or more compactly as:

log(R) =
θ

sin θ
A, ∀R ∈ SO(3), (30)

where A = (R−R⊤)
2 ∈ so(3) and θ = ∥A∥so(3) is the rotation angle. In spherical geometry, the

geodesic distance between two rotations is given by d(R1, R2) = ∥ log(R⊤
1 R2)∥F , and interpolation

between rotations can be performed using exp(tA).
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B BACKGROUND OF PMP AND E-MSA

In this section, we shall introduce the details of the Pontryagin’s Maximum Principle on both
Euclidean Space and SO(3) manifold as well as the algorithms of MSA and E-MSA.

B.1 PMP

As described in section 3, PMP offers a set of necessary conditions for an optimal control strategy.
PMP states that for an optimal trajectory, there exists a co-state trajectory µt such that the Hamiltonian
(Equation 3) is maximized (or minimized, depending on the problem) with respect to the control
at every time step. Additionally, the state and co-state evolve according to a system of coupled
differential equations, where the co-state variables evolve in the cotangent space of the state variables.

The governing differential equations are shown below:

Pontryagin’s Maximum Principle Let θ∗ ∈ U be an essentially bounded optimal control, i.e. a
solution to (2) with ess supt∈[0,T ] ∥θ∗t ∥∞ <∞ (ess sup denotes the essential supremum). Denote by
X∗ the corresponding optimally controlled state process. Then, there exists an absolutely continuous
co-state process P ∗ : [0, T ] → Rd such that the Hamilton’s equations

Ẋ∗
t = ∇pH(t,X∗

t , P
∗
t , θ

∗
t ), X∗

0 = x, (31)

Ṗ ∗
t = −∇xH(t,X∗

t , P
∗
t , θ

∗
t ), P ∗

T = ∇Φ(X∗
T ), (32)

are satisfied. Moreover, for each t ∈ [0, T ], we have the Hamiltonian maximization condition

H(t,X∗
t , P

∗
t , θ

∗
t ) ≥ H(t,X∗

t , P
∗
t , θ) for all θ ∈ Θ. (33)

The PMP conditions can be naturally generalised to the Lie Group. Pontryagin’s Maximum Principle
(PMP) for Lie groups (Saccon et al. (2010)) provides the conditions that govern the flow of the
state xt and its associated cotangent flow λ, describing the Hamiltonian equations that the optimal
state-adjoint trajectory must satisfy. Specifically, the Hamiltonian equations are given by:

X−1
t Ẋ∗

t =
∂

∂p
H(t,X∗

t , P
∗
t , θ

∗
t ), X∗

0 = x,

µ̇θ
t = −ad∗∂H

∂µ
µθ
t − (dLxθ

t
)∗
∂

∂x
H∗, µθ

T = (dLxθ
T
)∗∇xΦ(x

θ
T ). (34)

The dual map (dLg)
⋆ : T ⋆

ghSO(3) → T ⋆
hSO(3) pulls back a cotangent vector at gh to a cotangent

vector at h. The coadjoint representation ad∗X acts on so(3)∗ and is defined as:

⟨ad∗Xµ, Y ⟩ = −⟨µ, adXY ⟩, (35)

where adXY = [X,Y ] = XY − Y X for µ ∈ so(3)∗ and X,Y ∈ so(3). Additionally, for each
t ∈ [0, T ], the Hamiltonian maximization condition is satisfied:

H(t,X∗
t , µ

∗
t , θ

∗
t ) ≥ H(t,X∗

t , µ
∗
t , θ) for all θ ∈ Θ. (36)

B.2 EXTENDED-METHOD OF SUCCESSIVE APPROXIMATIONS (E-MSA)

B.2.1 METHOD OF SUCCESSIVE APPROXIMATIONS (MSA)

One numerical method for solving the Pontryagin Maximum Principle (PMP) is the Method of
Successive Approximations (MSA) Chernousko & Lyubushin (1982), an iterative approach that
alternates between propagation and optimization steps based on the PMP conditions. We first present
the simplest form of MSA.

Consider the general state dynamics:

Ẋ∗
t = f(t,X∗

t , θ
∗). (37)

Given an initial guess θ0 ∈ U for the optimal control, for each iteration k = 0, 1, 2, . . ., we first solve
the state dynamics:

Ẋθk

t = f(t,Xθk

t , θkt ), Xθk

0 = x, (38)
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to obtain Xθk

, followed by solving the co-state equation:

µ̇θk

t = −∇xH(t,Xθk

t , µθk

t , θ
k
t ), µθk

T = −∇Φ(Xθk

T ), (39)

to determine µθk

. Finally, the control is updated using the maximization condition:

θk+1
t = argmax

θ∈Θ
H(t,Xθk

t , µθk

t , θ), (40)

for t ∈ [0, T ]. This process is summarized in Algorithm 3.

Algorithm 3 Basic MSA
1: Initialize: θ0 ∈ U ;
2: for k = 0 to #Iterations do
3: Solve Ẋθk

t = f(t,Xθk

t , θkt ), Xθk

0 = x;
4: Solve µ̇θk

t = −∇xH(t,Xθk

t , µθk

t , θ
k
t ), µθk

T = −∇Φ(Xθk

T );
5: Set θk+1

t = argmaxθ∈ΘH(t,Xθk

t , µθk

t , θ) for each t ∈ [0, T ];
6: end for

B.2.2 E-MSA

E-MSA introduces the augmented Hamiltonian

H̃(t, x, µ, θ, v, q) := H(t, x, µ, θ)− 1

2
ρ∥v − f(t, x, θ)∥2 − 1

2
ρ∥q +∇xH(t, x, µ, θ)∥2. (41)

Then, they define the following set of alternative necessary conditions for optimality:

Proposition 3 (Extended PMP) Suppose that θ∗ is an essentially bounded solution to the optimal
control problem (2). Then, there exists an absolutely continuous co-state process µ∗ such that the
tuple (X∗, µ∗, θ∗) satisfies the necessary conditions

Ẋ∗
t = ∇µH̃(t,X∗

t , µ
∗
t , θ

∗
t , Ẋ

∗
t , µ

∗
t ), X∗

0 = x

Ṗ ∗
t = −∇xH̃(t,X∗

t , µ
∗
t , θ

∗
t , Ẋ

∗
t , µ

∗
t ), µ∗

T = −∇xΦ(X
∗
T )

H̃(t,X∗
t , µ

∗
t , θ

∗
t , Ẋ

∗
t , µ

∗
t ) ≥ H̃(t,X∗

t , µ
∗
t , 0, Ẋ

∗
t , µ

∗
t ), θ ∈ Θ, t ∈ [0, T ] (42)

The key contribution is that the control terms θ can be updated by iteration using the Extended-PMP
as shown below. Meanwhile, it is proven that under this update rule, for each iteration, the target
function J(θ) is non-decreasing.

Algorithm 4 Extended MSA
1: Initialize: θ0 ∈ U . Hyper-parameter: ρ;
2: for k = 0 to #Iterations do
3: Solve Ẋθk

t = f(t,Xθk

t , θkt ), Xθk

0 = x;
4: Solve Ṗ θk

t = −∇xH(t,Xθk

t , P θk

t , θkt ), P θk

T = −∇Φ(Xθk

T );
5: Set θk+1

t = argmaxθ∈Θ H̃(t,Xθk

t , P θk

t , θ, Ẋθk

t , Ṗ θk

t ) for each t ∈ [0, T ];
6: end for

C PROOFS AND THEOREMS

C.1 PROOF FOR PROPOSITION 1

C.1.1 PART 1

Proposition 1. For Affine Gaussian Probability Path, the expectation of the running cost upper
bounds the KL divergence between the prior joint distribution p1(xp, x1) = p1(x

p|x1)pdata(x1) and
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the joint distribution after guidance p1(xθ, x1) = p1(x
θ|x1)pdata(x1), with x1 ∼ pdata, xp induced

by prior conditional vector field ut(x|x1) and xθ sampled by applying control θt(x1) on ut.

Ex1∼pdata(x1)

[
1

2

∫ 1

0

∥θt(x1)∥2 dt
]
≥ C · KL(p1(xθ, x1)∥p1(xp, x1)). (43)

Proof. For Affine Gaussian Probability Paths, the conditional flow distribution of the prior vector
field can be written as: P p

t (x|x1) = N(µt(x1), σt(x1)
2I), the conditional vector field is written as:

ϕt(x) = µt(x1) + σt(x1)x (44)
with its dynamics:

ϕ̇t(x) = µ̇t(x1) + σ̇t(x1)x, (45)
or

ut(x|x1) = µ̇t(x1) +
σ̇t
σt

(x− µt(x1)).

Although control terms θ(x1) are specifically derived for each ODE trajectory and are conditioned
on the target point x1, we can define a marginalized control term θt(x) =

∫
θ(x1)p(x1|x) dx1 to

assemble aggregated control from all possible controls applied to each target point. Adding that to
the marginal vector field can be thought of as effectively adding the target-conditioned controls into
the conditional vector field, and then marginalizing:

u(x) + θt(x) =

∫
(ut(x|x1) + θt(x1)) p(x1|x) dx1. (46)

Given the definition of the Gaussian path, we can derive that the additive control terms only alter the
mean of the distribution by denoting it as θt(x1) by noticing it is not proportional to x:

ϕ̇θt (x) = ut(ϕ(x)|x1) + θt(x1) = θt(x1) + µ̇t(x1) + σ̇t(x1)x. (47)

The resulting pushing-forward prob is equivalently:

P θ
t (x) =

∫
P θ
t (x|x1)q(x1) dx1,

P θ
t (x|x1) = N(µθ

t (x1), σt(x1)
2I). (48)

Usually, besides maximising the reward, we hope the new distribution is not too much away from the
original distribution. One common constraint on the terminal state distribution is the Kullback-Leibler
(KL) divergence.

Inspired by Variational Flow Matching (Eijkelboom et al. (2024)), we can the KL divergence
between the joint distributions of the data point x1 and the prior terminal point xp, denoted as
p1(x

p, x1) = p1(x
p|x1)pdata(x1), and that of the data point x1 and the controlled terminal point xθ,

denoted as p1(xθ, x1): KL(P p
1 (x, x1)∥Pu

1 (x, x1)).

The KL term can be simplified as:

KL(P p
1 (x, x1)||P θ

1 (x, x1)) =

∫∫
P p
1 (x|x1)q(x1) log

P p
1 (x|x1)pdata(x1)

P θ
1 (x|x1)pdata(x1)

dx ddx1 (49)

= Ex1∼pdata(x1)[KL(P p
1 (x|x1)||P θ

1 (x|x1))].

Given P p
1 (x|x1) and P θ

1 (x|x1) are two Gaussians with the same variance but different mean, and
when we consider the constraint per sample, the constraint can be written as:

1

2

∥µθ
1(x1)− µp

1(x1)∥2

σ1(x1)2
, (50)

given:

∥µθ
1(x1)− µp

1(x1)∥2 =

∥∥∥∥∫ 1

0

θt dt

∥∥∥∥2 ≤
∫ 1

0

∥θt∥2 dt. (51)

Therefore, we have the following inequality:

Ex1∼pdata(x1)

[
1

2

∫ 1

0

∥θt(x1)∥2 dt
]
≥ 1

4σ1(x1)2
· KL(p1(xθ, x1)∥p1(xp, x1)). (52)
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C.1.2 PART 2

Proposition 1. Part 2 For square-shaped data x with non-zero probability path, the expectation of
the running cost, combined with the L1-distance between the prior sample xp1 and the corresponding
guided sample xθ1, upper bounds the KL divergence between the marginal distributions of the prior
model pp1 and the guided model pθ1:

Exp
1∼pp

1(x)

[
A∥xp1 − xθ1∥+B

∫ 1

0

∥θt(xp1)∥2 dt
]
≥ KL(pp1 ∥ pθ1). (53)

Proof. Firstly, we can build a bound for the distance of terminal points of pre-trained model ϕpt (x)
and our controlled model ϕθt (x) given the same starting point. Given dϕp

t (x)
dt = fp(x) with fp(·) is

the prior model and dϕθ
t (x)
dt = fp(x) + θt, meanwhile as the θt are defined per sample, we can see

them as a function of x. Given the ODEs governing ϕθt (x) and ϕpt (x) and use Lipschitz condition:

∥ϕθt (x)−ϕ
p
t (x)∥ ≤

∫ 1

0

∥fp(ϕθt (x))−fp(ϕ
p
t (x))+θt∥ dt ≤ L

∫ 1

0

∥ϕθt (x)−ϕ
p
t (x)∥ dt+

∫ 1

0

∥θt∥ dt.
(54)

By Gronwall’s inequality:

∥ϕθ1(x)− ϕp1(x)∥ ≤ eL
∫ 1

0

∥θt∥ dt. (55)

From the bound we build above, we can set

ϕθ1(x)− ϕp1(x) = g(θt, x) with g(θt, x) ≤ eL
∫ 1

0

∥θt∥ dt, (56)

and then by definition:
ϕ−1
θ,1(x) = ϕ−1

p,1(x− g). (57)

Now we consider the push-forward functions and assume p is non-zero for all x:

pp1(x) = p0(ϕ
−1
p,1(x))det

[
∂ϕ−1

p,1

∂x
(x)

]
,

pθ1(x) = p0(ϕ
−1
θ,1(x))det

[
∂ϕ−1

θ,1

∂x
(x)

]
. (58)

Given the starting distribution is standard Gaussian, we can get the KL divergence as:

KL(pp1 ∥ pθ1) =
∫
p1(x)

−1

2
∥ϕ−1

p,1(x)∥2 +
1

2
∥ϕ−1

θ,1(x)∥
2 + log

det
∂ϕ−1

p,1

∂x (x)

det
∂ϕ−1

θ,1

∂x (x)

 dx. (59)

With the Mean Value Theorem, we can find a point x̃ between x and x− g so that

ϕ−1
p,1(x)− ϕ−1

p,1(x− g) = (ϕ−1
p,1(x̃))

′
g. (60)

Assume the gradient is bounded so that (ϕ−1
p,1(x̃))

′ ≤ k:

−1

2
∥ϕ−1

p,1(x)∥2 +
1

2
∥ϕ−1

θ,1(x)∥
2 ≤ k∥g∥+ k2

2
∥g∥2. (61)

For the log term, with MVT again, there exists a point ξ on the line segment between x and x− g
such that:

h(x)− h(x− g) = ∇h(ξ) · g. (62)
Applying this to h(x) = log det f(x):

log det f(x)− log det f(x− g) = ∇(log det f)(ξ) · g. (63)

Thus,
|∆(x)| = |∇(log det f)(ξ) · g| ≤ ∥∇(log det f)(ξ)∥∥g∥. (64)
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To bound ∥∇(log det f)(ξ)∥, the gradient of log det f(x) with respect to x is:

∇(log det f(x)) = (det f(x))−1∇(det f(x)). (65)

Given the derivative of the determinant of a matrix-valued function assuming f(x) is square:

∇(det f(x)) = det f(x) · Tr
(
f ′(x)−1f ′′(x)

)
. (66)

Therefore:
∇(log det f(x)) = Tr

(
f ′(x)−1f ′′(x)

)
. (67)

Assuming that:

• ∥f ′(x)−1∥ ≤M for some constant M ;

• ∥f ′′(x)∥ ≤ N for some constant N .

Then:
∥∇(log det f(x))∥ ≤ ∥f ′(x)−1∥ · ∥f ′′(x)∥ · n ≤MNn = K. (68)

Therefore:

log
det

∂ϕ−1
p,1

∂x (x)

det
∂ϕ−1

θ,1

∂x (x)
≤ K∥g∥. (69)

Overall, we can bound the KL divergence using the integration of θt and the integration of the square
of θt:

KL(pp1 ∥ pθ1) ≤ Ex1∼pp
1(x)

[
(k +K)∥g∥+ k2

2
∥g∥2

]
≤ Ex1∼pp

1(x)

[
(k +K)eL∥x1 − xθ1(x1)∥+

k2

2
eL
∫ 1

0

∥θt∥2 dt
]
. (70)

C.2 PROOF FOR THEOREM 2

Since the Extended Method of Successive Approximations (E-MSA) is applied in this context, its
convergence properties are directly inherited. In this section, we focus on how our update rule is
derived from the E-MSA update rule, specifically under the framework of additive control terms and
running cost.

Define Hamiltonian H and Extended Hamiltonian H̃:

H(t, x, µ, θ) = µt · f(x, t) + µt · θt −
1

2
∥θt∥2,

H̃(t, x, µ, θ, ẋ, µ̇) = µt · f(x, t) + µt · θk+1
t − 1

2
∥θk+1

t ∥2 − γ

2
∥θk+1

t − θkt ∥2. (71)

Apply Extended MSA:
ẋkt = θkt + f(xkt , t),

µ̇k
t = −∇xH(t, xk, µk, θk) = −∇xf(x

k
t , t)µ

k
t ,

µk
1 = α∇x1

Φ(xk1),

θk+1
t = argmaxθtH̃(t, x, µ, θ, ẋ, µ̇). (72)

µk
t can be calculated in closed form as below, with T exp is the time-order exponential:

µk
t = T exp

(∫ 1

t

∇xf(x
k
s , s) ds

)
· α∇x1

Φ(Xk
1 ) (73)

Thus, the update rule of θt is:

θk+1
t =

γ

1 + γ
θkt +

α

1 + γ
T exp

(∫ 1

t

∇xf(x
k
s , s) ds

)
· ∇x1

Φ(Xk
1 ). (74)

19



Published as a conference paper at ICLR 2025

Further, the time-order exponential term can be simplified as follows. Evans (1983) provides a method
to calculate p(t) = ∇xt

x(1) efficiently by defining the adjoint and using the following ODEs:

ṗ(t) = −∇xf(x
k
t , t)p(t), p(1) = ∇x(1)x(1) = I. (75)

Sakurai & Napolitano (2020) provides an alternative viewpoint of the adjoint ODE, they show there
would be a closed form solution:

ṗ(t) = A(t)p(t), p(t) = T exp

[
−
∫ 1

t

A(s) ds

]
p(1). (76)

Thus, combining the closed form solution and the adjoint representation, we find that:

∇xt
x(1) = T exp

[∫ 1

t

∇xf(x
k
s , s) ds

]
. (77)

Given the linearity of the ODEs, multiply a constant to the terminal by change p(t) = ∇xtx(1) into
p(t) = ∇xtx(1)∇x1Φ(x1), the conclusions would not change, we have:

∇xt
x(1)∇x1

Φ(x1) = T exp

[∫ 1

t

∇xf(x
k
s , s) ds

]
∇x1

Φ(x1). (78)

Therefore, our update rule is in fact:

θk+1
t =

γ

1 + γ
θkt + α∇xt

Φ(Xk
1 ). (79)

The solutions can be naturally generalised to the space of RN if we use Tr(A⊤B) to replace A ·B.

C.3 DISCRETIZATION ERROR

Given the discretization method we are using is Euler step, we can show the error in terminal
states due to Euler method with turning continous setting ẋθt = ht(x

θ
t , θt) into discrete setting

xt+1 = xt + ht(x
θ
t , θt)∆t is bounded. Consider the first update of the states, define the local

truncation error as:
τk := x∗t+1 − x∗t − ht(x

θ
t , θt) ·∆t. (80)

By definition:

τk =

∫ tk+1

tk

hs(x
θ
s, θs) ds− ht(x

θ
t , θt) ·∆t. (81)

Given ∆t is small, with Taylor expansion:

hs(x
θ
s, θs) = ht(x

θ
t , θt) +

∂h

∂x
(xθs − xθt ) +

∂h

∂t
(s− t) + higher order terms. (82)

Similarly:
xθs − xθt = ht(x

θ
t , θt)(s− t) + higher order terms. (83)

We can then obtain

hs(x
θ
s, θs) = ht(x

θ
t , θt) +

(
∂ht
∂x

ht +
∂h

∂t

)
(s− t) + higher order terms. (84)

Therefore:∫ tk+1

tk

hs(x
θ
s, θs) ds = ∆t · ht(xθt , θt) +

∆t2

2

(
∂ht
∂x

ht +
∂h

∂t

)
+ higher order terms,

τk =
∆t2

2

(
∂ht
∂x

ht +
∂h

∂t

)
+ higher order terms. (85)

Now we accumulate Local Errors to Global Error. Define error in kth step:

ek = x∗(tk)− xk,
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ek+1 = x∗(tk+1)−xk+1 = (x∗(tk) + ∆t · f(x∗(tk), u∗(tk), tk) + τk)−(xk +∆t · f(xk, u∗k, tk)) .
(86)

Simplifying:
ek+1 = ek +∆t (f(x∗(tk), u

∗(tk), tk)− f(xk, u
∗
k, tk)) + τk. (87)

Assuming f is Lipschitz continuous in x and u:

∥f(x∗(tk), u∗(tk), tk)− f(xk, u
∗
k, tk)∥ ≤ Lf∥x∗(tk)− xk∥ = Lf∥ek∥. (88)

Error Recurrence Inequality:

∥ek+1∥ ≤ ∥ek∥+∆t · Lf∥ek∥+ ∥τk∥ = (1 +∆t · Lf )∥ek∥+ ∥τk∥. (89)

Solving the Error Inequality given ∥τk∥ ≤ C(∆t)2, where C is a constant depending on f and its
derivatives. We will solve the inequality:

ϵk+1 ≤ αϵk + C(∆t)2, (90)

where ϵk = ∥ek∥ and α = 1 +∆t · Lf . Thus:

ϵk+1 ≤ αk+1ϵ0 + C(∆t)2
k∑

j=0

αk−j . (91)

Since ϵ0 = 0 (assuming x0 is exact), the first term drops out. The sum becomes:

Sk =

k∑
j=0

αk−j =
αk+1 − 1

α− 1
. (92)

For small ∆t:
α ≤ e∆t·Lf ,

αk+1 ≤ e(k+1)∆t·Lf = eLf tk+1 . (93)
Compute the Sum Sk:

Sk ≤ eLf tk+1 − 1

e∆t·Lf − 1
≤ eLf tk+1 − 1

∆t · Lf
. (94)

Final Bound on ϵk+1:

ϵk+1 ≤ C(∆t)2 · e
Lf tk+1 − 1

∆t · Lf
=
C∆t(eLf tk+1 − 1)

Lf
. (95)

At the Final Time tf :

ϵN = ∥x∗(tf )− xN∥ ≤ C∆t(eLf tf − 1)

Lf
. (96)

For multiple rounds of updates, the error would be accumulated, for the N+1th update, an additional
local error is added to τk:

εk,N+1 = x∗t,N − xt,N + (ht(x
∗
t,N , θ

t,∗
N )− ht(xt,N , θ

t
N )) ·∆t. (97)

As the magnitude of this additional term is stillO(∆t2), the order of magnitude of τk does not change,
thus our conclusion does not change. The case in the SO(3) manifold should be similar, noticing the
discretization also uses the Euler step.

C.4 ASYNCHRONOUS SETTING AND VJP IN SO(3)

In practice, as described by equation 22, discretization techniques are employed to simulate the
ordinary differential equations (ODEs) governing both the state trajectory xt and the corresponding
cotangent vector µt. Most existing methods, as well as the algorithm presented earlier, operate under
a synchronous setting, where the number of time steps for the state trajectory xt matches the number
of control terms θt.

However, OC-Flow can be extended to an asynchronous framework by approximation to allow greater
flexibility in update scheduling.
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Rather than employing the standard update rule xt+∆t = xt + f(t, xt, θt)∆t, we subdivide the time
interval ∆t into N equally spaced subintervals, applying the control term θt only during the first
subinterval. The update for xt+∆t is given by:

xt+∆t = xt +
∆t

N
f(xt, θt) +

∆t

N
fp
(
xθ
t+∆t

N

)
+ · · ·+ ∆t

N
fp
(
xθ(N−1)∆t

N

)
. (98)

Moreover, for intermediate steps, we define:

xt+ i∆t
N

= xt +
∆t

N
f(xt, θt) +

i−1∑
l=1

∆t

N
fp
(
xθ
t+ l∆t

N

)
, (99)

where xt+ i∆t
N

denotes the state at the i-th subinterval.

Recall that f(xt, θt) = fp(xt)+θt, when we have ∆t
N is small enough, the update rule in Equation 10

can be approximated as a case in Equation 4 by considering ∇θxt+∆t:

∇θxt+∆t =
∆t

N
+

∆t

N
∇θf

p
(
xθ
t+∆t

N

)
+ · · ·+ ∆t

N
∇θf

p
(
xθ
t+

(N−1)∆t
N

)
=
∆t

N
+

(
∆t

N

)2

∇xf
p
(
xθ
t+∆t

N

)
+ · · ·+

(
∆t

N

)N

∇xf
p
(
xθ
t+

(N−1)∆t
N

)
=
∆t

N
+O

((
∆t

N

)2
)
.

(100)

Therefore, if we denote xt as the trajectory of the state variable x over the time interval [t, t+∆t],
and xθt as the trajectory when the control term θt is applied in the first subinterval, it can be reasonably
approximated as:

xt+∆t ≈ xt +
∆t

N

i−1∑
l=1

fp
(
xt+ l∆t

N

)
+

∆t

N
θt. (101)

As a result, for the asynchronous setting, the step 4 in Algorithm 1 should be modified as:

Xθk

t+∆t =

(
1

N

i−1∑
l=1

fp(xt+ l∆t
N

) +
1

N
θk

)
∆t. (102)

For the case on the SO(3) manifold, the asynchronous setting can be deployed using the Taylor
expansion of the matrix exponential exp(A), and noting that when ∆t

N and ∆t are sufficiently small,
the terms become commutative. We can derive the approximation as follows:

xt+∆t =xt exp

(
∆t

N
f(xt, θt)

)
exp

(
∆t

N
fp
(
xθ
t+∆t

N

))
· · · exp

(
∆t

N
fp
(
xθ(N−1)∆t

N

))
≈xt exp

(
∆t

N

i−1∑
l=1

fp
(
xt+ l∆t

N

)
+

∆t

N
θt

)

≈xt exp

(
∆t

(
fpe (xt) +

1

N
θt

))
.

(103)

The vector-Jacobian method can also be applied to compute the term ∂fp
t

∂x (xktEj) in Algorithm 2:〈
µ̃t,

∂fpt
∂x

xktEj

〉
= Tr

(
µ̃T
t

∂fpt
∂x

(xktEj)

)
. (104)

C.5 PROOF FOR PROPOSITION 3

The key inequality we used for the proof of Proposition 3 is following:

⟨h, v⟩ ≤ ∥h∥∥v∥, ∥x∥ = 1. (105)
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for h, v ∈ so(3) and x ∈ SO(3) Before proving the proposition 3, we first show that the cotangent
vector {µt} is also bounded.

Lemma 2: Assume all functions satisfy Lipschitz condition. Then, there exists a constant K ′ > 0
such that for any θ,

∥µθ
t ∥ ≤ K ′,

for all t ∈ [0, T ].

Proof. Using necessary condition and setting τ := T − t, µ̃θ
τ := µθ

T−τ we get

˙̃µθ
τ = ad∗∂H

∂µ
µ̃θ
τ + (dLx)

∗(∇x⟨µ̃θ
τ , f⟩), µ̃θ

0 = (dLxθ
T
)∗∇Φ(xθT ). (106)

With Lipschitz condition, we have ∥µ̃θ
0∥ ≤ ∥∇Φ(xθT )∥∥xθT ∥ ≤ K, ∥∇xf(t, x

θ
t , θt)∥ ≤ K, and

∥ad∗∂H
∂µ

µ∥ ≤ ∥∂H
∂µ ∥∥µ∥ ≤ K∥µ∥. Hence,

∥ ˙̃µθ
τ∥ ≤ K∥µ̃θ

τ∥, (107)

and

∥µ̃θ
τ∥ − ∥µ̃θ

0∥ ≤ ∥µ̃θ
τ − µ̃θ

0∥ ≤
∫ t

0

∥ ˙̃µθ
s∥ ds ≤

∫ t

0

(K∥µ̃θ
τ∥) ds, (108)

and by Gronwall’s inequality,
∥µ̃θ

τ∥ ≤ ∥µ̃θ
0∥eKT =: K ′. (109)

This proves the claim since it holds for any τ .

Now given all related terms are bounded, we can prove Proposition 2.

Proposition 3: Assume that the reward function, the prior model, and their derivatives satisfy
Lipschitz continuity, bounded by a Lipschitz constant L. Then, there exists a constant C > 0 such
that for any θ, ϕ ∈ so(3), the following inequality holds:

J(θ) +

∫ 1

0

∆ϕ,θH(t) dt− ∥ϕt − θt∥2dt ≤ J(ϕ), (110)

where Xθ and P θ satisfy the PMP conditions in Equation 34, and ∆Hϕ,θ denotes the change in the
Hamiltonian, defined as:

∆Hϕ,θ(t) := H(t, xθt , µ
θ
t , ϕt)−H(t, xθt , µ

θ
t , θt). (111)

Proof. Firstly, by the definition of Hamiltonian and PMP conditions, we always have:

I(xθ, µθ
t , θ) :=

∫ T

0

⟨µθ
t , f

θ
t ⟩ −H(t, xθt , µ

θ
t , θ)− L(θ) dt ≡ 0. (112)

Define δµt = µϕ
t − µθ

t and δft = fϕt − fθt , the difference in I can be decomposed as:

0 ≡ I(xϕ, µϕ
t , ϕ)− I(xθ, µθ

t , θ)

=

∫ T

0

⟨µθ
t , δft⟩+ ⟨δµt, f

θ
t ⟩+ ⟨δµt, δft⟩dt

−
∫ T

0

H(t, xϕt , µ
ϕ
t , ϕ)−H(t, xθt , µ

θ
t , θ) dt

−
∫ T

0

(L(ϕt)− L(θt)) dt.

(113)

Now define U(t) =
∫ t

0
fs ds = log(xtx

−1
0 ) and by integrating by parts:∫ T

0

⟨µθ
t , δft⟩dt = ⟨µθ

t , δUt⟩|T0 −
∫ T

0

⟨µ̇θ
t , δUt⟩dt,
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∫ T

0

⟨δµt, δft⟩dt = ⟨δµt, δUt⟩|T0 −
∫ T

0

⟨δµ̇t, δUt⟩dt. (114)

Combine the two terms above:∫ T

0

⟨µθ
t , δft⟩+⟨δµt, f

θ
t ⟩dt = ⟨µθ

t , δUt⟩|T0 +
∫ T

0

⟨δµt,
∂Hθ

∂µ
⟩+
〈
µθ
t , ad ∂Hθ

∂µ

δft

〉
+

〈
∂Hθ

∂x
, δftx

θ
t

〉
dt.

(115)
Similarly, we get:∫ T

0

⟨δµt, δft⟩dt =
1

2

∫ T

0

⟨δµt, δft⟩dt+
1

2

∫ T

0

⟨δµt, δft⟩dt

=
1

2
⟨δµt, δUt⟩|T0 − 1

2

∫ T

0

⟨ ˙δµt, δUt⟩dt+
1

2

∫ T

0

⟨δµt, δft⟩dt

=
1

2
⟨δµt, δUt⟩|T0 +

1

2

∫ T

0

〈
µϕ
t , ad ∂Hϕ

∂µ

δUt

〉
−
〈
µθ
t , ad ∂Hθ

∂µ

δUt

〉
dt

+
1

2

∫ T

0

〈
(dLxϕ

t
)∗
∂Hϕ

∂x
− (dLxθ

t
)∗
∂Hθ

∂x
, δUt

〉
dt

+
1

2

∫ T

0

〈
δµt,

∂Hϕ

∂µ
− ∂Hθ

∂µ

〉
dt.

(116)

With mean value theorem and x, µ are bounded by constant L, we can always find xγt between xϕt
and xθt , µγ

t between µϕ
t and µθ

t , γ between ϕ and θ, so that :∫ T

0

〈
(dLxϕ

t
)∗
∂

∂x
H(t, xϕt , µ

ϕ
t , ϕ)− (dLxθ

t
)∗
∂

∂x
H(t, xθt , µ

θ
t , θ), δUt

〉
dt

=

∫ T

0

〈
(dLxθ

t
)∗
∂

∂x
H(t, xθt , µ

θ
t , ϕ)− (dLxθ

t
)∗
∂

∂x
H(t, xθt , µ

θ
t , θ), δUt

〉
dt

+

∫ T

0

〈
∇x((dLxγ

t
)∗)xγt δUt∇xH(t, xϕt , µ

ϕ
t , ϕ), δUt

〉
dt

+

∫ T

0

〈
(dLxθ

t
)∗∇2

xH(t, xγt , µ
ϕ
t , ϕ)x

γ
t δUt, δUt

〉
dt

+

∫ T

0

〈
(dLxθ

t
)∗∇µ∇xH(t, xθt , µ

γ
t , ϕ)δµt, δUt

〉
dt

≤
∫ T

0

〈
(dLxθ

t
)∗
∂

∂x
H(t, xθt , µ

θ
t , ϕ)− (dLxθ

t
)∗
∂

∂x
H(t, xθt , µ

θ
t , θ), δUt

〉
dt

+ C

∫ T

0

∥δUt∥2 + ∥δµt∥∥δUt∥ dt.

(117)

Using the same method we get:∫ T

0

⟨δµt, δft⟩dt ≤
1

2
⟨δµt, δUt⟩ |T0 +

1

2

∫ T

0

〈
µϕ
t , ad ∂Hϕ

∂µ

δUt

〉
−
〈
µθ
t , ad ∂Hθ

∂µ

δUt

〉
dt

+
1

2

∫ T

0

〈
∂

∂x
H(t, xθt , µ

θ
t , ϕ)−

∂

∂x
H(t, xθt , µ

θ
t , θ), δUtx

θ
t

〉
dt

+
1

2

∫ T

0

〈
∂

∂µ
H(t, xθt , µ

θ
t , ϕ)−

∂

∂µ
H(t, xθt , µ

θ
t , θ), δµt

〉
dt

+ C

∫ T

0

∥δUt∥2 + ∥δµt∥∥δUt∥ dt.

(118)
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With boundary conditions:〈
µθ
t +

1

2
δµt, δUt

〉
|T0 =

〈
µθ
T +

1

2
δµT , δUT

〉
=
〈
(dLxθ

t
)∗∇Φ(xθT ), δUt

〉
+

1

2

〈
(dLxϕ

t
)∗∇Φ(xϕT )− (dLxθ

t
)∗∇Φ(xθT ), δUt

〉
≤ Φ(xϕT )− Φ(xθT ) +K∥δUT ∥2.

(119)

Using same method to H(t, xϕt , µ
ϕ
t , ϕ)−H(t, xθt , µ

θ
t , θ), we obtain:[

Φ(xθT ) +

∫ T

0

L(θt) dt

]
−

[
Φ(xϕT ) +

∫ T

0

L(ϕt) dt

]

≤ K∥δUT ∥2 −
∫ T

0

∆Hϕ,θ(t) dt+
1

2

∫ T

0

〈
µϕ
t , ad ∂Hϕ

∂µ

δUt

〉
−
〈
µθ
t , ad ∂Hθ

∂µ

δUt

〉
dt

+
1

2

∫ T

0

〈
∂

∂x
H(t, xθt , µ

θ
t , ϕ)−

∂

∂x
H(t, xθt , µ

θ
t , θ), x

θ
t δUt

〉
dt

+
1

2

∫ T

0

〈
∂

∂µ
H(t, xθt , µ

θ
t , ϕ)−

∂

∂µ
H(t, xθt , µ

θ
t , θ), δµt

〉
dt

+ C

∫ T

0

||δUt||2 + ||δµt||||δUt||dt.

(120)

By definition:

δUt =

∫ T

0

f(t, xϕT , ϕ)− f(t, xθT , θ) dt, (121)

and so

∥δUt∥ ≤
∫ t

0

∥f(s, xϕs , ϕ)− f(s, xθs, θ)∥ ds

≤
∫ t

0

∥f(s, xϕs , ϕ)− f(s, xθs, ϕ)∥ds+
∫ t

0

∥f(s, xθs, ϕ)− f(s, xθs, θ)∥ ds

≤
∫ T

0

∥f(s, xθs, ϕ)− f(s, xθs, θ)∥ ds+K

∫ t

0

∥δUs∥ ds.

(122)

By Gronwall’s inequality:

∥δUt∥ ≤ eKT

∫ T

0

∥f(s, xθs, ϕ)− f(s, xθs, θ)∥ ds. (123)

To estimate δµ, we use the same substitution as in Lemma 6 with τ = T − t, we get:

δµ̃τ = δµ̃0 +

∫ τ

0

(dLx̃ϕ
s
)∗∇xH(s, x̃ϕs , µ̃

ϕ
s , ϕ)− (dLx̃θ

s
)∗∇xH(s, x̃θs, µ̃

θ
s, θ) ds

+

∫ τ

0

(
ad∗∂H

∂µ
µ̃ϕ
τ − ad∗∂H

∂µ
µ̃θ
τ

)
ds.

(124)
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Using Lemma 1 and Liptichitz conditions:

∥δµ̃τ∥ ≤ ∥δµ̃0∥+
∫ τ

0

∥(dLx̃ϕ
s
)∗∇xH(s, x̃ϕs , µ̃

ϕ
s , ϕ)− (dLx̃θ

s
)∗∇xH(s, x̃θs, µ̃

θ
s, θ)∥ ds

+

∫ τ

0

∥∥∥ad∗∂H
∂µ
µ̃ϕ
τ − ad∗∂H

∂µ
µ̃θ
τ

∥∥∥ds
≤ K∥δUT ∥+KK ′

∫ T

0

∥δUt∥ dt+K

∫ τ

0

∥δµ̃s∥ ds

+

∫ T

0

∥(dLx̃θ
s
)∗∇xH(s, x̃θs, µ̃

θ
s, ϕ)− (dLx̃θ

s
)∗∇xH(s, x̃θs, µ̃

θ
s, θ)∥ ds

≤ eKTK

(
∥δUT ∥+K ′

∫ T

0

∥δUt∥ dt

)

+ eKTK

∫ T

0

∥∇xH(s, x̃θs, µ̃
θ
s, ϕ)−∇xH(s, x̃θs, µ̃

θ
s, θ)∥ ds.

(125)

Using the bound of Ut, we obtain:

∥δµ̃τ∥ ≤ K ′′

(∫ T

0

∥f(s, xθs, ϕ)− f(s, xθs, θ)∥ ds

)

+ eKTK

∫ T

0

∥∇xH(s, x̃θs, µ̃
θ
s, ϕ)−∇xH(s, x̃θs, µ̃

θ
s, θ)∥ds.

(126)

Also we obtain:

1

2

∫ T

0

〈
µϕ
t , ad ∂Hϕ

∂µ

δUt

〉
−
〈
µθ
t , ad ∂Hθ

∂µ

δUt

〉
dt

=
1

2

∫ T

0

〈
ad∗∂Hθ

∂µ

µϕ
t − ad∗∂Hθ

∂µ

µθ
t , δUt

〉
dt

≤ C

∫ T

0

∥δµt∥∥δUt∥dt.

(127)

Finally we get:
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J(θ)− J(ϕ) ≤ −
∫ T

0

∆Hϕ,θ(t) dt

+
1

2
K ′′∥δUT ∥2

+K ′′
∫ T

0

(
∥δUt∥2 + ∥δµt∥2

)
dt

+
1

2

∫ T

0

∥δµt∥∥f(t, xθt , ϕt)− f(t, xθt , θt)∥ dt

+
1

2

∫ T

0

∥δUt∥∥∇xH(t, xθt , µ
θ
t , ϕt)−∇xH(t, xθt , µ

θ
t , θt)∥ dt

≤ −
∫ T

0

∆Hϕ,θ(t) dt

+ C

(∫ T

0

∥f(t, xθt , ϕt)− f(t, xθt , θt)∥ dt

)2

+ C

(∫ T

0

∥∇xH(t, xθt , µ
θ
t , ϕt)−∇xH(t, xθt , µ

θ
t , θt)∥2 dt

)2

≤ −
∫ T

0

∆Hϕ,θ(t) dt

+ C

∫ T

0

∥f(t, xθt , ϕt)− f(t, xθt , θt)∥2 dt

+ C

∫ T

0

∥∇xH(t, xθt , µ
θ
t , ϕt)−∇xH(t, xθt , µ

θ
t , θt)∥2 dt.

(128)

Therefore, given the form of the addictive control terms and the running cost, we can derive the final
term of our claim:

J(θ) +

∫ 1

0

∆ϕ,θH(t) dt− C∥ϕt − θt∥2 dt ≤ J(ϕ). (129)

C.6 PROOF FOR PROPOSITION 4

Due to the similarity between the bound derived in Proposition 3 and the bound obtained from the
E-MSA method, the proofs of Proposition 4 and Theorem 5 follow the same reasoning as outlined in
Section 3.3 of Li et al. (2018). For the sake of completeness, we provide the full derivations here.

Proposition 4: Let Xθ and P θ satisfy the PMP conditions in Equation 34. If the update rule follows
Equation 19, we define ϵk :=

∫ 1

0
∆θk+1,θkH(t) dt, and ϵk is bounded as:

ϵk :=

∫ 1

0

∆θk+1,θkH(t) dt, lim
k→∞

ϵk = 0. (130)

Furthermore, when ϵk = 0, we have θ = θ∗ := argmaxθ J(θ)To establish convergence, define

ϵk :=

∫ T

0

∆Hθk+1,θk(t) dt ≥ 0. (131)

Proof. By definition, if ϵk = 0, then from the update rule which maximizes the Hamiltonian, we
must have

0 = −ϵk ≤ −γ
2

∫ 1

0

∥θk+1 − θk∥2 dt ≤ 0, (132)

and so
max

θ
H̃(xθ

k

t , µ
θk

t , θ, ẋ
θk

t , µ̇
θk

t ) = H̃(xθ
k

t , µ
θk

t , θ
k
t , ẋ

θk

t , µ̇
θk

t ). (133)
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Therefore, we always have the quantity ϵk ≥ 0 and it measures the distance from the optimal solution,
and if it equals 0, then we reach the optimum.

C.7 PROOF FOR THEOREM 5

Theorem 5: Assume that the reward function, the prior model, and their derivatives satisfy Lipschitz
continuity, bounded by a Lipschitz constant L. Let θ0 ∈ so(3) be any initial measurable control with
J(θ0) < +∞. Suppose also that infθ∈so(3) J(θ) > −∞. If the update of θ satisfies equation 19, for
sufficiently large γ, the following inequality holds:

Dϵk ≤ J(θk+1)− J(θk) (134)

for some constant D > 0

Proof. Using Proposition 3 we have

J(θk)− J(θk+1) ≤ −ϵk + C

∫ T

0

∥θk+1 − θk∥2 dt. (135)

From the Algorithm 2 maximizing step, we know that

H(t,Xθk

t , P θk

t , θkt ) ≤ H(t,Xθk

t , P θk

t , θk+1
t )− γ

2
∥θk+1 − θk∥2. (136)

Hence, we have

J(θk)− J(θk+1) ≤ −
(
1− 2C

γ

)
ϵk. (137)

Pick γ > 2C, then we shall have J(θk)− J(θk+1) ≤ −Dϵk with D = (1− 2C
γ ) > 0.

Moreover, we can rearrange and sum the above expression to get

M∑
k=0

ϵk ≤ D−1
(
J(θM+1)− J(θ0)

)
≤ D−1

(
inf
θ∈U

J(θ)− J(θ0)

)
, (138)

and hence
∑∞

k=0 ϵk < +∞, which implies ϵk → 0 and the algorithm converges to the optimum.

D COMPUTATIONAL EFFICIENCY

Table 6: Comparison of runtime and memory complexity of different methods used in backprop-
through guided-ODE in Euclidean and SO(3) manifold. For complexity, N is the number of ODE
steps, n is the number of effective control terms with synchronized and in the range [1, N ] and D2 is
the complexity of computing 1-step gradient (VJP or Autograd), D depends on data and model size.
c is the deficiency introduced by L-BFGS optimizer.

Number Of Memory Runtime Convergence Generalization
Control Terms Complexity Complexity to Optimal to SO(3)

OC-Flow n O(D2) O(nD2) ✓ ✓
FlowGrad n O(D2) O(nD2) ✗ ✗
D-Flow N O(ND2) O(cND2) ✗ ✗
Red-Diff N/A O(D) O(LND) ✗ ✗

In terms of memory complexity, both our implementation and FlowGrad utilize the vector-Jacobian
approach, which allows solving differentiation through ODE-integral with the adjoint method,
significantly reducing memory from O(ND2) (D-Flow) to O(D2). In comparison, D-Flow does not
employ the adjoint method, significantly increasing the memory complexity to O(ND2), as detailed
in Table 6.

In terms of runtime, both FlowGrad and OC-Flow are predominantly influenced by the number of
control terms. Various strategies are implemented to reduce either the number of control terms (or
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Table 7: Illustration how different methods decrease the runtime and memory complexity and enhance
model capability

Effective Memory Runtime Generalization
Timestep Complexity Complexity to SO(3)

OC-Flow n O(D2) O(nD2) ✗
w/o-asynchronous N O(D2) O(ND2) ✗
w/o-VJP (adjoint) N O(ND2) O(ND2) ✗
OC-Flow-SO(3) n O(D2) O(nD2) ✓
w/o-asynchronous N O(D2) O(ND2) ✓
w/o-VJP (adjoint) N O(ND4) O(ND4) ✓

the effective time steps requiring back-propagation). Specifically, FlowGrad applies a straightening
technique, and in oc-flow, this concept is extended to an asynchronous setting. Consequently, the
runtime complexity is expressed as O(nD2) for both FlowGrad and OC-Flow. In contrast, D-Flow
does not imply an asynchronous setting, necessitating N steps of Autograd, resulting in O(ND2)
complexity. In addition, D-Flow is heavily relying on L-BFGS optimizer (Table 4), which also adds a
significant increase in runtime due to e.g., uncontrollable additional iteration of linear search, which
we estimate with a factor of constant c.

Table 7 provides a more direct comparison of the impact of the asynchronous setting and the vector-
Jacobian product (VJP) method.

Compared to optimization-based algorithms, in some methods such as Red-Diff and DPS, the gradient-
guidance can be approximated directly. These methods demonstrate significantly lower memory
complexity and faster runtime. However, their capability is notably constrained. As reported in
the Dflow paper, Red-Diff encounters difficulties in handling noise, even in simple linear inverse
problems involving images.

When oc-flow is adapted to the SO(3) manifold, an additional calculation is introduced for each
control term. Specifically, this involves computing the trace of the product of two D ×D matrices,
which adds a computational cost of O(D2). Despite this additional burden, the overall complexity
remains in the order of O(D2). The VJP method is also applied for oc-flow on the SO(3) manifold,
as shown in Equation 15, for the term ⟨µ̃k

t ,
∂fp

t

∂x x
k
tEi⟩, where ∂fp

t

∂x x
k
t is computed using VJP. This

additional complexity is justified by oc-flow’s improved convergence to optimal solutions on the
SO(3) manifold. Notably, the OC-Flow-SO3 involves computing full Jacobian which could induce
a complexity of O(D4) if directing computing it. Our Jacobian-Vector Product derivation signifi-
cantly reduces the complexity of OC-Flow-SO3 from O(D4) to O(D2), which enabled our efficient
implementation.

Table 8: Memory Usage and Runtime on Text-guided Image (256*256) Manipulation. Note: ODE
steps = 100, optimization steps = 15.

FlowGrad DFlow OC-Flow
Fast Simulation on off - on off
Peak GPU Mem (GB) 5.2 5.2 OOM 5.4 5.4
Runtime per Sample (s) 114.7 206.2 - 115.7 216.7

In Table 8 we show memory usage and runtime on high-dimensional images, evaluated on a single
A100 with 40G memory. We compare FlowGrad, DFlow, and OC-Flow on images. (Liu et al.,
2023) proposed fast simulation through skipping some Euler steps if the relative velocity change is
smaller than a threshold (1e-3 in (Liu et al., 2023)). We compare the 3 models with or without fast
simulation. As for DFlow, we encountered Out-Of-Memory error even on 40G GPU. (Ben-Hamu
et al., 2024) used gradient checkpoint to bypass the OOM error, however, due to the lack of code
and implementation details of DFlow, we are unable to fully reproduce their implementation. For
reference, DFlow takes 15 minutes per image (128*128) on a single 32GB V100 GPU, according to
their paper. Generally speaking, FlowGrad and OC-Flow have similar memory usage and runtime
except for DFlow.
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Table 9: Memory Usage and Runtime Comparison of OC-Flow on Euclidean and SO(3).
SO(3) Euclidean

Peak GPU Mem (GB) 1.6 1.2
Runtime per Sample (s) 296.6 188.2

For peptides 9, since FlowGrad and DFlow are not applicable in SO(3), we only report results for
OC-Flow using our proposed asynchronous algorithm for efficient simulation, evaluated on a single
A100 with 40G memory. Comparing the results, rotation is computationally 0.5x more expensive
than translation due to the additional cost introduced by Eq. 22. However, as shown in Table 7,
the costs of rotation and translation remain within the same order of magnitude. It is important to
note that the extra cost of rotation is justified, as the additional computations required by Eq. 22 are
inherent to operations on the SO(3) manifold. Moreover, as demonstrated in Table 5, generation in
SO(3) is crucial for the task.

Table 10: Runtime Comparison on Molecule. Note: ODE steps = 50, SGD steps = 20, L-BFGS steps
= 5 with inner steps = 5.

EquiFM FlowGrad DFlow OC-Flow
Optimizer N/A SGD SGD L-BFGS SGD L-BFGS
Runtime per Sample (s) 2.4 37.6 31.3 102.8 38.1 103.7

In Table 10, we compare FlowGrad, DFlow, and OC-Flow on molecule, evaluated on a single A100
with 40G memory. For reference, we also list EquiFM model as used in our method. To align with
DFlow, we also adopt L-BFGS optimizer and find it crucial in performance yet slows down the
efficiency.

E EXPERIMENTAL DETAILS

E.1 TEXT-GUIDED IMAGE MANIPULATION

In our text-to-image generation experiment, we adopted the pipeline presented in Liu et al. (2023),
utilizing the generative prior from Liu et al. (2022). We employed standard evaluation metrics: LPIPS
and ID (face identity similarity) as introduced in Kim & Ye (2021) to assess the differences between
the original image and the manipulated image. Additionally, the CLIP score was used to evaluate the
alignment between the generated image and the provided text prompt.

To enforce consistency with the original image and inspired by Proposition 1, we introduced a
constraint term to the terminal reward function to penalize significant deviations from the original
image:

Φ(x1) = λCLIP(x1, T )− (1− η)∥x1 − xp1∥. (139)

Here, the hyperparameter λ was set to 0.7 across all experiments, and the Euler discretization step
was set to N = 100 and the number of optimization iterations M = 15. As discussed in Theorem 2,
increasing the learning rate η results in greater emphasis on the terminal reward, leading to a higher
CLIP score but lower LPIPS and ID scores. The weight decay is a function of γ, which is tuned to
maximize (1− 2C

γ )ϵkγ for iteration k. In this experiment, due to the limitation of storage, we set γ the
same for all k. In our implementation, the learning rate η was set to 2.5, and the weight decay β was
set to 0.995.

Baseline configurations were aligned with those reported in Liu et al. (2023), and the results presented
in Table 2 reflect the same experimental conditions. For quantitative comparison, we used the CelebA
dataset, randomly sampling 1,000 images, which were manipulated based on text guidance: {old,
sad, smiling, angry, curly hair}.
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E.2 MOLECULE GENERATION

In our QM9 generation experiment, we mostly followed the conditional generation pipeline in
Hoogeboom et al. (2022). An equivariant geometric GNN was trained for each property on half of
the QM9 data as the classifier, which was then frozen during our training-free controlled generation.
The EquiFM (Song et al., 2024) checkpoint, trained on the whole QM9 training data, was loaded as
the generative prior. The test time properties were sampled from the whole training dataset, making
it slightly different from the settings in Ben-Hamu et al. (2024). Therefore, we reimplemented the
D-Flow algorithm with 5 optimizer steps and 5 inner steps each with a linear search using the L-BFGS
optimizer. The results roughly matched those reported in the D-Flow paper with slightly worse MAEs
as we included the whole training dataset for property sampling. Our proposed OC-Flow also used
the same optimization hyperparameters and also almost the same running time as the D-Flow. For
FlowGrad, we followed the suggestion in the original paper to use 20 SGD steps to update the
learnable parts, which ran slightly faster than OC-Flow and D-Flow.

For all properties, MAE was used as the optimization target and γ is the regularization coefficient
such that γ

∫ 1

0
∥θt∥2 dt is the additional OC loss. For all optimization methods, we always used a

fixed number of 50 Euler steps so θ can be indexed by discrete indices. As the integral is done with
a step size of 1/50, any γ is effectively γ̃ = 2γ/50 = 0.04 when taking the derivative with respect
to θ or x. Therefore, γ = 10 effectively corresponds to γ̃ = 0.4, which is still a valid optimization
scheme.

We noted the difference in the optimizer in these settings in order to be consistent with the D-Flow
setup. We provide additional ablation studies on the effect of the optimizer, in which all guided
generation approaches used the SGD optimizer with 20 iterations and a learning rate of 1, following
the FlowGrad setup. The results are summarized in Table 11. It can be clearly demonstrated that
D-Flow performance is significantly worse than OC-Flow and even FlowGrad, the latter of which
is a special case of our OC-Flow. Indeed, we can safely conclude that the advantage of D-Flow
came solely from its optimizer of using L-BFGS. Using the SGD optimizer caused it to perform
even worse than the unconditional EquiFM baseline on the dipole moment µ. On the other hand,
OC-Flow achieved consistent improvements, using either the L-BFGS or the simple SGD optimizer,
demonstrating our superior performance.

Table 11: Ablation on optimizer. MAE for guided generations on QM9 (lower is better).
Property α ∆ε εHOMO εLUMO µ cv
Unit Bohr³ meV meV meV D cal

K·mol

OC-Flow(Ours) 1.907 346 187 300 0.362 0.972
D-Flow-SGD 5.753 1241 571 1195 1.639 2.982
FlowGrad 2.484 517 273 429 0.542 1.270

OC-Flow-LBFGS(Ours) 1.383 367 183 342 0.314 0.819
D-Flow-LBFGS (Ben-Hamu et al., 2024) 1.566 355 205 346 0.330 0.893

EquiFM 8.969 1439 622 1438 1.593 6.873

E.3 PEPTIDE DESIGN

In our peptide experiments, we adopted PepFlow (Li et al., 2024) as the baseline model, utilizing the
pre-trained checkpoint provided in the original PepFlow paper. The test dataset split was also based
on the one defined in the PepFlow framework. For hyperparameter tuning, we randomly selected 10
complexes from the dataset. After tuning, the full set of 162 complexes was used for guided sampling
and evaluation to ensure a comprehensive performance assessment.

To enable flexible update scheduling, we adopted an asynchronous setting in OC-Flow. This design
maintains the same ODE time steps as PepFlow while utilizing fewer control terms. Specifically, 200
time steps are used for ODE simulation, with 10 control terms, each controlling 20 time steps. As
shown in Table 7, this approach reduces memory and runtime complexity without compromising the
accuracy of the ODE simulation. Furthermore, for consistency and comparability across experiments,
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we strictly controlled the initial noise during reruns to ensure consistency and comparability across
experiments.

We used the pre-trained model as the initialization for our experiments, allowing us to build upon
the pre-trained weights and achieve consistent performance improvements through hyperparameter
adjustments. In OC-Flow(rot), we used α = 0.95 and β = 0.8; in OC-Flow(trans), α = 0.9 and
β = 1.2; and in OC-Flow(both), α = 0.95 and β = 2.0. For all methods, we followed the same
hyperparameter choices outlined in the PepFlow paper to ensure fairness.

For evaluation, in addition to MadraX, the reward function used and optimized during training, we
included several key metrics not used for training to comprehensively assess the physical validity and
overall performance of the generated structures:

• Stability: Calculated using Rosetta over five independent runs, averaged to reduce high
variance.

• Affinity: Measured by Rosetta to determine the binding energy of designed peptides, also
averaged over five runs.

• IMP (Improvement Percentage): The percentage of peptides with improved affinities
(lower binding energies) compared to the native peptides, aligning with the definition used
in PepFlow.

• Diversity: Calculated as the average of 1− TM-Score among generated peptides, reflecting
structural dissimilarities.

• SSR (Secondary-Structure Similarity Ratio): The proportion of shared secondary struc-
tures between the designed peptide and the native peptide.

• BSR (Binding Site Ratio): The overlapping ratio between the binding site of the generated
peptide and the native binding site on the target protein.

Due to the time-intensive nature of Rosetta evaluations, we drew 10 samples per pocket for our
experiments, in contrast to PepFlow’s use of 64 samples. This approach enabled us to achieve
reproducible and fair comparisons across methods without excessive computational costs. Moreover,
by employing OC-Flow with guidance, we demonstrated that superior performance can be achieved
with fewer samples while maintaining consistency in evaluation settings.

As shown in Table 5, we demonstrated the importance of optimization on the SO(3) manifold
for peptide design. To further evaluate the impact of using optimal control for updating rotations
compared to standard gradient descent as in Euclidean space, we implemented Naive-SO(3). In this
implementation, the gradient of the terminal reward with respect to the control terms is computed
directly and mapped to so(3), and gradient descent is used to update the control terms.

θk+1
t = βθkt + η[∇θk

t
Φ(xθ

k

1 )]so(3),

ẋθ
k+1

t = (fp(xθ
k+1

t ) + θk+1
t )xθ

k+1

t . (140)

For the experimental setup, we conducted a comparative study using a randomly selected subset of
30 pockets. Each peptide was tested under identical conditions, with the primary difference being the
parameterization and update method for rotations.

Table 12: Comparison of OC-Flow-SO3 and naive SO3 gradient descent
MadraX ↓ RMSD ↓ SSR % ↑ BSR % ↑ Stability ↓ Affinity ↓ Diversity ↑ imp(%) ↑

Ground-truth -0.610 - - - -91.107 -39.807 - -
PepFlow -0.157 1.932 0.788 0.882 -39.807 -28.080 0.322 11.6
Naive-SO(3) 0.275 5.206 0.769 0.748 75.842 -21.901 0.635 6.0
OC-Flow-SO(3) -0.191 1.943 0.794 0.874 -50.947 -29.027 0.332 14.0

As shown in Table 12, the results indicate that updating rotations on SO(3) using optimal control out-
performs the naive method in terms of energy optimization and stability. The significant performance
gap can be attributed to the accuracy loss during the projection of the gradient onto so(3), which may
disrupt the delicate dynamics of the SO(3) space. Furthermore, due to the complexity of the SO(3)
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manifold, gradient-based methods are more prone to becoming trapped in local optima, whereas the
optimal control-based algorithm provides a pathway toward achieving the global optimum.

Our efforts to reproduce the PepFlow baseline involved extensive steps, including reaching out to the
original authors to address the absence of certain scripts and obtaining partial instructions for the
evaluation pipelines. In the original PepFlow paper, affinity and stability are reported as percentages.
However, to facilitate more fine-grained comparisons, we opted to report absolute energy values
instead. Additionally, to ensure fairness in comparison, we included IMP (Interaction Metric for
Peptides) as an evaluation metric, aligning it with the affinity measure used in PepFlow. Furthermore,
our experiments were conducted using the latest version of MadraX, ensuring that our results are
both robust and reproducible. These updates provide a consistent and comprehensive framework for
evaluating and comparing future methods in peptide design.
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