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FSVFG: Towards Immersive Full-Scene Volumetric Video
Streaming with Adaptive Feature Grid

Anonymous Authors

ABSTRACT
Full-scene volumetric video streaming, an emerging technology

providing immersive viewing experiences via the Internet, is re-

ceiving increasing attention from both the academic and industrial

communities. Considering the vast amount of full-scene volumetric

data to be streamed and the limited bandwidth on the internet,

achieving adaptive full-scene volumetric video streaming over the

internet presents a significant challenge. Inspired by the advan-

tages offered by neural fields, especially the feature grid method,

we propose FSVFG, a novel full-scene volumetric video streaming

system integrated feature grids as the representation of volumetric

content. FSVFG employs an incremental training approach for fea-

ture grids and stores the features and residuals between adjacent

grids as frames. To support adaptive streaming, we delve into the

data structure and rendering processes of feature grids and pro-

pose bandwidth adaptation mechanisms. The mechanisms involve

a coarse ray-marching for the selection of features and residuals to

be sent, and achieve variable bitrate streaming by Level-of-Detail

(LoD) and residual filtering. Based on these mechanisms, FSVFG

achieves adaptive streaming by adaptively balancing the transmis-

sion of feature and residual according to the available bandwidth.

Our preliminary results demonstrate the effectiveness of FSVFG,

demonstrating its ability to improve visual quality and reduce band-

width requirements of full-scene volumetric video streaming.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Networks
→ Application layer protocols.

1 INTRODUCTION
Volumetric video (VV) captures content in 3D, providing viewers

with a six-degree-of-freedom (6DoF) motion. Recently, volumetric

video has been at the forefront of immersive media and holds im-

mense potential for revolutionizing sectors such as entertainment,

gaming, education, and telecommunications. Since the volumetric

video content is represented by dense explicit geometric structure,

e.g., point cloud (PtCl), streaming volumetric video over the Inter-

net consumes huge bandwidth consumption. Recent studies have

proposed solutions to mitigate data usage, such as leveraging tile-

based viewport, occlusion, and distance visibility [6, 11, 43]. Most

of them focus on streaming individual objects, e.g., a single person.
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3D Tiling

Time

(a) Object-based video

Time

(b) Full-scene volumetric video

Figure 1: Illustrations of the object-based and full-scene VV

In contrast, full-scene volumetric video comprises both 3D ob-

jects and the entire environment, leading to a more engaging and

interactive experience than the object-based volumetric video. As

is shown in Figure 1, full-scene volumetric video typically has a sig-

nificantly larger but low-dynamic environment and relatively small

areas with high-dynamic objects. The huge difference in object

sizes poses a significant challenge for adaptive streaming [7].

Neural fields have demonstrated powerful capabilities in viewing

quality with a compact model, offering new opportunities in full-

scene volumetric video streaming. Neural fields such as NeRF store

the volumetric content in a parameterized neural network. This

network takes coordinates as inputs and outputs color and density,

which can then be used in volume rendering. These methods have

proven their ability to enhance visual quality while reducing stor-

age costs compared to explicit representations. Recent studies have

extended neural fields by incorporating time as an additional input

to represent volumetric videos [33, 34]. However, the complexity of

spatial changes in dynamic 3D scenes necessitates the use of numer-

ous parameters in the neural network for accurate representation

[28, 29], posing a substantial challenge to real-time rendering [20]

and often resulting in compromised rendering quality. The use of

numerous parameters also enlarges the data volume and makes it

too large to stream, especially for full-scene volumetric content.

To achieve faster rendering and improve visual quality, recent

studies have proposed the feature grid [26, 37] that stores a series of

trainable positional encodings in a grid of features for each region in

the scene. During inference, the input coordinates are first replaced

by related encodings in the grids before being fed into the decoder,

a single-layer MLP that outputs color and density. With fast query

on grids and low complexity of the decoder, the feature grid can

achieve better quality than other neural fields while maintaining

real-time rendering performance [17]. In the field of streaming,

most current feature grid streaming studies focus on streaming a

single moving object [19, 34, 41, 45]. When considering the full

scene, the environment data size significantly outweighs that of the

moving objects [7], making these streaming methods impractical.
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To this end, we propose FSVFG, an adaptive full-scene volumetric

video streaming system that integrates feature grids as the repre-

sentation of volumetric content. Our design and implementation of

FSVFG pose two technical challenges.

How to avoid massive data transfer? Full-scene volumetric

video typically has a relatively large but low-dynamic environ-

ment with relatively small areas containing high-dynamic objects.

Therefore, there is a strong inter-frame similarity among full-scene

volumetric video frames. Inter-frame similarity is widely utilized

to reduce the size of video frames. It allows for the storage and

streaming of only the residuals in dynamic regions, thereby signifi-

cantly reducing the bandwidth consumption of streaming. However,

leveraging it within a feature grid presents a non-trivial challenge.

Due to the high degree of freedom among feature grid parameters,

it is difficult to maintain similarity between adjacent frames in

the training process [42]. To address this issue, we propose inter-

frame regularized training that exploits the inter-frame similarity

of volumetric video frames by applying a regularization term in

incremental training [42] to the feature grid.

How to support bandwidth adaptation? To support band-

width adaptation, the streaming system should have a bitrate ladder

that trades off quality and bandwidth to deal with fluctuating band-

width. The traditional tile-based adaptive point cloud streaming [6]

is implemented by controlling the density of tiled point clouds for

network adaptation. However, in feature grid rendering, the density

of the network does not necessarily represent the trade-off between

quality and transmission. Therefore, they cannot achieve satisfac-

tory performance in the streaming of feature grids. To tackle this

problem, we take an insight into the rendering process and propose

to select features and residuals to be sent according to a coarse

ray-marching. We also delve into the data structure of the feature

grid and achieve variable bitrate streaming by LoD (Level-of-Detail)

and residual filtering. Based on these mechanisms, we achieve a

heuristic algorithm to select the LoD of features and change the

value of the threshold.

We have implemented FSVFG based on InstantNGP and con-

ducted extensive experiments on typical datasets and comparisons

with baselines. The key contributions are summarized as follows:

(1) To the best of our knowledge, FSVFG is a full-scene video

streaming system integrated feature grid. By leveraging the ability

of the feature grid in adaptive streaming, it reduces the bandwidth

and optimizes conventional transmission.

(2) Based on the insight into the unique characteristics of the

feature grid data structure and rendering process, we tackle these

problems and design adaptive streaming mechanisms that improve

visual quality and reduce network bandwidth requirements.

(3)We develop a prototype to evaluate the effectiveness of our

approach. Our evaluation of typical datasets and comparisons with

baselines demonstrate promising results.

2 BACKGROUND AND MOTIVATION
2.1 Volumetric Video Streaming
Volumetric video streaming has drawn substantial research atten-

tion in recent years. Current streaming systems can divided into

two scopes. Some studies such as V-PCC [31] codec or Vues [22]

project volumetric videos into 2D videos before streaming, while

others stream the volumetric content directly. Our work falls within

the latter scope.

Some previous studies in this scope have investigated volumetric

video streaming based on point cloud and have achieved adaptive

streaming [1, 35, 36, 40]. ViVo [6] was a pioneer in tiling-based

visibility-aware adaptive volumetric video streaming, and other

studies like GROOT [11], AITransfer [8], and YuZu [47] introduced

different technologies to optimize tiling-based adaptive streaming.

More recently, CaV3 [18] and Hermes [43] utilized inter-frame

similarity of volumetric video frames to decrease bandwidth con-

sumption of adaptive streaming, and MetaStream [5] integrates

several innovations into a comprehensive system to accomplish

volumetric video live streaming. However, with the huge amount

of attributes (i.e. position and color) in the point cloud and other ex-

plicit representations, these methods suffer from large data volumes

[17, 20] even with the use of well-designed encoders [39, 43].

Recently, innovative explicit representation methods such as 3D

Gaussian splatting [10, 44, 46] and Plenoxels [4, 13] are proposed,

but they are far from practical for networked applications due to

their additional attribute requirements, such as spherical harmonic

coefficients, which pose significant challenges for compression.

2.2 Neural Field
Neural fields such as NeRF [25] approximate the continuous sig-

nal in 3D space via a parametric continuous function that takes

coordinates as inputs and outputs attribute vectors. These methods

have proven their ability to enhance visual quality while reducing

storage costs compared to explicit representations [3, 14]. Besides,

they also eliminate the need for depth cameras in 3D reconstruction,

thereby significantly reducing its costs and making it accessible

to a wider audience. As such, these methods exhibit considerable

potential for volumetric video streaming and have attracted sig-

nificant research attention [9]. Unfortunately, despite the growing

interest in streamable neural fields [37], most current research

primarily focuses on compression [3, 13, 41], but not considering

practical issues on volumetric video streaming such as visibility

and bandwidth adaptation. To address this gap, our paper aims to

leverage the benefits of neural fields to facilitate adaptive full-scene

volumetric video streaming.

Within the large community of neural field research, many types

of neural fields can represent volumetric video. The selection of neu-

ral field representation is critical for achieving adaptive volumetric

video streaming and should consider several factors. Essentially,

the chosen representation should deliver high quality and be capa-

ble of real-time rendering on client devices. Besides, it should be

divisible temporally and spatially into smaller segments to achieve

visibility-aware adaptation [6]. Furthermore, it should be capable of

partitioning into different quality levels of varying sizes to accom-

modate varying bandwidth requirements for transmission [18, 47].

2.3 Feature Grid
Through investigation, we found that the feature grid can meet the

above requirements [17]. Feature grid [2, 21, 27] is a special class

of neural fields that is renowned in the research community for

its superior quality and the ability to render at interactive rates.

As is shown in Figure 2, a typical feature grid method comprises

2
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a feature grid, an MLP, and global Spherical Harmonics. Given

a viewport as input, the feature grid method operates as follows

[24, 38]: (1) Ray marching: sampling points along the ray ®𝑟 = ®𝑜 + 𝑡 ®𝑑
from the target image and find the containing voxels in the feature

grid of each point. (2) Positional embedding: the embedding vector

of a point is linearly interpolated based on its relative position

within the containing voxel in different resolutions. (3) Directional
embedding: direction

®𝑑 of the ray is transformed into an embedding

vector by Spherical Harmonics. (4) Inference: the positional and
directional embedding vectors of each sample point are fed into the

MLP, outputting the color and density. (5) Volume rendering: the

color and density of the sample points are accumulated to derive

the pixel color on the target image.

𝑟 = 𝑜 + 𝑡𝑑 𝑑

(𝑥, 𝑦, 𝑧)

(𝑥, 𝑦, 𝑧)(1)

(𝑅,𝐺,𝐵,𝛼)

(4)

(5)

(2)

(3) 𝛼(𝑅,𝐺,𝐵)

𝑟

Figure 2: Illustration of the feature grid method

By embedding coordinates into a high-dimensional space, the

feature grid method shifts the complexity of the signal representa-

tion from the MLP to the feature grid, thereby achieving superior

quality and rendering performance, and its grid structure facilitates

spatial splitting. In recent studies, Liu et al. [17] have preliminarily

explored achieving adaptive streaming by exploiting the separabil-

ity of the feature grid, they did not consider inter-frame similarity

to reduce bandwidth consumption. Liao et al. [41] have leveraged

inter-frame similarity for frame compression based on feature grids,

but they did not consider adaptive streaming and did not perform

well for long videos. In summary, the feature grid is suitable for

adaptive volumetric video streaming, but no practical system based

on the feature grid exists.

To this end, this paper proposes achieving adaptive volumetric

video streaming based on the feature grid. Specifically, we mainly

use NGP [26] that stores the features in a compact table in our

implementation and experiments, as this method represents the

current mainstream of feature grid studies. As such, our innovations

and methods could be extended to most other feature grid methods

such as dense grid [37, 38], VQAD [23, 37] or VQRF [12].

3 SYSTEM OVERVIEW
The FSVFG system is designed to train a sequence of feature grids

for volumetric video representation, and streams video-on-demand

volumetric content represented by these feature grids from an Inter-

net server to the client. The workflow of the FSVFG system consists

of an offline training phase and an online adaptation phase, as is

shown in Figure 3. In the offline phase, a scene is captured by a syn-

chronized camera array from various perspectives. The captured

data are then used to train a series of feature grids by inter-frame

regularized training (§4). After the training process, each feature

grid is partitioned into different Levels of Detail (LoD) and stored

separately. In the online phase, the FSVFG server receives the pre-

dicted viewport from the client and sends the features or residuals

selectively (§5.1). Then the selected features are filtered by LoD

and inter-frame residuals are filtered by threshold according to the

network condition, thereby achieving adaptation (§5.2).

Server

Adaptive Feature Frames

Feature Filtering
frame 𝑘

Adaptive Residual Extraction

Tracking
frame 𝑘 − 1

Residual Filtering
frame 𝑘

Compute Residuals
frame 𝑘

Viewport
Prediction

Render

Client

Residual Stream

Feature Stream

Feature Grids

LoDs⋯

Capture

Train (Offline)

Ray-aware
Feature

Selection

Update
Send

Data

Control

Figure 3: Overview of ifNGP streaming system

4 INTER-FRAME REGULARIZED TRAINING
The concept of neural field incremental training [42] stems from the

understanding of 3D scenes. Unlike 2D videos, there is little "camera

movement" in a 3D case. Those environment elements such as

floors, walls, or buildings are unlikely to demonstrate high dynamics

throughout a volumetric video [34]. Therefore, the volumetric video

frames arewell-aligned and inter-frame residualsmost exist in those

regions containing moving objects. This well-aligned inter-frame

similarity can be leveraged to reduce the storage size of the frame

and the bandwidth consumption of the streaming, without the need

for motion estimation and compensation for alignment.

To leverage inter-frame similarity, incremental training loads the

neural field parameters of the previous frame at the beginning of

the training and freeze some parameters in the neural field during

the training [13]. Ideally, the training process should only make

minor adjustments to the parameters, and the inter-frame residual

can be extracted and stored, which would be more space-efficient

than storing the parameters of the neural fields.

However, the naive application of incremental training to the

feature grid does not ensure minor changes to the parameters. In

the feature grid, the parameters lack correlation with each other. In

this case, some parameters in static areas may change during the

incremental training process, leading to relatively larger residuals.

To address this issue, we propose to add a regularization term

that minimizes the residual between the parameters of the current

and previous frames in the loss function. The modified loss function

L(𝜃 ) is represented by Equation 1.

L(𝜃 ) = L0 (𝜃 ) + 𝜆
∑︁
𝑖∈𝑁

𝜃𝑖,𝑘 − 𝜃𝑖,𝑘−1 (1)

3
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where L0 (𝜃 ) denotes the original loss function (e.g. rendering loss

[25, 42]), 𝜆 represents the weight of the regularization, 𝜃𝑖,𝑘 repre-

sents one of the parameters in the feature grid of frame 𝑘 , and 𝑁 is

the total numbers of the parameters in the feature grid. This regular-

ization term can be incorporated into the loss function of any type

of neural field, including feature grids, and can significantly reduce

the volume of residuals that need to be stored, leading to improved

space efficiency and less bandwidth consumption of streaming.

In practice, using frames captured simultaneously from different

perspectives by the synchronized camera array [48] as training data,

our inter-frame regularized training process operates as follows:

for the initial frame, we train the feature grid without freezing and

regularization. For each subsequent frame, we load the parameters

of the previous frame and update only the parameters of the fea-

ture grid with the regularization term in the loss function. After

training each frame, the parameters are saved for the training of

the next frame. Through this process, we can sequentially train

the feature grids for each frame, resulting in a sequence of files

containing parameters of feature grids, each representing a frame

of the volumetric video.

5 ONLINE ADAPTATION
5.1 Ray-aware Feature Selection
To achieve adaptation in volumetric video streaming systems, the

common strategy is to partition a frame into tiles and stream the

tiles within the viewport [6, 11]. However, for the feature grid, the

density of the points does not necessarily represent the trade-off

between quality and transmission. The rendering process of feature

grids is significantly different from traditional explicit volumetric

video representations such as point clouds. These traditional repre-

sentations are typically rendered through rasterization or splatting

that projects 3D objects into a raster image. In contrast, feature

grids are rendered by ray marching, where each pixel on the output

image corresponds to a ray, and each ray is traced within the grid.

The pixel color is then calculated using the features of the voxels

along the ray (Figure 2). Therefore, unlike in rasterization where

each element in the received tiles contributes to the output image,

in ray marching, only the features along the ray contribute to the

output image. As a result, packaging feature grids in tiles for trans-

mission could lead to the transmission of redundant features that

do not contribute to the output image (Figure 4). Moreover, com-

pact representations [26, 37] are widely adopted in storage-efficient

feature grids such as VQAD [23, 37] or VQRF [12]. In these feature

grids, one feature may be used in different positions more than once.

Thus, existing spatially tiling methods would cause a single feature

to appear in multiple tiles, causing transmission redundancy.

8x8 tileRay Marching

Figure 4: Illustration of ray marching and tiling

Considering the characteristics of feature grid rendering, we

propose the Ray-aware Feature Selection mechanism that selects

and sends only those features along the ray to the client. In practice,

after the training process, the scene is divided into coarse cubes

(i.e., 128
3
cubes), and sampling is performed in each cube to com-

pute the density value inside it. The highest and lowest density

values of each cube are then stored in a density grid. During the

streaming process, our ray-aware adaptation component receives

the predicted viewports from the client and performs a coarse ray

marching (Figure 5) on the server.

The step size is set to match the ray marching in the client-side

rendering process. Each step corresponds to a sampling point along

the ray, and features of the voxels containing this point are selected,

and their index is added to a set 𝑉𝑘 . For empty regions (highest

density=0), we apply the empty space skipping method [15] to skip

the sampling point to the next occupied region (highest density>0).

The output of ray-aware feature selection is a set of indices 𝑉𝑘 ,

which will be used in the subsequent feature filtering and residual

filtering processes.

Get next sampling point along the ray
with highest density > 0

Accumulate lowest density at this point

Add features at this point to V𝑘

Hit boundary or
accumulated density > 1

Input ray and density grid

Output V𝑘

Yes

No

Figure 5: Illustration of Ray-aware Feature Selection

Since this process only involves query and accumulation opera-

tions without any time-consuming rendering processes (e.g., MLP

inference), it can keep pace with the video playback frame rate

when run on GPU devices on the server.

5.2 Variable Bitrate
Adaptive streaming aims to trade off video quality and bandwidth

consumption under fluctuating network conditions. In full-scene

volumetric video streaming, the adaptation process should also in-

corporate the progressive refinement of the environment due to its

substantial size and the inherent difficulty in transmitting it entirely

to the client at the start of video playback. Related works include

Fumos [16] that integrate neural compression and octree-based cod-

ing to achieve progressive refinement for continuous point cloud

video streaming. Similarly, LiveVV [7] enables adaptation by using

different Point Cloud Density Levels (PDL) for full-scene volumetric

video streaming. However, as mentioned before, the density of the

points does not necessarily represent the trade-off between quality

and transmission for the feature grid. Therefore, layer split methods

based on density are not applicable to feature grid streaming.

Besides, existing adaptation methods in volumetric video stream-

ing do not take into account the dependencies between frames as

4
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they do not employ inter-frame correlation [30, 43] for compression.

When the scene is represented by feature grids, we can leverage

inter-frame correlation by computing and streaming the residuals

of the features from adjacent frames for low-dynamic regions to

reduce bandwidth consumption. Despite the benefits, sending both

features and residuals in a stream can introduce complexities in

adaptive streaming, e.g. how to achieve variable bitrate on residuals

and how to balance the streaming of features and residuals.

The goal of this section is to design mechanisms to deal with

such complexities and support adaptive streaming.

5.2.1 Adaptive Feature Frames. To enable adaptation in streaming

features, we divide the feature grid into different quality levels

using level-of-detail (LoD), which is a characteristic provided by

multiresolution encoding in most feature grid implementations

[26, 37, 38]. In our feature stream, LoD can provide adaptation

through an adjustable value 𝐿𝑘 for the frame 𝑘 , where only the

features in those LoDs lower than this 𝐿𝑘 will be sent to the user.

For instance, at the beginning of the video, a lower 𝐿𝑘 can be set to

stream the scene, allowing the user to quickly achieve an immersive

experience, then progressively increasing the𝐿𝑘 to refine the quality

during playback.

Algorithm 1 Feature Filtering

Input: parameters of feature grid {𝜃𝑖,𝑘 }, results of ray-aware fea-
ture selection 𝑉𝑘 , set of index 𝑆𝑘−1 of parameters that have

been sent to the client, limit𝑀 on the number of parameters

Output: filtered features 𝐹𝑘 , the updated set of index 𝑆𝑘
1: function feat_filter({𝜃𝑖,𝑘 },𝑉𝑘 , 𝑆𝑘−1, 𝑀)

2: 𝐹𝑎𝑙𝑙
𝑘
← {𝑖 |𝑖 ∈ 𝑉𝑘 and 𝑖 ∉ 𝑆𝑘−1 and 𝜃𝑖,𝑘 ≠ 0};

3: 𝐶𝑘 ← |LoD1 ∩ 𝐹𝑎𝑙𝑙𝑘
|; 𝐿𝑘 ← 1; 𝑙 ← 2;

4: while 𝐶𝑘 + |LoD𝑙 ∩ 𝐹𝑎𝑙𝑙𝑘
| ≤ 𝑀 and 𝑙 ≤ 𝐿 do

5: 𝐶𝑘 ← 𝐶𝑘 + |LoD𝑙 ∩ 𝐹𝑎𝑙𝑙𝑘
|;

6: 𝐿𝑘 ← 𝑙 ; 𝑙 ← 𝑙 + 1;
7: end while
8: 𝐹𝑘 ← {𝜃𝑖,𝑘 |𝑖 ∈ LoD𝑙 ∩ 𝐹𝑎𝑙𝑙𝑘

and 𝑙 ≤ 𝐿𝑘 };
9: if 𝑀 − |𝐹𝑘 | > 0 and 𝐿𝑘 < 𝐿 then
10: 𝐹𝑟𝑎𝑛𝑑

𝑘
← RandomSelect(LoD𝐿𝑘+1 ∩ 𝐹𝑎𝑙𝑙𝑘

, 𝑀 − |𝐹𝑘 |);
11: 𝐹𝑘 ← 𝐹𝑘 ∪ {𝜃𝑖,𝑘 |𝑖 ∈ 𝐹𝑟𝑎𝑛𝑑𝑘

};
12: end if
13: 𝑆𝑘 ← 𝑆𝑘−1 ∪ {𝑖 |𝜃𝑖,𝑘 ∈ 𝐹𝑘 }
14: return 𝐹𝑘 , 𝑆𝑘 ;

15: end function

The feature filtering process is outlined inAlgorithm 1. In essence,

feature filtering gathers those selected parameters in 𝑉𝑘 that have

not been sent to the client, from lower LoD levels to higher LoD

levels, until the number of parameters reaches the given limit𝑀 . If

the parameters in the gathered layers do not fully utilize the given

limit, we further fill it by selecting parameters randomly from a

higher level.

5.2.2 Adaptive Residual Extraction. To enable adaptation in stream-

ing residuals, an intuitivemethod is to store the residuals of different

LoDs as separate quality levels. However, in adaptive streaming,

after switching from a higher level to a lower level, the transmission

of residuals for the higher level ceases. As a result, features in the

higher level remain constant, while the features in the lower level

keep changing, leading to a mismatch of features across different

LoDs and degrading the visual quality. Therefore, simply applying

LoD in both feature and residual streaming is not advisable.

Based on the observation that larger residuals have a greater

impact on visual quality, we divide the residual grid into different

quality levels by their numerical value, thereby avoiding the quality

degradation caused by mismatched features. Specifically, a thresh-

old𝑇𝑘 is chosen adaptively for residual filtering for the frame 𝑘 , and

the residual Δ𝜃𝑖,𝑘 for parameter 𝜃𝑖,𝑘 of the features is computed

according to Equation 2:

Δ𝜃𝑖,𝑘 = 𝑓 (𝜃𝑖,𝑘 − ˆ𝜃𝑖,𝑘−1,𝑇𝑘 )
ˆ𝜃𝑖,𝑘 = Δ𝜃𝑖,𝑘 + ˆ𝜃𝑖,𝑘−1

Δ𝜃𝑖,1 = 𝑓 (𝜃𝑖,1 − 𝜃𝑖,0,𝑇1)
ˆ𝜃𝑖,1 = Δ𝜃𝑖,1 + 𝜃𝑖,0

𝑓 (𝑥, 𝑡) =
{
𝑥 |𝑥 | ≥ 𝑡

0 |𝑥 | < 𝑡

(2)

where Δ𝜃𝑖,𝑘 represents the residual of parameter 𝑖 in frame 𝑘 , while

𝜃𝑖,𝑘 and
ˆ𝜃𝑖,𝑘 represents true value and tracked value of the param-

eter respectively. Therefore, during streaming, adjusting 𝑇𝑘 can

control the number of residuals to be sent.

Note that the feature grid and the residuals have been quantized

to float16 (16-bit floating point) to reduce bandwidth consumption,

which can cause quantization errors. In Equation 2, the tracked

value
ˆ𝜃𝑖,𝑘−1 represents what the parameters would be after adding

the residual, and residuals computed based on these tracked values

would reset the error, preventing the errors from accumulating.

Algorithm 2 Residual Filtering

Input: parameters of feature grid {𝜃𝑖,𝑘 } and tracked values

{ ˆ𝜃𝑖,𝑘−1}, results of ray-aware feature selection 𝑉𝑘 , set of in-

dex 𝑆𝑘−1 of parameters that have been sent to the client, limit

𝑀 on the number of parameters, lower bound 𝑇𝑚 of residuals

Output: filtered residuals 𝑅𝑘 , updated tracked values { ˆ𝜃𝑖,𝑘 }
1: function res_filter({𝜃𝑖,𝑘 }, { ˆ𝜃𝑖,𝑘−1},𝑉𝑘 , 𝑆𝑘−1, 𝑀,𝑇𝑚)

2: 𝑅𝑎𝑙𝑙
𝑘
← 𝑉𝑘 ∩ 𝑆𝑘−1;

3: 𝑇𝑘 ← max(TopK({|𝜃𝑖,𝑘 − ˆ𝜃𝑖,𝑘 | |𝑖 ∈ 𝑅𝑎𝑙𝑙𝑘
}, 𝑀),𝑇𝑚);

4: for 𝑖 ∈ 𝑅𝑎𝑙𝑙
𝑘

do
5: Δ𝜃𝑖,𝑘 , ˆ𝜃𝑖,𝑘 ← ComputeResidual(𝜃𝑖,𝑘 , ˆ𝜃𝑖,𝑘−1,𝑇𝑘 ); ⊲ Eq(2)
6: end for
7: 𝑅𝑘 ← {Δ𝜃𝑖,𝑘 |𝑖 ∈ 𝑅𝑎𝑙𝑙𝑘

and Δ𝜃𝑖,𝑘 ≠ 0};
8: for 𝑖 ∉ 𝑅𝑎𝑙𝑙

𝑘
do

9:
ˆ𝜃𝑖,𝑘 ← ˆ𝜃𝑖,𝑘−1

10: end for
11: return 𝑅𝑘 , { ˆ𝜃𝑖,𝑘 };
12: end function

The residual filtering process is described in Algorithm 2. Given a

limit𝑀 on the number of residuals, residual filtering first identifies

the𝑀th largest residual using an efficient TopK algorithm on the

GPU [32]. Considering that the small values have little effect on the

visual quality, we set a lower bound 𝑇𝑚 and take the larger value

between𝑀th largest residual and 𝑇𝑚 as the threshold 𝑇𝑘 . Finally,
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with the threshold𝑇𝑘 , the filtered residuals are computed according

to Equation 2.

5.2.3 Rate Allocation. As visual quality improves with the trans-

mission of more features and residuals, maximizing visual quality

equates to maximizing the use of available bandwidth. In this con-

text, the goal of our allocation is to fully utilize the bandwidth to

transmit as many features and residuals as possible.

Based on this idea, we provide a bandwidth constraint 𝐵𝑘 for

the frame 𝑘 to control the bandwidth consumption. Assuming that

the compression ratio 𝑟 can be estimated, and the frame rate 𝑓 is

fixed, the capacity of parameters or residuals for each frame can be

computed as𝑀 =
𝐵𝑘

𝑓 𝑟
. The adaptation decision is then to allocate

the 𝑀 to the residuals and features of each frame. We provide

another control parameter 𝛾 ∈ [0, 1] for the rate allocation, fill the
𝛾𝑀 by feature filtering and fill the rest part by residual filtering.

Considering that in some cases the number of residuals may be few,

we perform a reallocation of features after the residual filtering.

Algorithm 3 Rate Allocation at frame 𝑘

Input: frame rate 𝑓 , bandwidth limitation 𝐵𝑘 and compression

ratio 𝑟 , bitrate allocation factor 𝛾 , viewport Cam𝑘 uploaded by

the client

Output: The set of features 𝐹𝑘 and residuals 𝑅𝑘 to be sent to client

1: 𝑀 ← 𝐵𝑘

𝑓 𝑟

2: Loading parameters {𝜃𝑖,𝑘 } and density grid for frame 𝑘

3: 𝑉𝑘 ← FeatureSelect(Cam𝑘 ); ⊲ Ray-aware Feature Selection

4: 𝐹𝑘 , 𝑆𝑘 ← feat_filter({𝜃𝑖,𝑘 },𝑉𝑘 , 𝑆𝑘−1, 𝛾𝑀); ⊲ Alg.1

5: 𝑅𝑘 , { ˆ𝜃𝑖,𝑘 } ← res_filter({𝜃𝑖,𝑘 },𝑉𝑘 , 𝑆𝑘−1, 𝑀 − |𝐹𝑘 |,𝑇𝑚);⊲ Alg.2

6: if 𝑀 − |𝑅𝑘 | − |𝐹𝑘 | > 0 and 𝐿𝑘 < 𝐿 then
7: 𝐹𝑘 , 𝑆𝑘 ← feat_filter({𝜃𝑖,𝑘 },𝑉𝑘 , 𝑆𝑘−1, 𝑀 − |𝑅𝑘 |); ⊲ Alg.1

8: end if
9: Save 𝑆𝑘 and { ˆ𝜃𝑖,𝑘 } for next frame;

The rate allocation algorithm is described in Algorithm 3. With

these algorithms, the bandwidth is filled with features in low LoD in

the first frame. Then, in the early period of streaming, the bandwidth

is allocated among features and residuals, progressively refining the

visual quality while ensuring the smooth movement of the object

in the scene. After a period of streaming, most of the features will

have been sent to the client, and the streaming is now mainly filled

by residuals. In this process, the control parameters 𝐵𝑘 and 𝛾 can

be used to trade off the quality and bandwidth consumption. Note

that our allocation algorithms are highly parallelizable and can be

executed on the server at high frame rates.

In a nutshell, our system provides parameters such as𝑀 and 𝛾

to trade off visual quality and bandwidth consumption, meeting

the necessary conditions for adaptive streaming strategies. Existing

adaptation algorithms, such as Lyapunov optimization [16] or multi-

armed bandit [18] perform well and can be applied within this

context. The specific design of these algorithms is not the primary

focus of this study.

6 EVALUATION
According to the methods introduced above, we build a streaming

system and evaluate FSVFG at a system level. Our dataset includes

9 stereo videos from 3 datasets: "taekwondo", "walking" from the

st-nerf dataset [48], "coffee martini", "flame steak", "sear steak" from

the Neural 3D Video Synthesis dataset [14], and "discussion", "step

in", "trimming", "VR headset" from the Meet Room dataset [13].

We use the Instant-NGP [26] system as our testing platform, with

the feature grid size set to 2
19
, and the number of Levels of Detail

(LoDs) fixed at 8.

6.1 System-Level Evaluation
6.1.1 Performance of Inter-frame Regularized Training. To demon-

strate the performance of inter-frame regularized training, we com-

pared the video quality under different bandwidth constraints for

models trained with and without inter-frame regularization. The

training configurations are the same as Instant-NGP. For compar-

ison, we train two sequences of feature grids for each video in

the dataset using the incremental training and inter-frame regu-

larized training process introduced in Section 4. The feature grid

for the initial frame is trained for 30,000 steps, while feature grids

for subsequent frames are trained for 10,000 steps. After training,

the features are saved into files, and residuals are extracted for

each frame and stored individually as binary files. Then for each

frame, we set different thresholds to filter and compress the resid-

uals as Equation 2, adjusting the threshold so that the size of the

compressed frame data ranged from 1 to 6MB. For each threshold

configuration, we obtain the rendering results of viewports in the

dataset and assess the PSNR (Peak Signal-to-Noise Ratio) of the

rendering results against the ground truth.

Figure 6 illustrates the impact of varying thresholds on visual

quality and frame size across different videos. It is evident that as

the frame size increases (threshold of residual filtering decreases),

incremental training without inter-frame regularization can achieve

higher quality. However, as the frame size gradually decreases, the

video quality deteriorates more severely, and the quality fluctuation

is also greater in some videos. This is because the parameters within

the feature grid are less interdependent compared to NeRF, giving

them higher degrees of freedom and more considerable fluctuations

during training. As a result, the incremental training designed for

NeRF cannot effectively control the parameter changes within a

smaller range, leading to larger inter-frame residuals, even in static

regions. Therefore, during residual filtering, to achieve the same

frame size, a larger threshold needs to be set, which filters out

the residuals belonging to the moving areas, causing a decline in

quality. Furthermore, since a larger threshold is set, the parameter

errors must accumulate to higher values before residuals are used

for compensation, which introduces greater instability to the video

quality.

6.1.2 Performance of Online Adaptation. To demonstrate the per-

formance of our ray-aware feature selection and variable bitrate

mechanisms, we build a prototype system and evaluate it. For com-

parison, we use a traditional tile-based method as the baseline. In

the baseline scenario, the parameters of the features and residuals

are clustered by the size of 4096 (16
3
) as tiles in the baseline, with

different levels of detail (LoD) clustered independently. A cluster is

sent whenever a ray passes through any feature within it. We play

the volumetric video and collect data on viewport movement using

a Quest 3 device. Our adaptation mechanisms and the baseline are

run on the collected viewport movement. We set the bandwidth
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Figure 6: PSNR distribution and average size of frames trained with and without inter-frame regularization

limit to 40Mbps (𝑀 = 2 × 105) and 𝛾 = 0.5 and compare the video

quality achieved by our methods and the baseline under this net-

work constraint. Due to the limited availability of ground truth data

for fixed viewpoints in the dataset, we could not conduct quality

tests on continuous viewpoint data using the dataset. Instead, we

use the output of the original feature grid trained on each frame

under the corresponding viewpoint as the ground truth, and the

PSNR is calculated.

Our experiment results is shown in Figure 7. Under bandwidth

constraints, our ray-aware feature selection method generally out-

performs the traditional tiling strategy. Especially at the beginning

of the video, our method allows the video quality to rise more

quickly and stabilize. This is because, in comparison with the tradi-

tional tiling strategy, our ray-aware feature selection method can

transmit those features that contribute to the output image more

precisely. The traditional tiling strategy transmits a large number

of redundant features that do not contribute to the output image. To

achieve the same video quality, the traditional tiling strategy needs

to transmit more features, and features at lower LoDs require more

time to complete transmission before higher LoD features can be

transmitted. Therefore, under the same bandwidth constraints, their

video quality is lower. Additionally, our ray-aware feature selection

method can ensure relatively stable video quality when the user’s

viewpoint observes high-dynamic areas, e.g., "taekwondo" frames

60-80, "trimming" frames 80-100. This is because our method saves

the bandwidth required for feature transmission, allowing more

bandwidth to be used for transmitting residuals, thereby achieving

higher video quality in those high-dynamic areas. When video qual-

ity tends to stabilize, our method can sometimes cause instability in

video quality in a short period, e.g., "coffee martini" frames 60-80,

"sear steak" frames 60-80. This is because, in these video frames, the

user’s viewpoint moves quickly and just happens to move back to a

location previously viewed. The redundant features transmitted in

the traditional tiling strategy come into play at this time, while the

more precise selection strategy of the ray-aware feature selection

method results in a lack of features for the current viewpoint that

need to be transmitted, leading to a decrease in video quality. This

phenomenon can be further studied in future research.

6.1.3 Performance of Runtime. To evaluate the performance of our

FSVFG runtime, we run our prototype system on PCs with Intel i7-

12700 CPU and NVIDIA GeForce RTX 3080 8G GPU. Table 1 shows

the average frame rate of frame loading and rendering, demon-

strating that our implementation can support real-time playback

experience. As the frame loading depends on the viewport data re-

ceived from the client side, its frame rate is inherently constrained

by the rendering rate. When the frame rate escalates to a higher

range (above 30 fps), it is observable that the frame loading rate

lags behind the rendering rate. Profiling indicates that the primary

bottleneck resides in the disk read speed for frame retrieval.

Table 1: Average frame rate of rendering and frame loading
process

Video Process 1080p 720p 540p

"coffee martini" rendering 12.0 20.3 34.5

frame loading 12.0 20.3 28.3

"trimming" rendering 12.1 22.4 35.6

frame loading 12.1 22.4 27.3

6.2 Case study
We conduct a case study on "VR headset" to present the detailed

rate allocation and visual samples of our FSVFG system. Figure 8

illustrates the timeline in the FSVFG system when streaming "VR

headset" with𝑀 = 2 × 105 and 𝛾 = 0.5. In first 10 frames, the first
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Figure 7: Comparison of PSNR fluctuations in volumetric video between our adaptation methods and the tiling-based method
with a bandwidth limit of 40Mbps
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Figure 8: Case study: A timeline of visual samples and number of parameters sent for each frame (Video: "VR heasdet")

few LoDs are downloaded, offering the user a blurry outline of the

video content. As the streaming progresses through the subsequent

frames, the transmission of data at lower LoDs is largely completed.

The subsequent arrival of features from higher LoDs progressively

refines the video quality. In the output visual samples, the scene

gradually becomes clearer and more detailed as the streaming pro-

cess continues. At the 80th frame, features from all the LoDs have

fully arrived. From this point onwards, all bandwidth resources

are dedicated to the transmission of residual data. As a result, the

video quality stabilizes, maintaining a consistent level of clarity

and detail for the remainder of the video stream.

7 CONCLUSION
This paper introduced the FSVFG system to enable adaptive vol-

umetric video streaming based on feature grids. The proposed

method utilized incremental frozen training to enable effective com-

pression of frame size and achieve rate adaptation by ray-aware

feature selection and filtering. Experimental results show that our

system outperforms existing methods including incremental train-

ing and tile-based adaptation. By integrating our implementation

into high-level applications, we can further develop practical im-

plementations of an implicit volumetric video streaming system for

real-world deployment.
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