
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LONGITUDINAL LATENT DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Longitudinal data are crucial in several fields, but collecting them is a challeng-
ing process, often hindered by concerns such as individual privacy. Extrapolating
in time initial trajectories or generating fully synthetic sequences could address
these issues and prove valuable in clinical trials, drug design, and even public
policy evaluation. We propose a generative statistical model for longitudinal data
that links the temporal dependence of a sequence to a latent diffusion model and
leverages the geometry of the autoencoder latent space. This versatile method can
be used for several tasks - prediction, generation, oversampling - effectively han-
dling high-dimensional data such as images and irregularly-measured sequences,
needing only relatively few training samples. Thanks to its ability to generate se-
quences with controlled variability, it outperforms previously proposed methods
on datasets of varying complexity, while remaining interpretable.

1 INTRODUCTION

Longitudinal data, also known as panel data, consist of repeated measurements over time that track
the evolution of the same entity or individual—more concretely, its trajectory. The total number of
observations is relatively small, and their frequency can be sparse, unlike time series data, which
typically involve more frequent measurements. Longitudinal data are common in many application
fields, such as medicine (e.g., for modeling disease progression (Zhao et al., 2021) or monitoring
treatment response (Blackledge et al., 2014)) and econometrics (Baltagi, 1995).

Their dimensionality can range from relatively low (e.g. tabular data) to quite high (e.g. images).
Furthermore, the number of different entities followed is most of the time pretty small (in the case
of rare diseases for instance). These aspects make them challenging to model; still, the generation
of synthetic longitudinal data can have powerful applications (Mosquera et al., 2023; Kühnel et al.,
2023), for data augmentation, future prediction and missing data imputation.

In our applications, the ideal generative model for longitudinal data needs to produce varied tra-
jectories while starting from the same situation, but this variability needs to be controlled to limit
variations around one or several core tendencies 1, so that the generated samples remain plausible.

RELATED WORK

Modeling longitudinal data Prior methods to statistically model longitudinal data and understand
underlying evolution dynamics were mainly relying on mixed-effect models (Laird & Ware, 1982)
that parameterise a patient’s evolution as a deviation from a reference trajectory (Diggle et al., 2002;
Singer & Willett, 2003; Debavelaere et al., 2020). These methods are quickly limited and can
not be applied to complex trajectories (especially when there is no clear average evolution). Other
modelling tentatives include RNN-based (Cao et al., 2018) or GAN-based methods (Luo et al., 2018;
Sun et al., 2021). The former is not generative - only handling missing data, and the latter relies on
a difficult adversarial training and does not yield a tractable and interpretable mathematical model.

Improving VAE latent space Variational Autoencoders (VAEs) (Kingma & Welling, 2014;
Rezende et al., 2014) are powerful models for capturing distributions. Their latent spaces can reveal
representative features through disentanglement (Higgins et al., 2017) and can be equipped with

1Simplistically, think of a child’s growth curve. Their height at a given age conditions the future trajectory,
yet does not completely determine it. Generated plausible trajectories need to cater to this issue.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Riemannian geometry (Shao et al., 2018) to extract population structure in latent space. However,
standard VAEs, assuming i.i.d. representations, fail to capture temporal correlations in data. Sev-
eral works have aimed to enhance latent representations using Gaussian processes (Fortuin et al.,
2020; Ramchandran et al., 2021) or normalizing flows (Rezende & Mohamed, 2016; Chadebec &
Allassonnière, 2023). Yet, these models are mainly designed for missing data imputation or condi-
tional tasks, making them less suitable for unconditional sequence generation. Moreover, normaliz-
ing flows, being deterministic, fail to introduce variation. Closely related to our work, Li & Mandt
(2018) propose disentangling time-dependent features by jointly training a VAE with LSTMs, which
results in a complex and computationally heavy training process.

ODE / SDE Also closely related to our method are approaches involving neural ordinary differ-
ential equations (NODE) that see the forward pass of a residual network as solving an ODE. In
particular, the latent neural ODE model proposed by Chen et al. (2018) defines a generative model
by assuming that the initial state latent variable follows a given prior distribution and a latent tra-
jectory is then obtained by solving an ODE. Yildiz et al. (2019), Kanaa et al. (2021) extends this
method for high-dimensional data but unlike ours, these models are completely deterministic in the
latent space, hindering the diversity of generated samples. Going stochastic, Li et al. (2020) use a
latent SDE model but do not apply it to high-dimensional datasets.

High-dimensional data generation Finally, our work relates to image generation method. Par-
ticularly, diffusion models - relying on SDE knowledge - have been crucial into generating high-
resolution samples (Sohl-Dickstein et al., 2015; Ho et al., 2020). Rombach et al. (2022) used the
latent space of a pre-trained VAE to even improve the quality and speed of training. Now, these tech-
niques are also used for video generation (Ho et al., 2022; Lu et al., 2024) making them closer to
longitudinal data. However, video and longitudinal image generation stay very different by essence,
with regards to the frequency of images (very large in video, low and irregular in longitudinal),
the necessary interpretability in the longitudinal case and more importantly, the needed number of
training samples (huge for video generation, necessarily low for longitudinal data).

OUR CONTRIBUTION

We propose here a new generative model for longitudinal data that uses a latent diffusion to model
the time dependency between the observations of a given sequence: each embedding of the obser-
vation of a given sequence is forced to lie on a diffusion trajectory in a VAE latent space.

We demonstrate that our proposed method, named the Longitudinal Latent Diffusion Model
(LLDM), excels at unconditionally generating fully synthetic trajectories with high performance,
as well as generating trajectories conditioned on one or more input observations. A key strength of
LLDM lies in the diversity of the sampled sequences, even when it is done conditionally, which is
made possible by leveraging the inherent stochastic nature of diffusion processes.

2 BACKGROUND

2.1 VARIATIONAL INFERENCE AND A GEOMETRIC PERSPECTIVE ON VAES

Let x = (xi)1≤i≤n ∈ (RD)n be a training dataset, i.i.d. from an unknown distribution p(x).
A variational autoencoder (VAE) is a generative model that aims at approximating p(x) by a
distribution on RD parametrized with a neural network: pθ with θ ∈ Θ. Ideally, the train-
ing of a VAE aims at minimizing the Kullback-Leibler divergence between p and pθ, that is
solving minθ∈Θ DKL(p∥pθ). This is exactly equivalent as maximizing the joint log-likelihood:
maxθ∈Θ Ey∼p [log pθ(y)] ≈ log pθ(x) =

1
n

∑
pθ(xi).

A VAE relies on variational inference, assuming that the generation process involves latent variables
z ∈ Rd with d << D. These variables have an assumed prior (let it be here a standard normal) dis-
tribution z ∼ p(z) and then x ∼ pθ(x|z) is assumed to be a simple distribution, parametrized as a
neural network known as the decoder (let it be a diagonal Gaussian, N (µθ(z), diag(σ2

θ(z))). Unfor-
tunately, despite the simplicity of these distributions, the joint log-likelihood pθ(x) (see Equation 1)
and the posterior pθ(z|x) are intractable. The latter is approximated using a variational distribution
qϕ(z|x), parametrized as a neural network known as the encoder (here, N (µϕ(x), diag(σ2

ϕ(x)))).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Eventually, the VAE is trained minimizing the ELBO objective L, defined as follow:

log pθ(x) = log

∫
Z
pθ(x|z)p(z)dz ≥ Ez∼qϕ(·|x)[log pθ(x|z)]−DKL(qϕ(z|x)∥p(z)) . (1)

With diagonal Gaussians qϕ and pθ, the first part of the ELBO is a reconstruction loss, while the
second part (the Kullback-Leibler divergence) is a regularization loss.

A trained VAE can easily generate new data points by sampling z from the prior distribution N (0, I)
and decoding it using pθ∗(·|z). Yet, Chadebec & Allassonniere (2022) showed that its latent space
can be seen as a Riemannian manifold M = (Rd,G) where G is a smooth continuous Riemannian
metric defined on Ω ⊂ Rd that has a closed form. Using a Hamiltonian Monte-Carlo (HMC) sampler
(see details in Appendix D), it is thus easy to sample z from the Riemannian uniform distribution
on M, defined as:

URiem (z;M) =

√
detG(z)∫

Ω

√
detG(z)dz

. (2)

This geometry-aware sampling leads to higher-quality generated samples as it enables to explore
more the latent space than a blind standard normal sampling.

2.2 LATENT DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) are latent variable models de-
signed to learn a data distribution p by gradually denoising a normally distributed variable. It does
so by learning the reverse process of a fixed Markov chain, called the forward diffusion process that
gradually adds Gaussian noise to the data x0 ∼ q(x0), following a variance schedule β1, ..., βTdiff :

q (x1:Tdiff | x0) :=

Tdiff∏
t=1

q (xt | xt−1) , q (xt | xt−1) := N
(
xt;
√

1− βtxt−1, βtI
)
. (3)

Let αt := 1− βt and ᾱt :=
∏t

s=1 αs. To be noted that the latent variable xt can be easily sampled
given x0 and a ϵ ∼ N (0, I), using the identity xt (x0, ϵ) =

√
ᾱtx0 +

√
1− ᾱtϵ.

This forward diffusion converges geometrically to a standard Gaussian distribution, so we consider
the distribution of the last latent variable as such: p (xTdiff) := N (0, I). The reverse process distri-
bution boils down to:

pθ (x0:Tdiff) := p (xTdiff)

Tdiff∏
t=1

pθ (xt−1 | xt) , pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) , βtI) , (4)

where µθ(xt, t) =
1√
αt

(
xt − βt√

1−ᾱt
ϵθ (xt, t)

)
, ϵθ (xt, t) being a UNet (Ronneberger et al., 2015)

that takes as parameter the latent xt and the time-step t and minimizes the following loss:

L (ϵθ) :=

Tdiff∑
t=1

Ex0∼q(x0),ϵt∼N (0,I)

[∥∥ϵθ (√ᾱtx0 +
√
1− ᾱtϵt, t

)
− ϵt

∥∥2
2

]
. (5)

Once trained, the diffusion model can generate new data in RD, starting from xTdiff ∼ N (0, I)
and gradually denoising it using Equation 4. The Denoising Diffusion Implicit Models (DDIM)
framework (Song et al., 2020) enables to accelerate this computationally intensive sampling process,
keeping only a chosen number of denoising steps and skipping the others.

D being often high (e.g. for images), Rombach et al. (2022) propose to push back the diffusion
and the learning of the reverse process into the low-dimensional latent space of a pre-trained VAE,
making the training and the sampling faster. They call their method Latent Diffusion Models (LDM).

3 METHOD: LONGITUDINAL LATENT DIFFUSION MODELS (LLDM)

3.1 FRAMEWORK

Let (xi)1≤i≤N be our training set of observed entities or individuals through time, assumed sampled
i.i.d. from an unknown distribution p that does not depend on i. Each entity i = 1, . . . , N is a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

sequence of (possibly high-dimensional, e.g. images) observations: xi = (xi
1, ...x

i
Ti
), where, for

each j, xi
j ∈ X := RD and Ti being the number of observations for a given individual.

We place ourselves in the VAE framework (see 2.1), adapting it to the longitudinal universe. Let
xi = (xi

1, · · · ,xi
Ti
) be an entity; for each observation xi

j , we denote as zi
j its embedding, lying in

a latent space Z := Rd, where d is significantly lower than D. Weights are shared across all j for
the encoder and the decoder.

Finally, we assume that when conditioning on a single zi
j , the observations (xj)

i
j are not indepen-

dent. The joint likelihood pθ
(
xi
1, · · · ,xi

Ti

)
=
∫
Z pθ

(
xi
1, · · · ,xi

Ti
| zi

j

)
p
(
zi
j

)
dzj - with p(zi

j)

being a prior on zi
j - is not factorisable as is. However, when all the latent variables (zi

l)l are
observed, we assume that the observations are independent and then the joint log-likelihood writes:

log pθ
(
xi
1, · · · ,xi

Ti

)
= log

∫
Z

Ti∏
l=0

pθ
(
xi
l | zi

l

)
p
(
zi
j

)
dzi

j

≥ Ezi
j∼qϕ(·|xi

j)

Ti∑
l=0

log pθ
(
xi
l | zi

l

)
−DKL

(
qϕ
(
zi
j | xi

j

)
∥ p
(
zi
j

))
:= −L .

(6)

Therefore, our goal is to learn once given a zi
j how to compute the other zi

l : we want to model the
dependency structure between the latent variables of each observation of the sequence (and by doing
so, model the dependency between the observations themselves).

3.2 PRE-TRAINING OF A LDM

As done by Rombach et al. (2022), we first pre-train a vanilla VAE as a first-stage model. Here, we
leave the longitudinal universe, and consider all the observations without any sequential dependency.
Our training set becomes a set of

∑N
i=1 Ti observations. To be noted that, as discussed in 2.1, this

VAE yields a Riemannian manifold M = (Rd,G), on which we can define a Riemannian uniform
distribution: this will be useful in the following section.

To then train the LDM per se, we only keep the last observations’ embeddings of each entity (N
vectors in total) as a training set. We train a diffusion model (see 2.2) in a similar way as in Rombach
et al. (2022). The dimension d being reasonably small, the training is not that time consuming.

Once trained, the LDM is able to sample from the last observations’ embeddings distribution, by
generating trajectories (of length Tdiff steps) from a variable sampled from N (0, I) in Rd.

3.3 TRAINING OF THE LVAE

Let us get back to the longitudinal framework, with a training set of N entities. We consider a VAE
that has the same architecture as the pre-trained VAE in 3.2 - to avoid confusion, we will call it the
Longitudinal Variational Autoencoder (LVAE).

To navigate between the latent embeddings and model the dependency structure between them, we
use the forward and the pre-learned backward diffusion processes. In a sense, we have pre-trained
trajectories (given by the LDM), and we want now the LVAE to structure the latent embeddings
taking these trajectories into account.

We consider a standard Gaussian prior on zi
1, the embedding of the first observation: p1(·) :=

N (·; 0, I). For 2 ≤ j ≤ T , we consider the Riemannian uniform prior on M, the manifold yielded
by the pre-trained VAE (see 3.2), as a soft prior on the LVAE such that it works as a regularizer in
the latent space: pj(·) := URiem(·;M).

For each position j = 1, . . . , Ti of the sequence, consider furthermore tij the corresponding diffusion
time step in {0, · · · , Tdiff} and let τ ij := tij − tij+1 for j < Ti. (tij)1≤i≤N,1≤j≤Ti

represents the
matching between the real timeline of the longitudinal sequence and the diffusion timeline. We set
Typically, tiT := 0 for all i. For the individual imax that has the longest duration between their first
and last visit, timax

1 = Tdiff. We say that the dataset is regularly-sampled if tij := tj do not depend on
i. If the observations are temporally equally distributed, τj := τ := ⌊ Tdiff

T−1⌋ (and then tj = (T−j)τ).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Probabilistic graphical model of the LLDM. Note that the encoder pθ and the decoder qϕ
do not depend on the position j = 1...T and that z1 is exactly equal to ζTdiff , z2 to ζt2 and so on.

For a given embedding zi
j , we can sample:

• zi
j+1, if j < Ti, by making τ ij denoising steps. Thanks to the DDIM (Song et al., 2020)

framework this sampling can be done in a single step with the pre-trained diffusion model:
this transition distribution, that depends on the matching (tij)1≤i≤N,1≤j≤Ti (given as an
input), will be denoted as pθ∗

diff
(zi

j+1|zi
j), with a hyperparameter η (set to 1 unless stated

otherwise) that controls the stochasticity (all details are given in Appendix E).
• zi

j−1 , if j > 1, by making τ ij−1 forward diffusion steps. This is also done in one step as we

know that q
(
zi
j−1 | zi

j

)
= N

(
zi
j−1;

√
ᾱtij ,t

i
j−1

zi
j ,
(
1− ᾱtij ,t

i
j−1

)
I

)
with β1, ..., βTdiff

the variance schedule of the pre-trained LDM, αt := 1− βt and ᾱtij ,t
i
j−1

:=
∏tij−1

s=tij+1
αs.

Figure 1 summarizes this generative model. Algorithm 1 outlines the training procedure for the final
component of the LLDM, the LVAE.

Algorithm 1 Training the LVAE

Require: Training set of sequences (xi
1, . . . ,x

i
Ti
)1≤i≤N , pre-trained LDM, priors (pj)j=1...T ,

matching (tij)1≤i≤N,1≤j≤Ti

1: while not converged do
2: for i = 1 to N do
3: Choose j ∈ {1, . . . , Ti} randomly
4: zi

j ∼ qϕ(z
i
j |xi

j) ▷ Encode (only the observation j)
5: for l = j + 1 to Ti do
6: Sample zi

l ∼ pθ∗
diff
(zi

l |zi
l−1) ▷ Propagate into future - Backward Diffusion

7: end for
8: for l = j − 1 to 1 do
9: Sample zi

l ∼ q(zi
l |zi

l+1) ▷ Propagate into past - Forward Diffusion
10: end for
11: for l = 1 to Ti do
12: Sample x̂i

l ∼ pθ
(
x̂i
l | zi

l

)
▷ Decode the whole sequence

13: end for
14: L = − 1

Ti

∑Ti

l=0 log pθ(x̂
i
l|zi

l) + log qϕ(z
i
j |xi

j)− log pj(z
i
j)

15: Take a gradient descent step on ∇ϕL and on ∇θL
16: end for
17: end while

3.4 SAMPLING

Thanks to this generative model, we are able to propose a simple generation procedure that consists
in sampling z1 ∼ N (0, I) and sequentially sample z2 ∼ pθ∗

diff
(z2|z1), . . . , zT ∼ pθ∗

diff
(zT |zT−1).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

However, as already mentioned in 2.1, the standard normal sampling in the VAE setting is very
limited as the observations’ embeddings end up being structured as a Riemannian manifold. This
led us to consider a more relevant, geometry aware generative procedure taking advantage of both
these manifold distributions and the stochastic dynamic provided by our diffusion process.

It is detailed in Algorithm 2 for a simplified case with regularly-sampled data and Ti := T for all i -
a more complex procedure for irregularly-sampled data and oversampling is detailed in Appendix F.
We consider the T manifolds yielded by the LVAE (one for each position). The sampling procedure
mimics the training one (Algorithm 1), but the randomly chosen starting position j becomes an input
(start index) and instead of encoding a training observation we sample from a Riemannian uniform
distribution on the considered manifold Mstart index.

Algorithm 2 LLDM sampling for regularly-sampled dataset and Ti := T for all i

Require: Trained LLDM, training set (xi)i=1...N , length of sequence T , start index = 1, . . . , T
1: Compute Gstart index, the Riemannian metric, using the start indexth ((xi

start index)i=1...N obser-
vations only, let Mstart index = (Rd,Gstart index) the corresponding manifold

2: Sample zstart index ∼ URiem (Mstart index) using a HMC sampler
3: for l = start index + 1 to T do
4: Sample zl ∼ pθ∗

diff
(zl|zl−1) ▷ Propagate into future - Backward Diffusion

5: end for
6: for l = start index − 1 to 1 do
7: Sample zl ∼ q(zl|zl+1) ▷ Propagate into past - Forward Diffusion
8: end for
9: for l = 1 to T do

10: Sample x̂l ∼ pθ (x̂l | zl) ▷ Decode the whole sequence
11: end for

return (x̂1, . . . , x̂T)

4 EXPERIMENTS

4.1 DATA

We considered three different longitudinal datasets of increasing complexity.

1. Starmen is a synthetic longitudinal dataset that consists in 1,000 sequences of 10 (1, 64,
64) images, representing starmen raising their left arm and generated according to the dif-
feomorphic model of Bone et al. (2018). We split the dataset, keeping 800 samples for
training, 100 for validation and 100 for test set.

2. The Sprites dataset (Reed et al., 2015) consists in sequences of 7 (3, 64, 64) images, rep-
resenting video games characters performing actions such as walking or dancing. Training
set contains 8,000 sequences, validation set 1,000 and test set 2,664.

3. An irregularly-sampled tabular dataset that represents a virtual large-scale cohort, based on
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 2. We extract 4,000 patients with
8 observations, 3,000 that have 7 observations and 3,000 that have 6. We have access to
the duration between each visit of a patient. Each observation consists in a vector of 120
features (glucose metabolism (SUVr) projected on the AAL2 atlas). We then randomly
split each subset to have in total 8,000 training, 1,000 validation and 1,000 test samples.

For comparison, we tried to use state-of-the-art NODE-based generative method for longitudinal
data, such as ODE2VAE (Yildiz et al., 2019) 3, but training fails on these high-dimensional datasets,
quickly yielding NaNs. Unfortunately, Kanaa et al. (2021) do not provide any code. At the end of
the day, we compare our method to the one proposed by Chadebec & Allassonnière (2023) 4, that
we call LVAE-NF, and Fortuin et al. (2020), GP-VAE. Each competitor is trained with the same
architectures and implementation details - see Appendix A.

2Available here https://project.inria.fr/digitalbrain/
3https://github.com/cagatayyildiz/ODE2VAE
4Code available on request

6

https://project.inria.fr/digitalbrain/
https://github.com/cagatayyildiz/ODE2VAE

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Starmen (b) Sprites

Figure 2: Unconditional sequence generation using Algorithm 2 and start index = 3 for both
datasets. Top: generated fully synthetic sequences. Bottom: Latent trajectories of the generated
sequences. Projection over the two principal components of the trained embeddings. For each j, the
trained embeddings have been displayed in different colors to show the different manifolds Mj .

Fréchet Inception Distance (FID) ↓ Starmen Sprites

GP-VAE 37.5 (0.1) 60.2 (0.3)
LVAE-NF 42.5 (0.6) 49.0 (1.2)

LLDM 34.4 (1.7) 35.8 (0.1)

Table 1: FID computed on test sets. Averaged over five runs, (·) indicates standard deviation.

4.2 GENERATION

Unconditional generation We evaluate here the ability of a trained LLDM to generate relevant
fully synthetic trajectories. Figure 2 displays examples of five sequences generated, on each dataset.

Moreover, Figures 2a and 2b show the behavior of the LVAE component of the LLDM. For Sprites,
the latent space is very well organized, displaying clear clusters according to the position in the
longitudinal sequence. These clusters are wisely placed according to the diffusion process that is
pre-trained. This is due to the fact that this dataset contains clearly different movements (raising
arm, walking, dancing) with clearly distinct characters. As for Starmen, a less diverse dataset where
all the observations within a sequence appear quite similar, the latent space is more monolithic yet
still displays a dynamic consistent with the diffusion process. This is a key feature of LLDM, letting
access to a latent space that is interpretable and reflects the characteristics of the training dataset.

Model LLDM LVAE-NF GP-VAE

KL Divergence 7.97 83.37 128.27

Table 2: KL divergence values between fitted Gaussians on the full (without considering temporal
dependence) ADNI-based test set and each of the generated sets (same size as test set).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Starmen
(b) Sprites

Figure 3: Five conditionally generated synthetic sequences. Contoured in cyan is the frozen position.

For Sprites and Starmen, Table 1 displays the FID metric (computed on all the images without
considering temporal dependence), showing that LLDM significantly outperforms its competitors,
thanks to diverse (due to its inherent stochasticity) yet faithful generations. For the ADNI-based
dataset, Table 2 shows that LLDM generated data is the closest to the true one - in a Gaussian
analysis. For these two tables, we used Algorithm 2, and chose the start index yielding the best
value on validation set - even though this choice has a little impact (Appendix C).

Conditional generation Here, we generate full synthetic sequences again, but we freeze zstart index
(still sampled from a uniform Riemannian distribution on the corresponding manifold), ensuring
each sequence shares the same start. A key feature of LLDM is its ability to generate variations
in the samples, even under this conditioning. Figure 3 shows examples for Starmen and Sprites,
freezing the first and middle observations, respectively.

In Starmen (Figure 3a), variations occur in the final arm position and shape, consistent with training
data that shows only one movement. In Sprites (Figure 3b), variations are more noticeable, with
changes in shirt, skin color, or shoes while maintaining core movement.

These variations are plausible, maintaining the overall movement while allowing for individual dif-
ferences. This is the kind of variability expected in medical or econometric data, where group trends
are preserved but individual variation is allowed.

4.3 FUTURE PREDICTION

A notable capability of LLDM is future prediction, starting from the embedding of the last observed
image. Controlled by the DDIM sampler’s η hyperparameter, Figure 4 shows LLDM accurately
predicting future sequences over several steps (4a), while also generating diverse outcomes around
a core tendency (4b). This contrasts with deterministic methods like LVAE-NF, which yield a single
prediction. Appendix G.3 quantifies this variability by computing the variance of MSE over 10 runs,
demonstrating that less conditioning leads to more variability in later predictions.

Table 3 computes the MSE between predicted and true observations on the test set. In that chal-
lenging setting with less structured and irregularly-sampled data, LLDM is able to achieve more
faithful predictions than LVAE-NF, showing its versatility. We provide a similar table for Sprites in
Appendix G.2 using the Structural Similarity Index Measure (SSIM).

4.4 OVERSAMPLING

Linking the real timeline of the sequence to the diffusion timeline enables us to discretize even more
the duration between each observation: LLDM is able to increase the frequency of a sequence by
successfully imputing the intermediary steps. This oversampling can be done by decoding unseen
latent variables from the diffusion models, ζk for k ∈

⋃T−1
j=1]tj , tj+1[(Figure 1). Figure 5a shows an

example when decoding the ζ tj+tj+1
2

, doubling the frequency of a given sequence. Other generative
competitors can not achieve that, to the best of our knowledge.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Varying number of prediction steps.

(b) Fixed number of prediction steps. Variations around
core tendency. DDIM η is increased to 5.

Figure 4: Future prediction with LLDM. At the top is the true sequence, contoured in cyan are the
images that are given (not predicted).

Number of predicted steps Obs 1 Obs 2 Obs 3 Obs 4 Obs 5 Obs 6 Obs 7 Obs 8

1
GP-VAE - - - - - - - 16.82

LVAE-NF - - - - - - - 24.52
LLDM - - - - - - - 6.89

2
GP-VAE - - - - - - 16.61 17.08

LVAE-NF - - - - - - 22.57 56.07
LLDM - - - - - - 5.07 10.73

3
GP-VAE - - - - - 16.71 16.64 16.73

LVAE-NF - - - - - 14.77 28.23 63.14
LLDM - - - - - 4.75 7.70 13.39

4
GP-VAE - - - - 16.78 16.61 16.97 16.71

LVAE-NF - - - - 14.42 14.38 28.46 66.45
LLDM - - - - 4.76 6.87 9.53 14.07

5
GP-VAE - - - 17.36 17.04 16.70 16.61 16.88

LVAE-NF - - - 15.22 14.60 14.69 29.42 69.07
LLDM - - - 4.80 6.24 7.74 9.75 13.39

6
GP-VAE - - 17.00 17.56 16.77 16.70 16.64 16.88

LVAE-NF - - 15.24 15.26 14.67 14.89 30.32 68.93
LLDM - - 4.98 6.01 6.93 8.00 9.50 12.16

7
GP-VAE - 17.16 17.00 17.27 16.80 16.70 16.62 16.70

LVAE-NF - 14.28 14.33 14.28 13.98 14.14 28.07 66.08
LLDM - 5.12 5.74 6.32 6.87 7.54 8.52 10.16

Table 3: Mean squared error on test set between predicted and true steps for ADNI-based dataset.
Average over five runs. Standard deviations are given in Appendix G.3. Starting from the last seen
embedding for LLDM and LVAE-NF, masking with zeroes the unseen data for GP-VAE.

It is also possible to easily generate fully synthetic oversampled sequences (with more granular time
steps) by adapting algorithm 2 - see Figure 5b. Details are provided in Appendix F.

4.5 ROBUSTNESS TO MISSING TRAINING DATA

In the context of longitudinal data, we often encounter poor data quality, particularly in the form
of missing observations. Figure 6 demonstrates that LLDM (like LVAE-NF) is able to maintain its
performance, even when up to 40 % of training and validation observations are removed. In contrast,
GP-VAE is significantly less robust, with a striking drop in performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Top: original. Bottom: Oversampled sequence, doubled frequency. Contoured in red are the initial
time steps (that are reconstructed), others are imputed. The arm swinging movement and the walking
appear more continuous, more fluid.

(b) Oversampled (doubled frequency) fully synthetic generated sequences. Top: Eye closing and arm
movements (especially elbow folding). Middle: Arm and leg movements. Bottom: Walking.

Figure 5: Oversampling with LLDM.

Figure 6: Mean squared error (averaged over all pixels) on the Sprites test set when varying propor-
tions of training and validation data are randomly removed, with models re-trained for each case.
For LLDM and LVAE-NF, sampling of j is restricted to available indexes. For GP-VAE, a zero mask
is used to hide unavailable data.

5 CONCLUSION

We present the Longitudinal Latent Diffusion Model (LLDM), a generative approach for high-
dimensional longitudinal data that combines VAE embeddings with a latent diffusion process, of-
fering remarkable flexibility. By decoding diffusion latent variables at specific time steps, LLDM
leverages latent space trajectories rather than merely blurring images like traditional diffusion mod-
els. LLDM generates diverse, realistic longitudinal trajectories both unconditionally and condition-
ally. The alignment of the real timeline with the granular diffusion timeline enables tasks such as
future prediction, oversampling, and imputation, with controlled stochasticity as a key feature. Its
efficiency allows for successful training on limited or incomplete datasets.

Future research could explore theoretical guarantees that demonstrate the convergence between the
modeled and true distributions. Additionally, the use of Riemannian diffusion models (Bortoli et al.,
2022; Huang et al., 2022) within the VAE latent space appears promising, as these models may
better align with the Riemannian geometry of the space, potentially improving generation quality.
However, the applicability of these methods in (relatively) high-dimensional settings remain to be
explored, as they have primarily been applied in 2D or 3D manifolds (e.g., torus, hypersphere).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

REFERENCES

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael La-
zos, Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan,
Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Shunting
Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang, Keren Zhou, Richard Zou, Xiaodong
Wang, Ajit Mathews, William Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. Pytorch
2: Faster machine learning through dynamic python bytecode transformation and graph compi-
lation. In Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, 2024.

B.H. Baltagi. Econometric Analysis of Panel Data. Wiley, 1995.

Matthew D. Blackledge, David J. Collins, Nina Tunariu, Matthew R. Orton, Anwar R. Padhani,
Martin O. Leach, and Dow-Mu Koh. Assessment of treatment response by total tumor volume
and global apparent diffusion coefficient using diffusion-weighted mri in patients with metastatic
bone disease: A feasibility study. PLOS ONE, 2014.

A. Bone, O. Colliot, and S. Durrleman. Learning distributions of shape trajectories from longitudinal
datasets: A hierarchical model on a manifold of diffeomorphisms. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

Valentin De Bortoli, Emile Mathieu, Michael John Hutchinson, James Thornton, Yee Whye Teh,
and Arnaud Doucet. Riemannian score-based generative modelling. In Advances in Neural In-
formation Processing Systems, 2022.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. In Advances in Neural Information Processing Systems, 2018.

Clément Chadebec and Stephanie Allassonniere. A geometric perspective on variational autoen-
coders. In Advances in Neural Information Processing Systems, 2022.

Clément Chadebec and Stéphanie Allassonnière. Variational inference for longitudinal data using
normalizing flows, 2023.

Clément Chadebec, Louis J. Vincent, and Stéphanie Allassonnière. Pythae: Unifying Generative
Autoencoders in Python – A Benchmarking Use Case. In Advances in Neural Information Pro-
cessing Systems 35, 2022.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, 2018.

Vianney Debavelaere, Stanley Durrleman, Stéphanie Allassonnière, and for the Alzheimer’s Disease
Neuroimaging Initiative. Learning the clustering of longitudinal shape data sets into a mixture of
independent or branching trajectories. International Journal of Computer Vision, 2020.

Peter Diggle, Patrick Heagerty, K.-Y Liang, and Scott Zeger. The analysis of longitudinal data.
Journal of the American Statistical Association, 2002.

Simon Duane, A.D. Kennedy, Brian J. Pendleton, and Duncan Roweth. Hybrid monte carlo. Physics
Letters B, 1987.

William Falcon and The PyTorch Lightning team. PyTorch Lightning, 2019.

Vincent Fortuin, Dmitry Baranchuk, Gunnar Raetsch, and Stephan Mandt. Gp-vae: Deep proba-
bilistic time series imputation. In Proceedings of the Twenty Third International Conference on
Artificial Intelligence and Statistics, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning basic visual concepts with a
constrained variational framework. In International Conference on Learning Representations,
2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models, 2022.

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, and Aaron Courville. Rie-
mannian diffusion models. In Advances in Neural Information Processing Systems, 2022.

David Kanaa, Vikram Voleti, Samira Ebrahimi Kahou, and Christopher Pal. Simple video generation
using neural odes, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.

Lisa Kühnel, Julian Schneider, Ines Perrar, Tim Adams, Fabian Prasser, Ute Nöthlings, Holger
Fröhlich, and Juliane Fluck. Synthetic data generation for a longitudinal cohort study – evaluation,
method extension and reproduction of published data analysis results, 2023.

Nan M. Laird and James H. Ware. Random-effects models for longitudinal data. Biometrics, 1982.

Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dynamics. Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge University Press, 2005.

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David K. Duvenaud. Scalable gra-
dients and variational inference for stochastic differential equations. In Proceedings of The 2nd
Symposium on Advances in Approximate Bayesian Inference, 2020.

Yingzhen Li and Stephan Mandt. Disentangled sequential autoencoder, 2018.

Jun Liu. Monte Carlo Strategies in Scientic Computing. 2009.

Haoyu Lu, Guoxing Yang, Nanyi Fei, Yuqi Huo, Zhiwu Lu, Ping Luo, and Mingyu Ding. VDT:
General-purpose video diffusion transformers via mask modeling. In The Twelfth International
Conference on Learning Representations, 2024.

Yonghong Luo, Xiangrui Cai, Ying ZHANG, Jun Xu, and Yuan xiaojie. Multivariate time series
imputation with generative adversarial networks. In Advances in Neural Information Processing
Systems, 2018.

Lucy Mosquera, Khaled El Emam, Lei Ding, Vishal Sharma, Xue Hua Zhang, Samer El Kababji,
Chris Carvalho, Brian Hamilton, Dan Palfrey, Linglong Kong, Bei Jiang, and Dean T. Eurich. A
method for generating synthetic longitudinal health data. BMC Medical Research Methodology,
2023.

Radford Neal. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2012.

Siddharth Ramchandran, Gleb Tikhonov, Kalle Kujanpää, Miika Koskinen, and Harri Lähdesmäki.
Longitudinal variational autoencoder, 2021.

Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. In Advances
in Neural Information Processing Systems, 2015.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows, 2016.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31st International Con-
ference on Machine Learning, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention –
MICCAI 2015, 2015.

Hang Shao, Abhishek Kumar, and P. Thomas Fletcher. The riemannian geometry of deep generative
models. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2018.

Judith D. Singer and John B. Willett. Applied Longitudinal Data Analysis: Modeling Change and
Event Occurrence. Oxford University Press, 2003.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Con-
ference on Machine Learning, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. 2020.

Siao Sun, Fusheng Wang, Sina Rashidian, Tahsin Kurc, Kayley Abell-Hart, Janos Hajagos, Wei
Zhu, Mary Saltz, and Joel Saltz. Generating Longitudinal Synthetic EHR Data with Recurrent
Autoencoders and Generative Adversarial Networks. 2021.

Cagatay Yildiz, Markus Heinonen, and Harri Lahdesmaki. Ode2vae: Deep generative second order
odes with bayesian neural networks. In Advances in Neural Information Processing Systems,
2019.

Qingyu Zhao, Zixuan Liu, Ehsan Adeli, and Kilian M. Pohl. Longitudinal self-supervised learning.
Medical Image Analysis, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A ARCHITECTURE AND IMPLEMENTATION DETAILS

Architectures Table 4 summarizes the used architectures. These are mainly convolutional for
images and MLP-based for tabular data.

Dataset Starmen Sprites ADNI

Input Dimension (1, 64, 64) (3, 64, 64) (1, 120)

Encoder

Conv2D(1, 16, 4, 2) Conv2D(3, 16, 4, 2) Linear(120, 60)
Conv2D(16, 32, 4, 2) Conv2D(16, 32, 4, 2) Linear(60, 30)

LeakyReLU LeakyReLU ReLU
Conv2D(32, 64, 3, 2) Conv2D(32, 64, 3, 2) Linear(30, 15)

LeakyReLU LeakyReLU ReLU
LeakyReLU LeakyReLU ReLU
6 ResBlocks 6 ResBlocks Linear(15, 9)

Linear(2048, 2x12) Linear(2048, 2x12) Linear(9, 2x9)

Input Dimension 12 12 9

Decoder

Linear(2048) Linear(2048) Linear(9, 15)
ConvT(128, 3, 2) ConvT(128, 3, 2) ReLU

6 ResBlocks 6 ResBlocks Linear(15, 30)
ConvT(64, 5, 2) ConvT(64, 5, 2) ReLU

LeakyReLU LeakyReLU Linear(30, 60)
ConvT(32, 5, 2) ConvT(32, 5, 2) ReLU

LeakyReLU LeakyReLU Linear(60, 120)
ConvT(16, 4, 2) ConvT(16, 4, 2) ReLU

LeakyReLU LeakyReLU Linear(120, 1)
ConvT(1, 4, 2) ConvT(3, 4, 2) -

Num. of parameters 1.07 · 106 1.08 · 106 19,653

Table 4: LVAE architectures for Starmen, Sprites, and ADNI-based datasets. Note that we use the
same architectures for the first-stage model of the pre-trained LDM. No normalizing flows were
used to enhance the variational posterior, and the prior was a classic standard Gaussian.

Input Dimension (1, 3, 2, 2) (1, 1, 3, 3)

Linear(1, 256), SiLU Linear(1, 128), SiLU
Linear(256, 256) Linear(128, 128)

Conv2d(1, 64, 3, 1) Conv2d(1, 32, 3, 1)
4x ResBlock(64, 64) 4x ResBlock(32, 32)

SpatialTransformer(64) SpatialTransformer(32)
GroupNorm32, SiLU GroupNorm32, SiLU
Conv2d(64, 3, 3, 1) Conv2d(32, 1, 3, 1)

Output Dimension (1, 3, 2, 2) (1, 1, 3, 3)

Num. of parameters 2.22 · 106 353, 953

Table 5: Denoising UNet architecture for the pre-trained LDM. Left: Starmen and Sprites. Right:
ADNI-based dataset.

Code The code reproducing our results is available at the following (anonymized, for now) link
https://anonymous.4open.science/r/LLDM-C92C. It is based on the PyTorch frame-
work (Ansel et al., 2024). For VAE/LVAE architectures and training, we used the Pythae library

14

https://anonymous.4open.science/r/LLDM-C92C

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(Chadebec et al., 2022). For diffusion models architecture and DDIM sampler, we used the imple-
mentation from nn.labml.ai ; and the PyTorch Lightning (Falcon & The PyTorch Lightning
team, 2019) framework for their training.

Training Models were trained on a NVIDIA RTX A2000 12GB GPU. We used an Adam opti-
mizer, with learning rate 1e − 3, a ReduceLROnPlateau scheduler (factor 0.5 and patience 4
epochs). Models were trained for 200 epochs with a batch size of 64 sequences (for irregularly-
sampled datasets, we batch on subset that are regularly-sampled). The model yielding the best
evaluation loss was kept.

For the record, the training times on Sprites were, approximately:

• For LLDM: 20mn for the first-stage VAE, 10 mn for the diffusion per se and 1h for the
LVAE training, so 1h30 in total.

• LVAE-NF: 1h15
• GP-VAE : 1h20

B SAMPLING TIME

Figure 7: Generation time on Sprites: comparison between LLDM and LVAE-NF.

Figure 7 shows that LLDM is able to be on par with competitors in terms of sampling time, being
light enough to generate 300 RGB images of size (64, 64) in less than 5 seconds. GP-VAE is way
quicker but produces samples of lower quality and without temporal coherence within a sequence.

C start index IMPACT ON UNCONDITIONAL GENERATION

start index 1 2 3 4 5 6 7

FID 43.1 37.2 35.9 35.7 36.7 37.2 37.7

Table 6: Unconditional generation metrics on Sprites, on a single run, varying start index.

start index 1 2 3 4 5 6 7 8 9 10

FID 50.2 38.4 36.6 35.3 39.1 34.2 33.9 33.6 35.3 34.5

Table 7: Unconditional generation metrics on Sprites, on a single run, varying start index.

We observe that, all in all, LLDM generation remains quite robust to the choice of start index, with
slight better performance when choosing to start in the middle of the sequence.

15

nn.labml.ai

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D HMC SAMPLER FOR RIEMANNIAN UNIFORM DISTRIBUTION

Given any manifold M = (Rd,G), we use a Hamiltonian Monte-Carlo sampler to sample from the
Riemannian distribution, which density ptarget(·) := URiem (·;M) is given by Equation 2.

Let us define the following Hamiltonian (Duane et al., 1987; Leimkuhler & Reich, 2005):

H(z, v) = − log ptarget(z) +
1

2
v⊤v , (7)

where z ∈ M is seen as the position of a particle traveling on M and v ∼ N (0,G(z)) as its
velocity. The Hamiltonian represents then the sum of its potential and kinetic energy.

The evolution in time of such a particle is governed by Hamilton’s equations:

{
∂H(z,v)

∂v = v
∂H(z,v)

∂z = −∇z log ptarget(z)
(8)

Mimicking the behavior of this particle, the HMC sampler creates a Markov chain of length n
(zi)i=1...n. Starting from z0, an initial velocity is sampled v0 ∼ N (0,G(z0)). Then, a proposal
(z̃, ṽ) is computed by running K times the following discretization scheme known as the leapfrog
integrator:

 v
(
t+ εlf

2

)
= v(t) + εlf

2 · ∇z log ptarget (z(t)) ,
z (t+ εlf) = z(t) + εlf · v

(
t+ εIf

2

)
,

v (t+ εlf) = v
(
t+ εlf

2

)
+ εIf

2 · ∇z log ptarget (z (t+ εlf)) ,
(9)

where εlf is the leapfrog step size. The proposal is then accepted with probability α =
min(1, exp(H(z, v) − H(z̃, ṽ))), otherwise z1 stays in z0. We iterate so forth until having zn.
It was shown that the chain converges to its stationary distribution ptarget (Duane et al., 1987; Liu,
2009; Neal, 2012).

E CONSIDERATIONS ON DDIM

We operate here a slight change of notations compared to section 2.2. Let γt :=
∏Tdiff

t=1 αt. Therefore,
in Figure 1, the forward process (Equation 3) between the diffusion latent variables (ζt)t=1...Tdiff

becomes:

q (ζt | ζt−1) := N
(
ζt;

√
γt

γt−1
ζt−1,

(
1− γt

γt−1

)
I

)
.

Noting that the matching (tij)1≤i≤N
1≤j≤Ti

is provided, and that ζtij ≡ zij (with tij decreasing with j), we

remind that we have the following property that enables us to make ”jumps”:

q
(
zij−1 | zij

)
= N

(
zij−1;

√
γtij−1

γtij
zij ,

(
1−

γtij−1

γtij

)
I

)
.

For the backward process, once the diffusion model trained, the DDPM framework (Ho et al., 2020)
makes Tdiff the following transitions (adapted from Equation 4):

pθ∗
diff
(ζt−1|ζt) = N

(
ζt−1;µθ∗

diff
(ζt, t) , (1−

γt
γt−1

)I

)
.

To sample zi
j+1 ≡ ζtij+1

from a given zi
j ≡ ζtij is time-consuming as it requires τ ij := tij − tij+1

denoising steps, and the same number of neural function evaluations of the denoising UNet.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The DDIM framework (Song et al., 2020) simplifies this process by enabling to skip transitions (and
make ”jumps”, as in the forward process). For j = 1...T − 1, it gives an immediate transition
distribution from ζtij to ζtij+1

(recall that tij+1 < tij):

pθ∗
diff
(zi

j+1|zi
j) ≡ pθ∗

diff
(ζtij+1

|ζtij)

:= N

ztij+1
;
√
γtij+1

zij −
√
1− γtij ϵθ

∗
diff

(
zij
)

√
γtij

+
√
1− γtij+1

− σ2
tij
· ϵθ∗

diff

(
zij
)
, σ2

tij
(η)I

 ,

where σtij
(η) = η

√(
1− γtij+1

)
/
(
1− γtij

)√
1− γtij/γtij+1

. The hyperparameter η ≥ 0 controls

the stochasticity of the sampling by increasing/decreasing the variance ; especially, η = 0 makes the
process completely deterministic.

F DETAILS ON OVERSAMPLED GENERATION

For oversampled generation, we just have to change the DDIM sampler’s time steps. Instead of only
sampling at (tj)j , we can use custom K strictly decreasing time steps (t̂i)i=1...K ∈ {0, . . . , Tdiff}K .
The sole caveat is that, now, start index is in {1, . . . ,K}: therefore, if t̂start index does not corre-
spond to a previous (tj)j on which the LLDM has been trained, the manifold Mstart index does not
exist. Therefore, we simply need to enforce that t̂start index is exactly equal to a tjstart with jstart in
{1, . . . , T}. An updated algorithm is given thereafter (Algorithm 3). This algorithm enables also to
adapt Algorithm 2 for irregularly-sampled dataset, the caveat remaining.

Algorithm 3 LLDM oversampled sampling

Require: Trained LLDM, training set (xi)i=1...N , custom time steps (t̂i)i=1...K , start index = 1...K
1: Enforce that ∃jstart = 1...T, t̂start index ≡ tjstart

2: Compute Gjstart , the Riemannian metric, using the jth
start observations (xi

jstart
)i=1...N only, let

Mjstart = (Rd,Gjstart) the corresponding manifold
3: Sample zjstart ∼ URiem (Mjstart) using a HMC sampler
4: for l = start index + 1 to K do
5: Sample zl ∼ pθ∗

diff
(ζt̂l |ζt̂l−1

) ▷ Propagate into future - Backward Diffusion
6: end for
7: for l = start index − 1 to 1 do
8: Sample zl ∼ q(ζt̂l |ζt̂l+1

) ▷ Propagate into past - Forward Diffusion
9: end for

10: for l = 1 to K do
11: Sample x̂l ∼ pθ (x̂l | zl) ▷ Decode the whole sequence
12: end for

return (x̂1, . . . , x̂T)

G ADDITIONAL EXPERIMENTS

G.1 UNCONDITIONAL GENERATION ON ADNI-based DATASET

Figure 8 shows the histogram of a randomly selected number of coordinates (out of 120 total) on real
and generated samples. It shows that LLDM is able to catch the mode and shape of the distribution,
while for LVAE-NF, these distributions appear left-skewed. On the other hand, GP-VAE captures
the mode, but fails to yield a diverse distribution.

Figure 9 shows the final LVAE latent space, which appears less structured than in Figures 2b and
2a due to low variation both within and between sequences. The latent space, once again, reveals
insights about the dataset: instead of expanding beyond the N (0, I) ellipsoid, the final observations
remain tightly clustered within it, with diffusion trajectories moving inward rather than outward, as

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

seen in previous experiments. Despite this challenge, LLDM still achieves strong generation and
prediction performance.

Figure 8: Histograms of five randomly sampled features (out of 120 total), comparing the true test
data and generated sequences of the same size. The histograms illustrate the distribution of values
across the different datasets. Blue: Test dataset, Green: LLDM, Red: LVAE-NF, Orange: GP-VAE.

Figure 9: Latent trajectories of five generated sequences. Projection over the two principal compo-
nents of the trained embeddings. For each j, the trained embeddings have been displayed in different
colors to show the different manifolds Mj .

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

G.2 FUTURE PREDICTION FOR Sprites

Number of predicted steps Obs 1 Obs 2 Obs 3 Obs 4 Obs 5 Obs 6 Obs 7

1
LVAE-NF - - - - - - 0.94

LLDM - - - - - - 0.89
GP-VAE - - - - - - 0.68

2 LVAE-NF - - - - - 0.94 0.93
LLDM - - - - - 0.88 0.87

3 LVAE-NF - - - - 0.94 0.93 0.94
LLDM - - - - 0.89 0.87 0.90

4 LVAE-NF - - - 0.94 0.93 0.94 0.93
LLDM - - - 0.89 0.87 0.90 0.89

5 LVAE-NF - - 0.94 0.93 0.94 0.93 0.93
LLDM - - 0.89 0.87 0.90 0.89 0.91

6 LVAE-NF - 0.89 0.89 0.89 0.89 0.91 0.91
LLDM - 0.85 0.83 0.86 0.87 0.89 0.90

Table 8: SSIM score on test set between predicted and true steps for Sprites. Average over five runs.
Standard deviation is negligible.

In Table 8, LLDM is not the best performer but is on par with LVAE-NF while adding a key feature:
variations around a core tendency (see next section G.3). We note that the GP-VAE do not react
well to the zero-masking and yield very low quality generated samples: we only provide the SSIM
metric for a first-step prediction.

G.3 VARIABILITY OF FUTURE PREDICTION AROUND A CORE TENDENCY

Number of predicted steps Obs 1 Obs 2 Obs 3 Obs 4 Obs 5 Obs 6 Obs 7

1 - - - - - - 0.01
2 - - - - - 0.17 0.13
3 - - - - 0.34 0.31 0.27
4 - - - 0.57 0.72 0.58 0.50
5 - - 0.76 1.47 1.49 1.27 1.08
6 - 6.74 8.77 10.55 13.88 13.60 14.23

Table 9: Standard deviation over ten runs when computing MSE on test set with LLDM on Sprites.

Number of predicted steps Obs 1 Obs 2 Obs 3 Obs 4 Obs 5 Obs 6 Obs 7 Obs 8

1 GP-VAE - - - - - - - 0.10
LLDM - - - - - - - 0.01

2 GP-VAE - - - - - - 0.08 0.10
LLDM - - - - - - 0.04 0.04

3 GP-VAE - - - - - 0.11 0.10 0.17
LLDM - - - - - 0.06 0.12 0.12

4 GP-VAE - - - - 0.12 0.13 0.15 0.08
LLDM - - - - 0.06 0.16 0.14 0.12

5 GP-VAE - - - 0.22 0.12 0.32 0.18 0.04
LLDM - - - 0.06 0.13 0.20 0.18 0.19

6 GP-VAE - - 0.10 0.10 0.08 0.10 0.06 0.14
LLDM - - 0.03 0.06 0.26 0.38 0.41 0.34

7 GP-VAE - 0.12 0.13 0.10 0.15 0.10 0.12 0.12
LLDM - 0.17 0.16 0.19 0.22 0.32 0.36 0.43

Table 10: Standard deviations over five runs when computing MSE on test set with LLDM and GP-
VAE on ADNI-based dataset. LVAE-NF has negligible standard deviations. See Table 3 for MSE
average values.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 10: Pixel-wise absolute error between predicted and true observations. Replica of Figure 4a
(with the same character). DDIM η increased to 5. Average over 10 independent predictions.

In both use cases, as expected, the earlier you condition, the more diverse are the final states. Figure
10 shows that these variations are localized around the character, especially the hand and pants.

20

	Introduction
	Background
	Variational inference and a geometric perspective on VAEs
	Latent diffusion models

	Method: Longitudinal Latent Diffusion Models (LLDM)
	Framework
	Pre-training of a LDM
	Training of the LVAE
	Sampling

	Experiments
	Data
	Generation
	Future prediction
	Oversampling
	Robustness to missing training data

	Conclusion
	Architecture and implementation details
	Sampling time
	start_index impact on unconditional generation
	HMC sampler for Riemannian uniform distribution
	Considerations on DDIM
	Details on oversampled generation
	Additional experiments
	Unconditional generation on ADNI-based dataset
	Future prediction for Sprites
	Variability of future prediction around a core tendency

