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1. Introduction
The state space model (SSM) is a sequence model

that has recently shown great potential in long se-
quence modeling across various applications, in-
cluding computer vision [1, 2], time series forecast-
ing [3, 4] and natural language processing [5, 6]. In
mathematics, a SSM layer is definedby a continuous-
time ordinary differential equation h′(t) = Wh(t) +
Bx(t), y(t) = Ch(t) + Dx(t), where W,B,C,D are
trainable parameters, x(t) is the input sequence, and
y(t) is the output sequence. For discrete input se-
quences, a timescale ∆ > 0 will be introduced
as a hyperparameter to discretize the model. Dif-
ferent from the attention mechanism [7], SSMs are
recurrent-based architectures that treat the input se-
quence token by token, yet can achieve first-order
time complexity on the sequence length through
parallelization [8]. There are two well known
issues for training recurrent-based architectures,
the vanishing and the exploding gradient problems
[9]. By introducing complex-valued initialization
schemes, proper parameterizationmethods and reg-
ularization techniques, recent works demonstrate
that SSMs can achieve performance comparable to
attention-based architectures in terms of both com-
putational cost and sample efficiency [5, 6, 1, 10, 11,
12, 10, 13, 14, 15, 16]. However, the theoretical under-
standing on the roles of the initialization schemes is
still lacking and needs to further explored. In this
paper, we particularly look into the timescale∆ and
the state matrixW , and we aim to study the follow-
ing fundamental question

Given a sequential dataset with length L, how should
the timescale∆ depend on L and what is the role ofW

on training SSMs?

Based on the analysis of continuous-time SSMs, pre-
vious works [8, 17, 18] propose theHiPPO framework
where W,B are initialized such that the SSM ba-
sis kernels {e⊤n eWtB}∞n=1 are orthogonal in L2[0,∞)
with some measure ω(t), and the timescale∆ scales
as 1/L to capture long range dependencies of se-
quences with length L. Common HiPPO-based ini-
tialization methods such as S4D-Legs and S4D-Lin
typically presume that the measure ω(t) is exponen-
tial decay and the discrete input sequences x have a
inherent timescale ∆ that is shared with the model.
However, these assumptions are restrictive because
exponential decay measures weaken the effects of
temporal dependencies in input sequences, and in
practice, we usually lack prior information about the

data’s timescale. To address this concern, we take an
initial step towards understanding the relationship
between the autocorrelation of input sequences and
the SSM initialization schemes. Specifically, we fo-
cus on the diagonal SSM1 [17] where the state matrix
W is a complex-valued diagonal matrix. By studying
the stability condition for given input sequences x ∈
RL, we find that the connection of the timescale ∆
and the sequence length L is highly related with the
spectrum of the data autocorrelation matrix E[xx⊤].
Different temporal dependencies in the input se-
quences can cause significant variations in the spec-
trum of the autocorrelation matrix. For example,
when x is sampled from a standard normal distribu-
tion, x has zero temporal dependencies, and the au-
tocorrelationmatrix becomes an identitymatrix. On
the other hand, if x consists of constant values, the
input sequence exhibits full temporal dependencies,
and the autocorrelation matrix is low rank. For the
statematrixW , our stability analysis shows that even
with a zero real part, i.e. ℜ(W ) = 0, the diagonal
SSMcan still be stable at initialization if∆ is properly
set. Onebenefit for setting the real part to zero is that
the learned SSM kernel functions at initialization do
not exponentially decay, which helps to mitigate the
curse of memory [19]. Our convergence analysis in-
dicates that the imaginary part ℑ(W ) plays a cru-
cial role in the convergence rate and explains the
benefits for complex-valued SSMs compared to real-
valued SSMs in terms of the optimization. In partic-
ular, the more separated the imaginary parts ℑ(w)
are, the faster the convergence. When consider-
ing both approximation and optimization, we char-
acterize an approximation-estimation tradeoffwhen
the target function has closely spaced dominant fre-
quencies. Then well separated ℑ(w) values lead to
fast convergence, while achieving a good approxi-
mation requires close imaginary parts.
To summarize, the main goal of this paper is

to provide a theoretical understanding on the ef-
fects of three specific hyperparameters: the model
timescale ∆, the real part of ℜ(W ), and the imagi-
nary part of the state vector ℑ(W ). These compo-
nents are connected as a data-dependent initializa-
tion scheme for SSMs. First, for any given sequen-
tial dataset, we can estimate its autocorrelation. Us-
ing this information, we can apply Theorem A.1 to
initialize ∆, taking into account both data autocor-
relation and sequence length. Second, if the true

1To simplify the analysis, we omit the skip connection by let-
tingD = 0.
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input-output mapping is represented by an underly-
ing linear functional, often referred to as a memory
function, that exhibits a long memory pattern, our
second theory, detailed in Section A.2, suggests that
initializing with a zero real part can help mitigate
the challenges posed by long sequences. Finally, the
third theory introduced in Section A.3 discusses an
approximation-estimation tradeoff that arises when
the truememory function ρ∗ features closely spaced
frequencies. If we can accurately recover ρ∗ from
the sequential data, we can then initialize the imag-
inary part based on the dominant frequencies of ρ∗,
thereby finding an optimal balance informed by the-
oretical insights. Accordingly, our contributions are
as follows:

• In section A.1, we characterize the dependency be-
tween the timescale ∆ and the sequence length L
by taking into account the autocorrelation of the
input sequences. Even if the eigenvalues of the
state matrix W have zero real part, the stability
condition on the magnitude of the output value at
initialization can still hold with an appropriate set-
ting of∆.

• In section A.2, we show that the real part of the
eigenvalues of the state matrix W determines the
decay rate of the SSM kernel functions. Allowing
the eigenvalues ofW to have zero real part at ini-
tialization can significantly increase the model’s
effective memory and help mitigate the curse of
memory for fixed-length tasks that require long-
termmemory.

• In section A.3, we prove that the conditioning
of SSM optimization problems is determined
by the separation distance of the imaginary
parts of the eigenvalues of the state matrix.
Well-separated imaginary parts induce faster
convergence, whereas closely spaced ones lead
to slower convergence. This explains the benefits
of complex-valued SSMs over real-valued SSMs.
Furthermore, it uncovers an approximation-
estimation tradeoff when the target function has
close dominant frequencies in the frequency
domain.

2. Preliminaries
In this section, we briefly introduce the diagonal

SSM and the problem setting we consider through-
out this paper. Specifically, we consider the follow-
ing single-input single-output (SISO) diagonal-SSM
built in the complex number field C and then cast
into the real number field R,

d

dt
h(t) = Wh(t) + bx(t), y(t) = ℜ(c⊤h(t)), t ≥ 0,

(1)
where ℜ(·) represents the real part; x(t) is input
sequence from an input space2 X := C0(R≥0,R);

2A linear space of continuous functions from R≥0 to R that
vanishes at infinity.

y(t) ∈ R is the output sequence at time t; h(t) ∈ Cm is
thehidden statewithh(0) = 0;W ∈ Cm×m, b, c ∈ Cm
are trainable parameters. In particular, the statema-
trix W = diag(w1, . . . , wm) is a diagonal matrix. To
simplify the analysis, we omit the skip connection
matrix D. Following the training setup in [17], the
read-out vector c follows standard normal distribu-
tion and the read-in vector b in (1) is fixed as an all-
one vector at initialization without training. Under
these settings, the input-output relation in (1) is ex-
plicitly given by the integral

y(t) =

∫ t

0

ℜ(c⊤ews)x(t− s)ds, (2)

where w ∈ Cm is the state vector that contains all
the diagonal entries of the state matrix W , and the
function ℜ(c⊤ews) is called the memory function or
the kernel function.
Discretization. To handle discrete sequences, we

follow [17] to use the zero-order (ZOH) hold method
for discretization. Then given a timescale ∆ > 0
and any discrete sequence (x0, . . . , xL−1) ⊂ R with
lengthL, for ℓ = 1, 2, . . . , L, the ZOHmethod induces
a model output

yℓ =ℜ

 m∑
j=1

e∆wj − 1

wj
cje

∆wj(ℓ−1)

x0 + · · ·+

ℜ

 m∑
j=1

e∆wj − 1

wj
cje

∆wj0

xℓ−1.

(3)

Remark 2.1. Here we focus on the SISO model with
ZOH discretization. It is also possible to extend
to the multiple-input multiple-output (MIMO) case,
by noticing that the MIMO output is essentially a
linear combination of several single-input single-
output (SISO) models. As a result, we can extend
our results to theMIMO scenario by examining each
SISO model individually along with its respective
input-output mapping. However, our theory are
not directly applicable to other discretization meth-
ods (e.g. bilinear method), which involve different
matrix forms for the model’s input-output mapping
(seeAppendix F), and require different techniques to
yield theoretical insights.
In the following section, we tackle the problems

related to the initialization schemes of SSMs that
were introduced in the Introduction. Specifically, we
will explore the following questions:

1. Timescale Initialization: How should we initial-
ize the model timescale ∆ for fixed-length tasks
to enhance the training of SSMs? Is the previously
used scaling∆ = 1/L a universal approach?

2. Real Part of the State Vector: What role does
ℜ(w) play? Can we initialize ℜ(w) to be zero, and
what benefits might arise from a zero real part?

3. Imaginary Part of the State Vector: What role
does ℑ(w) play? What advantages do complex-
valued SSMs offer compared to real-valued SSMs?
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Fig. A1: (Left) Training a diagonal SSM (3) on a copy-
ing task using i.i.d. data with a dimension of
128. We vary the minimal timescale ∆min =
1/L, 1/

√
L and the maximal timescale ∆max =

1/L, 1/
√
L, 0.1w.r.t. sequence lengthL. (Middle)

The maximal eigenvalue of the autocorrelation
matrix E[xx⊤] on different random processes of
x. (Right) The maximal eigenvalue of E[xx⊤] on
sequential image datasets sMNIST and sCIFAR10
with different resize rates varied from 0.5 to 4.

Fig. A2: The expected magnitude of the SSM output
value on synthetic sequences with different au-
tocorrelation. The real part ℜ(w) = −0.5 follows
the common practice and we consider four de-
pendencies between the timescale∆ and the se-
quence length L.

Appendix A. Main Results

In this section, we present ourmain results by focus-
ing on three initialization parameters ∆,ℜ(w) and
ℑ(w) respectively. Specifically, in section A.1, we
rigorously characterize the relationship between the
timescale ∆ and the sequence length L in terms
of training stability at initialization by taking into
account data autocorrelation. In section A.2, we
demonstrate that allowing the state vector’s real part
to be zero can prevent exponential decay in the
SSM kernel function, thereby mitigating the curse
of memory in certain scenarios. In section A.3, we
explore the relationship between the convergence
rate and the separation distance of the state vec-
tor’s imaginary part. In particular, we uncover an
approximation-estimation tradeoff for a class of tar-
get functions.

1.1 Relationship between∆ and L
In this subsection, we derive a stability condi-

tion for the ZOH-discretized diagonal SSM (3) when
the state vector’s real part ℜ(w) is non-positive.
From both theoretical and numerical perspectives,
we demonstrate that the dependency of the model
timescale∆ on the sequence length L is strongly in-
fluenced by the data autocorrelation. To start with,
we prove the following theorem that provides an up-
per bound on the magnitude of the model output
value.
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TheoremA.1. Consider a ZOHdiscretized SSM (3)with
timescale ∆ > 0 and ℜ(wj) ≤ 0 for j = 1, . . . ,m.
Suppose that the input sequence (x0, . . . , xL−1) is sam-
pled from a unknown distribution in RL, and the read-
out vector c is from i.i.d. standard normal distribution.
Then we have

Ec,x[y2L] ≤ ∆2m2L · λmax(E[xx⊤]),

where λmax(·) represents the maximal eigenvalue.

The proof is provided in Section F. In practice,
the hidden state size m is often much smaller than
the sequence length L [18]. Given this, we focus
on fixing the hidden size m and investigating the
relationship between the model timescale ∆ and
the sequence length L. We see that Theorem A.1
connects the model timescale ∆ with the sequence
length L in terms of the data autocorrelation matrix
E[xx⊤]. If we have normalized the sequences such
that E[∥x∥2] = 1, then a simple observation is that
1 ≤ λmax(E[xx⊤]) ≤ LbecauseTr(E[xx⊤]) = L. This
indicates that the maximal eigenvalue of the auto-
correlation matrix can have different dependencies
on L based on the temporal dependencies. For ex-
ample, when the elements in the sequence are un-
correlated with each other, x exhibits zero tempo-
ral dependencies, and the autocorrelation matrix is
an identity matrix with λmax(E[xx⊤]) = 1. In this
case,∆ should scale as 1/

√
L to ensure training sta-

bility. On the other hand, when x is a constant se-
quence (1, 1, . . . , 1), then x exhibits full temporal de-
pendencies. The autocorrelation matrix then be-
comes a rank-1 matrix with λmax(E[xx⊤]) = L, im-
plying that ∆ should scale as 1/L. Additionally, this
upper bound is applicable for all caseswhereℜ(w) ≤
0. As the real part ℜ(w) approaches zero, the expo-
nential decay rate of the SSM kernel slows, result-
ing in a tighter bound. Specifically, when the real
part is zero and the input data lacks temporal de-
pendency, the bound becomes tight up to a constant
factor. This occurs because the data autocorrelation
matrix E[xx⊤] simplifies to a diagonal matrix under
these conditions. Given a specific task with an input
sequential dataset, we can then initialize the model
timescale∆ asO(1/

√
Lλmax(E[xx⊤])).

Remark A.2. TheoremA.1 applies for the final output
mode, while in practice, there are also some other
output modes and the analysis on the stability con-
dition is case by case. For example, for the pooling
mode y = 1

L

∑L
ℓ=1 y

2
L, we can use Theorem A.1 to

get a same upper bound for Ec,x[y2]. Also, in this
paper we consider fixed-length tasks, i.e., all the se-
quences are with the same length. For the varied-
length case, we may first cluster the sequences into
several groups, and then increase the model feature
dimension to manage varied sequence lengths sep-
arately. For example, if the sequence length alter-
nates betweenL1 andL2, thenwecandouble the fea-
ture dimension and initialize the model separately
for the first and second halves, allowing the model

Fig. A3: The expected magnitude of the SSM output
value on synthetic sequenceswith different auto-
correlation and different dependencies between
∆ and L. The real part ℜ(w) is set to be zero.

Fig. A4: The expected magnitude of the SSM output
value on sequential image datasets with different
resize rates (ranging from 0.5 to 4) and different
dependencies between∆ and L.

to accommodate two fixed-length datasets simulta-
neously.

Numerical experiments on λmax(E[xx⊤]) and
E[y2L]. To validate our theory, we conduct experi-
ments on the exact values of the magnitude of the
model output and E[xx⊤]. Specifically, we consider
both synthetic and real sequential datasets in both
negative and zero real part cases. For synthetic
datasets, we consider Gaussian process with mean
0 and autocovariance function E[xixj ] = K(i, j).
By restricting K(i, i) = 1 then the autocovari-
ance matrix is exactly the same as the autocorrela-
tion matrix. In this paper, we choose 4 Gaussian
processes with different autocovariance functions
and plot their maximal eigenvalues. The autoco-
variance functions for “ou, iid, rbf” are K(i, j) =
exp(−|i − j|/ℓ), δi−j , exp(−|i − j|2/ℓ) respectively.
The autocovariance matrix for “rand” is given by
ΣΣ⊤ where Σ is a random matrix with i.i.d. uni-
form distributed entries in [0, 1]. As Figure A1 (Mid-
dle) shows, different processes have varying depen-
dencies of λmax(E[xx⊤]) on L ranging from O(1) to
O(L). For the i.i.d. case, λmax(E[xx⊤]) is not al-
ways 1 in Figure A1 (Middle), which is because we
use the sample autocorrelationmatrix to replace the
expected autocorrelation matrix. For real sequen-
tial datasets, we choose to resize the MNIST dataset
[20] and the gray CIFAR10 dataset [21] with resize
rates [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4] and the flatten the im-
ages to sequences. More experiment details are pro-
vided in Appendix D. We record λmax(E[xx⊤] based
on the entire training dataset. As shown in Figure
A1 (Left), themaximal eigenvalue scales (almost) lin-
early with sequence length across the resize rate for
both sequential MNIST (sMNIST) and sequential CI-
FAR10 (sCIFAR10) datsets. Additionally, we plot the
relationship between the magnitude of the model
output value and sequence length by varying the
timescale ∆ = [L−1, L−0.75, L−0.5, L−0.25]. In Fig-



AI4X 2025, Singapore, 8–11 July 2025

ures A2 and A4, when ℜ(w) = −0.5 (following the
setup in [17, 18]), the magnitude E[y2L] remains sta-
ble for both synthetic and resized image datasets
for all decay rates of ∆. When ℜ(w) = 0, Figures
A3 and A4 demonstrate that for the ‘rand’ process,
∆ = L−1 is stable. For the ‘iid,’ ‘ou,’ and ‘rbf’ pro-
cesses, ∆ = L−0.75 is stable. This indicates that
our bound in Theorem A.1 effectively characterizes
the relation between ∆ and L for ℜ(w) = 0. More-
over, as shown in Figure A4, for the sequential im-
agedatasets,∆ should scale as 1/L to ensure stability
when ℜ(w) = 0; otherwise, the magnitude increases
with sequence length. This finding aligns with the
empirical results in [17] that ∆ should scale as 1/L
to effectively capture the range of dependencies for
length L. But their theoretical reasons are based on
Fourier analysis of continuous-time SSMs and do not
explicitly account for the data autocorrelation.
Experiments on copying task with different

timescales. We tested the performance of the di-
agonal SSM (3) on a copying task with various de-
pendencies of ∆ on L. It is worth noting that, as
discussed in [22], SSMs struggle with the copying
task because the model’s state dimension needs to
scale linearly with the sequence length to memorize
all the input tokens. However, the limitation high-
lighted in [22] pertains to the length generalization
task—i.e., training an SSM with short sequences and
then testing it on longer sequences will fail if the
hidden size m does not grow linearly with L. Here,
we focus on a fixed-length task, where both train-
ing and test sequences have the same length. We
find that, with an appropriately initialized timescale,
SSMs can effectively handle the copying task even
with a small state size. In this paper, we use a di-
agonal SSM with a fixed state size m = 32 to learn
a copying task on i.i.d. data with a dimension of
128, and the timescale ∆ ∈ R128. We vary the mini-
mal and maximal timescales (∆min,∆max) with dif-
ferent dependencies on L. From Figure A1 (Left), we
see that the combination (∆min,∆max) = (1/L, 0.1),
which is commonly used in practice [17, 18] to train
real datasets, consistently performs worse than set-
ting∆min = 1/

√
L. This stable scaling is in line with

our theoretical suggestions for i.i.d. data. Therefore,
the data autocorrelation is very crucial for us to get
a good initialization scale on the timescale. More ex-
periment details are provided in Appendix D.

1.2 Benefits of zero real part
In this subsection, we investigate the benefits of

initializing ℜ(w) = 0 for tasks that require long-
termmemory. In previous works [23, 19], it is shown
that recurrent-based models suffer from the curse
of memory in both approximation and optimization
when there is long-term memory in the target. For
example, we consider using a diagonal SSM (3) to
learn a input-out relationship given by a real-valued
target function ρ∗ such that

y∗ℓ = ρ∗ℓ−1x0 + · · ·+ ρ∗0xℓ−1, ℓ = 1, 2, . . . , L.

Fig. A5: (Left) Training a diagonal SSM (3) on a task
that requires long-term memory. The learned
memory function ρ̃ effectively captures the spike
in long-range dependencies. However, it strug-
gles to do so when the real part is negative.
(Middle) Test loss on the long-termmemory task
when initializing ℜ(w) = 0 and ℜ(w) = −0.5.
(Right) Test accuracy for training a diagonal SSM
on decorrelated sequential MNIST dataset with
different real parts at initialization.

The objective function is given by the squared dif-
ference between the model output yL and the cor-
responding label y∗L. Then in a special case when
the input sequences have zero temporal dependen-
cies with E[xx⊤] = IL, the expected mean squared
error is given by

E[|yL − y∗L|2] = ∥ρ̃− ρ∗∥2 ,

where ρ̃ is a vector(
ℜ
(∑m

j=1
e
∆wj −1

wj
cje

∆wj0

)
,...,ℜ

(∑m
j=1

e
∆wj −1

wj
cje

∆wj(L−1)

))

that represents the model’s memory, and ρ∗ =
(ρ∗0, . . . , ρ

∗
L−1). Therefore, a well-trained SSMmeans

that the model memory function matches with the
target function, i.e.,

ℜ

 m∑
j=1

e∆wj − 1

wj
cje

∆wjℓ

 = ρ∗ℓ , ℓ = 0, . . . , L− 1.

Then we can see that the curse of memory happens
when the target function ρ∗ has a sudden spike in a
very long distance. For instance, consider a shift-
ing task that requires mapping an input sequence
(x0, . . . , xL−1) to a shifted sequence (0, . . . , 0, x0). In
this task, the target ρ∗ is (0, . . . , 0, 1), which is chal-
lenging for an exponentially decaying SSM kernel ρ̃
to capture long-termmemory whenℜ(w) < 0. How-
ever, if we allow the real part to be zero at initializa-
tion, then ρ̃ does not undergo exponential decay. As
a result, we can potentially avoid the curse of mem-
ory, even for long sequences, in this scenario. It is
worth noting that in this paper, we do not consider a
stable parameterization to ensure ℜ(w) ≤ 0 strictly
during training. This approach means ℜ(w) is likely
to become positive during training. Our goal is to al-
low the model to learn directly from the data with-
out introducing new variables, such as reparameter-
ization methods, which could complicate the analy-
sis. Otherwise, it would be unclear whether the im-
provements are due to the zero real part or the in-
troduced reparameterization method. Our experi-
ments demonstrate that initializing with a zero real
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Fig. A6: Recovering the memory function ρ on the
decorrelated sequential MNIST dataset by solv-
ing a linear equationX∗ρ = Y , whereX ∈ RN×L

is the collected sequence matrix, Y ∈ RN×10 is
the one-hot labelmatrix, and ∗ is the convolution
operator. Then ρ ∈ RL×10 has 10 channels and
we plot the scaled function

√
Lρ each channel to

show the underlying memory patterns.

part still helps enhance training, even without a sta-
ble parameterization. This suggests that, despite
the potential optimization stability challenges dur-
ing training, a zero real part can be beneficial for
training on certain tasks.
Experiments on the benefits of zero real part.

To validate the effectiveness of having a zero real
part, we conduct experiments on both synthetic and
real datasets that require long-termmemory. For the
synthetic task, we use i.i.d. sequential data to easily
visualize the expected error via the memory func-
tion. The goal is to learn an input-output mapping
from (x0, . . . , xL−1) to x0+xL−1, which requires the
model tomemorize both the first and last token. The
target memory function ρ∗ is (1, 0, . . . , 0, 1). In our
setting, the sequence length L is 128, and the hidden
state size m is 32. As shown in Figure A5 (Left) and
(Middle), the SSM with a zero real part outperforms
the casewith a negative real part. It is evident that by
initializing ℜ(w) = 0, the learned memory function
is able to capture long range dependencies. For the
real-world task, we utilize the sequentialMNIST (sM-
NIST) dataset. Before training, we preprocess the
entire dataset with a linear transformation to decor-
relate the training sequences, resulting in an auto-
correlation matrix that is an identity matrix. We
recover the underlying target memory function by
solving a least square problem minρ ∥X ∗ ρ − Y ∥2F
whereX ∈ R50000×784 is the collected sequence ma-
trix, Y ∈ R50000×10 is the one-hot label matrix, and
∗ denotes the convolution operator. The recovered
target memory function ρ ∈ R784×10 has 10 chan-
nels. To illustrate the underlying memory patterns,
we plot

√
Lρ for each channel in Figure A6. We

observe that for the decorrelated sMNIST dataset,
the underlying memory function exhibits a sudden
spike at a long distance, implying the curse of mem-
ory when ℜ(w) < 0. This observation is confirmed
in Figure A5 (Right), which shows that initializing
ℜ(w) = 0 outperforms the case with a negative real
part. We also apply our methods to the Long Range
Arena (LRA) benchmark [21], which features six di-
verse tasks ranging from text to image processing.

ListOps Text Retrieval Image Pathfinder PathX Avg
Baseline 60.47 86.18 89.46 88.19 93.06 91.95 84.89

Initialize 10% of ℜ(w) to be 0 61.44 88.05 90.73 89.11 95.58 97.55 87.08
Ratio for ℜ(w) ≥ 0 after training 1.29% 1.99% 2.58% 4.31% 4.31% 4.04% 3.09%

Table A1: Test accuracy for training S4D on the LRA
benchmark with different fractions of zero real
part at initialization.

Given that we lack precise knowledge of thememory
function for each LRA task, we opt to initialize a frac-
tion of the real part as zero and compare this setup
to the default S4D model [17]. In particular, for each
single layer of anL-layer S4Dmodel, whichhas a fea-
ture dimension of d and a state size of m, there are
d state vectors w ∈ Cm. At initialization, a fraction
p ∈ [0, 1] of these state vectors is randomly selected
to have their real parts set to zero. When p = 0, the
training proceeds following the baseline setup. As p
increases, themodel startswithmore zero real parts.
To ensure credible results, we exclude any reparam-
eterization method on the zero real part, allowing
the model to adapt from the data during training.
This approach isolates the impact of the zero real
part on performance without confounding variables
introduced by reparameterization. All models were
trained with a 6-layer architecture, maintaining the
original S4D training conditions as specified in the
work by [17]. We present both the test accuracy and
the ratio of non-negative real part parameters to the
total Ldm real part parameters upon completion of
training in Table A1. We can see that, initializing an
appropriate fraction of state vectors with zero real
parts enables the model to outperform the default
S4D configuration. Importantly, even post-training,
somenon-negative real parts persist, suggesting that
the model retains stability and effectively adapts to
the data. We provide more experimental details in
Appendix D. In Appendix D.2, we add ablation stud-
ies on the gray-sCIFAR dataset with varied fractions
p of zero real part at initialization.

1.3 Imaginary part induces an approximation-
estimation tradeoff
In the previous subsection, we show that the

real part ℜ(w) is related with the long-term mem-
ory when training SSMs. In this subsection, we fo-
cus on the imaginary part ℑ(w). We will demon-
strate how ℑ(w) influences the conditioning of the
SSM optimization problem within a convex frame-
work. Additionally, from an approximation stand-
point, we reveal an approximation-estimation trade-
off that arises when training SSMs with a particular
class of target functions.
Convergence analysis. Here we consider the

continuous-time SSM (2) and assume that the read-
out vector c is in Rm. This real-value assumption is
necessary in the current version to get an theoretical
estimate for the spectrum of the induced Gram ma-
trix becausewe use the Gershgorin circle theorem to
prove Theorem A.4. This theorem is applicable only
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when the matrix has dominant diagonal entries. If
the vector c is complex-valued, the resulting Gram
matrix would not be diagonal-dominant, rendering
the Gershgorin circle theorem ineffective. Suppose
the true input-output relation is given by some real-
valued target function ρ∗(s) ∈ L1[0,∞) ∧ L2[0,∞)

with y∗(t) =
∫ t
0
ρ∗(s)x(t − s)ds. We use the squared

difference between the SSM output y(t) and the tar-
get output y∗(t) at some terminal time T > 0 aver-
aged over input distributions, which can be written
as

L(c, a) := Ex (y(T )− y∗(T ))
2
. (A1)

To make the theoretical analysis amenable, we as-
sume that x(t) is sampled from white noise, i.e.,
x(T − s)ds = dWs where Ws is the canonical
real-valued Wiener process. Then by Itô’s isome-
try (Proposition E.2), the expected risk (A1) can be
rewritten as L(c, w) =

∫ T
0

(
c⊤ℜ (ews)− ρ∗(s)

)2
ds.

In the practical training, the sequence length is very
long and thus we take T −→ ∞ to investigate the ef-
fect of long-termmemory. To study the effects of the
state vector initialization, we consider the following
convex optimization problem where w is fixed.

argminc∈Rm Lc :=
∫ ∞

0

 m∑
j=1

cjℜ(ewjs)− ρ∗(s)

2

ds.

(A2)
From the perspective of function approximation,

the HiPPO framework [24] initializes w such that
the SSM basis kernel functions {ℜ(ewjs)}∞j=1 are or-
thogonal in L2[0,∞) w.r.t. some measure ω(s). In
this paper, we discover the effects of the state ini-
tialization on the optimization problem (A2). Let c∗
be one of the solution of the convex problem (A2),
then c∗ is a stationary point that satisfies Gc∗ =∫∞
0

ℜ(ews)ρ∗(s)ds, where G ∈ Rm×m is a Gram ma-
trix with

[G]j,k =

∫ ∞

0

ℜ(ewjs)ℜ(ewks)ds. (A3)

Therefore, the spectrum of the Gram matrix G de-
termines the numerical stability and convergence
rate of optimization algorithms for solving the con-
vex problem (A2). We show in the following propo-
sition that when w ∈ Rm and all wj are distinct, or
when w ∈ Cm and all the imaginary parts ℑ(w) are
non-zero and distinct, thenG is positive definite.

Proposition A.3. Let wj = aj + i · vj with aj , vj ∈ R
for j = 1, . . . ,m. If all vj = 0, i.e., w ∈ Rm, then G is
positive definite given that all aj are distinct. If vj are all
non-zero, i.e., w ∈ Cm, then G is positive definite given
that all vj are distinct.

The proof is based on the argument of Vander-
monde matrix, and we provide details in Appendix
G. Given that the gram matrix G is positive-definite,
we are ready to study its spectrum. In the follow-
ing theorem,we show that for complex-valued SSMs,
the grammatrixG can bewell-conditioned provided
that the imaginary parts ℑ(w) are well separated.

Fig. A7: (Left) Condition number κ(G) := λmax(G)
λmin(G)

for S4D-Real and S4D-Lin with different hidden
size m. (Middle) κ(G) for S4D-Lin with differ-
entm by varying scaling factors of the imaginary
part ℑ(a). (Right) κ(G) and approximation mea-
sure σmax(M) (in the approximation-estimation
tradeoff part) for S4D-Lin by different ratios of
model frequencies v and target frequencies ξ.

Theorem A.4. Let λmin(G), λmax(G) be the extreme
eigenvalues of G defined in (A3), and let coth(x) =
e2x+1
e2x−1 . Suppose that wj = −0.5 + i · vj for vj ∈ R, and
we define the separation distance δ := minj ̸=k |vj − vk|.
Then if δ > 0, we have

1.19− 3π
4δ coth(π

δ )<λmin(G)≤λmax(G)< 5
12+

3π
4δ coth(π

δ ).

The proof is based on the Gershgorin circle theo-
rem, with details provided in Appendix H. The setup
wj = −0.5 + i · vj follows the configurations in
[25, 17, 18]. This theorem shows that the Gram ma-
trix G can be well-conditioned when the separation
distance δ is large. One example is that for the com-
monly used S4D-Lin initialization [17], vj = π · j.
Then the separation distance δ = π. Numerical cal-
culations show that 0.2 < λmin(G) ≤ λmax(G) <

√
2,

meaning that G is well-conditioned for any hidden
sizem, and its condition number has a uniform up-
per bound w.r.t. m. Note that x coth(x) ≥ 1 and is
increasing on [0,∞), which implies that the bound
for λmin(G) is non-trivial when 3π

4δ coth
(
π
δ

)
< 1.19.

By numerically solving this inequality, it is sufficient
to have δ > 2.3. However, Proposition A.3 suggests
that as long as δ > 0, the positive-definiteness ofG is
guaranteed. This indicates a gap between the lower
bound and the actual minimal eigenvalue, which we
leave for future research.
Real vs complex. We can now compare real-

valued SSMs and complex-valued SSMs in terms of
the conditioningof the convexoptimizationproblem
(A2), which is determined by the condition number
ofG. For real-valued SSMs with the S4D-Real initial-
ization [17], where wj = −j, we have Gj,k = 1

j+k .
In this case, G is a Hilbert matrix, whose condition
number grows exponentially with respect to its size
m [26]. For complex-valued SSMs with wj = −0.5 +
ivj , Theorem A.4 indicates that if the separation dis-
tance δ remains uniformly large with respect to m,
then G can be well-conditioned even for larger val-
ues ofm. For S4D-Lin initialization, we already know
that 0.2 < λmin(G) ≤ λmax(G) <

√
2 by the above

argument. Therefore, unlike real-valued SSMs, the
condition number of G in the complex-valued case
can remain well-conditioned even for largem, given
that the imaginary parts are well separated. This
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difference is illustrated in Figure A7 (Left), where
we compare the exact condition numbers for S4D-
Real and S4D-Lin. As the scaling factor of the imagi-
nary part increases, the separation distance also in-
creases. Figure A7 (Middle) shows that the Gramma-
trixG for S4D-Lin becomes better conditioned, vali-
dating Theorem A.4.
Approximation-estimation tradeoff. Despite the

fact that complex-valued SSMs with adequately sep-
arated imaginary partsℑ(w) enhance the condition-
ing of G, we cannot simply initialize w with widely
separated ℑ(w). This is because ℑ(w) determines
the frequencies that the SSM can capture, and mis-
aligned frequencies relative to the target ρ∗ lead
to a large approximation error Lc∗ . For example,
suppose that the target memory function ρ∗(s) =
e−s/2ĉ⊤ cos(ξs) with ĉ, ξ ∈ Rm. Let w = −0.5 + iv
for v ∈ Rm, then we have

Lc∗

=
∫ ∞
0
ρ∗2(s)ds−

(∫ ∞
0
e−

s
2 cos(vs)ρ∗(s)ds

)⊤
G−1

(∫ ∞
0
e−

s
2 cos(vs)ρ∗(s)ds

)
=ĉ⊤Mc,

whereM ∈ Rm×m is given by
∫ ∞
0
e−s cos(ξs) cos(ξs)⊤ds

−(
∫ ∞
0
e−s cos(ξs) cos(vs)⊤ds)G−1(

∫ ∞
0
e−s cos(vs) cos(ξs)⊤ds).

We can see that the maximum singular value
σmax(M) ofM determines the approximation error.
Now, let’s consider a limiting casewhen vj = µj with
µ → ∞. According to Lemma E.5, we know thatG =
1
2 Im, a scaled identitymatrix, possesses the best pos-
sible conditioning. Furthermore, if ξ is finite, then
as µ → ∞,

∫∞
0

e−s cos(vjs) cos(ξks) ds = 0, indicat-
ing that the worst approximation error

∫∞
0

ρ∗2(s) ds.
On the other hand, if we aim tominimize the approx-
imation error, we might align the frequencies such
that v = ξ. However, when the target function com-
prises closely spaced frequencies ξ1, . . . , ξm, such
alignment may cause G to have a large condition
number (as per Theorem A.4). Balancing these two
aspects reveals an approximation-estimation trade-
off, which is crucial when selecting an SSM initial-
ization. Numerical evidence for this tradeoff is il-
lustrated in Figure A7 (Right). In this figure, we set
ξj = 0.1πj with a relatively small separation dis-
tance δ = 0.1π, and we vary the ratio vj/ξj from
20 to 28. As the ratio increases, the optimization is
expected to improve, while the approximation dete-
riorates. This trend is shown in Figure A7 (Right),
where the induced Gram matrix G becomes better-
conditioned, whereas the approximation measure
σmax(M) increases. In practice for a specific task, if
we manage to accurately recover the memory func-
tion from the sequential data, we can then apply a
Fourier transform to identify the dominant frequen-
cies of the memory function. Given a state size m,
we can greedily selectm frequencies that exhibit the
largest separation distance from these dominant fre-
quencies to initialize the imaginary part. Our theory

suggests that this approach achieves an optimal bal-
ance between the tradeoff of approximation and es-
timation. However, practically, recovering themem-
ory function accurately from the data is challenging,
and hyperparameter tuning might be needed to find
the optimal balance.

Appendix B. Conclusion

In this paper, we study the question proposed in
the Introduction section, focusing on two initializa-
tion schemes for state space models (SSMs): the
timescale ∆ and the state matrixW . Regarding the
timescale ∆, we investigate it from the perspective
of training stability at initialization. Our findings in-
dicate that its dependency on sequence length is de-
termined by data autocorrelation. By analyzing data
autocorrelation, we can initialize∆ to enhance SSM
training for tasks involving fixed-length sequences.
For the state matrix W , we differentiate between
the real part ℜ(W ) and the imaginary part ℑ(W ).
The real part ℜ(W ) is crucial for capturing long-
term memory in temporal data. Allowing for a zero
real part can effectively mitigate the curse of mem-
ory while maintaining training stability at initializa-
tion, provided the timescale is appropriately initial-
ized. The imaginary part ℑ(W ) affects the condi-
tioning of the SSM optimization problem. A well-
separated ℑ(W ) leads to a well-conditioned Gram
matrix, improving the convergence rate. However,
from an approximation standpoint, excessively in-
creasing the separation distance can result in a fre-
quency mismatch between the SSM and the target
function, leading to an approximation-estimation
tradeoff. These three components are intricately
linked as a data-dependent initialization scheme for
SSMs. There are several potential future interesting
directions. For instance, we have not discussed the
effects of gating [27] andmodel depth on the approxi-
mation and optimization of SSMs, whichwe leave for
future research.

Appendix C. RelatedWorks

Optimization of SSMs. Recurrent-based architec-
tures are known for two issues: training stability
and computational cost [9]. To mitigate these chal-
lenges and capture long range dependencies more
effectively in sequence modeling, the S4 model was
introduced with novel parameterization, initializa-
tion, and discretization techniques [8]. Recent up-
dates to the S4model have further simplified the hid-
den state matrix by using a diagonal matrix, thereby
improving computational efficiency [17, 28, 29]. Ad-
ditionally, regularization methods such as dropout,
weight decay, and data-dependent regularizers [12]
are employed with SSMs to prevent overfitting. In
this study, we explore how temporal dependencies
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in input sequences impact initialization schemes in
terms of optimization, with a particular focus on the
timescale and state matrix.
Curse of memory in SSMs. The “curse of mem-

ory" is a newly introduced concept that highlights
the difficulty recurrent-based models face in cap-
turing long-term memory [23, 19], and has been
discussed in recent works [30, 31, 32]. This issue
arises due to the exponential decay property of the
model’s kernel basis functions. A common strat-
egy to parameterize the real part of the state ma-
trix’s eigenvalues involves stable parameterization
[17, 11], ensuring stable training dynamics even if
the input sequence is infinitely long. However, this
stable parameterization constrains the real part of
the state matrix’s eigenvalues to be strictly negative,
thereby limiting the model’s ability to capture long-
term memory. In this paper, we argue that if input
sequences have fixed lengths, it is reasonable to set
the real part of the eigenvalues to zero by appropri-
ately setting the timescale. This relaxation allows
the model to capture long-term memory while still
maintaining training stability.

Appendix D. Experiments details

In this section, we provide more experiment details
that produce Figure A1, A2, A3, A4, A5, A6 and Table
A1 in section A.
FigureA1 (Left). The synthetic dataset that we use

to produce Figure A1 (Left) is i.i.d. sampled from
standard normal distribution with dimension 128,
i.e., each input sequence is of shape (1, L, 128) where
L is its sequence length. We use a ZOH discretized
diagonal SSM layer (3) with hidden size m = 32,
model dimension d = 128 to handle the 128 dimen-
sional dataset. We initialize the state vector w by
S4D-Lin with real part −0.5. The read-out vector c
is initialized as i.i.d. standard normal distribution.
We vary ∆min and ∆max in the SSM layer and use
the Adam optimizer [33] to train the hyperparmeters
∆,ℜ(w),ℑ(w), C withoutweight decay. The learning
rate for ∆,ℜ(w),ℑ(w) is 0.001 and the learning rate
for c is 0.1.
FigureA1 (Middle), A2,A3. The synthetic datasets

that we use to produce these figures are Gaussian
processeswithmean zero and varied autocovariance
functions E[xixj ] = K(i, j) for i, j = 1, 2, . . . , L.
Specifically, the ‘iid’ dataset refers to K(i, j) = δi−j ;
the ‘ou’ dataset refers to K(i, j) = exp(−|i − j|/2);
the ‘rbf’ dataset refers to K(i, j) = exp(−π|i − j|2);
and the autocovariance matrix for the ‘rand’ dataset
is given byΣΣ⊤/LwhereΣ ∈ RL×L is a randomma-
trixwith i.i.d. entries sampled froma uniformdistri-
bution U [0,

√
3]. For all the four synthetic datasets,

we haveK(i, i) = 1. The plot for Figure A1 (Middle)
records the maximal eigenvalue of the sample ma-
trix that we fix the data size to be 1000 and vary the
sequence length L as plotted. So we can see some

deviations between theory and practice. For Figure
A2 & A3, we also use the 1-dimensional SSM layer (3)
with S4D-Lin initialization onℑ(w) and vary the real
part ℜ(w) to be−0.5 or 0.
Figure A1 (Right), A4, A5 (Right), A6. For

the resized sequential image datasets, we choose
to resize the original images with resize rates
[0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]. Then we standardize the
whole images and flatten them into 1-d sequence.
For sequential MNIST (sMNIST) dataset, the se-
quence length is 784r2 and for sequential CIFAR10
(sCIFAR10), the sequence length is 1024r2 where r
is the resize rate. The plot for the maximal eigen-
value of the autocorrelation matrix and the output
value are based on the whole training set. We use
the 1-dimensional SSM layer (3) with S4D-Lin ini-
tialization and vary the real part ℜ(w) to be −0.5 or
0 to calculate the output value magnitude. For the
decorrelated sMNIST dataset, we choose the original
MNIST dataset and the decorrelation transformation
is given by a centered matrix with a whitening ma-
trix after flattening images. The centered matrix is
the mean of the sequential data along the batch di-
mension, and the whiteningmatrix has shapeL×L.
The whitening matrix can be obtained by SVD on
the data matrix. To train the decorrelated sMNIST
dataset, we use a 128-dimensional SSM layer (3) with
m = 32 and GELU activation [34] on the model out-
put, and also apply a gated linear unit after the GELU
activation. The experiment for ℜ(w) = −0.5 fol-
lows the default training setup in [17], and for the
experiment with ℜ(w) = 0, we initialize all the real
partℜ(w) to be zero without any reparameterization
method. We use dropout with rate 0.1 and apply a
decoder layer for classification. We use Adam opti-
mizer with learning rate 0.001 on∆,ℜ(w),ℑ(w) and
AdamWoptimizer with weight decay 0.01 on the rest
hyperparameters. For the plot of the memory func-
tion in Figure A6, we solve a least square problem
by taking the pseudo inverse of the sequence matrix
X ∈ R50000×784 and then get the recovered memory
function ρ.
Figure A5 (Left), (Middle). The comparisons on

zero real part and negative real part in Figure A5
(Left) & (Middle) are conducted on a 1-dimensional
synthetic dataset. We sample the training and test
dataset from i.i.d. standard normal distributionwith
length 128. The training sample size and the test
sample size are both 1000. We use the SSM layer (3)
withm = 32, S4D-Lin initialization on ℑ(w) and ini-
tialize the timescale∆ = 1/

√
128. WeuseAdamopti-

mizer with learning rate 0.001 on∆,ℜ(w),ℑ(w) and
learning rate 0.01 on c.
Table A1. Compared with the default training

setup in [17] for S4D models, the only difference is
that we randomly select a fraction p ∈ [0, 1] over the
feature dimension such that the selected state vec-
tors are initialized with zero real part. For these se-
lected vectors, their corresponding timescale ∆0 ∈
Rp·d is initialized to a constant. As suggested by The-
oremA.1, to ensure the stability,∆0 can be chosen to



AI4X 2025, Singapore, 8–11 July 2025

Fig. A8: Behavior of the real partℜ(w) after training
on the synthetic task and the decorrelated sM-
NIST dataset.

D H N Dropout Learning rate Batch size Epochs Weight decay
ListOps 6 256 4 0 0.01 32 40 0.05
Text 6 256 4 0 0.01 16 32 0.05

Retrieval 6 256 4 0 0.01 64 20 0.05
Image 6 512 64 0.1 0.01 50 200 0.05

Pathfinder 6 256 64 0.0 0.004 64 200 0.05
PathX 6 256 64 0.0 0.0005 16 50 0.05

Table A2: List of the S4D model hyperparameters
for the LRA benchmark, where D,H,N denote
the depth, feature dimension and hidden state
space dimension respectively.

be O(1/
√

Lλmax(E[xx⊤])). Here we do not conduct
a prior numerical check on the spectrum of the data
autocorrelation, so we simply take an upper bound
of λmax(E[xx⊤]), which is given by O(L) if we have
normalized the sequences such that E[∥x∥2] = 1.
In that case, ∆0 = O(1/L). In the default training
setup [17], the model timescale ∆ is sampled from
a uniform distribution U [∆min,∆max] with ∆min ∼
O(1/L). Hence, for the LRA benchmark we simply
initialize∆0 as a constant∆min as in [17].
We also summarize the in other hyperparameters

for training S4D on the LRA benchmark in Table A2.
Andwe provide the behavior of the real partℜ(w) af-
ter trainingon the synthetic task (ref FigureA5 (Left),
(Middle)) and the decorrelated sMNIST dataset (ref
Figure A5 (Right)) in Figure A8. We can see that with
zero real part at initialization, it is possible that there
remains some non-negative real part after training
if no reparameterization method is introduced. But
the improvement on the experiments indicates that
the model can learn from the data effectively even
without constraining the real part values.

Fig. A9: The expected magnitude of the SSM output
value on synthetic sequences with S4D-Legs ini-
tialization and different autocorrelation. The
real partℜ(w) = −0.5 follows the common prac-
tice andwe consider four dependencies between
the timescale∆ and the sequence length L.

Fig. A10: The expected magnitude of the SSM output
value on synthetic sequences with S4D-Legs ini-
tialization anddifferent autocorrelation anddif-
ferent dependencies between∆ andL. The real
part ℜ(w) is set to be zero.

Fig. A11: The expected magnitude of the SSM output
value for S4D-Legs initialization on sequential
image datasets with different resize rates (rang-
ing from 0.5 to 4) anddifferent dependencies be-
tween∆ and L.

Fig. A12: (Left) Training a diagonal SSM (3) with S4D-
Legs initialization on a task that requires long-
term memory. The learned memory function
ρ̃ effectively captures the spike in long-range
dependencies. However, it struggles to do so
when the real part is negative. (Middle) Test loss
on the long-termmemory taskwhen initializing
ℜ(w) = 0 and ℜ(w) = −0.5. (Right) Test accu-
racy for training a diagonal SSM with S4D-Legs
initialization on decorrelated sequential MNIST
dataset with different real parts at initialization.
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Initialize a fraction p of ℜ(w) to be 0 p = 0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5
Accuracy 84.09 (0.47) 84.60 (0.38) 84.23 (0.49) 83.77 (0.46) 83.50 (0.42) 83.19 (0.39)

Ratio for ℜ(w) ≥ 0 after training 0% 3.90% 7.62% 10.85% 14.34% 17.25%

Table A3: Test accuracy for training a 4-layer S4D
model in sCIFARdataset with varied fractions of
zero real part at initialization.

4.1 Additional experiments for S4D-Legs initialization
In this subsection, we include more experiment

results in Figure A9, A10, A11, A12 for SSMswith S4D-
Legs [17] initialization on the imaginary part ℑ(w).
The S4D-Legs initialization is an approximation on
the original S4-Legs initialization [8] by taking diag-
onal part of the diagonal plus low-rank HiPPO-Legs
matrix. In Figure A9, A10, A11, we plot the magni-
tude of the SSM output value given the S4D-Legs ini-
tialization for both zero real part and negative real
part cases. The experiment settings follow the guide-
lines we introduce before with only a change on the
initialization of ℑ(w). We can see that for S4D-Legs
initialization, our conclusion still holds in the sense
that negative real part is stable at initialization for
all all the scaling that we considered in this paper,
while for zero real part, the dependencies of ∆ on
L varies for different sequence autocorrelation. We
also compare the effects of real parts onoptimization
with S4D-Legs initialization. The results are shown
in Figure A12 and we obtain consistent results as
the S4D-Lin initialization. One interesting finding is
that on the decorrelated sMNIST dataset, the com-
parison between Figure A5 (Right) and Figure A12
(Right) shows that the S4D-Lin initialization outper-
forms the S4D-Legs initialization in both zero real
part and negative real part cases.

4.2 Ablation studies on the effects of fractions of zero real
part at initialization
In this subsection, we conduct ablation studies on

the gray-sCIFAR dataset (with sequence length 1024)
to evaluate the benefit of initializing the real part to
zero in multi-layer S4D models, while making min-
imal modifications. Based on our theory, zeroing
the real part can alleviate the curse of memory in sce-
narios where the memory function exhibits a long
memory pattern. But since we do not have a pre-
cise knowledge of thememory function for the gray-
sCIFAR dataset, we do ablation studies on the effects
of zero real part by varying the fraction p as spec-
ified in Section A.2. For the selected state vectors
with zero real part, their corresponding timescale
∆0 ∈ Rp·d is initialized as a constant 0.001. We
use a 4-layer S4D model with feature dimension 128
and vary p across [0, 0.1, 0.2, 0.3, 0.4, 0.5]. We present
both the test accuracy and the ratio of non-negative
real part parameters to the total 4×32×128 = 16384
real part parameters upon completion of training in
Table A3. We can see that initializing an appropriate
fraction of state vectors with zero real parts enables
the model to outperform the default S4D configu-
ration. Importantly, even post-training, some non-

negative real parts persist, suggesting that themodel
retains stability and effectively adapts to the data.

Appendix E. Auxiliary Lemmas

In this section, we provide the description for Itô’s
isometry and a few auxiliary lemmas that we will
need for the proofs of Theorem A.1, Proposition A.3
and Theorem A.4.

Lemma E.1. If ℜ(z) ≤ 0, then∣∣∣∣ez − 1

z

∣∣∣∣ ≤ 1.

Proof. Notice that

|ez − 1|
|z|

=

∣∣∫ z
0
esds

∣∣
|z|

≤
∫ z
0
|es||ds|
|z|

=

∫ z
0
eℜ(z)|ds|
|z|

≤
∫ z
0
|ds|
|z|

= 1,

which finishes the proof.

Lemma E.2 (Itô’s isometry). LetW : [0, T ] × Ω → R
denote the canonical real-valued Wiener process defined
up to time T > 0, and let X : [0, T ] × Ω → R be a
stochastic process that is adapted to the natural filtration
of the Wiener process. Then

E

(∫ T

0

Xt dWt

)2
 = E

[∫ T

0

X2
t dt

]
,

where E denotes expectation with respect to classical
Wiener measure.

Lemma E.3 (Gershgorin circle theorem). Let A be
a complex n × n matrix, with entries aij . For i ∈
{1, . . . , n}, let Ri be the sum of the absolute value of the
non-diagonal entries in the i-th row: Ri =

∑
j ̸=i |aij |.

Let D(aii, Ri) ⊆ C be a closed disc centered at aii with
radiusRi. Then every eigenvalue ofA lies within at least
one of the discsD(aii, Ri).

Lemma E.4. For any t ∈ R,

∞∑
n=1

1

n2 + t2
= − 1

2t2
+

π

2t
coth(πt).

Proof. This is a side result of the Basel problem. The
related proof can be found in theWiki page. We omit
it here.

Lemma E.5. For any vj , vk ∈ R, we have

∫ ∞
0
e−s cos(vjs) cos(vks)ds=

1
2

(
1

1+(vj−vk)2
+ 1

1+(vj+vk)2

)
.

https://en.wikipedia.org/wiki/Basel_problem#A_proof_using_Euler's_formula_and_L'Hôpital's_rule
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Proof. Notice that∫ ∞

0

e−s cos(vjs) cos(vks)ds

= 1
2

∫ ∞
0
e−s cos((vj−vk)s)ds+ 1

2

∫ ∞
0
e−s cos((vj+vk)s)ds

= 1
2

∫ ∞
0

ℜ(exp(−s+i·(vj−vk)s))ds+ 1
2

∫ ∞
0

ℜ(exp(−s+i·(vj+vk)s))ds

=
1

2
ℜ
(

1

1− i · (vj − vk)
+

1

1− i · (vj + vk)

)
=
1

2

(
1

1 + (vj − vk)2
+

1

1 + (vj + vk)2

)
.

Lemma E.6 (Hanson-Wright inequality). Let X =
(X1, . . . , Xn) ∈ Rn be a random vector with inde-
pendent components Xi which satisfy EXi = 0 and
∥Xi∥ψ2

≤ K. LetA be an n×nmatrix. Then, for every
t ≥ 0,

P{|X⊤AX−EX⊤AX|>t}≤2 exp

[
−cmin

(
t2

K4∥A∥2
F

, t
K2∥A∥

)]
,

where c is a positive absolute constant and the subgaus-
sian norm ∥ · ∥ψ2

is defined as

∥ξ∥ψ2
= sup

p≥1
p−1/2(E|ξ|p)1/p.

In particular, if ξ is a standard normal distribution, then
∥ξ∥ψ2

=
√

8/3.

Proof. We refer the proof to [35].

Appendix F. Proof of Theorem A.1

In this section, we prove the upper bound on the sec-
ond moment of the model output value in Theorem
A.1.

Proof. First, we may express the model output yL in
a matrix form. To do so, we rewrite c as a 2m × 1
vector (ℜ(c1), . . . ,ℜ(cm),ℑ(c1), . . .ℑ(cm))⊤ that con-
tains the real and imaginary part of c, and let V to be
a 2m× L Vandermonde-like matrix

V :=



ℜ
(
e∆w1−1
∆w1

e∆w10
)

ℜ
(
e∆w1−1
∆w1

e∆w11
)

· · · ℜ
(
e∆w1−1
∆w1

e∆w1(L−1)
)

...
...

...

ℜ
(
e∆wm−1
∆wm

e∆wm0
)

ℜ
(
e∆wm−1
∆wm

e∆wm1
)

· · · ℜ
(
e∆wm−1
∆wm

e∆wm(L−1)
)

−ℑ
(
e∆w1−1
∆w1

e∆w10
)

−ℑ
(
e∆w1−1
∆w1

e∆w11
)

· · · −ℑ
(
e∆w1−1
∆w1

e∆w1(L−1)
)

...
...

...

−ℑ
(
e∆wm−1
∆wm

e∆wm0
)

−ℑ
(
e∆wm−1
∆wm

e∆wm1
)

· · · −ℑ
(
e∆wm−1
∆wm

e∆wm(L−1)
)


.

Then yL can be written in a matrix form

yL = ∆ · c⊤V Jx,

where J ∈ RL×L is a row reversed identity matrix,
i.e.

J =


0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

 .

Furthermore, we may connect V with a standard
Vandermonde matrix VL, by noticing that

ΦV = DVL,

where VL is a 2m×L complex Vandermondematrix
with 2m nodes e∆w1 , e∆w̄1 , . . . , e∆wm , e∆w̄m :

VL =



1 e∆w̄1 · · · e∆w̄1(L−1)

...
... · · ·

...
1 e∆w̄m · · · e∆w̄m(L−1)

1 e∆w1 · · · e∆w1(L−1)

...
... · · ·

...
1 e∆wm · · · e∆wm(L−1)


∈ C2m×L,

Φ is a scaled unitary matrix

Φ :=



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

i 0 · · · 0
0 i · · · 0
...

...
. . .

...
0 0 · · · i

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−i 0 · · · 0
0 −i · · · 0
...

...
. . .

...
0 0 · · · −i


∈ C2m×2m.

with ΦΦH = ΦHΦ = 2I2m, and D is a diagonal ma-
trix

D =



e∆w̄1−1
∆w̄1

. . .
e∆w̄m−1
∆w̄m

e∆w1−1
∆w1

. . .
e∆wm−1
∆wm


∈ C2m×2m.

Hence, we have V = 1
2Φ

HDVL. Notice that
both ℜ(∆wj) and ℜ(∆w̄j) are non-positive, then by
LemmaE.1 we have ∥D∥ ≤ 1. Now combining it with
V = 1

2Φ
HDVL and the fact that the exchange matrix

J is an orthogonal matrix, then when ℜ(wj) ≤ 0 for
all j, we have

Ec,x[y2L] = Ec,x
[(
∆ · c⊤V Jx

)2]
= ∆2Ec

[
c⊤V JEx[xx⊤]JV ⊤c

]
≤ ∆2

2
Ec[∥c∥2]λmax(E[xx⊤])λmax(VLV

H
L )

≤ ∆2m

2
λmax(E[xx⊤]) Tr(VLV

H
L )

= ∆2mλmax(E[xx⊤])

m∑
j=1

((
e∆ℜ(wj)

)0
+ · · ·+

(
e∆ℜ(wj)

)L−1
)

= ∆2m2Lλmax(E[xx⊤]),

which finishes the proof.

It is also possible to derive a high-probability
bound using Lemma E.6 (the Hanson-Wright in-
equality). It’s important to note that we do not make



AI4X 2025, Singapore, 8–11 July 2025

any assumptions about the input sequential data; in-
stead, we only assume that the read-out vector c is
i.i.d. Gaussian, as stated in TheoremA.1. This allows
us to apply the high-probability bound to the expres-
sion c⊤V JEx[xx⊤]JV ⊤c, where V JEx[xx⊤]JV ⊤ is
a deterministic matrix. By applying the Hanson-
Wright inequality in LemmaE.6, we take a δ > 0, and
letA = V JEx[xx⊤]JV ⊤,K =

√
8/3, then by solving

t
K2∥A∥ = log(2/δ)

c , we have t = 8 log(2/δ)
3c ∥A∥. Then

for small enough δ, i.e., for large enough t, we have
t2

K4∥A∥2
F

> t
K2∥A∥ . Therefore, by Lemma E.6 we get

with probability at least 1− δ,

Ex[y2L] ≤ ∆2m2Lλmax(E[xx⊤]) +
8∆2 log(2/δ)

3c
∥A∥

≤∆2m2Lλmax(E[xx⊤])+
4∆2 log(2/δ)

3c λmax(E[xx⊤]) Tr(VLV
H
L )

≲ ∆2mLλmax(E[xx⊤])

(
m+

log(1/δ)

c

)
,

where≲ hides a positive absolute constant.

Appendix G. Proof of Proposition A.3

In this section, we show the proof for Proposition
A.3.

Proof. Since Gj,k =
∫∞
0

ℜ(ewjs)ℜ(ewks)ds, then for
any ξ ∈ Rm, we have

ξ⊤Gξ =

∫ ∞

0

 m∑
j=1

ξjℜ(ewjs)

2

ds ≥ 0.

Hence, G is positive semi-definite for both real-
valued w and complex-valued w. Let ξ⊤Gξ = 0, then∑m

j=1 ξjℜ(ewjs) = 0 for s ≥ 0.
When a ∈ Rm, we take the discrete time points

s = 0, 1, . . . ,m to form m equations. Note that
ℜ(ewjs) = ewjs. If wj are distinct, then the Vander-
mode matrix given by w1, . . . , wm is invertible, indi-
cating that the only solution for

∑m
j=1 ξjℜ(ewjs) = 0

is ξj = 0 for j = 1, . . . ,m. Thus,G is positive definite
in that case.
When w ∈ Cm with distinct imaginary parts, we

can always find a scaling factor γ > 0 such that
eγw1 , . . . , eγwm , eγw̄1 , . . . , eγw̄m are distinct, where w̄
is the conjugate of w. Then by the argument of Van-
dermonde matrix, the only solution of the equation∑m
j=1 ξje

wjs +
∑n
j=1 ξ̂je

w̄js = 0 for s ≥ 0 is that ξj =
ξ̂j = 0 for j = 1, . . . ,m. Since 2ℜ(ewjs) = ewjs+ew̄js,
then

∑m
j=1 ξjℜ(ewjs) = 0 only has zero solution.

Combining these two cases we finish the proof.

Appendix H. Proof of Theorem A.4

In this section, we prove Theorem A.4 based on the
Gershgorin circle theorem (Lemma E.3).

Proof. First, we need to bound both the diagonal en-
try and the off-diagonal sum. The diagonal entry
Gj,j =

1
2 (1 +

1
1+4v2j

), which can be bounded as

1

2

(
1 +

1

1 + 4v2j

)
≤ Gj,j ≤ 1, j = 1, . . . ,m.

For the off-diagonal sum, we have ∀j = 1, . . . ,m,

2Rj = 2
∑
k ̸=j

|Gj,k|

=
∑
k ̸=j

1

1 + (vj − vk)2
+
∑
k ̸=j

1

1 + (vj + vk)2

<

∞∑
k=1

2

1 + δ2k2
+

∞∑
k=1

1

1 + (vj + vk)2
− 1

1 + 4v2j

<

∞∑
k=1

2

1 + δ2k2
+

∞∑
k=1

1

1 + v2j + v2k
− 1

1 + 4v2j

<

∞∑
k=1

2

1 + δ2k2
+

∞∑
k=0

1

1 + v2j + δ2k2
− 1

1 + 4v2j

= 2
δ2

∑∞
k=1

1
1/δ2+k2 + 1

δ2

∑∞
k=1

1

(1+v2
j
)/δ2+k2 +

(
1

1+v2
j

− 1

1+4v2
j

)
,

where the first inequality is due to the fact that
the minimal separation distance minj ̸=k |vj − vk| ≥
δ, and the last inequality is because vj > 0 and
reordering {vk}k≥1 does not affect the result for∑∞
k=1

1
1+v2j+v

2
k
. Then by Lemma E.4, we have

2

δ2

∞∑
k=1

1

1/δ2 + k2
+

1

δ2

∞∑
k=1

1

(1 + v2j )/δ
2 + k2

<
3

δ2

∞∑
k=1

1

1/δ2 + k2

=
3

δ2

(
−δ2

2
+

πδ

2
coth

(π
δ

))
=− 3

2
+

3π

2δ
coth

(π
δ

)
.

Hence we have,

Gj,j −Rj

> 1
2

(
1+ 1

1+4v2
j

)
− 1

2 (−
3
2+

3π
2δ coth(π

δ ))−
1
2

(
1

1+v2
j

− 1

1+4v2
j

)

>
5

4
− 1

2
max

(
1

1 + x2
− 2

1 + 4x2

)
− 3π

4δ
coth

(π
δ

)
>1.19− 3π

4δ
coth

(π
δ

)
.

Under the same argument, we get

Gj,j +Rj

<1+ 1
2 (−

3
2+

3π
2δ coth(π

δ ))+
1
2 max

(
1

1+v2
j

− 1

1+4v2
j

)

<
1

4
+

3π

4δ
coth

(π
δ

)
+

1

2
max

(
1

1 + v2j
− 1

1 + 4v2j

)

=
5

12
+

3π

4δ
coth

(π
δ

)
.

Combining the two bounds and Lemma E.3, we fin-
ish the proof.
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