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Abstract

A common pipeline in learning-based control is
to iteratively estimate a model of system dynam-
ics, and apply a trajectory optimization algorithm
- e.g. iLQR - on the learned model to minimize
a target cost. This paper conducts a rigorous
analysis of a simplified variant of this strategy
for general nonlinear systems. We analyze an
algorithm which iterates between estimating lo-
cal linear models of nonlinear system dynamics
and performing iLQR-like policy updates. We
demonstrate that this algorithm attains sample
complexity polynomial in relevant problem pa-
rameters, and, by synthesizing locally stabiliz-
ing gains, overcomes exponential dependence in
problem horizon. Experimental results validate
the performance of our algorithm, and compare
to natural deep-learning baselines.

1. Introduction

Machine learning methods such as model-based reinforce-
ment learning have lead to a number of breakthroughs in
key applications across robotics and control (Kocijan et al.,
2004; Tassa et al., 2012; Nagabandi et al., 2019). A pop-
ular technique in these domains is learning-based model-
predictive control (MPC) (Morari & Lee, 1999; Williams
et al., 2017), wherein a model learned from data is used
to repeatedly solve online planning problems to control
the real system. It has long been understood that solv-
ing MPC exactly-both with perfectly accurate dynamics
and minimization to globally optimality for each plan-
ning problem—enjoys numerous beneficial control-theoretic
properties (Jadbabaie & Hauser, 2001).

Unfortunately, the above situation is not reflective of prac-
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tice. For one, most systems of practical interest are nonlin-
ear, and therefore exact global recovery of system dynam-
ics suffers from a curse of dimensionality. And second, the
nonlinear dynamics render any natural trajectory planning
problem nonconvex, making global optimality elusive. In
this work, we focus on learning-based trajectory optimiza-
tion, the “inner-loop” in MPC. We ask when can we obtain
rigorous guarantees about the solutions to nonlinear tra-
Jectory optimization under unknown dynamics?

We take as our point of departure the iLQR algorithm (Li
& Todorov, 2004). Initially proposed under known dynam-
ics, 1LQR solves a planning objective by solving an itera-
tive linear control problem around a first-order Taylor ex-
pansion (the Jacobian linearization) of the dynamics, and
second-order Taylor expansion of the control costs. In solv-
ing this objective, iLQR synthesizes a sequence of locally-
stabilizing feedback gains, and each iLQR-update can be
interpreted as a gradient-step through the closed-loop lin-
earized dynamics in feedback with these gains. This has the
dual benefit of proposing a locally stabilizing policy (not
just an open-loop trajectory), and of stabilizing the gradi-
ents to circumvent exponential blow-up in planning hori-
zon. iLQR, and its variants (Todorov & Li, 2005; Williams
etal., 2017), are now ubiquitous in robotics and control ap-
plications; and, when dynamics are unknown or uncertain,
one can simply substitute the exact dynamics model with
an estimate (e.g. Levine & Koltun (2013)). In this case, dy-
namics are typically estimated with neural networks. Thus,
Jacobian linearizations can be computed by automated dif-
ferentiation (AutoDiff) through the learned model.

Contributions. We propose and analyze an alternative to
the aforementioned approach of first learning a deep neu-
ral model of dynamics, and then performing AutoDiff to
conduct the iLQR update. We consider a simplified setting
with fixed initial starting condition. Our algorithm main-
tains a policy, specified by an open-loop input sequence
and a sequence of stabilizing gains, and loops two steps:
(a) it learns local linear model of the closed-loop linearized
dynamics (in feedback with these gains), which we use to
perform a gradient update; (b) it re-estimates a linear model
after the gradient step, and synthesizes a new set of set
gains from this new model. In contrast to past approaches,
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our algorithm only ever estimates linear models of system
dynamics.

For our analysis, we treat the underlying system dynam-
ics as continuous and policy as discrete; this reflects real
physical systems, is representative of discrete-time sim-
ulated environments which update on smaller timescales
than learned policies, and renders explicit the effect of dis-
cretization size on sample complexity. We consider an in-
teraction model where we query an oracle for trajectories
corrupted with measurement (but not process) noise. Our
approach enjoys the following theoretical properties. 1.
Using a number of iterations and oracle queries polynomial
in relevent problem parameters and tolerance e, it computes
a policy m whose input sequence is an e-first order station-
ary point for the 1LQR approximation of the planning ob-
jective (i.e., the gradient through the closed-loop linearized
dynamics has norm < ¢€). Importantly, learning the lin-
earized model at each iteration obviates the need for global
dynamics models, allowing for sample complexity polyno-
mial in dimension.

2. We show that contribution 1 implies convergence to
a local-optimality criterion we call an e-approximate Jaco-
bian Stationary Point (e-JSP); this roughly equates to the
open-loop trajectory under 7 having cost within e-globally
optimal for the linearized dynamics about its trajectory.

JSPs are purely a property of the open-loop inputs, allow-
ing comparison of the quality of the open-loop plan with
differing gains. Moreover, the results of Westenbroek et al.
(2021) show that an approximate JSPs for certain planning
objective enjoy favorable global properties, despite (as we
show) being computable from (local) gradient-based search
(see Appendix B.2 for elaboration).

Experimental Findings. We validate our algorithms on
standard models of the quadrotor and inverted pendulum,
finding an improved performance as iteration number in-
creases, and that the synthesized gains prescribed by iLQR
yield improved performance over vanilla gradient updates.

Proof Techniques. Central to our analysis are novel per-
turbation bounds for controlled nonlinear differential equa-
tions. Prior results primarily focus on the open-loop set-
ting (Polak, 2012, Theorem 5.6.9), and implicitly hide an
exponential dependence on the time horizon for open-loop
unstable dynamics. We provide what is to the best of our
knowledge the first analysis which demonstrates that lo-
cal feedback can overcome this pathology. Specifically,
we show that if the feedback gains stabilize the Jacobian-
linearized dynamics, then (a) the Taylor-remainder of the
first-order approximation of the dynamics does not scale
exponentially on problem horizon (Proposition 4.3), and
(b) small perturbations to the nominal input sequence
preserve closed-loop stability of the linearized dynamics.

These findings are detailed in Appendix A.6, and enable us
to bootstrap the many recent advances in statistical learning
for linear systems to our nonlinear setting.

1.1. Related Work

iLQR (Li & Todorov, 2004) is a more computationally ex-
pedient variant of differential dynamic programming (DPP)
(Jacobson & Mayne, 1970); numerous variants exist, no-
tably iLQG (Todorov & Li, 2005) and iLQR (Li & Todorov,
2004), which better address problem stochasticity. iLQR is
a predominant approach for the “inner loop” trajectory op-
timization step in MPC, with applications in robotics (Tassa
et al., 2012), quadrotors (Torrente et al., 2021), and au-
tonomous racing (Kabzan et al., 2019).

A considerable literature has combined iLQR with learned
dynamics models; here, the Jacobian linearization matri-
ces are typically derived through automated differentiation
(Levine & Koltun, 2013; Levine & Abbeel, 2014; Koller
et al., 2018), though local kernel least squares regression
has also been studied (Rosolia & Borrelli, 2019; Papadim-
itriou et al., 2020). In these works, the dynamics models
are refined/re-estimated as the policy is optimized; thus,
these approaches are one instantiation of the broader itera-
tive learning control (ILC) paradigm (Arimoto et al., 1984);
other instantiations of ILC include (Kocijan et al., 2004;
Dai et al., 2021; Aswani et al., 2013; Bechtle et al., 2020).

Recent years have seen multiple rigorous guarantees for
learning system identification and control (Dean et al.,
2017; Simchowitz et al., 2018; Oymak & Ozay, 2019;
Agarwal et al., 2019; Simchowitz & Foster, 2020), though
a general theory of learning for nonlinear control remains
elusive. Recent progress includes nonlinear imitation
learning (Pfrommer et al., 2022), learning systems with
known nonlinearities in the dynamics (Sattar & Oymak,
2022; Foster et al., 2020; Mania et al., 2020) or perception
model (Mhammedi et al., 2020; Dean & Recht, 2021).

Lastly, there has been recent theoretical attention given
to the study of first-order trajectory optimization methods.
Roulet et al. (2019) perform an extension theoretical study
of the convergence properties of iLQR, iLQG, and DPP with
exact dynamics models, and corroborate their findings ex-
perimentally. Westenbroek et al. (2021) show further that
for certain classes of nonlinear systems, all e-first order
stationary points of a suitable trajectory optimization ob-
jective induce trajectories which converge exponentially to
desired system equilbria. In some cases, there may be mul-
tiple spurious local minima, each of which is nevertheless
exponentially stabilizing. Examining the proof (Westen-
broek et al., 2021) shows the result holds more generally
for all e-JSPs, and therefore we use their work justify the
JSP criterion proposed in this paper.
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2. Setting

We consider a continuous-time nonlinear control system
with state x(¢) € R%, input u(t) € R% with finite horizon
T > 0, and fixed initial condition &, € R%. We denote
the space of bounded input signals ¢/ := {u(-) : [0,7] —
R% : supyeo, 7y [[u(?)]| < oo}. We endow U with an inner
product (u(-),w'(:)) @) = fo ),u’(s))ds, where
(-, ) is the standard Euclidean inner product which induces
anorm [[u(-)[|%, . = (u(-),u(-))z, ). Foru € U, the
open-loop dynamics are governed by the ordinary differen-
tial equation (ODE)

ix(t | 11) = fdyn(x(t ‘ u)7u(t))a X(O ‘ u) = finita
where fayn : R% x R% — R% a C? map. Given a terminal

cost V(+) : R* — R and running Q(-, -, ) : R% x R% x
[0,7] — R, we optimize the control objective

Jr(u) == V(T |w)+ [L,Q u(t), t)dt.

We make the common assumption that the costs are
strongly C?, and that Q is strongly convex:

Assumption 2.1. Forall ¢ € [0,T], V() and Q(-, -, t) are
twice-continuously differentiable (C?), and = — V (x) and
(z,u) = Q(z,u,t) — $(||x|* + |lul|*) are convex.

x(t | u),

Given a continuously differentiable function F : &/ — R"
and perturbation du € U, we define its directional deriva-
tive DF (u)[bu] := lim,_,o ! (F(u+ndu)—F(u)). The
gradient VF (u) € U is the (almost-everywhere) unique el-
ement of U such that Vou € U, [} VF(u)(t)du(t)dt =
DF(u)[du]. We denote the gradients of u — x(¢ | u) as
Vux(t | u), and of u — Jr(u) as VuJr(u).

Discretization and Feedback Policies. = Because digi-
tal controllers cannot represent continuous open-loop in-
puts, we compute €-JSPs u € U which are the zero-order
holds of discrete-time control sequences. We let T € (0, 7]
be a discretization size, and set K = |[T/t|. Going for-
ward, we denote discrete-time quantities in colored,
bold-seraf font.

For k > 1, define ¢, = (k — 1), and define the intervals
T = [tk,tk+1). Fort € [O,T], let k(t) = sup{k Tt <
t}. We let U := (R%)¥ whose elements are denoted @ =
ui.x, and let ct : U — U denote the natural inclusion

Ct(ﬁ) (t) = Uk

Next, to mitigate the curse of horizon, we study policies
which (a) have discrete-time open-loop inputs and (b) have
discrete-time feedback gains to stabilize around the trajec-
tories induced by the nominal inputs. In this work, IT;
denotes the set of all policies 7 = (uT.;,KT. ;) defined
by a discrete-time open-loop policy ul.,- € U, and a se-
quence of feedback gains (K )e(r € (R%%)5. A pol-
icy 7 induces nomimal dynamics u™(-) = ct(uf ) and

x™(t) = x(t | u™); we set xj = x"(t;). It also induces
the following dynamics by stabilizing around the policy.
Definition 2.1. Given a continuous-time input u € U,
we define the stabilized trajectory x™°t(t | @) := x(t |
a™), where 0™ (¢ | @) = u(t) + i, (X" (tyr) |
u)) —x} ;) This induces a stabilized objective: J7 () :=
VE™(E | ) + [ QE™(E | w), a™t (¢ | u),t)dt.
We define the shorthand VJT( ) == Va7 (W)|,_ .~
Notice that, while 7 is specified by discrete-time inputs,
x™et(.), a™(+) are continuous-time inputs and trajecto-
ries stabilized by 7 and the gradient V.7 (-) is defined over
continuous-time perturbations.

Optimization Criteria. Due to nonlinear dynamics, the
objectives Jr, J are nonconvex, so we can only aim for
local optimality. Approximate first-order stationary points
(FOS) are a natural candidate (Roulet et al., 2019).

Definition 2.2. We say u is an ¢-F0S of a function F :
U — Rif [|[VuF(u)llz,w) < e Wesay 7 is e-stationary

if [VIz (M) 2oy = VaTF (@) |y 220 < €.

Our primary criterion is to compute e-stationary policies
w. However, this depends both on the policy inputs u
(and induced trajectory x™), as well as the gains. We
therefore propose a secondary optimization criterion which
depends only on the policies inputs/trajectory. It might
be tempting to hope that u™ is an e-FOS of the origi-
nal objective Jr(u). However, when the Jacobian lin-
earized trajectory (Definition 2.3 below) of the dynam-
ics around (x™,u™) are unstable, the open-loop gradient
[VIr(u™)|| 2, can be a factor of e’ larger than the
stabilized gradient ||VJr(7)| 2, despite the fact that,
definitionally, Jr(u™) = JfF(u™) (see Appendix B.1).
We therefore propose an alternative definition in terms of
Jacobian-linearized trajectory.

Definition 2.3. Given u,u € U, define the Jacobian-
linearized (JL) trajectory x12°(t | mu) = x(t [ u) +
(Vux(t | u),u—u),and cost J3°(u;u) := V(xI2(T |
~ T ac

wu)) + [;_, Qe(t | wyu), u(t), t)d.

In words, the JL trajectory is just the first-order Taylor ex-
pansion of the dynamics around an input u € I/, and the
cost is the cost functional applied to those JL dynamics.
We propose an optimization criterion which requires that u
is near-globally optimal for the JL dynamics around u:

Definition 2.4. We say u € U is an e-Jacobian Stationary
Point (JSP) if Jr(u) < infgey J5 (5 u) + €.

The consideration of JSPs has three advantages: (1) as
noted above, JSPs depend only on a trajectory and not on
feedback gains; (2) a JSP is sufficient to ensure that the
exponential-stability guarantees derived in Westenbroek
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etal. (2021) (and mentioned in the introduction above) hold
for certain systems; this provides a link between the local
optimality derived in this work and global trajectory behav-
ior (see Appendix B.2 for further discussion); (3) despite
the potentially exponential-in-horizon gap between gradi-
ents of J and J7, the following result enables us to com-
pare stationary points of the two objectives in a manner that
is independent of the horizon T'.

Propostion 4.1 (informal). Suppose 7 is e-stationary, and
T is sufficiently small. Then, u™ is an € -JSP of Jr, where

¢ =0(/( w%).

Oracle Model and Problem Desideratum. In light of
the above discussion, we aim to compute a approximately
stationary policy, whose open-loop is therefore an approx-
imate JSP for the original objective. To do so, we assume
access to an oracle which can perform feedback with re-
spect to gains KJ.

Definition 2.5 (Oracle Dynamics). Given ¢ = uj.x € U,
we define the oracle dynamics xZ, (¢t | @) = x(t |
ct(u? Ul ac 1: ., (@))), where we define U ac i (U (@) = u +
KZ orac(tk | u) and deﬁne XOI"IC k (ﬁ) =X Orac(tk | u)

Oracle 2.1. We assume access to an oracle orac with vari-
ance o2,,. > 0, which given any m € Il and @ = uy.x,
returns, oracy . (4) ~ N(x7 e 1. 11 (¥, Ik 11)a,0
and oracy ,,(0) =

OrdC)

uordc 1K (u)

In words, Oracle 2.1 returns entire trajectories by applying
feedback along the gains K. The addition of measurement
noise is to introduce statistical tradeoffs that prevent near-
exact zero-order differentiation; we discuss extensions to
process noise in Appendix B.4. Because of this, the ora-
cle trajectory in Definition 2.5 differs from the trajectory
dynamics in Definition 2.1 in that the feedback does not
subtract off the normal x7; thus, the oracle can be imple-
mented without noiseless access to the nominal trajectory.
Still, we assume that the feedback applied by the oracle is
exact. Having defined our oracle, we specify the following
problem desideratum (note below that M is scaled by 1/t
to capture the computational burden of finer discretization).

Desideratum 1. Given €, € and unknown dynamical sys-
tem fayn(:,-), compute a policy © for which (a) T is -
stationary, and (b) u™ is an € -JSP of Jr, using M calls
to Oracle 2.1, where M /7 is polynomial in 1/e¢, 1/€, and
relevant problem parameters.

Notation. We let [j : k] {j,j +1,...,k}, and
[k] = [1 : k]. We use standard-bold for continuous-time
quantities (x, u), and bold-serif for discrete (e.g. uy). We
letu?, = (uj,u;41,...,u;). Given vector v and matrices
X, let ||v|| and ||X|| Euclidean and operator norm, respec-
tively; for clarity, we write [[u7,, |7, = S S If 2. As
denoted above, (-, -) £, ) and | - || z, ) denote inner prod-

ucts and norms in Lo (U). We let z V y := max{z, y}, and
x Ay = min{z, y}.

3. Algorithm

Our iterative approach is summarized in Algorithm 1 and
takes in a time step T > 0, horizon 7T, a per iteration sam-
ple size N, iteration number N, a NOise variance o,
a gradient step size > 0 and a controllability param-
eter kg. The algorithm produces a sequence of polices
7™ = @ k")), where K = |T/t] is the num-
ber of time steps per roll-out. Our algorithm uses the
primitive ESTMARKOV(7; N, 0y,) (Algorithm 2), which
makes NN calls to the oracle to produce estimates Xi.x+1
of the nominal state trajectory, and another N calls with
randomly-perturbed inputs of perturbation-variance o, to
produce estimates (\f/j k) k< of the closed-loop Markov pa-
rameters associated to the current policy ¥7, ., defined
in Definition 4.6. We use a method-of-moments estima-
tor for simplicity. At each iteration n, Algorithm 1 calls
calls ESTMARKOV(7; N, 0,) first to produce an estimate
of the gradient of the closed-loop objective with respect to

the current discrete-time nominal inputs. The gradient with
(n)

respect to the k-th input u,, ~ is given by:
() T
Vi =Yg VoErr1) + QulRn, uf, te) (3.1
T > s
+ TE; —k+1 Yk (QI<X]7ug it )+ (K;'T)TQu(vauj ij))

The form of this estimate corresponds to a natural plug-in
estimate of the gradient of the discrete-time objective de-
fined in Definition 4.4. We use this gradient in Eq. (3.1) to
update the current input; this update is rolled-out in feed-
back with the current feedback controller to produce the
nominal input u( "*1) for the next iteration (Algorithm 1,
Line 5). Finally, We call ESTGAINS (Algorithm 3), which
synthesizes gains for the new policy using a Ricatti-type re-
cursion along a second estimate of the linearized dynamics,
produced by unrolling the system with the new nominal in-
put and old gains described above. The algorithm then ter-
minates at nje, iterations and chooses the policy with the
smallest estimated gradient that was observed.

4. Algorithm Analysis

For simplicity, we assume K = |T/t] € N is integral.
In order to state uniform regularity conditions on the dy-
namics and costs, we fix an feasible radius Rg.,s > 0 and
restrict to states and inputs bounded thereby.

Definition 4.1. We say (z,u) € R**% are feasible if
[lz]] V |lul] < Rieas- We say a policy m is feasible if
(2x7(t),2u”(t)) are feasible for all ¢ € [0, 7.

We adopt the following boundedness condition.
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Algorithm 1 Trajectory Optimization
1: Initialize time step T > 0, horizon T' > 1, K +
|T/x], initial policy 7(1), sample size N, noise vari-
ance o0, gradient step size 7, controllability parameter
ko, iteration number Njer-
for iterations n = 1,2, ..., Njter do
(‘i’j,k)k<j7 }A(1;K+1 = ESTMARKOV(W; N, Jw).

Compute AV,EH) in Eq. (3.1)

Gradient update u!™")

where (" := u{" — %AV,SH) — K7 %y,
6: Estimate th‘;” = ESTGAINS(7(™); 0, N, ko),
~(n n (n)
where 7" = (w1 (-),k{").)

7: Update policy ("1 = (ug?;l), Kgnﬁ(_l))
e (n)
Vi -

— oracﬂ(n)yu(ﬁg?}(),

return 7("eut) | Nout € arg min

NnE[Niter)

Algorithm 2 ESTMARKOV(7; N, 0y,)
% estimate nominal trajectory
1: for samplesi =1,2,..., N do
2: Collect trajectory xﬁ( 41 ~ TrajOrac, (u ;).

- _ 1N ()
Average X1.x 11 = v D1 X1 K+1

% estimate perturbed trajectory

for samples i = 1,2,..., N do
Draw wgl)K uniformly from o, - ({—1, 1}%)X,
Letu\” = uT 4+ wl”) — K%y, for k € [K]
Collect trajectory ygl)K an oracmz(ugf) )-

Yk =

bl

A A

Estimate  transition  operators

1 N @) g (ONT :
NoZ, Ei:l(Yj —%5)(w,) Lk <j
9: return (\I/j7k)k<j,}A{1;K+1

Condition 4.1. For all n, the policies (") and 7 pro-
duced by Algorithm 1 are feasible.

If 7 and 7(") produce bounded inputs, and the resulting
state trajectories also remain bounded, then Condition 4.1
will hold for Ry,s > O sufficiently large. This is a common
assumption in the control literature (see e.g. Jadbabaie &
Hauser (2001)), as physical systems, such as those with
Lagrangian dynamics, will remain bounded under bounded
inputs (see Appendix B.3 for discussion).

Assumption 4.1 (Dynamics regularity). fqyn is
C%, and for all feasible (z,u), the following hold
[ fayn (@, w)l| < kg, [|0n fayn (@, w)l] V [|0ufayn (@, w)|| <
Ly, V2 fagn (@, u) || < Mj.

Assumption 4.2 (Cost regularity). For all feasible (x,u),
the following hold 0 < V(z) V Q(x,u,t) < FKcosts
[0:V (@) || V [0:Q(x, u, )| V [|0uQ(z,u, )| < Leost,
V2V ()| V [[V2Q(z, u, t)]| < Meos-

To take advantage of stabilizing gains, we require two ad-

Algorithm 3 ESTGAINS(7; N, 0., ko)
1: Initialize number of samples N, noise variance o,
(discrete) controllability window kg € N

2: Estimate Markov Parameters (¥;x)k<; =
ESTMARKOV(7; N, 0)
% Define Cyjjj, = [Yrt14s | Yht15o—1 | - ¥ht1,,]

3. for k = ko, ko+1,..., K do
4: Define Bk = \i'k+17k
% Define Cpm = C
ék\kfl,k7k0+1

Define Ak = ékﬁmélz,in - Esz

Ck71|k—1,k7k0+17 Ck,out =

Set ISK_H = Idx-
fork=K K—-1,...,kydo
N AT A N N
Ky = (Idu + By, Pk—i—lBk) (B]€ Pk+1Ak>-
. lsk = (Ak + ékﬁk)—rﬁkJ’»l(Ak + ékf(k) + T(Idx +
Ky, Ki).
10: SetKy = 0 for k < k.
11: Return f(l:K.

Y 2 W

ditional assumptions, which are defined in terms of the JL
dynamics.

Definition 4.2 (Open-Loop Linearized Dynamics). We

define the (open-loop) JL dynamic matrices about 7

as AL() = O fayn(x*(1),u" (1)) and BE() —

Ou fayn (X7 (t),u” (t)). We define the open-loop JL transi-

tion function ®7,(s,t), defined for t > s as the solution

to L7 (s,t) = AT (s)®](s,t), with initial condition
-1

We first require that stabilizing gains can be synthesized;
this is formulated in terms of an upper bound on the cost-
to-go for the LQR control problem (Anderson & Moore
(2007, Section 2)) induced by the JL dynamics.

Assumption 4.3 (Stabilizability). Given a policy m,
and a sequence of controls u(-) € U, let V(¢ |
@6 = [(X)I? + [as)]*)ds + [(T)]?, un-
der the linearized dynamics L%(s) = AT (s)X(s) +
BZ(s)u(s), x(t) = & We assume that, for all feasi-
ble policies, supeor V7 (t | @,€) < puicll§]|*. More-
over, we assume (for simplicity) that the initial policy has
(a) no gains: Kgm = 0 for all £ € [K], and (b) satisfies

ey
Ve (4]0,€) < el €]

The assumption on 7(!) can easily be generalized to ac-
comodate initial policies with stabilizing gains. Our final
assumption is controllability (see e.g. Anderson & Moore
(2007, Appendix B)), which is necesssary for identification
of system parameters to synthesize stabilizing gains.
Assumption 4.4 (Controllability). There exists constants
tetrl, Vetrl > 0 such that, for all feasible 7w and ¢ € [tcty1, T,
J: @35t 5)BA(s)BY(s) T (¢ 5) ds = veunly,

s=t—tctrl
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For simplicity, we assume ket = tetp1/7T is integral. Fi-
nally, to state our theorem, we adopt an asymptotic notation
which suppresses all parameters except {T', T, «}.

Definition 4.3 (Asymptotic Notation). We let O,(-)-
term a term which hides polynomial dependences on

dy, dy, Rfeas, Kf, Mf7 Lfa Kcosts Licosts Mecosts Prics Vetrl, tetrls

and on exp(toLy), where tg = Tk > teg.

Notice that we suppress an exponential dependence on our
proxy to for the controllability horizon t.,; this is be-
cause the system cannot be stabilized until the dynamics
can be accurately estimated, which requires waiting as long
as the controllability window (Chen & Hazan, 2021; Tsi-
amis et al., 2022). We discuss this dependence further in
Appendix B.5. Finally, we state a logarithmic term which
addresses high-probability confidence:

)(8) := log 24T niter max{dsudu) 4.1
‘We can now state our main theorem, which establishes that,
with high probability, for a small enough step size T, and
large enough sample size N and iteration number njie,, We
obtain an e-stationary policy and €’-JSP, where €2, ¢’ scale
as poly(T)(7* + 5 ):

Theorem 1. Fix § € (0,1), and suppose for the sake of
simplicity that T < 1 < T. Then, there are constants
c1,...,c5 = O.(1) such that if we tune n = 1/c1\/T,
Ow = (02.,.4(80)/N)7 and ko > key + 2, then as long as

OrdC

1 T2 1 2 T o2
TS o NZC:;L((S)maX{?aTT’UoraC?’ ™ f

Then, with probability 1 — ¢, if Condition 4.1 and all afore-
mentioned Assumptions hold,

(a) For all n € [nie), and 7' € {x™, 7M1, Pt 5 <
8piric and Ly < 6 max{1, L }iric.

(b) m = qlnou) is e-stationary, where € = ( —|—
3 3
n]t(_r) +C ( (L(é) + Torac \/ de) ) + Uorac L )

N

(c) Form = m("ew) u™ isan ¢-JSP, where ¢ = csS

As a corollary, we achieve Desideratum 1.

Corollary 4.1. Forany e, > 0and § € (0,1), there ex-
ists an appropriate choices of {t, N,n, 0y} such that Al-
gorithm 1 finds, with probability > 1 — 4, an e-stationary
policy m with u™ being an €'-JSP using at most M oracle
calls, where M/t = O, (poly(T,1/e,1/€ ,1og(1/4))).

4.1. Analysis Overview

In this section, we provide a high-level sketch of the anal-
ysis. Appendix A provides the formal proof, and care-
fully outlines the organization of the subsequent appen-
dices which establish the subordinate results.

As our policies consists of zero-order hold discrete-time
inputs, our analysis is mostly performed in discrete-time.

Definition 4.4 (Stabilized trajectories, discrete-time in-
puts). Let ¢ € U, and recall the continuous-input trajecto-
ries X", ™" in Definition 2.1. We define x™ (¢ | ©) :=

X™Ct(t | ct(ﬁ)) and u”(t | @) := 0™t | ct(¥)), and
their discrete samplings X7 (¥) := X" (¢, | U) and aj, (¥) :=
0" (t), | ©). We define a discretized objective J;r " (q) :=

V(& (@) + T3y QEF (8),8F (@), ), and the
shorthand J§5¢ () = Z7 4 (uT ) and VI (7) :=
7,disc /-

VﬁjT (u) |ﬁ:u71‘:K

What we shall show is that our algorithm (a) finds a policy
7 such that || V7&5¢ () ||g, < € is small, (b) by discretiza-
tion, ||VJIF(u™)|lz,w) < €+ O (1) is small (i.e. 7 is ap-
proximately stationary), and that (c) this implies that u” is
an approximate-JSP of Jr(u™). Part (a) requires the most
effort, part (b) is a tedious discretization, and part (c) is by
Proposition 4.1 stated below. Key in these steps are cer-
tain regularity conditions on the policy 7. The first is the
magnitude of the gains:

Definition 4.5. We define an upper bound on the gains of
policy 7 as L := max{1l, maxy¢x] K} || }.

This term suffices to translate stationary policies to JSPs:

Proposition 4.1. Suppose Assumptions 2.1, 4.1 and 4.2,
is feasible, T < ﬁ. Then, if |[NIr(7)||lz,w) < €
u™(t) is an €’-JSP of Jr for € = 64€*L2 /.

Proof Sketch. We construct a Jacobian linearization 7 Jac
of J7 by analogy to J- jac and define e-JSPs of Jr analo-
gously. We show by inverting the gains that an e-JSP of J [
is precisely an e-JSP of Jr. We then establish strong con-
vexity of J7 ' (non-trivial due to the gains), and use the
PL inequality for strongly convex functions to conclude.
The formal proof is given in Appendix H.2. O

To establish parts (a) and (b), we need to measure the
stability of the policies. To this end, we first introduce
closed-loop (discrete-time) linearizations of the dynamics,
in terms of which we define a Lyapunov stability modulus.

Definition 4.6 (Closed-Loop Linearizations). We
discretize the open-loop linearizations in Defi-
nition 4.2 defining A%, = ®5(tkt1,t) and

t
Boe = oo, ®ailtir1, s)BE(s)ds. We  de-
fine an dzscrete time  closed-loop  linearization
AL = AQ, + BJ.KE, and a discrete closed-loop

transition operator is defined, for 1 < ky < ky < K + 1,
?gl7kz,k1 = Angz—l . A§17k2_2 cee A§17k1, with the conven-
tion &7 Kk = I. Forl < k1 < ko < K+1, we define the

™ — ™ us
closed-loop Markov operator ¥7, . = &7 ;. 4. 183 k-
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Definition 4.7 (Lyapunov Stability Modulus). Given a pol-
icy 7, define A%, = I, and A} = (Aghk)TAg_HAZL,C + 1L
We define fir . := maxye ... k+1} | AF]]-

Notice that the stability modulus is taken after step ko,
which is where we terminate the Riccati recrusion in Al-
gorithm 3. We shall show that, with high probability, Al-
gorithm 1 synthesizes policies m which satisfy

L,<6 maX{L Lf},U/rim M % < 8liric, 4.2)

so that Ly, tr» = O,(1). Going forward, we let O (-)-
denote a term suppressing polynomials in L, fir, and
terms O,(1); when 7 satisfies Eq. (4.2), then O,(-) =
O,(). Wesay ¢ < 1/O,(y), if z < 1/y/, where
Yy = Ox(y). In Appendix 1.3, we translate discrete-time
stationary points to continuous-time ones, establishing part
(b) of the argument.

Proposition 4.2. For 7 feasible, |NJr(7)|lz,wy <
= IVTF=(m) e, + Ox (T

A more precise statement and explanation of the proof are
given in Appendix A.5. The rest of the analysis boils down
to (a): finding an approximate stationary point of the time-
discretized objective.

4.2. Finding a stationary point of j}r,disc

Taylor expansion of the dynamics. To begin, we derive
perturbation bounds for solutions to the stabilized ordinary
differential equations. Specifically, we provide bounds for
when uT. ;- is perturbed by a sufficiently small input du;.x.
Our formal proposition, Appendix A.6 states perturbations
in both the /., and normalized ¢5-norms; for simplicity,
state the special case for /.. -perturbation.

Proposition 4.3. Let u;.x = uj, + dui.x, and suppose
maxy, ||dug|] < Boo < 1/Ox(1). Then, forall k € [K+1],
ST ™ k=1 o7

%% [wi:x] — xF — Zj:l ‘I’cl,k,j‘suj” < Ox(B3,).

We also show, that if B, = 1/O,(T), then the policy with
7" with the same gains K = KT as 7, but the perturbed in-
puts u}: = uy, at most double its Lyapunov stability mod-
ulus i < 2pir . This allows small gradient steps to
preserve stability.

Estimation of linearizations and gradients. We then ar-
gue that by making o, small, then to first order, the esti-
mation procedure in Algorithm 2 recovers the linearization
of the dynamics. The proof combines standard method-of-
moments analysis based on matrix Chernoff concentration
(Tropp, 2012) and Proposition 4.3 to argue the dynamics
can be approximated by their linearization. Specifically,
Appendix A.7 argues that, for all rounds n € [njte;| and
1 <j <k < K+1, it holds that |97, - — ¥ ;]| <

Erry (8) where Errg (8) = O (\/“2(1 + %< + 0,),

which can be made to scales as N~ % by tuning o, =
(¢2,,.1(6)/N)i. From the Markov-recovery error, as well
as a simpler bound for recovering xT.; in Algorithm 2

(Lines 1-3), we show accurate recovery of the gradients:

maxy, [V = (VI (x )| < TO(Erry (5)).

The last step here is to argue that we also approximately re-
cover A7, ., BJ, , in Algorithm 3 for synthesizing the gains:
for all k& > ko,
. - Errg (8
1Bt~ B34l V llAk — A7, | < On(P5=).

T

This consists of two steps: (1) using controllability to show
the matrices ék,jn in Algorithm 3 are well-conditioned and
(2) using closeness of the Markov operators to show that
ék,in and ék70ut concentrate around their idealized values.
Crucially, we only estimate system matrices for k& > kg
to ensure CAMH is well-defined, and we use window kg >
ketr1 + 2 to ensure C}wut is sufficiently well-conditioned.

Concluding the proof. Appendices A.8 and A.9 conclude
the proof with two steps: first, we show that cost-function
decreases during the gradient step Algorithm 1 (Line 5)

at round n € [nje;| in proportion to —||@,£n)\|2 (a con-

sequence ofthe standard smooth descent argument). Here,
we also apply the aforementioned result that small gradi-
ent steps preserve stability: pzm . < 2p.m) . Second,
we argue that the gains synthesized by Algofithm 3 en-
sure that the Lyapunov stability modulus of 7("+1) and
the magnitude of its gains stay bounded by an algorithm-
independent constant: fi,(n+1) , < 4firic = O(1) and
L n+1y < O(1); we use a novel certainty-equivalence
analysis for discretized, time-varying linear systems which
may be of independent interest (Appendix F). By combin-
ing these two results, we inductively show that all policies
constructed satisfy (4.2), namely they have pi , and L at
most O, (1). We then combine this with the typical analy-
sis of nonconvex smooth gradient descent to argue that the
policy ("ew¢) has small discretized gradient, as needed.

5. Experiments

Our experiments evaluate the performance of our proposed
trajectory optimization algorithm (Algorithm 1) and com-
pare it with the well-established model-based baseline of
trajectory optimization (iLQR) on top of learned dynam-
ics (e.g. Levine & Koltun (2013)). Though our analy-
sis considers a fixed horizon, we perform experiments in
a receeding horizon control (RHC) fashion. We consider
two control tasks: (a) a pendulum swing up task, and (b) a
2D quadrotor stabilization task. We implement our exper-
iments using the jax (Bradbury et al., 2018) ecosystem.
More details regarding the environments, tasks, and exper-
imental setup details are found in Appendix J. Though our
analysis considers the noisy oracle model, all experiments
assume noiseless observations.
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Least-squares vs. Method-of-Moments. Algorithm 1 pre-
scribes the method-of-moments estimator to simplify the
analysis; in our implementation, we find that estimating the
transition operators using regularized least-squares instead
yields to more sample efficient gradient estimation. This
choice can also be analyzed with minor modifications (see
e.g. Oymak & Ozay (2019); Simchowitz et al. (2019)).

iLQR baseline. We first collect a training dataset accord-
ing to a prescribed exploration strategy, then train a neural
network dynamics model on these dynamics, and finally
optimize our policy by applying the iLQR algorithm di-
rectly on the learned model. We consider several variants
of our iLQR baseline which use different exploration strate-
gies and different supervision signals for model learning.

(1) Sampling strategies: = We consider two sampling
strategies; (a) Agg alternates between collecting data, fit-
ting a dynamics model, and running iLQR to collect more
data, and (b) Rand executes rollouts with random inputs
starting from random initial conditions. The rationale is
that the Agg strategy provides better data coverage for the
desired task than Rand.

(2) Loss supervision: The standard loss supervision for
learning dynamics is to regress against the next state tran-
sition. Inspired by our analysis, we also consider an ide-
alized oracle that augments the supervision to also include
noiseless the Jacobians of the ground truth model with re-
spect to both the state and control input; we refer to this
augmentation as JacReg.

(2) Model architecture: We use a fully connected three
layer MLP network to for fitting the dynamics of the en-
vironment. Specifically, our model takes in input (xx, ux)
and predicts the state difference xg 11 — xg.

Figure 1 shows the results of Algorithm 1 compared with
several iLQR baselines on the pendulum and quadrotor
tasks, respectively. In these figures, the x-axis plots the
number of trajectories available to each algorithm, and the
y-axis plots the cost suboptimality (J2% — J7)/Js in-
curred by each algorithm; where j;lg is algorithmic cost
and J7 is the cost obtained via iLQR with the ground truth
dynamics. The error bars in the plot are meidan, first and
third quartile intervals computed over 20 different evalua-
tion seeds.

Discussion. We observe that Algorithm 1 with feedback-
gains consistently outperforms Algorithm 1 without gains,
validating the important of locally-stabilized dynamics.
Second, we see that the performance of the iLQR base-
lines does not significantly improve as more trajectory data
is collected. We find that our learned models achieve
very low train and test error, over the sampling distribu-
tion (i.e., Agg or Rand) used for learning. For Rand,
we postulate that the distribution shift incurred by perform-

Pendulum

With Gains
—— No Gains
10° —— Learning (Agg) + iLQR
Learning (Agg, JacReg) + iLQR
10-1 —— Learning (Rand, JacReg) + iLQR
gu= Learning (Rand) + iLQR

P

Cost Suboptimality

0 2000 4000 6000 8000 10000
Trajectories

Quadrotor

With Gains
10° —— No Gains
—— Learning (Agg) + iLQR
Learning (Agg, JacReg) + iLQR
—— Learning (Rand, JacReg) + iLQR
Learning (Rand) + iLQR

Cost Suboptimality

0 2500 5000 7500 10000 12500 15000 17500 20000
Trajectories

Figure 1: Cost suboptimality (72 — 77)/J+ versus number
of trajectories available to both Algorithm 1 and iLQR baselines.
For visualization, the suboptimality is clipped to (107¢, co).

ing RHC via trajectory optimization on the learned model
limits the closed-loop performance of our baseline. How-
ever, we note that Agg+JacReqg achieves stellar perfor-
mance early on, suggesting that (a) the Agg data collection
method suffices for strong closed-loop performance (notice
that Rand+JacRegq fares far worse), and (b) that a second
limiting factor is that estimating dynamics and performing
automated differentiation is less favorable than directly es-
timating Jacobians, which are the fundamental quantities
used by the iLQR algorithm. This gap between estima-
tion of dynamics and derivatives has been observed in prior
work (Pfrommer et al., 2022).

Though we find that our method outperforms deep-learning
baselines (excluding Agg+JacReg) on the simpler in-
verted pendulum environment, the learning+iLQR ap-
proaches fare better on the quadrotor in the < 10000
trajectories regime. We suspect that this is attributable to
data-reuse, as Algorithm 1 estimates an entirely new model
of system dynamics at each iteration. We believe that find-
ing a way to combine the advantages of directly estimating
linearized dynamics (observed in Algorithm 1, as well as
Agg+JacReq) with the advantages of data-reuse would
yield significant sample efficiency improvements.
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* Appendix A.2 reviews essential notation.
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The rest of Appendix A carries out the proof of Theorem 2. Speficially,

* Appendix A.4 defines numerous problem parameters on which our arguments depend.
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Appendix A.5 proves Corollary A.1, a precise statement of Proposition 4.2 in the main text. It does so via an interme-
diate result, Proposition A.4, which bounds the £, difference between the continuous-time gradient, and the imagine
of the discrete-time gradient under the continuous-time inclusion map ct(-).

Appendix A.6 states key results based on Taylor expansions of dynamics around their linearizations, and norms of
various derivative-like quantities.

Appendix A.7 contains the main statements of the various estimation guarantees, notably, the recovery of nominal
trajectories, Markov operators, discretized gradients, and linearized transition matrices (A7, ., B7, ,).

Appendix A.8 leverages the previous section to demonstrate (a) a certain descent condition holds for each gradient
step and (b) that sufficiently accurate estimates of transition matrices lead to the synthesis of gains for which the
corresponding policies have bounded stability moduli.

Finally, Appendix A.9 concludes the proof, as well as states a more granular guarantee in terms of specific problem
parameters and not general O, (+) notation.

The rest of Part I of the Appendix provides the proofs of constituent results. Specifically,

A2,

Appendix B presents various discussion of main results, as well as gesturing to extensions. Specifcally, Appendix B.1
describes the exponential gap between FOSs of J1 and JSPs, and Appendix B.2 explains the consequences of combin-
ing our result with (Westenbroek et al., 2021). We discuss how to implement a projection step to ensure Definition 4.7
in Appendix B.3. Finally, we discuss extensions to an oracle with process noise in Appendix B.4.

Appendix C presents various computations of Jacobian linearizations, establishing that they do accurately capture
first-order expansions.

Appendix D proves all the Taylor-expansion like results listed in Appendix A.6.
Appendix E proves all the estimation-error bounds in Appendix A.7.

Appendix F provides a general certainty-equivalence and Lyapunov stability perturbation results for time-varying,
discrete-time linear systems, in the regime that naturally arises when the state matrices are derived from discretizations
of continuous-time dynamics.

Appendix G instantiates the bounds in Appendix F to show that the gains synthesized by Algorithm 2 do indeed lead
to policies with bounded stability modulus.

Appendix H contains the proofs of optimization-related results: the proof of the descent lemma (Lemma A.13 (in
Appendix H.1) and the proof of the conversion between stationary points and JSPs, Proposition 4.1 (in Appendix H.2)

Finally, Appendix I contains various time-discretization arguments, and in particular establishes the aforementiond
Proposition A.4 from Appendix A.5.

Notation Review

In this section, we review our basic notation.

Dynamics. Recall the nominal system dynamics are given by

%X(t | 11) = fdyn(x(t ‘ u)vu(t))a X(O ‘ u) = Einit-

We recall the definition of various stabilized dynamics.

Definition 2.1. Given a continuous-time input 0 € U, we define the stabilized trajectory X™(¢ | @) := x(¢ | u™),
where @7 (¢ | @) := U(t) + K}y (X" (tx(r) | @) — x}(,)). This induces a stabilized objective: J7 () := V(X" (t |

a)) + fOT Q™ (t | w), @™ (¢ | u), t)dt. We define the shorthand V.77 (7) := Va JF (1)|

ua=u”

14
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Definition 4.4 (Stabilized trajectories, discrete-time inputs). Let ¢ € U, and recall the continuous-input trajectories

x™ 4™ in Definition 2.1. We define X™(t | ©) = x™(t | ct(@)) and a™(¢ | @) = a™¢ | ct(@)),
and their discrete samplings %} (¥) := X"(t; | d) and 4} (d) := a"(¢x | d). We define a discretized objec-
tive J (@) = (XKH( 0)) + Tzk L Q(ZF (4),4f (), 1), and the shorthand Jgs¢(r) = J7°(u] ) and

Vj%r,diSC( ) V*j%r dlSC |

Linearizations. Next, we recall the definition of the various linearizations.

Definition 4.2 (Open-Loop Linearized Dynamics). We define the (open-loop) JL dynamic matrices about 7 as AT (t)
Og fayn (X7 (t),u™(t)) and BT (t) = Oufayn(x™(t),u”(t)). We define the open-loop JL transition function <I> (st
defined for ¢ > s as the solution to - ®7\(s,t) = AT (s)®] (s, t), with initial condition ®7(¢,t) = I.

Definition 4.6 (Closed-Loop Linearizations). We discretize the open-loop linearizations in Definition 4.2 defining A, , =

)

@7 (tht1,11) and BY ;. = ;‘;1 @7 (th11,5)Bl)(s)ds. We define an discrete-time closed-loop linearization AT} , :=

A% . + BT KT, and a discrete closed-loop transition operator is defined, for 1 < ky < ky < K 41, <I>Z;Lk2 ke =

A§17k2_1 . AZI,kZ_Q cee A;Tuﬁ, with the convention ‘I’gl,kl,kl =1 Forl < k; < ke < K + 1, we define the closed-loop
™ «— iy T

Markov operator ¥g, . . := &g . . 1Bl 4

We also recall the definition of stationary policies and JSPs.

Definition 2.2. We say u is an €-F0S of a function F : U — Rif |[VyF(u)lz,@) < €. We say 7 is e-stationary if
NI ()l 2oy = IVaTF ()| o Loy < €

Definition 2.4. We say u € U is an e-Jacobian Stationary Point (JSP) if Jr(u) < infaey Ji%(W;u) + €.

Problem Constants. We recall the dynamics-constants «f, Ly, My defined in Assumption 4.1, Kcost, Lcosts Mcost in
Assumption 4.2, the strong-convexity parameter o in Assumption 2.1, the controllability parameters ¢.t,1, Vet from As-
sumption 4.4, with ket := tetr1/7T, and the Riccati parameter 1,5 from Assumption 4.3. Finally, we recall the feasibility
radius from Condition 4.1. We also recall

Definition 4.1. We say (r,u) € R%*% are feasible if ||z V ||u|| < Rfeas- We say a policy 7 is feasible if (2x™ (), 2u™(¢))
are feasible for all ¢ € [0, 7.

Gradient and Cost Shorthands. Notably, we bound out the following shorthand for gradients and costs:
VIr(w) = VaJF (W), VIF () = VeI ™ @)y 5 TEm) = T @lg). (A

— 7 S g——
=u u=ug K

A.3. Full Statement of Main Result

The following is a slightly more general statement of Theorem 1, which implies Theorem 1 for appropriate choice of
7 L min {L 1}, 7w ¢ (02...0(8)/N)*, and with the simplifications T < 1 < T.

\/T? orac
Theorem 2. Fixd € (0,1), deﬁne 1(8) :=log 24T2"‘°”Tmax{dx’d 2} and Erro(8) := \/1(8)/N, where N is the sample size,
and suppose we select o, = ¢(02.,..(0)/N) for any ¢ € [O @ O« (1)]. Then, there exists constants c1,cCa, . ..,C5 =
O,(1) depending on c such that the following holds. Suppose that
1. 1 1 7% 1 , T o2,
ngclmln{\/T71}7 ng Nzc?)L((S)maX{laTzaT47T7UoracTQy ?Cgac}- (A2)

Then, with probability 1 — ¢, if Condition 4.1 and all listed Assumptions hold,

(a) Foralln € [nite], and «' € {n(™ 7"}, or e < Biric and Ly < 6 max{1, L }iic.

(a) Form = n(moue) s e-stationary where

1/ 1 T2\ [ 4(6)2 .(9) o(8)>
2 2, 4 2 S S 2
el <T i (niter (WT 2 > ( N T Oorac\[ N | T orac T | ]

P . 2
(c) Form = m("ew) u™ isan ¢-JSP, where ¢ = cs S
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A.4. Problem Parameters

In this section, we provide all definitions of various problem paramaters. The notation is extensive, but we maintain the
following conventions:

1. pu.y refers to upper bounds on Lyapunov operators, .y to upper bounds on zero-order terms (e.g. || fayn(z,u)||) or
magnitudes of transition operators, M.y to bounds on second-order derivatives, L. to bounds on first-order deriva-
tives, B(.) to upper bounds on radii, T(.) to step sizes, Err(,) to error terms.

2. q € {1,2, 00} corresponds to £, norms
3. Subscripts tay denote relevance to Taylor expansions of the dynamics.
4. Terms with have a subscript 7 hide dependence on L, i, , and k4 for ¢ € {1, 2,00}

Remark A.1 (Reminder on Asymptotic Notation). We let O, (x) denote a term which suppresses polynomial dependence
on all the constants in Assumptions 4.1 and 4.2, as well as fi,;. in Assumption 4.3, and V¢, tg > tety and elrto > eltem
where tg = Tko, and Vg, Letrl are given in Assumption 4.4. We let O, (x) suppress all of these constants, as well as
polynomials in L, and p 4.

A.4.1. STABILITY CONSTANTS

We begin by recalling the primary constants controlling the stability of a policy .

Definition 4.7 (Lyapunov Stability Modulus). Given a policy 7, define A%, = I, and A} = (A7 ) "A7 (AT, + 7L We
define pir 5 := maXge{ko,...,K+1} HAZH

It is more convenient to prove bounds in terms of the following three quantity, which are defined in terms of the magnitudes
of the closed-loop transition operators.

Definition A.1 (Norms of 7). We define the constants koo 1= maxi<j<r<r+1 |27 5 ;1I, and

K+1

v Z 1815,

K+1

*v Z 135,111

Kr.l . max T E 7
T, kE[K+1] ‘ || cl,k,j

2
K (= max T E 7
2 ke[K+1] ‘ || cl,k,j

We also define the following upper bounds on these quantities:

Koo(pt, L) := y/max{1,6LsL}pexp(toLy)

ka(p. L) = max{1,6L; L}p (to exp(2toLy) + )
ka(p. L) = \/max{1,6L; L}p (to exp(toLy) + 2u)

The following lemma is proven in Appendix G.4, and shows that shows that each of the above terms is O, (1).

Lemma A.1. Let 7 be any policy. Recall to = Tko Then, as long as T < 1/6L¢ L,
Hr.q < Mq(MTr;kaLTr) = Oﬂ'(l)

A.4.2. DISCRETIZATION STEP MAGNITUDES

Next, we introduce various maximal discretization step sizes for which our discrete-time dynamics are sufficiently faithful
to the continuous ones. The first is a general condition for the dynamics to be “close”, the second is useful for closeness
of solutions of Ricatti equations, the third for the discrete-time dynamics to admit useful Taylor expansions, and the fourth
for discrete-time controllability. We note that the first two do not depend on 7, while the second two do.
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Definition A.2 (Discretization Sizes). We define

1
Tdyn ‘= 4Lf

1
Ap, (8MyrppacLy + 18L3(1+ Lypice)?)

11
Ttay,r = Mi — 5 ¢ < Tdyn-
ey, mm{mLfL,T sfgf} %

Vetrl

8LZK 272 exp(27etr) (me I 2L§)

Tric -

Tetrl,m - y o Tetr 7= max{l, Lftctrl}

We note that Tayn, Tric = 1/O4 (1) and Teay x, Tetrl,x = 1/Ox(1).

A.4.3. TAYLOR EXPANSION CONSTANTS.
We now define the relevant constants in terms of which we bound our taylor expansions.

Definition A.3 (Taylor Expansion Constants, Policy Dependent). We define Liay,co,x = 2Lfkr 1, Ltay,2.x = 2Lk 2,
and

Miay 2,x := 8 M (Kir 00 + 10LZL3KS gir 1)
Mtay,inf,ﬂ = 8Mf(/€7r71 + 10L727L3c/{§r,1)

B, i 1 Lfnﬂ',Q Rfeas
a o — Inin , )
tay,2, \/40MfL72Tn,r11Mwy&,r 2Miay2. 7 16Ly LKy o
i 1 LfHW 1 Rreas
B ay,inf,m = , H ,
tay,inf, mln{4oL§mﬂ,1Mtay,inf,,r 2Miay int,r 16L7L¢ky 1

We also define

Mj,tay,'n' = 2McostL3053r’2(1 + 3L721—T)Mtay,2,7r + Lcost(]- + 2L7rT)Mtay,2,7r + 2L7rLcost7
Batab.r = (max{6,36L Ly }piry - 12T MLy (1 + L Ky)Boo) ™"

3Ly

LV,‘n',oo = Lcost(]- + 9 Rr,00 + 3L7r’<57r,1)

The following is a consequence of Lemma A.1.
Lemma A.2. By Lemma A.l, Mtay,Q,Tra Mtay,inf,ﬂa LV,TK',Oca Ltay,q,ﬂ' = 071'(1)’ Btay,2,7r7 Btay,inf,w = 1/(977(1);
M7 tayx =T - Or(1), and Bygap,r = 7 - Or(1).

The first group of four constants arises in Taylor expansions of the dynamics, the fith in a Taylor expansion of the cost
functional, and the sixth in controlling the stability of policies under changes to the input, and the last upper bounds the
norm of the gradient.

A.4.4. ESTIMATION ERROR TERMS.

Finally, we define the following error terms which arise in the errors of the extimated nominal trajectories, Markov opera-
tors, and gradients. Note that the first term has no dependence on 7, while the latter two do.

Definition A.4 (Error Terms). Define +(§) := log 24T2”“”TI§1;X{dX’d”} = log w, where d, := max{dx,dy}.
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Further, define

dy(9)
E T 0) = orac 2
rrz(0) i =0 ~
1) 2 orac 4] orac
Err\P.ﬂ'(é) = Q LdB/Q + 8Ltay Jo%e) 7rd + 4UwMtay 2 7rd3/2 = Oﬂ,( Q(l + 0‘7 + Jw)
’ N w N Ow
Erry (9) := (Leost Errw 2 (8) + (1 + K 00) Meost Errz(6)) (1 + 2T Ly ).
‘We note that, in view of Lemma A.1,
By Lemmas A.1 and A.2, we have
Lemma A.3. Define Errg(d) = L(‘S . Then,
Errz () = 0orac vV 2d+Errg(8) < O, (Errg(d))
OY&C
Errg(0) < O, (Err0(5)(1 + p — )+ 0’w> (A3)

w

Erry - (6) < O, (T (Erro(é)(l + Oorac + U““) + aw>> .
a.

If we further tune oy, = c\/OoracErro(9) for any ¢ € [1/O0,(1), O« (1)), then
Errz () < Oy (0oracErro(6))
Errg (0) < O, (Erro(é) + aoracErro(é)) (A.4)

Erry,.(0) < Or (T (Err0(5) + UomcErro(é))> .

A.5. Gradient Discretization

We begin by stating with the precise statement of Proposition 4.2, which relates norms of gradients of the discretized
objective to that of the continuous-time one. We begin with the following proposition which bounds the difference between
the continuous-time gradient, and a (normalized) embedding of the discrete-time gradient into continuous-time. We define
the constant

Ky = ((1 + Lf)MCOSt(l + Iﬂ?f) + Lcost(Slﬂ:fo + 8L3¢' + Lf)) = O*(')l (A.S5)

Proposition A.4 (Discretization of the Gradient). Let 7 be feasible, and let V.Jr(7) = Le(VTgise(n)) is the continuous-
time inclusion of the discrete-time gradient, normalized by t~'. Then,

sup || VT (m)(t) — VT (m)@)|| < €™ max{fir o, kin1, 1} Lrtiv,
te[0,T)

The above result is proven in Appendix L1.3. By integrating, we see that |[VJr(7) — VJr(7)]| cowy <
VTte™ s max{fr o0, ir1,1} Lrky, and thus the triangle inequality gives ||[V7r(m)|co@) < ||V7T(7T)||L2(u) +
VTte ™ max{knr o0, ki1, 1} Lrkiy. We can see that for any @ = u.x € U, [|d]|7, = Zszl luell? = %fOT [ 1> =
llet@)|Z, - Hence, in particular, || VTr(7) |l 2, @) < %HVJQ‘?SC(W)H& +VTre™ max{kr oo, Fix.1, 1} Lyky. From
this, and from using Lemma A.1 to bound £, oo, kr1 = Or(1), we obtain the following corollary, which is a precise
statement of Proposition 4.2.

Corollary A.1. Suppose T is feasible. Then, recalling kv from Eq. (A.S),

HVJT(TF)”[&(U) < \[”V dlsc(ﬂ-)”b + \/TTeTLf max{’i‘nmxm R, 1}L7THV-
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In particular, for t < 1/4Ly,

1 e
VT ()l 2oy < F||V~7f~h“(7r)lle2 + VT1 - 2max{kr 00, ir.1, 1} Lukiv.
:O‘rr(]-)

A.6. Main Taylor Expansion Results

We now state various bounds on Taylor-expansion like terms. All the following results are proven in Appendix D. The first
is a Taylor expansion of the dynamics (proof in Appendix D.1).

Proposition A.5. Let 7 be feasible, T < Tiay » Fix auy.x € U, and define the perturbation du,.x := ui.x — uf.g, and
define

BQ = \/’?||6u1:KH€2;BOO = ml?‘X H6Uk||
Then, if Boo < Rieas/8, and if for either q € {2, 00}, it holds that By < Biay 4., then

(a) The following bounds hold for all k € [K + 1]

k—1

%7 (k) = % = 95 00| < Miay g B2, (17 (w1:x) — %51 < Liay,q,n By,
j=1

(b) Moreover, forallk € [K + 1] and t € [0,T),

3]%fea»s
4

max{||%} (ur.r) |, [[0F (wi:x])} < sand|| X7 (¢ | urk)[| < Rreas-

Next, we provide a Taylor expansion of the discrete-time cost functional (proof in Appendix D.2).

Lemma A.6. Consider the setting of Proposition A.5, and suppose By < Rfoas/8 and By < Biay 2,7 Then,
IT7 4 (Sur + uf.x) = T7 ™ (0f.x0) = (S, VIF T (0f 1)) || € M7 ay,x B

Next, we show sufficiently small perturbations of the nomimal input preserve stability of the dynamics (proof in Ap-
pendix D.3).

Lemma A.7. Again consider the setting of Proposition A.5, and suppose Boo, < min{ Ryeas/8, Biay,inf,x; Bstab,x ;- Then,

! % < (]— + Boo/Bstab,ﬂ-)Nﬂ',* < 2,“471,*7 Ly = L.

Lastly, we bound the norm of the discretized gradient (Appendix D.4).
Lemma A.8. Let m be feasible, and let T < Tqyn. Then

max ||(VFdse(r <TLvr oo
ke[K]H( T (7))l .
A.7. Estimation Errors

In this section, we bound the various estimation errors. All the proofs are given in Appendix E. We begin with a simple
condition we need for estimation of Markov parameters to go through.

Definition A.5. We say 7 is estimation-friendly if T is feasible, and if

L(5 Btay inf,m
Oorac| 57— S 0w < —————, T Tray,r
INL, 0/d. :

19



Learned Locally Linear Models for Nonlinear Policy Optimization

Our first result is recovery of the nominal trajectory and Markov operators. Recovery of the nominal trajectory follows
from Gaussian concentration, and recovery of the Markov operator for the Matrix Hoeffding inequality (Tropp (2012,
Theorem 1.4)) combined with the Taylor expansion of the dynamics due to Proposition A.5. The following is proven in
Appendix E.1. To state the bound, we recall the estimation error terms in Definition A.4.

Proposition A.9. Fix § € (0, 1) and suppose that N is large enough that T is estimation friendly. Then, for any estimation-
Sfriendly ESTMARKOV(7; N, 0,) (Algorithm 2) returns estimates with such that, with probability 1 — 6 /2nqe,.

o9 < 2, — x| < R .
v ¥y — bl < Brrua() | max 1% —xC|l < Erra(9) (A.6)

Let I, == {7 7 n € [nje]} denote the set of policies constructed by the algorithm, and note that ESTMARKOV
is called once for each policy in II,;,. We define the good estimation event as

oo

Eest(0) 1= [ (En(8) N €, (D)), (A7)
n=1

£,(8) := {Eq. (A.6) holds for m = (™) if 7(") is estimation friendly} (A8)

£n(8) := {Eq. (A.6)holds for 7 = 7(™ if 7(™) is estimation-friendly} (A.9)

By Proposition A.9 and a union bound implies
PlEest(6)] > 1 —6.

We now show that on the good estimation event, the error of the gradient is bounded. The proof is Appendix E.2.

Lemma A.10 (Gradient Error). On the event Ees(0), it holds that that if 7 s estimation-friendly, then Algo-
rithm 1(Line 4) produces

e [ 9" = (V735 (n()) ]| < Brr i (6).

We also bound the error in the recovery of the system paramters used for synthesizing the stabilizing gains. Recovery of
said parameters requires first establishing controllability of the discrete-time Markov operator. We prove the following in
Appendix E.3:

Proposition A.11. Define ey, := max{1, Lstcn}, and suppose that T < min{Tcui x, Tayn - Then, for k > ke + 1, it
holds that
k-1

Vetrl
Ao T (9T AT - - C
min |2 (i) | = 8L272, exp(27cer)

J=k—kctr1

With this result, Appendix E.4 upper bounds the estimation error for the discrete-time system matrices.

Proposition A.12. Suppose Eqs(0) holds, fix n € Niper, and let m1 = 7). Then, suppose that T < min{TCtrl_’deyn},
kO Z kctrl + 2; and

Errg (5) < \Y Vctrl/tctrl (A.10)

<
2\/§L7r7ctr eXP(%tr) ’
Then, on Eqst(0), if T is estimation-friendly, the estimates from the call of ESTGAINS(m; N, o) satisfy
. . Errg (0 19273, exp(2-,
I L e
ctr

A.8. Descent and Stabilization

In this section, we leverage the estimation results in the previous section to demonstrate the two key features of the
algorithm: descent on the discrete-time objective, and stability after the synthesized gains. We begin with a standard
first-order descent lemma, whose proof is given in Appendix H.1. This lemma also ensures, by invoking Lemma A.1,
that the step size is sufficently small to control the stability of 7("), which uses the same gains as (™ but has a slightly
perturbed control input.

20



Learned Locally Linear Models for Nonlinear Policy Optimization

Lemma A.13 (Descent Lemma). Suppose m = 7" is estimation friendly, let M > M 7 toy x, and suppose

1 1 . R eas B ay,2,m
n S m7 (U(LV,W,OO + ;Errvﬂr(") (5)) + EI‘I‘@((S)) S mln{ f8 7Bstab,7ra Btay,inf,ﬂa t\/y;} .

Then, on event Eqst (), it holds (again setting 7 +— 7 on the right-hand side)

Erry . (8)?

isc/~(n isc/,_(n URTESISO)
) = 7)< LRI + T (P ey

+ Err;(6) Ly r 00 + MErri(5)2> .

and that

Liwy = Ly, Mo o S 2Hr0m) 4

The next step is to establish a stability guarantee for the certainty-equivalent gains synthesized. We begin with a generic
guarantee, whose proof is given in Appendix G.

Proposition A.14 (Certainty Equivalence Bound). Let A, and B}, be estimates of Ay and BY, ., and let Ky, denote the cor-
responding certainty equivalence controller synthesized by Algorithm 3(Lines 7 and 10). Suppose that T < min{Tyic, Tayn }
and

AT AT _
pehax 1A% — A%k llop V 1By =BG kllop < T(2'T pe max{1, L}}) ™

Then, if ™' = (uT. ., K1.1), we have

M’ % S 4MriC7 LTr’ S 6max{1, Lf}MTiC'

As a direct corollary of the above proposition and Proposition A.12, we obtain the following:

Lemma A.15. Suppose Eqs1(0) holds, fix n € niter, and let m = 7). Then, suppose that T < min{Terl z, Tdyn }, T iS
estimation-friendly, kg > ke + 2, and

3 P(27etr)
Erry . (6) < 2 (225,Uf;1ic max{LL?}} . toﬂﬁ’mLi’y‘?trexp(’yt)> (A.11)
Vctrl

Then,

Prntt) o < Apinic, L < 6max{l, Ly }ic-

Proof. One can check that, as pic, Ly > 1, Eq. (A.11) implies Eq. (A.10). Thus, the lemma follows directly from
Propositions A.12 and A.14, as well as noting 192 - 217 < 925 O

A.9. Concluding the proof.

In this section, we conclude the proof. First, we define uniform upper bounds on all 7-dependent parameters.

Uniform upper bounds on parameters. To begin, define

i = 8firic, L =6max{Ly,1}iric. (A.12)

Next, for ¢ € {1,2,00}, define K, := #ky(fi,L) defined in Definition A.1. We define Tiay, Tetr1 alogously
t0 Ttay,, Tetrl,n in Definition A.2 with k; o replaced by ko and L. with L. For ¢ € {2,000}, we define
Mta}’#l’ MJ,tay, Ltay,qv LV,OOV Btay’qv Bstab analOgOUSIy to Mtay,q,nw MJ,tay,‘n’v Ltay,ana LV,w,ooa Btay,quBstab,Tr in Def-

inition A.3, with all occurences of K o, Kx,1, Kr,2 Teplaced by Ko, K1, k2 and all occurences of L replaced by L. Finally,
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we define Erry, Erryto be analogous to Erry ., Erry , but with the same above substitutions. From Lemmas A.1 and A.2,
we have

’_iqa Mtay.,qa Etay,q, EV,ooa Btay,q = O*(]-)
Tdyn; Tric, ftaya fctrl = 1/0*(1)
Mg tay =T - Ox(1).

1

Bstab - TO*(l)

Moreover, recalling Errg(d) := /¢(d)/N, and setting 0, = ¢\/Errgoorac for any ¢ € [1/04(1), O,(1)], Lemma A.3
gives

Errz(8) = Ox(0oracErro(9))
Erry »(0) = O (Errg(d) + v/ oracErro(d)) (A.13)
Erry - (0) = O.(T(Erro(6) + v/0oracErro(9))).

Statement of Main Guarantee, Explicit Constants. We begin by stating our main guarantee, first with explicit con-
stants. We then translate into a O, (1) notation. To begin, define the following descent error term:

Erry(d)®

Errgec(8) :i=T [ —2—2—
ITdec(9) ( TN

+ Errz(6) Ly oo + Mj,tayErri(5)2> (A.14)
And note that for ., = cv/Errooorac for ¢ € [1/0,(1), O,(1)] (using numerous simplifications, such as 7'/t > 1)
T3

Errgec(d) := O, (1) - (’t2 (Err0(6)2 + aoraCErro((S)) + TagraCErr0(5)2> .

Theorem 3. Fix § € (0,1), and suppose that n < ﬁ, ko > ket + 2, and suppose
stay

§ Biay. oo
Oorac % S Ow S Qt\a/y;l» 5 (A15a)
_ 11— . Rfeas >, » Bta}’»Q
(n(LV,oo + ;ErTV(é)) + EI‘T:@ (6)) S min T? Bstab7 Btay,oov \/T (Ale)
= —07 2%ctr ! 2
Bt (6) < 2 (220 max{1, L3} - tughiy oo [2 100 OP2he) ) 7 T (A.15¢)
Hric f ,
Vetrl O*(l)
1
T S min{’ftaya Tctrlv Tric} = O (1) (AlSd)

Then, for 1 = 7("w) returned by Algorithm 1 satisfies all four properties with probability 1 — §:

(a) pixx < 8firic and Ly < 6 max{1, k¢ }ic = L. In fact, for all n € [nige,), and w' € {m(™) 7)1, Pt v < L = 8lric
and L < L = 6 max{1, L¢}/ic.

(b) The discrete-time stabilized gradient is bounded by

. - 2 (21 + T)hcost  ——
”17H\7%hsc(7r)||§2 < 2TErry(0)? +H <( J; ficost —i—ErrdeC(é))
iter
A
+ (nT3 + g) (Erro(8)? + 0oracErro(8)) + TorngErro((;)Q) ,

- o*<1>'< a

1
n Niter

where the last line holds when o, = c\/oracErro(9) for some ¢ € [0*1(1) ,OL(1)].
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(c) Recall ky := ((1 + L) Meost (1 + K7) + Leost 3k My + SL? + Lf)) = 0,(1) from Eq. (A.5). Then 7 is ¢-
stationary for

4 <2(1 + T)EKcost

& = ATEiro(5) + + Errdec(d)) AT (max{fa, Lo, 1} Lig)

Niter

1 1 T?
=0,(1)-T <T2 + - < + (nT? + g) (Erro(8)? + 0oracErro(8)) + UgmcErro((S)Q)) .

7\ Niter

where the last line holds when o, = c\/CoracErro(9) for some ¢ € [0*1(1) , O, (1))

2

(d) U™ is an €'-JSP, where € = 64¢2L? /o = O, (1) - <.

We prove Theorem 3 from the above results in Appendix A.9.2 just below. Appendix A.9.1 below translates the above
theorem into Theorem 2 which uses O, (-) notation.

A.9.1. TRANSLATING THEOREM 3 INTO THEOREM 2

Proof. Tt suffices to translate the conditions Eqs. (A.15a) to (A.15d) into O,(-) notation. Again, recall Errg(d) =

Vt(6)/N, and take o, = cy/Err(0)0orac for ¢ € [1/O4(1),O4(1)]. Then, Eq. (A.15a) holds for Errg(d) < 1/e¢y,
where ¢; = O,(1). Next, to make Eq. (A.15b) hold, it suffices that

_ _ 1 Rieas = - Bia
max {(nLVA,ocn gErrV(é)v Err:i (5)} S g min {fu Bstab; Btay,007 tay,2 } 3

8 vT
The term 7Ly o is sufficiently bounded where n < \1@ for c; = O,(1). Recalling Erry (8) < O, (T (Erro(d) +
ca
Oorackrro(d))) from Eq. (A.13), and that ) < - 3/?’ itis enough that (Erro(6)++/0oracErro(d)) < 27 for ez = O.(1).

Finally Err; () is bounded for Errz(§) = Errg(8) < 1/¢4v/T, where ¢4 = O,(1). Collecting these conditions, we have
that for ¢y, ¢a, 3, ¢4 = O4(1), Egs. (A.15a) and (A.15b) hold for
1 CoT

,  Errg(6) + v/ ooracErrg(d) < —,
CQ\/T 0() orac 0() csT

Next,as Erry -(8) = O.(Erro(0) + \/0oracErro(d)) from Eq. (A.13),Eq. (A.15c) holds as long as Errg(d) +
ToracErTo(0) < T2/c5 for a cs = O,(1). Combining,
1 CoT T2 1 1
< ——, Errg(d) + v/ ooracErrg(d) < min {, } Errg(6) < min {, }
n @\/T 0(4) 0(6) csT’ cs 0(6) o 04\/T

Finally, Eq. (A.15d) requirs T < 1/cg, for cg = O, (1), and that 7 < 1/c; where ¢; = 4M 7 tay = Ox(1). By shrinking
constants if necessary, this can be simplified into

n=<

2
1 1 . (et T2 1 1 1 [ ot T2
<min{—,}——=}, Errg(d) < min mln{,,,}, mm{, .
7 {C7 }Cg\/T} () { CST Cs C1 C4\/T Oorac CBT Cs

And recall Errg(d) = /¢t(0)/N, this becomes

—2
1 1 1 1 2 1 2)?
T<—, n< min{l,}, N > ¢(6) min min{,m,T,}, min{cﬂ7T} .

Cq C2 VT c1 3T’ ¢5” ey T} Oorac 3T cs

By consolidating constants and relabeling c1, co = O, (1) as needed, it suffices that

2 1 } 1 ) {T T2}2}2
) [ — 9 mimsy =,
\/T Oorac T

T2 1 T* o2
_ 2 orac
_CSL(6>maX{17/-['27/-[-47T,0-0racr-['2’TS .

Nl A

1 1
—,1, < —, N >c3(d)min{min< 1,
NI DRSS (o min {min

ngclmin{

Having shown that the above conditions suffice to ensure Theorem 3 holds, the bound follows (again replacing Errg(d)
with 1/¢(8)/N).

O
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A.9.2. PROOF OF THEOREM 3

We shall show the following invariant. At each step n,
Py o S )2, Loy < L. (A.16)

Lemma G.3 shows that Eq. (A.16) holds for n = 1. Next, for n > 1, directly combining Lemmas A.13 and A.15 imply the

following per-round guarantee.

Lemma A.16 (Per-Round Lemma). Suppose that n < 1 M; , ko > ket + 2, Then if () satisfies Eq. (A.16) and
Jtay

Egs. (A.15a) to (A.15d). Then, on Eqst(9),

(a) max [V, — (VT () | < Brrg(8); thus 7| ¥y 50 — (VI (x () |2, < TErro(s)2
(b) The following descent guarantee holds

isc/~(n is n SO .
\7%1 sc(Tr( )) —qu C(w( )) < _§||V1:KH?2 + Errgec(0)

(¢) Laty = Lo < Land pizy o < 24tpn) 4 < i

(d) pponrn) o < Apric = L/2, L, ) <6max{l, Ly} ic = L.; that is ™Y satisfies Eq. (D.4)

Proof. Part (a) follows from Lemma A.10, and parts (b) and (c) follow from Lemma A.13, with the necessary replacement

of m-dependent terms wither (-) terms. Part (b) allows us to make the same substiutions in Lemma A.15, which gives part
(©). O]

Proof of Theorem 3. Under the conditions of this lemma, Lemma A.16 holds. As Lemma G.3 shows that Eq. (A.16) holds
for n = 1, induction implies Lemma G.3 holds for all n € [nite;] on Eest (), an event which occurs with probability 1 — 4.
We now prove each part of the present theorem in sequence.

Part (a). Directly from Lemma A.16(d)

Part (b). Notice that, since 7(™) and 7("*1) differ only in their gains, J8%¢(7("+2)) = Fdisc(7(")), Therefore, summing
up the descent guarantee in Lemma A.16(b), we have

Niter

isc Niter isc U o (n) En—
jig (ﬂ'( +1)) - jjq (77(1)) < Tor Z ||v1:K||?2 + NigerErrace ()
n=1

n . o (n) =
< _?niter min ||v1;K ||?2 + niterErrdeC((s)
T nE[Niter]

Nout

N & (mout) Frr
= _ﬂHle ||z2 + niterErrdEC(é)

where we recall that our algorithm selects to output 7("out) | where 1o, minimizes ||?1(TZH§2 Recall that 74 (7) =
Tr U (uF, ) where T (@) i= V(25 () + 15, Q(XF (), 8] (7),t1). Hence, for all feasible 7, Assump-
tion 4.2 implies 0 < J;’disc(ﬂ) < Ficost (1 +TK) = (14 T)keost- By Condition 4.1, 7("*+1) and 7(1) are by feasible, and
thus J4is¢(r (1)) — Fdise(7(1)) > (1 4 T)kcost. Therefore, by rearranging the previous display,

al (nout) 1 2 1 —|— T Rcos -
T Vig NIz, < " <()t +Errdec(5)> )

Niter
By Lemma A.16(a), and AM-GM imply then

. _ 2 (201 + Tkcoss  ——
|| Fgise (n(reu)) 12 < 2TErry(8)? + ; (()“t + Errdoc(6)> .

Niter
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Part (c). Note that T < Ty, implies T < 1/4L. From Corollary A.1, and for ky = O, (1) as in Eq. (A.5), the following
holds for any feasible :

A

2
IVTr(m) 200 < VT (1) |ley + VTT - 2max{kir oo, fir 1, 1}Lm)

(5

2 .
< 29T |3, + AT (maxct g oo, 1, 1 L)

Apply the above with 7 = 7("eut) gives part ¢, and upper bound Kooy K1, L DY Roo, R1, L concludes.

Part (d). This follows directly from Proposition 4.1, noting that L, < L for 7 = 7(ent) | and that Tray = ﬁ, so that

the step-size condition of Proposition 4.1 is met. O

B. Discussion and Extensions
B.1. Separation between and Open-Loop and Closed-Loop Gradients

In this section, we provided an illustrative example as to why a approximation JSP is more natural than canonical stationary
points. Fix an e € (0, 1], and consider the system with dynamic map

fe(z,u) =22+ u —e
Let x.(t | u) denote the scalar trajectory with

d
éxe(t |u) = fe(x(t|u),u(t)), x(0]u)=ce.

Then, x.(t | 0) = ¢ for all t. We can now consider the following planning objective

Jr.e(u) = %/0 (xe(t | uw)® + u(t)?) de. (B.1)

Since the dynamics f, are affine, we find that

uisan€’-JSPof Jr,. <= u<infJr.(u’)+¢€.
u/

In particular, as Jr,(0) = $Te?, and as 7, > 0,

T 2
u=0isan TG—JSP of Jr,e. (B.2)

However, we show that the magnitude of the gradient at u = 0 is much larger. We compute the following shortly below.

Lemma B.1. For T > 1, we have | VJ7,(0)(t)| c,w) = VTeel /4v/2.

Thus, the magnitude of the gradient (through open-loop dynamics) is exponentially larger than the suboptimality of the
cost. This suggests that gradients through open-loop dynamics are poor proxy for global optimality, motivating instead the
JSP. Moreover, one can easily compute that if 7 has inputs uf = 0 and stabilizing gains K;, = —3, then for sufficiently
small step sizes, the gradients of J7.(u) ‘u:O scale only as cey/T for a universal ¢ > 0, and do not depend exponentially on
the horizon.

Proof of Lemma B.1. We have from Lemma C.5 that

VIr.(0)(t) = /:t xc(s]0)-®(s,t)B(t),

=€
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where ®(s, t) solves the ODE ®(¢,¢) = 1 and %@(s, t) = 2®(s,t). Thus, ®(s,t) = exp(2(t — s)). Moreover, B(t) = 1.
Hence,

1
=e-(2T=9) - 1)
2
Hence, fort <T/2and T > 1,
T
IVT7.(0)(¢)] > e=(el' —=1)>e=(ef = 1) > %.
Hence,
T [eeT\”
¥ Ol 00 > 5 ()
50 [ VT, (W) (1)l 2,y > VTee™ /4/2. O

B.2. Global Stability Guarantees of JSPs and Consequences of (Westenbroek et al., 2021)

(Westenbroek et al., 2021) demonstrate that, for a certain class of nonlinear systems whose Jacobian Linearizations satisfy
various favorable properties, an €-FOS point u of the objective [Jr corresponds to a trajectory which converges exponen-
tially to a desired equilibirum. Examining their proof, the first step follows from Westenbroek et al. (2021, Lemma 2),
which establishes that u is an € = ¢2/2a-JSP, and it is this property (rather than the e-FOS) that is used throughout the
rest of the proof. Hence, their result extends from FOSs to JSPs. Hence, the local optimization guarantees established in
this work imply, via Westenbroek et al. (2021, Theorem 1), exponentially stabilizing global behavior.

B.3. Projections to ensure boundedness.

Let us describe one way to ensure the feasibility condition, Definition 4.7. Suppose that fq, has the following stability
property, which can be thought of as the state-output anologue of BIBO stability, and is common in the control literature
(Jadbabaie & Hauser, 2001). For example, we may consider the following assumption.

Assumption B.1. There exists some function ¢gys : R>9 — R>¢ such that that, if ||u(¢)|| < R for all t € [0,77], then
[x(# [ w)]| < dsys(R, T) forall ¢ € [0, T].
Next, fix a bound R, > 0, and set
Rieas := 2max{R,,, ¢sys(Ru,T)}
Then, it follows that for any policy for which
u; < R, (B.3)

for all k € [K] is feasible in the sense of Definition 4.1. We therefore modify Algorithm 1,Line 5 to the projected gradient
step

ugn;(q) A Proj(Bdu(Ru))K {oracﬂ")’u(ﬁg?[)()} ) where again ﬁl(cn) = ul(gn) - g@lin) - K;cr(n)ﬁlw
where we let Projz, (g, )« denote the orthogonal-projection on the K-fold project of d,-dimensional balls of Euclidean
radius R, B, (R, ). This projection is explicitly given by

. 1 R
(PVOJ(BJ,,(RU))K [ul:K)]>k = Ui - min {la ||u:|} ’

here using the convention that when u;, = 0, the above evaluates to 0. In this case, our algorithm converges (up to gradient
estimation error) to a stationary-point of the projected gradient descent algorithm (see, e.g. the note https://damek.
github.io/teaching/orie6300/1lec22.pdf for details). We leave the control-theoretic interpretation of such
stationary points to future work.
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B.4. Extensions to include Process Noise

As explained in Section 2, Oracle 2.1 only adds observation noise but not process noice. Process noise somewhat compli-
cates the analysis, because then our method will only learn the Jacobians dynamics up to a noise floor determined by the
process noise. However, by generalization our Taylor expansion of the dynamics (e.g. Proposition A.5), we can show that
as the process noise magnitude decreases, we would achieve better and better accuray, recovering the noiseless case in the
limit. In addition, process noise may warrant greater algorithmic modifications: for example we may want to incorporate
higher-order Taylor expansions of the dynamics (not just the Jacobian linearization), or more sophisticated gradient updates
(i.e. 1LQG ((Todorov & Li, 2005))) better tuned to handle process noise.

B.5. Discussion of the exp(L ;) dependence.

There are two sources of the exponential dependence on tg = Tk that arises in our analysis. First, we translate open-
loop controllability (Assumption 4.4) to closed-loop controllbility needed for recovery of system matrices, in an argument
based on (Chen & Hazan, 2021), and which incurs dependent on exp(Lftc1) < exp(Lyty). Second, we only consider a
stability modulus (Definition 4.7) for a Lyapunov equation terminating at k = ko, because we do not estimate Af, ,, BT, ;.
and therefore cannot synthesize the system gains, for k£ < k(. This means that (see Lemma A.1) that many natural bounds
on the discretized transition operators ||, ;. ;|| scale as poly (fix,«, exp(toLy), yielding exponential dependence on toLy.

C. Jacobian Linearizations

C.1. Preliminaries

Recall U denotes the space of continuous-time inputs u : [0,7] — R%, and U continuous-time inputs @ € (R% )%

C.1.1. EXACT TRAJECTORIES

We recall definitions of various trajectories.

Definition C.1 (Open-Loop Trajectories and Nomimal Trajectories). For a u € U, we define x(¢ | u) as the curve given
by

7X(t | ll) = fdyn(x(tL | u)vu(t))a X(O | u) - Einih
For a policy m = (u], ., KT. i), we define u™ = ct(uf. ), x™(t) = x(t | u™), and x] = x"(¢).

Similarly, we present a summary of the definition of various stabilized trajectories, consistent with Definitions 2.1 and 4.4.

Definition C.2 (Stabilized Trajectories). For 1 € U and a policy 7, we define continuous-time perturbations of the
dynamics with feedback

Xt | @) = x(t | a™c), a™ (¢t |n) = at) + Kt (Xt | @) — Xp (1))
there specialization to discrete-time inputs ¢ € U
X(t | @) := X"t | ct(@)), AT(t]T) = a"t (| ct(n)),

and their discrete samplings

xj, (@) = X"ty | @), wg(¥) :=a"(t | 9)

C.1.2. TRAJECTORY LINEARIZATIONS

Definition C.3 (Open-Loop Jacobian Linearizations of Trajectories). We define the continuous-time Jacobian lineariza-

tions )
x| a) = x(t | u) + (Vax(t | u)’u:uﬂ,ﬁ —u")z,w)

. . (C.1)
0x1*(t | wya) :=x"*(t | wyu) — x(t | u)
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Definition C.4 (Closed-Loop Jacobian Linearizations of Trajectories, Discrete-Time).

XTI @) =X u) + (VX TN ([ 0)] e B = 0T £y )
A"t | @) =A™t | u) 4 (Vea ™ (¢ | |, a—u") ©2)
We further define the linearized differences
SX™I(t [ @) = X™(t [ @) — x7(¢), STt | w) := 0™ (¢ | 1) — u"(t) (C3)
Definition C.5 (Jacobian Linearization, with gains, dicrete Time). Given 4 € U, we define
fcz’jac(ﬁ) = x5 (@) + (Vuxi (¢ ﬁ)|‘7:‘lfzx’ﬁ —ul ) c
A () = 0 () + (VA (¢ | W)y 00T 2 '
We further define the linearized differences
SXp(T) = 2p(R) — xF,  SEpI(R) == ap T (T) — uf (C.5)

C.1.3. JACOBIAN LINEARIZATED DYNAMICS

We now recall the definitions of various linearizations, consistent with Definition 4.6.
Definition C.6 (Open-Loop, On-Policy Linearized Dynamics). We define the open-loop, on-policy linearization around a
policy 7 via

a1(t) = O fayn (X7 (8), 0 (1)),  BG(t) = Oufayn(x"(2), u"(2)).

Definition C.7 (Open-Loop, On-Policy Linearized Transition, Markov Operators, and Discrete-Dynamics). We define the
linearized transition function ®(s,t) defined for s > ¢t as the solution to <L®7(s,t) = AT (s)®(s,t), with initial
condition @7, (t, t) = I. We discretize the open-loop transition function by define

tet1
K= @5(teen ), Bie= [ @5t s)BE ()
s=t
Definition C.8 (Closed-Loop Jacobian Linearization, Discrete-Time). We define a discrete-time closed-loop linearization

th+1
AT = AT, + BT KT = B (ty1, ) + / B (1141, )BT ()KT,

s=t

and a discrete closed-loop transition operator is defined, for1 < ky < ko < K+1,87, . =A%, -Al . o AT,
with the convention €7 , = I. Finally, we define the closed-loop markov operator via ¥, ;. . := ®g 1, 1, +1Bo1, for
1<k <k <K+1.

Definition C.9 (Closed-Loop Jacobian Linearizations, Continuous-Time). We define

™ (5,1) = D7 (s,t) s, t €Iy
9 L z T
¢ @cl(sa tkz) ! égl,kg,kl ’ (I)gl(tlirlv t) le Ikl?‘s € Ikw ko > ka1,

where above, we define

BT (5. t4) = BT (5. 1) + ( / 7 (s, )BT (')ds)Ky..

s'=ty

Lastly, we define
als:t) = ®4(s, t)B(t).
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C.2. Characterizations of the Jacobian Linearizations

In this section we provide characterizations of the Jacobian Linearizations of the open-loop and closed-loop trajectories.

Lemma C.1 (Implicit Characterization of the linearizations in open-loop). Given u,u € U, define du(t) = u(t) — u(t).
Then,

%5)&“(75 | G;u) = A(t | n)dxI*“(t | w;u) + B(t | u)du(t)

with initial condition 5x72¢(0 | 1) = 0, where

At|u) = 8zfdyn(x,u)| and B(t|u) = 0y fayn(z, u)|

r=x(t|u),u=u(t) z=x(t|u),u=u(t)’

Proof. The result follows directly from Lemma C.8 and the definition of 6x/2¢(¢ | @; u). O

Lemma C.2 (Implicit Characterization of the linearizations in closed-loop). Given a policy m and @ € U, set du™(t) =
u™(t) —u(t) . Then, recalling $X™32¢(t | @) = X™2¢(¢ | 1) — x" (1),

%6)~(Tﬂjac(t | ﬁ) = gl(t)éi‘rr,ct@ | ﬁ) n Bgl(t)éﬁ”’jac(t)

BUTI 1= §UT (1) + K () 5K (o) | ),

with initial condition 8x™1%¢(0 | @) = 0.

Proof. The result follows directly from Lemma C.8 and the definitions of §X™J2¢(¢ | ) and the construction of the
perturbed input du72°, O

Lemma C.3 (Explicit Characterizations of Linearizations, Continuous-Time). For a policy m, we have:
_ t
dxI(t | u™ + du;u™) = / ®7\ (¢, 5)Br(t)du(s)ds.
s=0

t
§X™ (¢t | u™ + Su) :/ ®\(t, 5)Bg)(s)du(s)ds.
s=0

Proof. The first condition follows directly from the characterization of the evolution of 6x2°(¢ | 1i;u) and Lemma C.8.
For the second condition, we will directly argue that the proposed formula satisfied the differential equation in Lemma C.2.
By the Leibniz integral rule we have:

([ encomgosas) = [ (@nw B )i+ @50 0s)
= [ (#a0 0By )as + By 0800,

Using the expression for ®7,(¢, s) in Definition C.9, we can similarly calculate:

L®N(t,s) = AL ()R (L, 5) + By (H)Ke @G (trr), 5)-

Together the precding quatinities demonstrate that:
t t
4( [ e omiess) = an0- ([ au 9B ) + B0

=0 =0

tr(t)
TR, ( / <I>$<t7s>B§1<s>6u<s>ds)7

=0

which demonstrates the proposed solutions satisfies the desired differential equation. O

29



Learned Locally Linear Models for Nonlinear Policy Optimization

Lemma C.4 (Explicit Characterizations of Linearizations, Discrete-Time). For a policy w, and perturbation duy.x € U,

k-1

Jac _ T o T T ]

63" (uflpe + Buaar) = D W ;805 = ) 8 541BT) ;00
— =

Proof. The proof follows directly from Definition C.9, Definition C.8 and Lemma C.3. O

C.3. Gradient Computations

Lemma C.5 ( Computation of Continuous-Time Gradient, Open-Loop). Fix & = ¢&".  Define Qf,(t)
9y Q(x™(t), u™(t),t). Then,

VI )(0)]y e = QO+ [ BB

and
T .
(VI (@) (1) ey 1) = / (Qi(1), du(t)) + (Q7 (1), 0x*(t | u + du)))dt
0
Proof. For a given perturbation du, by the chain rule we have:

T
DJr(u)[su] = / (QE (1), 8u(t)) + (QE(8), 85 (¢ | u + 5w)))dt + 9,V (x7(T)), 55 (T | u+ )
0
Because du is arbitrary, an application of Lemma C.3 demonstrates the desired results. O

Lemma C.6 (Computation of Continuous-Time Gradient, Closed-Loop). Fix & = ¢7.  Define er_) (t)
9 Q(x™(t), u™(t),t). Then,

VIr(m)(t) := Va7 ()| ,_ . (1) = Q5(t) + TH(T, 1) " (0, V (x™(T)))
T
/ L Q3 (s )d3+/ W7 (ths), t)  Kis) TQR(s)ds
S=lk(t)+1

Proof. The proof follows the steps of Lemma C.5, but replaces the open-loop state and input perturbations with the appro-
priate closed-loop perturbations, as defined in Lemma C.3 and calculated in Lemma C.2. O

Similarly, we can compute the gradient of the discrete-time objective. Its proof is analogous to the previous two.

Lemma C.7 (Computation of Discrete-Time Gradient).
(VIF () = TQu(XZ, s te) + (¥ cge)  Va(xign)

+7T Z cl,jk (Xj 7uj7t ) (K;)TQU(XJ 7uj’t ))

j=k+1

Moreorever, defining the shorthand 5x Jac = 0%}’ Jac(u’f:K + duy.k),
(Surre, VI7 4 (m))

K
= (0:V (xfc41), 0% Jac> Z@ Q(xg,uf, tk), 5~Jac> + (0uQ(x5, ug, tr), Suy +Kk5XJaC>~
k=1
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C.4. Technical Tools

The first supportive lemma is a standard result from variational calculus, and characterizes how the solution to the controlled
differential equation changes under perturbations to the input. Note that this result does not depend on how the input is
generated, namely, whether the perturbation is generated in open-loop or closed-loop. Concretely, the statement of the
following result is equivalent to Theorem 5.6.9 from (Polak, 2012).

Lemma C.8 (State Variation of Controlled CT Systems). For each nominal input u € U and perturbation du € U we
have:
(Vax(t | u), du) = dz(t), (C.6)

where the curve 6x(-) satisfies:

%51‘@) =A(t | u)dz(t) + B(t | u)du(t), (C.7

where we recall that:

A(t | u) = 8acfdyn(-rau)‘ and B(t ‘ u) = aufdyn(-r7u)‘

r=x(t|u),u=u(t) z=x(t|u),u=u(t)"

Moreover, we have
t
dx(t) = / ®(t,5)B(s | u)du(s),
s=0
where the transition operator satisfies %@(t, $)=A(t|u)® and (s,s) =L

The following result is equivalent to Lemma 5.6.2 from (Polak, 2012).

Lemma C.9 (Picard Lemma). Consider two dynamical %y(t) = ¢(y(t),t), i € {1,2}, and suppose that y — ¢(y, s) is
L-Lipschitz fo each s fixed. Let z(t) be any other absolutely continuous curve. Then,

Io(0) = 2001 < expier) - (10) =20+ [ 15:566) = .91

s=0

Lemma C.10 (Solution to Afine ODEs). Consider an affine ODE given by y(0) = yo, Sy (t) = A(t)y(t)+B(t)u. Then,

Mﬂ=¢@®m+</¢@$3@®)w

where ®(t, s) solves the ODE ®(s, s) = Land S®(t,s) = A(t)®(t, s).
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D. Taylor Expansions of the Dynamics
D.1. Proof of Proposition A.5

Recall duy, = u; — uf, and define u = ct(uy.x) and du := ct(u]. ;). We define shorthand for relevant continuous curves

and their discretizations: ~ R
y(t) =x"(t [ u” +du) = x"(t [ u")

yi = y(te) = x5, (ul.x + dur.k) = Xf; (u1:x) (D.1)
yIe(t) = KT [ uT + du), ¥ = yI*(t)
We also define their differences from the nominal as
Sy(t) = y(t) = x7(t), Sy"°(t) =y () — x"(1), Syx=yr—xF, Sy) =yl —xf.
And the Jacobian error
ejac(t) — y(t) _ yjac(t), e;’ﬂac = ejac(tk) =y — Y;cac~
jac

The main challenge is recursively controlling ||e;;
(the first equality) and (the second equality):

||. We begin with a computation which is immediate from Definition C.1

Lemma D.1 (Curve Computations). Fort € Ty,

d
S y(6) = Fapn(y(8).0F + s+ K7 (53)
Cyme(t) = SxT(0) + A8 (1) + B(1) (o + Ki(351))

Computing the Jacobian Linearization. The first step of the proof is a computation of the Jacobian linearization and a
bound on its magnitude.

Lemma D.2 (Computation of Jacobian Linearization).

k—1
VIS = D kB0 = ) W0y (D.2)
Jj=1 j=
Therefore,
max {|y}*’[| < LoiLy min{Bafix 2, Bookin,1} (D.3)

ke[K+1]

Proof. Eq. (D.2) follows from Lemma C.6. Eq. (D.3) follows from Cauchy Schwartz/Holder’s inequality, and the bound

IB%) Il < TLolLy due to Lemma L.3. O

Recursion on proximity to Jacobian linearization. Next, we argue that the true dynamics y(¢) remain close to y32°(¢).
We establish a recursion under the following invariant:

ac T T ac 3
922V llysll V I1wf + Swr + KF (Syi) || V [[uf + wx + KR (8y7°)|| < 7 Bteas

o 1 1 (D.4)
mind ———, —

- 16LfL7T7 8k

We prove the following recursion:

Lemma D.3 (Recursion on Error of Linearization). SupposeEq. (D.4) holds. Let @Clyﬂ(t,tk) = ®7(t,tr) +
(fst:tk ou(t, )BT (s)ds)KT. Then, the following bound holds:

su’pC) lei2e(t) — i’cl,ﬂ(t, tr)e JacH < Myt (4||6m<;||2 +20L2 ||e3a°||2 +20L2 HyjaC y;@HQ) )
te

In particular, we have

ey — Aol < My (45w + 2012 €2 + 2012 y7 — yu )
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To do prove Lemma D.3, we introduce another family of curves y;’f“(t), defined for ¢ > t;, which begin at y(¢x) but
evolve according to the Jacobian linearization:

d ~ jac
&Y}g (t)

S (1) + ARDSYL(E) + B (1) (Sue + K (5y)
() = y() =y, Sy(0) = yI() — x7(0).

We begin by establishing feasibility of all relevant continuous-time curves on the interval Zj,.
Lemma D.4. Suppose that Eq. (D.4) holds. Then, for all t € I,

572 @IV Iy @IV Y2 (O] < Rieas:

Proof. Let us start with y(t). Define the shorthand @, := uf + duy, + K} (8yy), so that Ly (t) = faya(y(t), ur). Under
Eq. (D.4), [[ts]| € 2Rieas- Att = ty, |y(t)|| £ 2 Rieas. Moreover, if at a given ¢, ||y (t)|| < Rpeas, then (y(t),uy) is
feasible, so || Ly (t)|| = || fayn(y(t),U)| < ky. Thus, letting ¢, := sup{t € Tk : ||y (t)|| < Rpeas}, We see that if
T et =

~ jac

The arguments for §73°°(t) and yJ32°(¢) are similar: if, say, ||§3°(t)|| < Rifeas for a given t € Zj, then by

d . jac d T T . jac T
15321 = %7 () + AG ()83 () + BG (t)us]

< ry+ Ly (18520 + l[uxl)
<ky+ 2RfeaSLf.

jac

where above we use Eq. (D.4) to bound ||uy || < Rieas, feasibility of 7. As [|5y;°° ()] < %Rfeas, integrating (specifically,
again considering ¢, := sup{t € Zx : [|[¥3°°(t)|| < Rieas}) shows that as long as T(ks + 2L Rfeas) < Rreas/4s
[172%°(t)|| < Rfeas for all t € Zy,. For this, it suffices that T < min{%Lf7 1/8k ¢} O

We continue with a crude bound on the difference 5y3°(t) = y1*°(t) — x (t).
Lemma D.5. Suppose Eq. (D.4) holds all t € Ty,
1897 ()l < (TLot Ly ||8ugl| + Lot(1 + tLx Ly) || 8yx]))
Similarly,
18y (0] < (TLorLyslIdur|l + Loi(1 + TLx Ly) |8y |)-
Proof. Then, Picard’s Lemma (Lemma C.9), feasibiliy of 7 and Assumption 4.1 implies that, for any ¢ € 7,
18737 (D)| < exp((t — te)Ly)es

where

t
€1 := ||yl +/ Bo1(t) (duy + Ki(Oyx)) [|ds

S:tk
tht1 )
< |18yk]| —|—/ Ly (]|oug| + ||Kz 0yxll) (Assumption 4.1)
s=ty,
< T(Lg||dup||||dug || + L Ly ||dykll), (Definition 4.7)
Bounding exp((t — tx)Ly) < exp(tLys) = Lo concludes the first part. The second part follows from a similar argument,
using Lipschitzness of f4y, in accordance with Assumption 4.1, and the feasibility of (y(¢),u] + duy + K} (8y;°°)) for
t € 1y, as ensured by Eq. (D.4) and Lemma D 4. O

We are now ready to prove Lemma D.3.
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Proof of Lemma D.3. Observe that, for ¢ € 7,

i(yi“(t) —yI() = AR (FL(8) — y22(1) + BHOKE (3 (t) — ¥ (k)

By solving the affine ODE define y Jac( ) — yJ32¢(¢) (applying Lemma C.10), and recalling all various defintions,
L) = y24(0) = @ (b ta) ( () — y7*(t))- (D.5)

We now bound y Jac (t) — y(¢). By applying Picard’s Lemma (Lemma C.9) and Assumption 4.1 with Lo} = exp(tLy) to
control the L1psch1tz constant contribution, and using the agreement of initial conditions kaaC (tx) = y(tr),

t
5550 -y Ol < Lo [ Aw)]ds, D6
s=ty
where

. jac T T d - jac
A(S) = fdyn(yi (S)auk + 611k + Kkéyk) ds yi (8)

By a Taylor expansion, we have

A(5) = FaynCe"(3),8T) — CFA5(5) + O agn (7 (5), )81 (5) + Dufayn (<" (5), wT) (Sue + KBy

1
+ §remainder,
where we bound

[[remainder(s)|| < sup 12 fayn (@x7(s) + (1 = @)y3™*(5), auf + (1 — a)(uf + dug + Kfdy))||
agc|0

(I8yLe ()1 + 15w + Kzsykn?) :

From by feasibility of r, |[uf || V [|x™(s)|| < Rfeas- T+ Suy, + KI6y|| < Reeas by Eq. (D.4) and [|y;2(s)]| <

Rieas by Lemma D.4. Thus, for @ € [0, 1],

lax™(s) + (1 = @)y (s)I| V flowf + (1 — a)(uff + Sug +Kidyx)l| < Recas.

Hence, as ||V? fayn(z,u)|| < My for feasible (z,u), Assumption 4.1 implies

[remainder(s)|| < My ([|8y32(s)||* + 2|[8ux||* + 2L2||8yx||?) (AM-GM and Definition 4.7)
< My (II(LolLleléukII + Lol(l + L L) [8yx])|I* + 2[[8ur|* +2L7]|8yx[*)  (ALemmaD.5)
< 2Mj (L3 L7 |1 8ug|®) + L2(1+ Ly L) ?||8ykll® + [[8usl|? + L [|18yx %) (AM-GM)

=2M; ((1+7 L21L2)H5uk|| )+ (L7 + Lai (1 + 7L Lx)*)|Syl|?) -
Finally, we conclude by noting that

Jayn (X" (s), uf)
+ O fayn (X7 (5), 078377 () + Bufayn (X" (5), uf) (Sur. + K y)

= X7 (5)  AT(5)SE(5) + BI(3)fayn (<7 (), ) (Bug + KT8ya) = = 91(5),

so that
A = éllremainder(S)H < My (14 L4 L})||8ugl®) + (L2 + L1+ TLsLr)?)|18ykl?)
< My (14 202L5) 18wk ]|?) + (L2 + 2(1 + TLsLx)?) |1 8yx 1)
(t < 1/4Ly, so Lgl <2)
< My (2||8ug|®) + (L2 +4)||6yx||?), (againT < 1/4Ly, and whenast < 4/L¢L;)
< My (2/|8ux®) + 5L2 | 8yl) (Lr > 1)
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where in the last line, we use T < 1/4Lf, SO Lgl < 2. Hence, from Eq. (D.6), for all t € Z,
132°°(8) = y ()| < tLaMyMj (2]|8u]|?) + (L2 + 4)18yx ) -
< 2Mp (2[|8ug]|?) + (L2 + 4)[18y(1?)
= Myt (4]|8ug||*) + 10L2 [|dyx|?) -
where above we bound L, < 2 again. And thus, from Eq. (D.5),

Iy(6) = ¥725(8) = Ber.a (b, 1) (7 (11) — ¥ (8] < My (4lowe]|?) + 1022 54%)
< My (4]8u]?) + 10L2 153 — v l?))

< 20Mv (4l15up | + 2012 8y3°|12 + 20L2 3 - yul1?)
Substituing in e]*° := yj, — y1*° concludes. O

Solving the recursion.  To upper bound the recursion, assume an inductive hypothesis that, for some R to be chosen

mggnei“ll <R, and Vj <k, Eq.(D.A4)holds. (D.7)
1=

C

Note this hypothesis is true for £ = 1, where eJa = 0, and all terms in Eq. (D.4) coincide with (xT, uT), which is feasible.

Now assume Eq. (D.7) holds. Define

_ AT jac

v '*eja e
k= k+1 clLk¥k >

and note that Lemma D.3, followed by our induction hypothesis, implies that for ¢; = 4 and c; = 20L2,
Il < ey (415uel)® + 20L2 )2 + cally}|?)

< TM; (4H5uk||2 + 20L2R? + 20L2 [[y3*° |2 ) .

By unfolding the recursion for v := ;%" — AT} L€, we have

jac jac
&1 = Vi + A pey

— ™ ™ T jac
= I v+ Agk Ve—1t+Agihcg—1€L_1
g ————

—sm ~—~
. g T
chk+1l.k41 =20 kt1,k =0 kt1,k—1
k+1
— y T jac
= E @l k+1,Vk T ®cl ky1,101
— —_——
J -0

Thus, under our inductive hypothesis, recalling Bs := T||du1.x ||%2, and B, := Tmaxy, ||duy ||

bl

k+1
llerill < My Z 183 k1,5l T(ca[[8ur ]l + c2R? + co|y2™|1%)
< 4Mf mln{/fmocBQ,/imle b+ 20MfL2 K1 (R? + max ||yJa°|| )
< AMpmin{ky oo B3, kn1 B2} + 20M L2k 1 (R? + LQIL min{ Bakir 2, Bookin1}2) (Lemma D.2)
< AMymin{ B3 (K oo + DL L L2 gkin 1), B2 (kr 1 + BLEL% L3KS 1)} + 20M L2 kr 1 R?.
< AMy min{ B3 (K o0 + 10LE LTk okir 1), B3 (Kr + 10L2 L5362 1)} 4 20M s L2 kr 1 R?,
where in the last step we use T < 1/4L  to bound L2 < 2. Hence, if we select
R = 8Mjy min{ B3 (kir 00 + 10L2 L} K2 gfix 1), B3 (r1 + 10L2 L3RS 1)}
= mln{BQMtay,z,ﬂ, BooMtay,inf,W}7
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where we recall

Miay,2,7 := 8M(kir,00 + 10LIL}KS ghir 1)
Mtay inf,r ‘= 8Mf(l‘€ﬂ— 1+ 10L Lfli

T,1

we get

R
2ol < 5 +20Mp L2k, R

jac <
el < 5

Thus, if R < it holds that

40M ¢ L2 ’
||e)];§1|| é min{BSMtay,Z,ﬂ'v BgoMtay,infﬂr}‘

Lastly, for the condition R < to hold, it suffices

1
20M;L2 km 1

1 1
B3 B2 < D.8
2= 40MfL K 1Mtay,2,ﬂ" Of Poo = 40L ahr 1Mtay inf, ( )

Notince that these conditions are met for B2 < B2 Moreover,

tay,q,m*

jac jac

1¥e+1 = x5l V vy — x5l < vk — Yk+1\| + i — %k

= J]::l | + || Zécl k+1,j+1B01,j6uJH

k—1
< min My g,x B§ + Z 831 k+1,5+1B01, ;04 |
q€{2,00} =
< r{nln }Mtdy% B + LolLy min{Bakr 2, Bookr1} (Lemma D.3)
qe{2,00 '
Ian{BQ( OILfHﬂ,2 + Mtay,2,7'rBZ)a Boo(LolLfﬁrr,l + Mtay,inf,ﬂBoc)}
min{B2(1-5LfoTr,2 + Mtay,Q,wBZ)a Boc(1~5Lf”€7r,1 + Mtay,inf,TrBoo)}
(Lot < exp(1/4) < 1.5)

Hence, By < 1Lfkro/Miay 2~ implies ||yk+‘1 — x5 IV Iy — %kgall < 2Lgkr 2By = Liay2.xBs, and By <
2 Lfkr1/Miay,int, implies Iyer1—=25 1 VIV =%kl < 2Lgkx1Boo = Ltay,c0,x B2. Combinining these conditions
with Eq. (D.8) implies we require By < Biay ¢,x, Where

B 1 Lf,‘i,T 2
2 =
T \/4OMfL KR lMta.y 2,7 2]\41;ay,2 ™
. 1 Lfli,r 1 }
By inf.r < mln{ , :
tays it 40L3‘—Kfﬂ',1Mtay,inf,7T 2]\4tauy,inf,7r

Lastly, we need to check that the feasibility invariant Eq. (D.4) for £ = k£ 4 1 is maintained. Under the above conditions,
it was shown that

jac

10y k41l V H5Yk+1|| = ||yk+1 — Xg+1|| v ||Y}]ca~f1 - Xg+1” < Ltay,q,xBqg-

1 Rfeas Rfeaa 1
Hence, if B, < Y < T for either ¢ € {2, 00},

jac

1921 1V gkl < N2l + Liay g7 Bg <
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. R'cas . R.Cas
Moreover, if B, < m for either ¢ € {2, 00}, and B, < ~eoe,

uk1 + Owrtr + Ky q (Oynt 1)V [[ufyq + dupta + K7I:+1(6y;::1>”

< gl + 180k 2 (KT 118y k2 | V 1183255 1)

R eas R eas 3R eas
< fT + H5uk+1” + Lﬂ'Ltay,q,ﬂ'B2 < fT + Boo + Lthay,q,ﬂ'B2 < i .

This concludes the demonstration of Eq. (D.4) for & = k+ 1. Collecting our conditions, and recalling Liay 2 » = 2Lk 2,
and Liay oo,r = 2Lk~ 1 we have show that if we take B; < Biay ,x, Where

B s 1 Lfliﬂ72 Rfeas
tay,2,m — min 3 ) )
\/40MfL7rKf7'r,1Mtay,2,7r 2Mtay,2,7r 16L7TLfK/7r,2
B e = min { 1 Lf’@r,l Rreas }
tayintm 40L72r/f7r,1Mtay,inf,7r’ 2J\4’tay,inf,ﬂ'7 16L7rLf/<57r,1

and B, < %, then

lyr+1 — Xerl” \ ||Yii-cl - X7kr+1|| < Liay,q,x B2,

and

jac jac

130 = ¥kt = YE5L I < Miay.gon B2.

In addition, we have show that [|yxi1]| V [[uf, | + 8upt1 + KT, | (87k+1)|| < 3 Rteas. This concludes the induction.

Substituing in y; = X} (u1.x) and using the computation of y;:jfl in Lemma D.2 concludes the proof of the pertubation
bounds. Moreover, the fact that Eq. (D.4) holds for all &, and consequently the conclusion of Lemma D.4 establishes the
norm bounds ||X7 (u1.50)|| V [|8f (ur.r0)|| < 2B and [|X7 (¢ | ui.x)|| < Rieas-

O
D.2. Taylor Expansion of the Cost (Lemma A.6)
Proof. Recall the definition
K
mdisc =y ST = ST (2 ST (=
Tr (@) =V (eq (8) + 7 ) QEL (8), 87 (@), tr).
k=1
Define the shorthand
oxy =% (dur.x +ul.x) — X1
éfc%ac = iZ’jaC (bur.x +ul.x)
7r,disc /- 7,disc T
Jp (@) = Tp 7 (durk + ullg)
K
=V (&G + 8%xr1) = V(xeyr) + T Q(xf + 8%k, Sug + K%y + uf, tx) — Q(xF, uf, tx)
k=1
Notice that Proposition A.5 and feasibility of 7 implies that
[k + 0%k [lIxE [l V [dur + Kek|| V [[ui || < Ricas (D.9)
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Hence a Taylor expansion and Assumption 4.2 imply

V(g + 8% h41) — V(K ry) — (0aV (X544 ), 55°))|

IN

3,2 1022V (xR 41 + @8Fre ) 18% a1 17 + (00 V (%G 1), 8F 1 — 8%R51)|
aec

Mcost

I /\

2 18% k41117 + Leost || 8% 1 — 5XK+1||

Similarly,

‘Q(Xz + 0%y, duy, + Kgéikatk) - Q(Xgau27tk) - <81Q(ngu27tk)v 65(jkac> - <8uQ(Xzau;cratk) duy + Ky 6% Jac>
!memmw&?wumemmwmwﬂ

+ Mﬁ%MMW+Mw+m&WH)

SLwM1+L>wm—wﬂMn+ Moo (14 2L2)1555)2 + 2 )
S 2L7TLcostH5}~(k: - 6X]aLCH + Mcost (3L2 HekH2 + 2H6uk” ) (L7r Z 1)

Then, from Lemma C.7,

(duy.xc, VIV (u))

K
<8 V(XK+1) 6~Jac> Z<8$Q(szugvtk)76ij}cac> <a Q(Xkaulwtk) duy, +Kk5xjac>'
k=1
Therefore, we have

|TF P (Surge +ug) — TR (T k) — (Surr, VI3 ()

K
cost

M e cn 1 N
< 22|82k 41 lI* + Leost 8% — 8% pall + T Y 2L Leost | 5% — 8% + 5 Meost (BLZ[18%x|* + 2/|5u?)

k=1

T
cost 2 jac =~ 2
< =5 (U4 3LLT) max [18%6]° + Leost (14 2LsT) max 5% —5xk|\+LﬂLcosn;H6uk||
N————’
=B,
Mcost 2 jac
= (1+3L7TT)krr[1aX 1625 |12 + Leost (1 + 2L, T)kr?ax 18%5 — 8%|| + 2L Leost B3 -
€K €[K

From Proposition A.S5,
S 186%5 — 8%k || < Miay2.-DB3

2 < 41242 . B2
L el k2 o B3

Thus,

7,disc T m,disc/ 7w 7,disc
T3 (durk +ul.g) — T (ul.x) — (i, VI ()|l
< (2Meost L7625 (1 + 3L2T) Miay 2.5 + Leost (1 + 2L2T) Miay 2. + 2Lx Leost) B3

=M7 tay,x
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D.3. Proof of Lemma A.7

We begin with the following lemma, which we show shortly below.

Lemma D.6. Consider the setting of Proposition A.5, with B, < min{Byay inf,x, Rieas/8}. Let ' denote the policy with
gains K and inputs u’,;/ = uy = uj, + duy. Then,

K
T AT g — A% 4l S 12TM Lo (1 + LyKy)Boo.
k=1

With this lemma, we turn to the proof of Lemma A.7. Notice that, as m and 7’ have the same gains, L, = L,.. Therefore,
following the proof of Lemma A.1 (see, specifically, the proof of Claim G.7), we have that for [|AT , —I|| and [|A7, ;, —I||
are both at most  := 3TLy L, fort < 1/6Ls L.

Let us now construct an interpolating curves X (s) with X;(0) = A7, and Xx(1) = A;rl: «» and define the interpolating
Lyapunov function

AK+1(S) =1, Ak(s) = Xk(S)TAk+1Xk(S) + I,
Define

K
A =3 sup max{l,2x} Z 1%5.(s) |
s€[0,1] k=ko

K
= max{l, 2x} Z 1AG % — Acxll
k=ko
K
=max{3,18L; L~} Z [Adk — Adkll-
k—ko

and recall the the shorthand ||Ag,: k11 (8) |max,op = MaXke[ky:k+1] [[Ax(8)]|. Then, aslong as [ A, +1(0) lmax,opd < 1,
Lemma F.13 (re-indexing to terminate the backward recursion at kg instead of 1) implies

[8kg:k+1 (1) lmaxiop < (1= [1Akg:rc+1.(0) lmax.op ) ™ | Akg:c+1.(0) [lmax op-

We see that [|A,:x+1(0)[lmax,op = HA;CTO:K-HHmax,Op = Kz and [[Agg:x+1(1) [[max,op = HAQ;:K-&-leaX’Op = Hr’ %
Thus, combining with the inequality (1 — z)~! < 1+ 2z for z € [0, 1/2], we have that as long as Ay, , < 1/2,

M’ % < (1 + QA,U/Tr,*)Mﬂ',*-

Lastly, we can bound

K

2Apr = max{6,36LLr}pir Z ||A<’5/,k - Agl,k”
k=ko
<max{6,36L L} ir - 12TMs Ly (14 Ly K,)Bs Bs. (Lemma D.6)
:=1/Bstab,~

In sum, for Bo, < Bstab,x, We have pir .« < (1 4+ B/ Bstab,x ) or «» Which concludes the proof.

Proof of Lemma D.6. Due to Proposition A.5, and the fact that x™ (t) = X™ (¢ | uy.x) and u™ (t) = Uj () (u1:x ), we have
that

vt e [0,7], |x @)V [[a™ @) < Recas- (D.10)
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Moreover each initial condition & with norm ||€[| = 1, we have that from Lemma C.10 and the definitions of A7, , , AT, ,
from Definition C.8 that

(A — Ad k) = 22(7) — z1(7),
where
25(0) = 2.(0) = &,
and where $z5(t) = AT (ty + t)2za(t) + BT, (tx + t)Ki&, and where Lz1(t) = AT\ (ty + t)z2(t) + BT (t + 1)K

By the Picard Lemma, Lemma C.9, and by bounding || A7 (¢)|| < L by Eq. (D.10) and Assumption 4.1, it follows that
T
(AL — Adr)€ll < eXP(TLf)/O (A&t + 1) = AG (ke + D)l lz1 (O] + 1B (ts +¢) — BG (e + IRk [II€])de

T
< exp(TLf)/ (I1AG (e + ) — AG (tx + Olllz2 (O + 1BE (8 + 1) — BG (E + 1) L )dt
0

Set Loy = exp(tLy). Following the computation in , we can bound sup,¢o . [|z1(¢)|| < [[A7
provided T < 1/4L ¢ Ly (recall we assume L, > 1). Hence,

| = %8 kell < 5/3

T
w’ i 5 ’ by b T
1(Ady — AdR)EN < Lol/o (A%t + ) = Ag(te + Ol + 1By (8 + 1) =BG (8 + )| Lr)dt

Finally, by the smoothness on the dynamics Assumption 4.1 and invoking Eq. (D.10) and feasibility of 7 to ensure all
relevant (x, u) pairs are feasible, we have

AT (t + ) = ATtk + )| = [0 Fayn(X™ (£), 0™ (£)) = O fayn (X7 (1), 0™ (1))
< My (|l (5) = x" (@) + [la™ (£) = u”(£)) ]
< My (% () = x" (1) + 15wl ) -
Applying a similar bound to the term || BT, (), + t) — BT, (¢, 4 t)]|, we conclude

7 ’
1A%, — Akl < sup = [[(AG x — Agk)El

< Laddy (3 + L) | (10 =570+ ]

5 ,
< tLaMy (3 + Lx) ((1 + TLotL ) |[8ug]| + Lot(1 + Lo Lp)|[x™ (1) — x“(tk)) (Lemma D.5)

5 5L 5 /
< TLOle(* + Lﬂ—) ( ol ||5uk|| + ZLOIHXﬁ (tk) — Xﬂ(tk)) (Lo >21,t< 1/4LfLTr < 1/4Lf)

3 4
5L% 5 o _
= oM (5 + L) ([8uel] + 1 (1) = x7 (1))
5et/2 8 ,
=My 2 2 L (8wl + 7 (0) = (8] (Ly > 1,tLy < 1/4)
< 6tM; L (8 + %™ (t) —x7(t) )
< 6TM ¢ Ly (||dug| + 2L ¢kr1Boo) - (Proposition A.5)

Summing the bound, and using Kt = T, we have

K K
Z ||A<T;r1/,k = Ad il <6MyLr (TZ [[du|| + QTLf"frr,lBOO>
k=1 k=1

<6MfL; (KtBo +2TLfkr1Bs)
< 12TMfL7r(1 + Lf/ﬁ),r,l)Boo.
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D.4. Proof of Lemma A.8
Proof. Using Condition F.3 and and 1 V ||Kg|| < L,

(VT ()l < Tl Qu (s w817 + 198 seg1,0e) T Ve (R
K
T D (00 T (Qa(x] 0] ) + (KT) T Qu(x], 0T, 1))
j=k+1
2

K
< TLCOSt + TH\I’gI,KJrl,kHL?ost + 2L72TLgost T Z H\I’gl,j,k:H

j=k+1
Using T < 1/4L; and Lemma L3, we can bound [|¥7 ;.|| = 187, ;11B0kll < TLysexp(TLy)||87) ; piall <
TLyexp(1/4)[|27 ; 111l As exp(1/2) < 3/4, we conclude that
2
. 3 K
||(v'~77(“hsc(77))k“ < Theost + §T2Lchost +3TLrLeost [ T Z ||q>7crl,j,k||
j=k+1

3 s
S TLcost + §TLchost||q>cl,K+1,k+1|| + 3L7TLCOStK/7T71-

Using ||‘1’<7:T1,K+1,k+1|| < Kr,cogives the boudn ||(Vj}“sc(7r))k|| < Tleost(1 + %Iiwm +3Lrkr1) = Ly oo O

E. Estimation Proofs
E.1. Estimation of Markov Parameters: Proof of Proposition A.9

We begin with two standard concentration inequalities.

Lemma E.1. Let (y;, i, w;)"_, be an independent sequence of triples of random vectors in with y;, x; € R%, w € RY
and suppose that y; | s, w; ~ N (z;,0%1y) and max; ||w;|| < R. Then,

IP[ < Ra\/2~ dlog5+log((d’+1)/5)] S1-4

N
Proof of Lemma E.I. By astandard covering argument (see, e.g. Vershynin (2018, Chapter 4)), there exists a finite covering
T of unit vectors z € R such that (a) log | 7| < dlog5 and (b), for all vectors v € R?,

1
N Z(yi — Ti)w;
N i=1

[[v]] < 2sup(v, z).
z€T

Hence,

N

% Z<Z»yz — ) - w;

i=1

< 2sup
z€T

= 20 sup , (E.1)

z€T

LN
N > &i(z) - wi
i=1

where above we define &;(2) := o0~ 1(z,y; — x;). Notice that &;(z) | w; are standard Normal random variables. Thus, by
standard Gaussian concentration (e.g. Boucheron et al. (2013, Chapter 2)),

N /
IP’[ }V;gi(z)wi gR\/zbg((dAfl)/‘s)] >1-4.

Hence, union bounding over z € T, bounding | 7| < dlog5, Eq. (E.1) implies the desired bound.

P[ SRU\/leog5+1og((df+1)/5)] S

op

1 N
N ;(yi - xi)wi N
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Lemma E.2 (Assymetric Matrix Hoeffding). Let X1,..., X, be an independent sequence of matrices in R%>*92 with
| X:]| < R. Then,

1
P|=
N

> Xi - E[X]

Proof of Lemma E.2. By recentering X; <+ X; —E[X;], we may assume E[X;] = 0 and || X;|| < 2R. Define the Hermitian
dilation

Then

V2 _ {XiXiT 0

i 0 XZTXZ:| = ||Xi||2Id1+di < 4R21d1+d2

Applying standard Matrix Hoeffding Tropp (2012, Theorem 1.4) for Hermitian matrices to the Y;’s yields

>y

< 4Ry /2N log( ™1 ;dQ)

P

+2
> t] < (dy 4 dg)e” 32NrZ.
Hence, by rearranging,

P

>1-9

Y Y

As |32, Yill = V2|32, Xill, we conclude

1
P|=
N ||~

K2

O

We now turn to concluding the proof of Proposition A.9. We begin with a claim which bounds maxy, | %, — x7||. Through-
out, d, := max{dy, d,}.

Claim E.1. With probability at least 1 — 6 /3, the following bound holds

dy logh + log(6(K +1)/9)
N

max Iz — x5 || < aorac\/Q < Errz (9).

Proof. The result follows directly from Lemma E.1, with w; = 1 € R for each <. O

Proof of Proposition A.9. Throughout, suppose the event of Claim E.1 holds. We also note that
W) < 0w/du < 0u/dy ass.. (E.2)

This covers the first inequality of the proposition. To bound the error on the transition operator, tet us fix indices j, k; we
perform a union bound at the end of the proof. For each perturbation sampled perturbation w(f:)K, define a perturbed control
input

o) =uf +ul) KO - %), ) =uf +ul) - K.
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and observe that

XMoo (B17%) = % (81%), VK € [K]. (E.3)

orac,k

Hence, we have that y; defined in Line 7 satisfies

v~ N (& (@), 02mcLa,)-
Now, define the terms
S

Lastly, let E,,..[-] denote expectations with respect to the Gaussian noise of the oracle, (conditioning on wgz)K) while E[]
denotes total expectation. We argue an error bound on

_9 N —2 || N
T D) )T  ox T D@ Dyt
S SRR R ) SRRy B
i=1 op =1 >
=Term1
o || N
O @) ()T i) ()T
TS BT Bl
=1 op
=Termy
o al
. i )T ™
e DB T - g
=1 op
=Termg

which essentially bounds the estiation error of ¥7, , . in the absence of observation noise.

Bounding Term;. Applying Lemma E.1 with ng.i) I < V/d«ow, we have that with probability 1 — §/3,

Oorac d* 1Og 5+ 1Og(6(d* + 1)/5)
2d, -

T < ==
ermy < - N
< Oorac \/Zd* ’ d,logh + 10g(12d*/5)'
Ow N

Bounding Terms,. On the event of Claim E.1, then as long as Errz (0) < 04,+/ds«/Lx
8y —ufl = i + KL = )| < 93|+ LaBrra(8) < 0w /de + LaErra (8) < 20,/

Notice that as Errz(6) = 0orac\/2dxt(8)/N, Errs(8) < 0ur/dy/Ly holds for N > (0orac/0w)?2L1(0), i.e. which
holds for when 7 is estimation-friendly.

Moroever, when 7 is estimation-friendly, Biay inf,x > 20/ dx, so the conditions of Proposition A.5 hold. Therefore,

”z](cZ)H S 2Uthay,oo,7r\/d>*~
and thus

19287 < 2,02 Liay oo

Applying Lemma E.2 with X; < z{w\” " with R < 2d, Liay,o,x02,, it holds that with probability 1 — §/3 that

w?

log (24t log(6d, /)
TS < 8Ltay,oo,7rd* — xr -

Term, < 0;2 . 8Ltayﬁoo1ﬂ03}du N
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Bounding Terms . As establish in the bound on Terms, the conditions of Proposition A.5 hold, and ||f1§;’)

20,V d,.. Therefore,
k .

2y = >0 (6 —uf)|| < 402 Miay > d.

Consequently, bounding ||w§-i) | < owds,
1 k
i) (i - (i 3/2
07||Z§€)W§') - Z‘I’cl,k,e(u§) —ug v, )|| < oy Miay2,ndx /

and thus, by Jensen’s inequality,

k
3/2 1 i) (i . i
400w Miay 2202 2 S || D Bl )] = Y B k(5 —uf)w]|
W= _

k
1 i) (i - i - i
= vz I DBl w) = >4 Bl 14+ KE(F — 20)w;]|
woo=1 (=1

k
1 i) (i -
= ¥z ZE[Z;>w§ N-dl D ¥l

HZE () () — 029", ] = Terms.

N2 w *clk,j

In sum, with probability at least 1 — 3§ /4, the following bound holds

_2 N
)T g
3 clk,j

< Term; + Terms + Termg

op

Oorac d* 10g5 + log 12d. lo Gd (S
<= \/ 2d, - ~ S 8Ltay,00m s % + 40 Miay 2,242
1 12d, 9
< 0g 75 Oorac d3/2 + 8Ltay somds ) + 400 Miay 2 7rd3/2~
N Ow

The final bound follows from a union bound over all (I; ) < K2 pairs, and replacing § with §/2n;e;.

E.2. Error in the Gradient (Proof of Lemma A.10)

Recall the definitions

(VT (m)i = TQu(xg, uf, te) + (¥ e) | Va(xi)+

+TZ U7 ) (Qu(xT,uT, 1) + (KT) T Qu(xT,uT, 1))

j=k+1

and

Vi = Qu(xkvukv i)+ ‘I’K+1 Ve (Xx41)

+T Z Qm Xj»u]at )+ (K?)TQu(ij’ug’tj))

j=k+1
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Using V() and Q. (-), Q(+) are all at most L.s; in magnitude, that the gradients of the cost are M_,s-Lipschitz, and
1V [[K7|| < Lz we can bound

I(VTF ()i = Vi

K
< Lcost”‘i’KJrLk - 4’21,K+1,k|| + 2L Leost T Z H‘i’j,k - ‘I’Z:rlng

j=k+1
K
+ Meoss | 1x% = SR+ 1190 e il - 1351 = Reeall + 20 D 188 jallllx — 2]
J=k+1
K
< LCOStErr\I/,TI'((S)(l + 2L7TTK) + McostErr:fc((S) 1+ ”\IJZI,K-&-Lk- | + 2TL7T Z ”\I’érl,j,k ‘
Jj=k+1

< Leost Erry 7 (6)(1 4+ 2L,TK) + MeostErrz (0) (1 + Kr00 + 2K TL K 00)
= LeostErrg (6)(1 + 2T Ly ) + MeostErrz(6) (1 + (1 4+ 2TLr ) 00)
< (LeostErry £ (0) + (1 4 Kr,00) Meost Errz (6))(1 + 2TL,)

:=Erry, - (0)

E.3. Discrete-Time Closed-Loop Controllability (Proposition A.11)

We begin by lower bounding the continuous-time controllability Grammian under a policy 7, and then turn to lower
bounding its discretization. At the end of the proof, we remark upon how the bound can be refined. The first part of the
argument follows (Chen & Hazan, 2021).

Equivalent characterization of controllability Gramian smallest singular value. The following is a continuous-time
analogue of Chen & Hazan (2021, Lemma 15).

Lemma E.3 (Characterization of Controllability Gramian smallest singular value). Let ¥(t,s) € R>*% be an arbitrary
( locally square integrable), and set

A= /t W(t,s)W(t,s) ds.

=t—tctrl

Then, Amin(A) > v if and only if for all unit vectors &, there exists some u¢(s) such that § = fst:tit Y (t, s)ue(s) and

t —
fs:tftctrl ug(s)||? <vl

t
s=t—tctrl

Proof of Lemma E.3. Fix any unit vector £ € R™, define. First, suppose U(t,s)®(t,s) ds > v.

ug(s) = W(t,s)TAIE

One can verify then that

t

t
/ U(t,s)ue(s)ds = AN HE=¢ / [ug(s)|Pds = €A™ - A - AT = EATTE < Ain(A)

=t—tctr1 =t—tctrl
On the other hand, suppose that there exists a control ug(s) with fst:t_t o lug(s)|? < Amin(A)™! such that
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ft W(t, s)ug(s)ds = €. As € is a unit vector, i.e. £ ¢ =1,

s=t—tcer1
_ | T ! )
t
N (/ fT‘I'(tvS)us(S)ds,’)
s=t—tcirl
¢ t

s ([ uolpas)
< ETAE Amin(A) .

The bound follows. O

2

Lower bounding the controllability Gramian until algernative policies. This next part is the continuous-time analogue
of (?)Lemma 16]chen2021black, establishing controllability of the closed-loop linearized system in feedback with policy
.

Lemma E.4 (Controllabiity of Closed-Loop Transitions, Continuous-Time). Recall L, > 1, and ety := max{1, Ltcu1}.
Then, under Assumption 4.4,

t
Vetrl
Wi(t,s)Or(t s)Tds = c .
/S_t_tctrl o o 4Lgrf)/c2tr exp(Q’YCtr)

Proof of Lemma E.4. Fix any & € R% of unit norm. Lemma E.3 and Assumption 4.4 guarantee the existence of an input
ug(s) for which

t

t
/ B (1, )BT (s)ue (s)ds = €, / ue(s)[2ds < vk,

=t—tcer1 =t—tctrl

Let

’

2(s) = [ BT (1.9)BY(s)ue(s)ds.

=t—lctr1

Define now the input

Ue(s) == ug(s) — I{tp(s) >t — tctrl}KZ(s)Zf(tk(s))~
It can be directly verified (by induction on k) that

/ ’
S

2 (1, 9B (s)ue(s)ds = [ (1, )ik (s)ds,

s=t—tctr1

S

Vs' € [t — tewn, t, /

s=t—tctrl
s0 in particular

t

§= a(t; s)ug(s)ds.

s=t—tctr1

We may now bound

[ @ = [ (o) - Heas) > ¢ e} zetu(s)) ) ds

=t—tctr1 =t—tctrl

t
<2 [ (el I et
=t—Tlctrl

t
<2h L2 [ () Pds) ©4

=t—tctrl

We now adopt the following claim, mirroring the proof of Chen & Hazan (2021, Lemma 16).
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Claim E.2. The following bound holds:

Vs' €[t — tewnst],  N|2e(s)]1® < tetnvn L7 exp(2tepLy).

Proof of Claim E.2. We bound

2

’

| oG

=t—tctrl

Iz (s")||* = ‘

’

2
< (/ ||‘I’§1(t75)|||B§1(5)||||u5(5)||d8>

=t—tctrl

’

2
<13 < [ s ||u§<s>||ds) (Assumption 4.1)

=t—tctr1

’

’ 2 s 2
< L% (/ |7 (¢, 3)|2ds> (/ |u5(s)ds> (Cauchy-Schwartz)
s=t—tctrl s=t—1tctrl

t t
<op ([ nencsra) ([ meeas)
s=t—tctr1 s=t—tetr1

t
< w3 ( / ||«1>§1<t,s>||2ds> .

=t—tctrl

By Lemma 1.4, we can bound can bound ||®7,(¢,s)|| < exp(Ls(t —s)) < exp(Ljteu) for s € [t — ten, t], yielding
f;:tit 1251 (t,8)]1* < tewr exp(2L pteen). The bound claim. O

Combining Eq. (E.4) and Claim E.2,

t
I < 20k (14 L2 expl2 sten)
S=1—lctrl
< 2w L2 (14 2L exp(2L ftein)) (Lr > 1)
< 2V<:_t1}1L3r (1 + rYCQtr eXp(Q’YCtr)) (’thr = max{l, tctrlLf})
S 41/(;1}1[’31'702‘51" exp(ZFYCtr% (FYCtr Z 1)
which concludes the proof. O

Discretizing the Closed-Loop Gramian. To conclude the argument, we relate the controllability of the closed-loop
Gramian in continuous-time to that in discrete-time.

Lemma E.5 (Discretization of Controllability Grammian). Suppose Assumption 4.4 holds and © < Ly /4, then following
holds:

th 1 k—1
T T
/ W (th, 8)Wg (t, s) ds — - Z k. (Ye k)
s=tr—tctrl i
]—kfkctrl

op

< 4T’thr"<33r,oo (FLfo + QL?»)
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Proof. Recall the shorthand L, := exp(TLy), used in the discretization arguments in Appendix I. We can write

th k—1
/ U7 (te, s) W7 (te,s) Tds — 1" Z q’217k,j(q'gl,k,j)T
=tk tewm J=h—keun
— et 1 1
T T T T
= Z alt,s)Pg(t,s) ds — p cl,k,j(;‘l’cl,k,j)
. s=t;
j=k—kctr1 J
k-1 1 1
T T
<7 Z max || (t, $) ¥ (th,s) — =¥ 4 i (=¥ 1 )
. SEL; T T
J:k_kctrl
= 1 1
D DR L R e (ORI
]:kfkctrl /
k—1
< 2L Lot > max || Wh(ty,s) — lym (Lemma 1.8(d))
>~ o T,00 ' seZ,; cl ’ T cl,k,j
j=k—kctr1
k-1
<2L¢Lok2 o (KyMy + 2L7) T2 (Lemma 1.8(b))
j:k_kctrl
k—1
<2LpLYkL o (ke Mp+2L3) > T
j=k—kctr1

<2LpL2K2 o (ky My 4 2L7) keen T
= 2Tt Ly LA K2 o (Ky My + 2L7) .

As T < Ly/4, L% < exp(1/2) < 2, so that the above is at most 4Tt Lpk2 (K',fo + ZL?»). Recalling 7eip :=
max{1, e Ly} concludes. O

Concluding the proof.

Proof of Proposition A.11. The proof follows by combining the bounds in Lemmas E.4 and E.5. These yield

k—1
1 Vetrl 2 9
e ¥ (¥aeg) | = < — Koo " 4TYetr (Kp My + 2L
T min j_kz;cm cl,r,g\"cl,k,g 4L727702tr eXP(Q’thr) T,00 c r( f)
Recall yetr = teer1Ly. Hence, if
T< Vetrl ,
SLer‘gr,ongtr exp(Q'thr) ("ffo + 2L?¢>
it holds that
k—1 y
Ami v (e, )T | = ctrl .
min j=I§Ct ) clk,j ( cl,k,J) 8L3r’)/3tr exp(Q%tr)

E.4. Recovery of State-Transition Matrix (Proposition A.12)

The analysis is based on the Ho-Kalman scheme. We begin with the observation that

Yok = Ao kY1, VIi<k.
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To this end, define the matrices

Ck\jz,jl = [‘I’cl k41,52 | ‘I’cl k41,52 —1 | cl k41,510
Then, we have the identity
Crjr—1,5 = A iCr—1]k—1,55

so that if rank(Cy_1jx—1,;) = dx, we have A = Ck|k_17jC,1'_1‘k_1 I where (-)T denotes the Moore-Penrose pseudoin-

verse. We now state and prove a more-or-less standard perturbation bound.

Lemma E.6. Suppose rank(C,_1x—1,;) = dy, and consider any estimates ék|k,17j,ék,1‘k,1’j of Cii—1,5>Cr—1]k—1,5-
Define

A= maX{HCk\kaj - ék\kfl,jllv ||Ck71|k71,j - ékﬂ\kﬂ,j”}
M = max{||Crp—1,5ll; [I[Ck1jp—1,5I}-

Then, if A < Omin(Cr—1|k—1,5)/2, the estimate Ay = ék\kfl,jé/:—uk—u satisfies
Ak — AL 4]l < 6AMOmin (Chom1jp—1,5) >
Proof of Lemma E.6. Then, we have (provided rank(CAk_”k_Lj) = rank(Cp_1jp—1,;) = dx), we have

1A, — A%l = ||Ck|k71,jcji_1‘k_1,j - Ck\kfl,jc;i_l‘k_lﬂ'”

+ Hcli—llk—l,j - Cl:r:—l\k—l,j | ||Ck\k717j |

< ||C]:—1‘k;—17j H Hcklkfl,j - Ck|k71,j

< ||C;: 1|k— 1_j||HCk|k71,j _Ck|k71,jH

1+f

——Ic}_ k1,4l ICE il 1Ck—1jk—15 = Comap—r Il IChpp—n
(cite (Stewart, 1977), and also (Xu, 2020))

1+xf

<A||Ck 1k— 13(1+ ”Ck 1k— 1J||Hcklk—1,j )
(i4) i
S SAMHCk k- 1J||Ck—1|k—1,jH’
where in (i) we use A := max{||Cyj_1, éklk 1l 1Ck—1j5—1,5 — Ci— 1/k—1,41}, and in (ii), we use M =

max{||Crik—1,;, [|Ck—1k—1,;||}, which admits the simplification in (i) because ||Cj,_1)s— 1JH||C,C e 1; = 1. In par-

ticular, if rank(Cy_1jx—1,;) = dx, and A < owin(Cr—1]x—1,5)/2, then ||Ck 1k 1]H < 2/0min(Cr—1jk—1,;) and we
obtain

Ak = 82341 < GAM G (Corio1,5)

Next, restricting our attention to k > ket + 2, we specialize the above analysis to
Chyin = Ch—1jk—1,k—ko+1> Choout = Crik—1k—ko+1
ék:,in = ék71|k71,k7k0+17 ék,out = ék\kfl,kfkoJrl
where @(.) arises from the plug-in estimates
ékljg,jl = [‘i’k+1,j2 | "i’k+1,j2—1 | ~~-‘i’k+1,j1]
Define further
By := CrouCl so that A, = Ay — BKT.

k,in>
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Recall ¢y = ko/t. We can now bound, recalling Lo := exp(tLy) < 2fort < L;/4 and 7oy = max{l,tcpnlys} =
max{l, Tketn Ly},

max{[|Chin, IChonell} < /o max [¥c,

< VEkenTLfLolKr 00 (Lemma 1.8(d))
< TtOTLfLolﬂﬂ',oo (to = kOT)
< QKW,OO’YCtrV Tto- (Yetr = 1)

Invoking Proposition A.11, we also have that provided T < min{Tdyn, Tetrl,r > SinCe ko > kerl + 2,

k—1
Fmin (Cr—1/%-1,7)* = Amin Z O g, (Yah-1.5) "
j=k—ko+1
k—1 )
> Y Z LA »(‘I’ﬂ— B 4)T - ctrl '
min A clLk—1,7\*cl,k—1,j 8L72773tr eXp(Q’thr)
Therefore, as long as
5 5 TVctrl
A = max{|[Chin — Chinll, |Ch.out — Croum} < VWetrl

2\/§Lﬂ%cr exp(Yetr) ’

we have

~ to 96A
1Bk = ATl < ) 2o im0 L2k eXD(27ctr).

Vetrl

Lastly, we can upper bound A < v/keiErry (0) = \/to/TErry (0), from which we cconlude that as long as Erry (§) <
T \V Vctrl/tO

2\/§L‘n—’7ctr eXP(’thr) »We have

. 96Erry (0
e — A3 < tor 2 - 20O s epiane),
TVctrl
Now to wrap up. We observe that BY; , = ¥7, ;.4 ;. s0
1By, — Bovkll = 1981 k1.6 — Vg1l < Errg «(6).
Therefore,
1Ak — A% il = [1Bx — (AT, — B LK)

< ||B — AT k|l + IBRKF — B 1 KF |
< ||Ax — A% &l + 1B — BY 4/l L
96Erry ~(9)

< L Erry (6) + 150/<;,WOL72T .
TVctrl

Yoo eXD(27etr)-
Lastly, we notice this upper bound on ||A; — A7) 1[I is larger than that on IBx, — B7 1|l as L > 1 by assumption, and that

2 96Erry ()
for T < Tetrl,ms LﬂErr‘ll,ﬂ'((S) < tOH'n',ooLﬂ— T e

2 exp(27etr). Thus,

192

ctrl

Errg (6
Tﬁr() ' tOK’mOOLgr'ygtr eXp(Q’thr) :

A — A7) |l V [[Bx — B 1l <
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F. Certainty Equivalence

In this section, we establish a general certainty equivalence bound for linear time-varying discrete-time systems; we apply
this in the proof Proposition A.14 in Appendix G.1.

Let @ := (A}, B}.x) denote ground-truth system parameters, and let e = (A1.x,B1.x) denote estimates. We work
with a slightly different discretization parameterization, where the dynamics are given by xj,+1 = Agx), + TBruy. This

parametrization ensures that the norms of By, scale like constants independent of T when instantiated with Ay < A7, , and
] :
B < ZBoLk-

Definition F.1. Given cost matrices Q, R, step T, and parameters ©® = (A1.x,B1.x ), we define Pzpt (©) as the solution to

the following program
K

prZPt((a)ac = min X;(+1QXK+1 +T Z(X;QX}L + u;Quh)
Uk:H

~ (F.1)

S.t. Xp41 = Apxp + TBrup, xp =

The closed form for Pzpt is given by the follow standard computation, modified with the reparametrized dynamics x4 =
Apxp + TBhup)
Lemma F.1. The optimal Riccati cost-to-go P‘f?[t( 1= Pzpt((a) is given by the solution to the following recursion with

final condition Pc}?_ti_l = Qand
T _
PPt = AJPYRY A — T (BRPYR Ak) (R + 1B PR Br) ! (BLPYD Ar) + TQ

Moreover, defining K, = K;*'(0) := —(R + 1B] P{*'By,) ~'B} P{*"Ay, the optimal control for Eq. (F.1) is given by
t
X = sz uy.

Proof. This follows by reparametrizing the standard discrete-time Ricatti update (see e.g. Anderson & Moore (2007,
Section 2.4)), with By, <— 1By, Q < 1Q, and R + TR, and simplifying dependence on T. O

The following identity is also standard (again, consult Anderson & Moore (2007, Section 2.4), albeit again with the
reparamerizations By, <— TBg, Q < tQ,and R <+ TR):

POPY = (Mg + TBLKPY) TPOPY (A + TBLKSPY) + T(Q + (KPP TR(K™)) (F2)

Next, we define the cost-to-go functions associated for arbitrary sequences of feedback matrices, and from the optimal
feedback matrices from another instance ©’.

Definition F.2 (Feedback and Certainty Equivalent Cost-to-go). Given a sequence of feedback gains K;.x, we define the
induced cost-to-go

K

Ped (@ Ky, x0) 1= X g Qutieps + TZ(x;Qxh +u, Qup)
h=k

s.t. Xpy1 = (Ap + TBth)Xh X = .

And define the certainty equivalent cost-to-go as P$°(©; @') = Pic*d(@; K} (@")) as the feedback cost-to-go for © using
the optimal gains for @',

In particular, P{°(©; @) = P;**(®). We now present upper bounds on P§¢(®; ®’). We assume bounds on the various
parameters of interest.

Condition F.1. We have that there are constants K5, K4 > 1 such that, for all k£ € [K],
IBE IV [IBkll < K [IAF] V [[Ak]l < Ka,
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Condition F.2. We assume that there exists A4, Ag > 0,
vk, ||B;~C —Bj|| < Apand ||t~ (Ak — A < Ay

Condition F.3. We assume the a normalization on the cost matrices satisfy R = I, Q = I and ||Q]| > ||R||- As a special
case, Q = I and R = I suffices.

Lastly, the following assumption is needed to derive an upper bound on the closed-loop transition operator.
Condition F.4. We assume that maxy, ||[Ay — I|| < Tk 4.
Theorem 4 (Main Perturbation). Suppose Conditions F.1 to F.3 hold. Define the terms

Ace := 80C* K3 K3 (1 +1CKp)(Aa + Ap), C:= max [PP(@)].
ke[K+1]

Then, as long as Ace < 1, we have

(a)

max [|[P{°(©;©)] < (1 - Ac) " max [Py (©)]]
ke[K+1] ke[K+1]

(b) maxye(r41) [K PO < TKpKAC.
(c) Moreover, if Condition F.4 holds, then the transition operators defined as
o = (Bj—1 + TBj 1K' (©)) - (A2 + TBj_oK[P5(©)) - - - (Ax + TBLK" (D)),
with the convention {>k e = = Isatisfy, forall1 < j <k <K,

1—Ace

; 5
||<I>§ek||2 <26(1—1y)7F where k = kg + ~K3KAC, ~= o

4

provided k < 1/27.

The proof of the Theorem 4 is outlined in Appendix F.1, and the supporting lemmas are proved in the subsequent sections.
We now use this guarantee to establish Proposition A.14.

F.1. Proof Overview of Theorem 4

Step 0: Notation & Interpolating segments. To simplify notation, introduce the maximal operator norms, such that for
an H-tuple of matrices X1.y = (X1, ..., X[H]),

||X1:H||max,op = }12%;(] HXkHOP'

Let us a consider the line segment joining these the parameters
O(s) = (A1.k(s),B1.x(s)) = (1 — )@ + 5O (F.3)

For fixed cost matrices Q and R, let P1.x41(s) and P1.x (s) denote the solution to the finite-time Riccati recursion with
parameters O (s ) where here Q also serves as a terminal cost at step K +1. We let P}, i ;, KT, ;¢ be the solution for the truth

®* and 151: H, Klz # the solution to the Riccati equation with @, i.e. the certainty equivalent solution. By construction,
(Prorc41(0), K11 (0)) = (PT.pe1,Kiic)s  (Prxta(1),Kir (1)) = (Prgcyn, Kiireyn)
For all quantity X(s) paramterized by s € [0, 1], adopt the shorthand X/(s) := LX(s).
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Step 1. Self-Bounding ODE Method. We use an interpolation argument to study the certainty equivalence controller.
Our main tool is the following interpolation bound, which states that if the norm of the s-derivative of a quantity is bounded

by the norm of the quantity its self, then that quantity is uniformly bounded on a small enough range.

Lemma F.2 (Self-Bounding ODE Method, variant of Corollary 3 in (Simchowitz & Foster, 2020)). Fix dimensions
di,dy > 1, letV C R4, let f : V — R be a C' map and let v(s) : [0,1] — V be a C' curve defined on [0, 1].

Finally, let || - || be an arbitrary norm on R and suppose that ¢ > 0 and p > 1 satisfy

15 Fets)) < emaxt | F(v(s)) L IF(v (0D} Vs € [0,1].

Then, if p > 1 and if o« = c(p — 1)|| f(v(0))||P~! satisfies o < 1, the following bound holds for all s € [0,1]:

d

I f vl < el = )77 f(v(0))]?

IF(s)] < (1= )77 f(v(0))]]

Step 2. Perturbation of P1.x1(¢) First, we show that the Riccati-updates obey the structure of Lemma F.2.
Lemma F.3. Suppose (for simplicity) that Amin(Q), Amin (R) > 1. Then, for all s € [0, 1]

IPL: ¢ 41.(8) lmaxop < 2(A4 + KaKpAB) [Prxc+1(5) [ 3nax op:

Our next result gives uniform bounds on P;. x4 and its derivative by invoking Lemma F.2.

Lemma Fd4. Suppose (for simplicity) that Amin(Q), Amin(R) > 1, and that (Ax + KaKpAp)
1/8||P{P .1 (©)]12 Then, for all s € [0, 1],

max,op*
||P1:K+1(5) HmaX,OP < 1-8||PI:K+1 ||max,0p
||P/1:K+1 (S) Hmax,op S 12(AA + KAKBAB) ||p){:K+1 H?nax,op
As the gains Py, (s) are explicit function of Py, 11(s), we optain the following perturbation bound for the gains.
Lemma F.5. Under the assumptions of Lemma F4, the following holds:

K% (©) — KiT5 (©) maxop < 20C° KA KE(1+1CKp)(Aa + Ap), C =P, ()]

F.1.1. PROOF OF THEOREM 4
Proof of part (a). Consider the curve
Ki(s) = (1 — s)KP(©%) + sKPY(©).
We then note that the curve
PEe(s) = P (@3 Ky ()
satisfies P$¢(0) = P$¢(©*; ©*) = Py™(©*) = P} and P{¢(0) = Piced(©*; K™ (©)) = P{*(©*; ©)
By Definition F.2, we can write P{°(s) = Ag(s), where A, solve the following Lyapunov equation
%i1(s)=Q, P5(s) = Xi(s) TP (8)Xk(s) + TQ(S) + Yi(s) where
Xp(s) := Ay + TBrKp(s) and  Yi(s) := TK(s) "RK(s).
As X}, (s) = tBxK).(s) and Y}, (s) = Sym(K(s) "RK'(s)), salient term from Proposition F.12 evaluates to
A(s) = marc e (20 ('] + [P (5) b apll Y55 )

= ;,ré?ﬁfl (2TE 5K (5)]| + TIPSk 11 (5) [ imas,op | Ki () IR]K (5)]])

(F.4)

IN

(E5)

= max (2Kp + [[P{k 11 (5) [ imas,op 1Kk (5)]]) 1K (5) ] R =1

JE[K]
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We further bound
Kk (s)| = [[(1 = $)K;P*(©) + sK;P*(O)|
< &P (O1) v (kP (©)]]

< (R + 7B PP (©)By) L (B PR (©)4k) | V | (R + 7B, PP (©)B) ! (B, P (©)Ay)|

< [[BIRY(©")ak| V [B PP (©)Ax R =1
< KpKa(|Py™(©)] v [P (©)])
< 2KpKal[PP 1 (©*) | max.op (Lemma F.5)
= 2K K 4||P{%k 1 1(0) |l max,op (definition of P¢°)
Thus,
A(s) < (2Kp + 2K KalP{k 11 (5) i op P55k +1.(0) lmax,op) max K5 ()]l R =10
< AKpK s (1V P11 (5) mbeop P2 (0)acop) ma ()] (Ka>1)

Hence, setting Ay := SUPc(o,1) MAX;e[k] 1K ()1,

Pze(s)/ S H i‘:sK+1( )”maxop ( )

< 4KBKA||P§?K+1( )Hmax,op (1 N ||P§?K+1(S)Hr:lix,opHPi?K-i-l( )Hmax OP) m?li]{ AK
< 4KBKA (”P(l:‘:sK—i-l(s)Hrznax,op \% HPE?K-Fl(O)”IQnaX,op) AK

Hence, Lemma F.2 implies that as long as 4K g KA Ak [|P§$x 1 (0)][max,op < 1, we have

Sl[tpl] ||P(1:?K+1 )Hmax op = < (1 -4KpKsAk|PS: K+1( )Hmax,0p> 1||1:’1 K+1( )||max>0p
s€l0,

Using P§%_. 1 (0) = P{P_ (©%), P$% 1 (1) = P§%_,(©*; ©), and defining the shorthand
= [IPY7x 1 (@)1l
we conclude that for any upper bound A > 4K K 4 Ak C satistfying A < 1,
PSSk +1(©%5©) [max.op < (1= A) [Py 1 (©7) max.op-

By Lemma E5, it holds thats if 8||Pcl)plt<+1(®*)||max op(Aa + KaKpAp) < 1, we can bound. we can take Ax <
20C3K3K%(1+tCKp)(Aa + Ap). Hence, we can bound

AKpKaAgC < 80C*KAK3(1 +1CKp)(Aa + Ap) i= A,
which concludes the proof of part (a).
Proof of part (b). We bound

||KOpt (©) | max,op < (HKOpt (©)]|max,op + 1/4Kp) (Lemma F.5, definition of A, and using K, K4,C > 1)

= (1/4Kp) + || (R + B} Py™ (©")B) ~'B)l Py (©") Al max.op
(Definition of I/(Opt Definition G.1)

= RKBKA||P(1):p;<+1(('-)*)||max,Op (Definition of K 4, K in Condition F.1, R = I)
B
1
e + KpK4C (Definition of C')
B
)
< ZKBKAC (C7 KAaKB > ]-)
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Proof of part (c). We aim to bound the square of the operator norm of the following term

65 = (-1 + 1B, 1KY (©)) - (Aj—2 + 1B oK[P5(©)) - -+ - (A, + BLK}'(O)).

Using the fact that P{°(©; é)) solves the Lyapunov equation Eq. (F.5), it follows from Lemma F.10 that if

Ko:i=T ! mkax IT— (Ax + ™BEKe (1)) |lop = ! mkax IIT— (Ak + TBkKZpt((-))HOp <1/2r,

then
1255 11* < max{1, 2r0}(1 = T0) ", 70 := - (F.6)
”PfK-&-l(@; Q)Hmax,op
From part (a), we can lower bound vy > v := 1_7?” Moreover, we can bound xg
Ko < T max [|T — Ay || + max [By|| K> ()]
<ka+Kp ||Kc1)p;(((;)) |l max,op (Conditions F.1 and F.4)
5
<ka+ ZK%K 20 =k (Theorem 4(b))
As k > 1, we conclude via Eq. (F.6) that
: 5 1— A
1955117 < 26(1 = 0)7™*, k= ra+ KBKAC, 7= —F
O

F.2. Proof of Lemma F.3

To apply the self-bounding ODE method, we bound P, (s) in terms of Py.x41(s). To prove Lemma F.3 Let us first
introduce some notation. Further, for simplicity, we shall suppress s in equations and let (-) |s to denote evaluation at s.
With this convention, define the matrices

Ek(s) = (A;C + TI(]CB;C)—I—P]C_;H(A]c —+ TBkKk) ET7)
and define the operator

Ti1(-38) := {(Ar +BrKg) " (-)(Ax + ByKy)}

with the convention Ty 41(+) ‘S = Trt1(+5 5), (E.8)

S’

Lastly, we define their compositions
Titie = To() 0 Tiwa () 0+ 0 Tiri ()],

with the convention 7y, is the identity map. These operators give an expression for the derivatives P}, (s).

Lemma F.6. For all s, it holds that

K+1

Pi(s) = > Tay(Er +E])],
=k

Proof. Let Sym(X) = X + X . The Ricatti update (backwards in time) is

P, = A Pry1Ar — T(A] Pry1Bi) (R + 1B, Pry1By) (AL Pry1Br) T +1Q
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Let Sym(X) := X + X ". Then, we compute

Py (s)

= Sym ((A},) "Prr14x) — tSym ((A},) "Pry1Bi + AL Pry1(B),)) (R + B Py B) "1 (AL Pri1By) )
+ T (Ag Piy1By) (R + 8] Pry1By) ' (Sym((B}) "Pry1By)) (R + TB) Pry1By) ' (A Pry1By) |
+ A (Phi1)A — TSym ((A] (P} 1)Bx)(R + B Pri1Br) " (AL Prt1Br) )
+ T (A Pr1Bi) (R +BJl P1Bi) (B Py 1By ) (R + By Pry1By) " (A PrriBy) |

= Sym (&%) "Pr 1A + T((AG) "PryBr + AL Py (BL) K + KL (B,) PrsaBr)) Ki)
+ Ay (Phpy) Ak + Sym ((Af (Phy1)Bi)Ki) + 7 (BrKk) (Pry ) (BLKS)

= Sym ((A%) "Pry1Ak + T((A}) "Pry1Br + Af Py (BL)) Ky + T2K ((B)) "Pry1Br) Ky)

+ (A + 1B Kk) (P y) (Ag + B K) T

where above we the fact that K, = —(R + B} P4+1Bx) ! (A Pr11Bx) | . Noting that

Sym ((A

i) Pri1A + T((A%) TPriaBy + Ay Pry (B))) Ky + TKY ((BY) " Pry1Br)) Ki)
(7’) ((

Pk+1 A + TBkKk) + TAk Pk—i—l(B}g)ch + TQKT((Bk) pk+1Bk))Kk)

((A}) "Prs1(Ak + B Ky) + TK, (B),)Prr1hy + T°K ((B}) "Prt1Bi))Ki)
= Sym ((a,) " Pk+1(Ak JrTBkKk) + 1K, (B},)Prr1 (A + 1B Ky))
(A}

Therefore, we have
P}, = Trt1(Pyyq) + Sym(Z)
Thus, unfolding the recursion, we have

P} = Tis1(Pjy1) + Sym(Ex)
= Tir1(Ter2(Piy1) + Sym(Ex41)) 4 Sym(Ex)
= Tir1(Ter2(Phy1)) + Trr1 (Sym(Er41)) + Sym(Ex)

K+1
= Trj(Sym(Ens,))-
j=k
O
Using this fact, a standard Lyapunov argument gives a generic upper bound on sums of these operators.
Lemma F.7. The operators T; i,(+; s) are matrix monotone. Hence, if X1.x are any sequence of R™*™ matrices,
K41
2 Pk max;>p Xk
H Z X +XT )Hop < H HOP T]_ ” ||0P|
Consequently, by Lemma F.6,
2||Pg max;>g || 2k
”P;C(S)Hop < H HOP )= ” ||0P‘ . (F9)

T

Proof. This is a direct consequence of rewriting Py, as in Eq. (F.2), applying Lemma F.10(a) with X; = Ay + BiKy, and
upper bounding [|X; + X || < [|X;]|op- O
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Finally, let us upper bound the norm of the matrices =,

Lemma F.8.
THER(9)]| < (Aa + ApKaKB) [P1k 41 ax.op:
Proof of Lemma F.8. Recall

g = (A;€ + TKkB;C)TP]H_l(Ak + TBkKk),

Kkl = (R + TB; Prr1Br) "By Prr1Asl|
= Amin(R) "B Pry 1|
< Amin (R) (B[ |A% | [Pr11 |
< Amin(R) ' KaKp||Pry |
< KAKB||[Prya] (F.10)

Next,
Y| (8) + TKyB}) TPrt1 (A + B Kk ||
< r-l (8] + B K] [PE L lPE,  (Ax + Bk )|
(8 + B IR P2 NP2 )

(
1
<o (A% + TlIBL I KaK B [IPeall) HP§+1HIIP£ |
<ot (1A% ]+ TlIBLI KA K BIP1 k11 lmax,op) [P1: K41 [max,op
<7 -t (”A;c” + T”B;c”KAKB) ||P1:K+1||12nax,op (HP12K+1”max>Op > ”QH >1)
< (Aa+ABKAKB) [IPrk 11 hax.ops

where in (¢) we use Eq. (F.2), which under the present notation gives
P = (Ak + BkKk)Pk+1(Ak + BkKk) +1Q,

and since P;, = 1Q,

1
P2, 1 (A + BiKp)|I> = || (Ak + BuKr)Pri1(Ak + BeKi) || = IPx — TQ|| < [[P&]l.

O
Proof of Lemma F.3. From Eq. (F.9) in Lemma E.7, followed by Lemma F.8, we have for k € [K] that
IP%(8)llop < T2 Prflop max I1Zk o],
<2(As+ApKsKp) ||P1:K+1(0)H§nax,op'
O

F.3. Proof of Lemma F.4

Let us apply the Lemma FE.3 with v(s) = O(s) = (A1.x(s),B1.x(s)) as in Eq. (F3) and f as the mapping from
(A1.x,Bi1.x) — Pi.xy1. This map is algebraic and thus C!, and v(s) is also C! as it is linear. Finally, take || - || to be
I - llmax,op> take g(z) = czP, where p = 3 and ¢ = 2(A4 + K4KpApg). The corresponding ¢ in Lemma F.3 is a =
ep— DO = 2(An + KaKpAp)[Prrc 1| then, if o < 1/4, e, (As + KaKpAp) < /8P 41 (0)]1,
we have by Lemma F.3 that
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1 *
HPI:K(S)”max,Op <(I-a) 7T ||PT:KHmax,0p < (4/3)2||PI:K||max,0p < 1~8HP1:K(O)Hmax,0p~
and

P15 () lmax.op < 2(4/3)°(Aa + KaKpAR) [Pkl <12(A4 + KaKpAp)|[PLk (0]

max,op — max,op
F.4. Perturbation on the gains (Lemma F.5)
Proof. Observe that

Kj = —(R + B} Py 1Bi) B} Pry1As

Therefore,
K/ = (R + 1B} Py 1Br) ' - (R +7TB; Pry1Br) - (R + B Pri1Br) 'B. Pry1Ax (F.11)
=K
— (R + 1B} Pry1Br) ' (BL Pry1Ar) (F.12)
Introduce the constant C' := [|P], ¢, ;[ max,op- Using R = I, we have

K= IR+ B, ProaBi) [[I1K] + [[(B) Presr )|
= ©| (B Pr+1Bx) [[ |1 K| + [IBS Prs14x)|
< 2Bl 1Pr+-1 1Bl 4+ 1B 1 [Phs 1 D 1K s | 4+ BT A%+ 1A% IBa D 1Prea | + 1P o 1A%
<t2KpAp|Prll + KB |IPht DKkl + (ApKa + TAsKp|) [[Pria || + [[Pips [ KaKp)
< T2KEKAAp|Pera||? + KZKallPha Pesall + AaKp|[Prtal)
+ (IPrr1|ApEa + [Py [ KaKp)
<T(2-1.82K3KAAC? +12(A s + KAKpAp) KL KAC* +1.8A 4 KpC)
+ (1.8CABK s+ 12(As + KaoKpAp)KAaKpC) (Lemma F.4)
<102 1.8°KEKAAp + 12(Aa + KAKpAR)K3 Ko +1.8A4Kp)
+C*(1.8ARK 4 +12(As + KaKpAp)KAKp)
<TC'K}K3(1.8% 2Ap + 12(A4 + Ap) + 1.8A4)
+ C*K3KE (1.8Ap + 12(A4 + Ap))
< CPK2K%(14+1CKp)(1.8% - 2A5 + 12(Aa + Ap) + 1.8A )
< 20C3K4 K% (1 +1CKg)(Aa+ Apg).

It follows from Taylors theorem that [|[K;™* (@) —K**(©)]| < 2003 K3 K% (1+TCKg)(Aa+Ag). The result follows. [

F.5. Proof of Lemma F.2
Lemma F.2 is a special case of Simchowitz & Foster (2020, Corollary 3). To check this, we first establish the following
special case of Theorem 13 in (Simchowitz & Foster, 2020).

Lemma F.9 (Comparison Lemma ). Fix dimensions dy,dy > 1, let V C R4, let f : V — R% be a C* map and let
v(s) : [0,1] — V be a C* curve defined on [0, 1]. Suppose that g(-) : R — R is non-negative and non-decreasing scalar
function, and || - || be an arbitrary norm on R% such that

1S PN < g(IF ) £13)

Finally, let 7 > 0 and g : R — R be a scalar function such that (a) for all z > ||v(0)|, §(z) > 1+ g(z) and (b) the

Sollowing scalar ODE has a solution on [0, 1]:

2(0) = [v(0)[ +n, 2'(s) = g(2(s))
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Then, it holds that
Vs € [0,1],  [[f(v(s)I < 2(s).

Proof. Theorem 13 in (Simchowitz & Foster, 2020) proves a more general result for implicit ODEs, such as those that
arise in infinite-horizon Riccati equations. We do not need these complication here, so we specialize their result. Define
the function F : R4 x R% — R via F(v,w) = f(v(s)) — w. It is then clear that W(s) = f(¥(s)) is the unique
solution to F(v(s),Ww(s)) = 0 for any C! curve v(z); since f is C!, any such solution W is also C!. Thus, F is a
“valid implicit function” on V in the sense of Simchowitz & Foster (2020, Definition 3.2) with . Moreover, by Eq. (F.13),
(F,V, 9,1 -l, v(-)) form a self-bounding tuple in the sense of Simchowitz & Foster (2020, Definition 3.3). The result now
follows from Simchowitz & Foster (2020, Theorem 13). O]

Proof of Lemma F.2. Take g(z) = cz?. Define h,) = c¢(z+n)?. For any n > 0, there exist an 7’ such that h,(2) < g(z)+n
for z > z9. Moreover, as 7 approaches 0, we can take 7 — 0 as wel. Solving the ODE z(0) = ||f(v(0))|| + n and
2'(s) = ¢(z + n)P, we see the solution is given by

d

s,
(z+n)P

As 2'(s) > 0, it suffices to bound z(1). For p > 1, the solution to this ODE when it exists satisfies

1 1
(= DAFGON[+n+m)P=T (= DD+t

. . 1 .
Rearranging and setting 7, 7" — 0 lets check that, as long as oD OET > & Lemma F.9 yields

1
s 1F (vl < (nf(v(o»npl

For p = 1, we instead get

“-ne) " == TS

In(z(1) + ') = ([ f (V) +n+n) =c

Again, taking 7', 7 — 0, Lemma F.9 yields

max || f(v(s))[| < exp(c + ([ f(v(0)) = [[f(v(0))]le".

s€[0,1]

F.6. Perturbation bounds for Lyapunov Solutions

Lemma F.10 (Basic Lypaunov Theory). Let X1.x and Y1.x be a sequence of matrices of appropriate dimension. Suppose
that Yy, = 0, and let Q > 1. Define Ay, as via the solution to the Lyapunov recursion

A1 =Q, Ap =X Mpy1Xp +TQ + Yy

and define the matrix &1 = (X, - Xj_1 -+ - Xgg1 - Xy), with the convention &y, = 1, let and define the operator
Tjk() = 2] 4 ()2; k- Then

(a) For any symmetric matrices Z;, we have
K K
i(Z;) = Zil|Ag.
T2 Tha(2) = i 21
=

(b) If, in addition, maxy, |1 — X |lop < KT for some k < 1/27, Apin(A) > min{5-, 1}
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(c) Under the condition in part (b), we have

. 1
12),]1* < max{L, 26} |Ar: k41l max,op(L = TV 75, 7 1= o
||A1:K+1||max,op

In particular, || Ty ;(Z;)| < max{1, 26}|[Ar:5c41 ] max,op 125 ()]

Proof. We begin with part (a). By unfolding the recusion, we get

A = XgAk—ka =+ T(Q + T_lYk)

= (TTok(Q + T 'Vk) + Tig1, (M)
K

=Y T (Q+ T Y5) + Ticp1k(hic 1)
=k

K
=Y Tig(D)
j=k

where in the last line, we use Q + ™'Y, > Q > I. AS 77”() is a matrix monotone operator, we have that symmetric
matrix Z, we have

K K
K
T2 Tik() 3 T Iz 3 T 3
= =

and similarly for —t Zszk Tk(Z5).

Part (b). We argue part (b) by induction backwards on k, noting that £ = K + 1 is immediate. We have

g = X A1 Xp + TQ = Xg Ay Xp + T

Hence,
)\mm (Ak) Z Amin (AkJrl)O-min(Xk:)2 +T
> Amin (A1) (1= X = I)))% + T
> /\min(Ak+1)(1 — KZT)Q +7T
> )\min(Ak+1>(1 — 2,‘{"() +T

Applying the inductive hypothesis, we see that the above is at least

1
>\min A Z 5
(Ak) = o

(1-2k1)4+712> i, as needed.
Part (c). We have
X A%y = A —T(Q + i) < A;(1— 1, 2QA?) = (1 - 1),
where we recall v = 1/||A1: k41 ||max,op and use Q > I. By unfolding the bound, we find
I8, 1 khjs18iell < (1 — 1) R g
Hence,
12511607 < Amin(Bj1) 7181 kA1 i1 k]l < 204 [lw(1 — Ty) T8

Moreover, as k > 1, the bound also applies to ;41 ;41 = L. O
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Lemma F.11 (Formula for Lyapunov Curve Derivatives). Consider curves X1.x (s),Y1.x(8), let Q *= I, and define
Agra(s) = Q,  Mi(s) = Xi(s) " MeaXp(s) + TQ + Yi(s)
Again, let &, ; == (X1 - Xj_o - - Xgy1 - Xy), with the convention &, i, = 1, define the operator Ty, ;(-) = @;j()%jJ.
Then,
K
N = Tij( @), Q% = Sym(X] Api1X}) + Y.

j=k

Proof. We compute

Ny, = Sym(Xg Ag1Xp) + Y +Xi(s) T A1 Xi(s).

=Q

The result follows by unfolding the recursion, with the base case A | = %Q =0. O

We now state our Lyapunov perturbation bound:

Proposition F.12 (Lyapunov Function Perturbation). Consider curves X1.x(s), Y1.x (s), and define for Q = 1
Agi1(s) =Q,  Ap(s) = Xp(s) T Apy1Xp(s) + TQ + Y (s)
Then,
() < [Ihrik+1(8) [Fax,op(5),  where

Als) = ;%?;TT” (201%; ()"l + 1815041 (8) i op 13 () )

Moreover, as long as ||A1:k +1(0)/max,op SUPsef0,1] A(s) < 1,
~1
max HAliK"!‘l(s)”maX,Op S 1- ||A1:K+1(O)||max,op sup A(S) ||A1:K+1(0)Hmax,opa
s€[0,1] s€[0,1]

The above bound also holds when A(s) is replaced by the simpler term

A(s) := gré?ﬁfl 2l%;(s)' 1+ N1Y5(s)l1) (F.14)
Proof. We write
K
N =Y Tig(), Q= Sym(X[Ap1X}) + Y (E.15)
j=k

We have
12| < 201X Agqa [[[1K ]+ 1Y)

1 1
< 20X A7 A NI+ (1

1
Observe that ||X;] A2 XEA;CHX;,CH%. As 0 < X Ap+1X] = Ay — Yi = Ay, we conclude,

all =1

([ < 2||Ak||%||A%+1””X;c” + 1Yl
< HA1:K+1”max,0p2HX§cH + ||A1:K+1(S)HI;;X,OPHY;C”
< A 41 lmax,op (UK + 1812k 41 (8) s, op Vel
< [JA1:x+1 |l max,op max I+ 181541 () [ mm,op 1Y511) < THAL: 11 [ max,op A(S).-
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Thus, from Eq. (F.15) and Lemma F.10, we conclude
Ar(s)" < T Tl Akl 18111 () lmax,op A(S)
< 841 (9) [Fnax,op A(S)

The final result follows by applying Lemma E.2 with p = 2, ¢ = max,¢[o1] A, and a = A(5)||A1:x+1(0)||max,op. That
Eq. (F.14) follows from the fact that if Q = I, ||A1.x+1(5)||max,0p > 1. O

Lemma F.13 (Average Perturbation). Let k < 1/27. Consider a curve X1.x (s) such maxy, supeo 17 [|[I— Xk (8)[lop < KT
Then,

AK—i—l(S) =1, Ak(s) = Xk(S)TA;H_le(S) + 7I.
Fix
K
Agum =3 sup max{1,2x} > [|X}(s)]].
s€[0,1] =1
Then, as long as ||A1:k+1(0) |lmax,opAsum < 1, we have

||A1:K+1(]-)Hmax,op S (1 - ||A1:K+1(0)||max,opAsum)_1||A1:K+1(0)Hmax,op'

Proof. We have that

K
N = Trj( @), Q% = Sym(X] Aps1X})., (F.16)
j=k
so by Lemma F.10(c),
K
1807 llop < lIA1:k¢ 41| |max.op max{1, 26} > (|
j=k
K
< 28 amaciop max {1, 26} S [ 1K g |
j=k
K
< 20|01k 11 [P, op max{1, 261 Y 155 [1%
j=k
< 2||A11K+1||Enax,op max{l, QH} (1 + KT) Z ”X?c”
N—— —k
<3 77
< Asum||A11K+1H12nax,op'
The result now follows from Lemma F.2. O

G. Instantiantions of Certainty Equivalence Bound
Definition G.1. Given a sequence of gains Ki.x € (R%* %)X we define the discrete cost-to-go matrix as
~ ~ ~ ~ ~T~
Piey1 =1, P [Krer] = (A2 g + B kKk) "PRyy [Kis1:x] (A7) 1, + BRy 1Ki) + T(L + Ky Kg).
The follow is standard (see, e.g. Anderson & Moore (2007, Section 2.4)).
Lemma G.1. There exists a unique minimizer sequence K}y, such that, for all other Ky.rc, PT [Ky ] =< PT [Kg.i]. We

Tk

denote this minimize P-matrix P7 . , := PT [Kj 7],
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Proposition G.2. Recall the definition of T.ic from Definition A.2,
1 1

Tric = =

e (3Mf’<5f/irich +13L3(1+ qum)z> 0.(1)

Then, as long as T < min{Tyc x, 1/4Ly}, it holds that for any feasible policy m, maxye e+ 1) [[P5oe 1/l < 2ftric.

The following lemma bounding the constant K for the initial policy 7 can be estabilished along the same lines of Propo-
sition G.2. Its proof is given in Appendix G.2.

Lemma G.3. Suppose that T < Tyic. For m =7, pir o < 2pyie and Ly = 1.

Proposition G.4 (Certainty Equivalence Bound). Let AZ and }32 be estimates of Al . and BJ, ,, and let Ky denote the

corresponding certainty equivalence controller sythesized by solving the following recursion given by P k+1 =1, and for
k € [ko : K, setting

A ~ ~ ~ A~ A A~ T A A~ A A~ A A~
B = (A0) Brsahy — (BiBruahy) (v T (B]) "BsaBY) ! (BIPysaAf ) + I
Ry, = —(v T+ (By) "PxBy) " (By) "Pry,

Then, as long as maxye 1,.x1 || Ay =A% g llop V ||]§2—Bgl’k|\0p < (2"t max{1, L}}) 7Y, and t < min{tyc, 1/4Lf L},
we have

max [P} [Ki:ic ]| < dptic, and gggllﬂkll < 6max{1, Lf}jiic-

We can now prove Proposition A.14.

Proof. Let Ky, be the gains synthesized according to Algorithm 1(Line 7-10), and 7' = (uf. -, K1.x) be the policy with
the same inputs as 7 but with these new gains. Definining the shorthand Py, := ||P} [Kg.x ||, Proposition G.4 then implies
that

o [Bell < 4psc, and s [Re] < Gmax{L, Ly }pc
Since K. = 0 for k < ko, we conclude MaxXye(K41] HKkH < 6max{1, Ly }iuic, which we note is > 1 as 5. > 1. Thus,

we can take L, = 6 max{1, L} pisic. Moreover, for this policy 7, we have AT, , = (AT, , -+ BT ,Ky), so that the matrices
P}, are given by the recursion

Prsr =L B = (A7) TPrsa (A7) +7(1 + Ky K.
Hence, Py, = Agl, where we recal that AZ' satisfy the recursion
AWKl+1 =1, A} = (Agll,k)TAZ:i-l(Agll,k) + 1L
Thus, fir/ « = MaXpe[ky: K] HAZ/H < maXpe[k: K] PRl < 4ftric. O

G.1. Proof of Proposition G.4

Essentially, we instantiate Theorem 4 with appropriate bounds on parameters, and using the last part of the recursion for
k > ko. Fix an index kg € [K], let Ko = K — ko — 1, and recall [k : j] := {ko, ..., j}. Throughout, we suppose

T < 1/4Lf max{1, Ly, firic } (G.1)
Suppose we have givens estimates Az and Ez satisfying

1T P —11157 iy
T A, —A < T B, —B <
Jnax A, — A%y kllop < €a, pehax By —Blkllon < e€m

63



Learned Locally Linear Models for Nonlinear Policy Optimization

We apply Theorem 4 with the substitutions
N AT ~ AT
K < Ko, Bp < Byyp—1: Bk < o atro—10 Ak Appro—1o Ak < TAS hgno—1>

So that, with © = (A;,B;) c(x,] and © = (A;,B;) <[k, We have
~ 0 k< k‘o
K = opt /A
KL (©) k> ko
and thus,

P (@) =Pl k. PE(©:;0) =Pfy, y [Kiyixc].

With the above substitutions, we can apply Proposition G.2 as long as T satisfies the condition stipulated in that proposition,
we have

max |[PPY(O)] < 2uyic. G.2
je[K())-(H]H O < 2u (G.2)

Moreover, we have that by Lemmas 1.3, 1.4 and 1.7, the following holds for T < 1/4L; max{1, L},

m]?XTfl BoLkll < exp(1/4)Ly

T T 5
max 1A%kl = max 80 kv1 xll < 3 (G.3)
max ||Ax — I|| = max | P (tri1,tr) — I|| < exp(1/4)TL
i [ = T = s |85 041,0) — T < exp(1/4eL

Hence Conditions F.1 and F.4 hold for

;)
Ky=1V AT VAL < =
a=1v, max A5 VAL < 5
Kp=1V max v Y(|[BT ||V [Brl]) < exp(1/4) max{1, L;} (G.4)
ke[ko: K] ’

-1
= A, —TI|| = exp(1/4)L;.
Fai=T max [[Ax — I|| = exp(1/4) Ly

Moreover, Condition F.2 holds with A4 = €4, A = e5. We can now apply Theorem 4. We take and for e4 < 1/3 and
ep < Ly/2, we may take

Ace :=80C* K3 K3(1 +1CKp)(Aa + Ap)
C:= max [PP(O)| < 2umic (by Eq. (G.2))
JE€[Ko+1]
And we can bound (recalling T < 1/4L s iic and fiyic > 1)

Ace < 80 - (16 - (5/3)% - exp(3/4)) max{1, L} }(1 + 4TL sfunic) (€4 + €B)
< 2Mpd - max{1, L?}(€A +ep)(1 + 4TL s fiyic)
< 2%l max{1, L} (ea + ep).

Hence, as long as
216,ufic max{1, L?}(EA +ep) <1,
we have

Ace <1/2 (G.5)
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and therefore, by Theorem 4(a),

Py [K = Pi(©;0)| <2 PP (@) < dptric.
e P Rl | = e [P5(O:©)]) <2 max (P57 (©)] < 4

Next, Theorem 4(b), we can take L,» = 6 max{l, L} ftric:

max |[K™|| = max k5™ (©)]
ke[K] JE[K

5
KBKAC < (5/3) exp(1/1)max{1, Ls} - 2puic < L := 6 max{l, Ly }firic.

G.2. Proof of Proposition G.2

G.2.1. PRELIMINARIES.

We recall the following, standard definition of continuous-time cost to-go matrices (see, e.g. (?)Section 2.3]ander-
son2007optimal):

Definition G.2 (Cost-to-Go Matrices). Given a policy 7, and a sequence of controls u(-) € U, let P™(- | ) as the
cost-to-go matrix satisfying £ TP7(t | 6)¢ = fT (I%(s)[I? + [[a(s)[[*)ds + [|%(T)||?, under the dynamics SL%(s) =
AT (s)x(s) + BZ(s)u(s), =x(t) = & We let Popt( ) denote the optimal cost-to-go matrix, i.e., the matrix satisfying
ETPL ()€ = mingey ETPT(L | )€ = V7 (¢t | &,8).

Recall that Assumption 4.3 implies V7™ (¢ | @,&) < puicl€]|?, so that [|[P7 . (¢)] <
superscript dependence on 7, assume 7 is feasible, and adopt the shorthand P(¢) =
BZ,(t), x(t) = x™(t), and u(t) = u” (¢). We also use the shorthand

Lo = Ly(1+ Lyjiic). (G.6)

tric. In what follows, we supress
Popt( )s A(t) = AG(1), B(t) =

The optimal input defining P (¢) in Assumption 4.3 selects @(¢) = K(¢)x(¢), where K(t) = B(t) ' P(t) (again, Anderson
& Moore (2007, Section 2.3)). Introduce the evaluations of the continuous value function P(t) and K(¢) at the time steps
tki

P;:Ct = P(tk), Kit = K(tk) (G.7)

We also define an suboptimal discrete-time value function by taking P{"P = PT [K{',], defined in Definition G.1, which
satisfies

b
Pyt - Popt -

by optimality of P7, .. Hence, it suffices to bound P3P, To do this, first express both P5*> and P as discrete Lyapunov
recusions. To do so, we require the relevant transition operators.

Definition G.3 (Relevant Transitions Operators). For k € [K] and s € Zy, let 1 (s, tx) and ®2(s, t1) denote the solution
to the ODEs

L, (s,14) = (A(s) + Bs)K () (5.1 G3)
%@2(S7tk) = A(5)®Pa(s,t) + B(s)K(tr).

with initial conditions @1 (tx, tx) = P2 (ty, tr) = I. We define
X = @ (thyr, tr), X3 = Pa(trrr, te)
Definition G.4 (Relevant Cost Matrices). For k € [K], define
tr
yet = / B, (s, t2) (1 + K(s) TK(s))®1 (s, t)ds
s=tg

Yiub = (I + K(t) "K(ts))
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Lemma G.5. The cost-to-go matrices P§' and Pskub are given by the following Lyapunov recursions, with initial conditions
t  _ psub _ T.
PR 1 =Pyl =L

PR = (X5) TRE X+ v
PR = () TR 4+ v

Proof of Lemma G.5. The recursion for P§"P is directly from Definition G.1, and the fact that X;®b = A7) due to

Lemma C.10. To verify the recursion for P, we note that we can express P(t) = P7(t) in Definition G.2 as satis-
fying the following ODE (see Anderson & Moore (2007, Section 2.3)):

P(T) =1, —%P(t) = (A(t) + B(OK(t)) "P()(A(t) + BOK(1) + 1+ K(t) 'K(1)

It can be checked then by computing derivatives and using existence and uniqueness of ODEs that

P(s,t) = ®1(s,t) "P(s)®1(s,t) + /S & (s, ) I+ K(s')"K(s)®(s', t)ds

s'=t

Specializing to s = ty41 and t = ¢, verifies the desired recursion. O

As P§' = P(ty), the terms P{" are bounded whenever P(-) is. Therefore, we use a Lyapunov perturbation bound to bound
P3"P in terms of PS'. This requires reasoning about the differences X' — X3P and Y§' — Y5"P, which we do in just below.

G.2.2. CONTROLLING THE RATE OF CHANGE OF K(t).

Our first step in controlling the perturbation term is to argue that the optimal controller K (¢) does not change too rapidly.
As K(t) = B(t) "P(t), we begin by bounding the change in B(t).

Claim G.1 (Change in B(t)). B(t) is differentiable in t on for t € int(Zy), and satisfies | SB(t)|| < M ry

Proof. Recall that B(t) = 0, f(x(t), u(t)). For t € int(Zy), u(t) is constant, and x(¢), being the solution to an ODE, is
also t-differentiable. We now bound || £ B(t)||. We have

| SBO) = 15 0, 76x(0), u(e)) |

B F(X(E), () Sa(8) + B F(x(2), (1)) (1)
< My Sx(O)]) < Myry

where the second-to-last inequality is the limiting consequence holds from Assumption 4.1, and where the term

Ouu f(x(t), u(t)) Lu(t) vanishes vanishes because u(t) = u™(t) is constant on Z. O

Next, we bound the change in P(¢):
Claim G.2 (Change in P(t)). P(t) is differentiable in t, and || L P(t)|| < (La/Ly)>
Proof. Note that P(¢) is given by the ODE

P(T) =1, —%P(t) =A@)"Pt)+PHA(t) —P)B(t)B(t)"P(t) +1,

which ensures differentiability. Thus, as ||A(t)|| V [|A(¢)]| V1 < Ly by Assumption 4.1 and Assumption 4.3,
d
15 PO < 14 2L PE) + LHPOI* < (14 2L ppwic + Lipdic) < (1+ Lypnic)?,
which is precisely (Lci/L¢)?. O
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We now establish a bound on the change in K ().
Claim G.3 (Continuity of Optimal Controller). Forallt € Iy,

d _
| KON < Myrppose + Ly L,
Proof of Claim G.3. By Claims G.1 and G.2, we have
d d d
— K@) < [|=B@®)||P(¢ B@)||||=P(t
| KON < [ BONPO] -+ B LPO

d
< | Bl + Ly(La/Ly)
< Myngpe + Ly L2,

O
By integrating, we arrive at the next claim.
Claim G.4. The following bound holds
sup K (s) — K()]| <t (Mpsgpuse + Ly L)
Proof of Claim G.4. Directly from Claim G.3. O

G.2.3. CONTROLLING DIFFERENCES IN [[X$' — X3P || AND Y8 — v5ub||

We first state a bound on the magnitudes of various quantities of interest.
Claim G.5. ||K(t)| < pricLy and ||A(t) + B(t)K(t)|| < L1, where we recall Loy := L (1 + L firic).

Proof. Recall that K(t) = B(t) "P(t). From Assumption 4.3, |P(¢)|| < fuic, and ||B(¢)|| < Lj by Assumption 4.1,
which gives |K(t)|] < pricLys. Bounding ||A(t)|| V ||B(¢)|| by Ly (again, invoking Assumption 4.1), concludes the
demonstration. O

Next, we show that @1 (s, t;) is close to the identity for sufficiently small .
Claim G.6. Suppose that TL. < 1/2. Then,

IT—®1(s,tx)]| < TtLaexp(1/2) < min{l,2tLq}

Proof of Claim G.6. Tt suffices to bound, for all ¢ € R% : ||¢|| = 1 the differences ||y1(s) — &|| where y; = @4 (s, t1)E.
We do this via Picard’s lemma.

Specifically, write Ly1(s) = f(yi(s),s), where f(y,s) = (A(s) + B(s)K(s))y. and z(s) = & As f(y,s) is
supgez, [[A(s) + B(s)K(s)|| < La Lipchitz is y (here, we use Claim G.5) and as %5 = 0, and the Picard Lemma
(Lemma C.9) gives

S

I = y1(s)II < exp((s — tx) (2L} pic)) /,:t I(A(s") + B(s)K(s"))¢]|ds"

< exp((s — ) Lel) / I(A() + B(s)K(s")) s’ el < 1y

s'=ty

S exp((s — tk)Lcl) . (S — tk)Lcl,
< eXp(TLcl) “TLa,
S exp(1/2)TLcl

where we assume TL. < 1/2. O
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We can now bound the differences between || X' — X5"P|| = || @2 (tpr1, te) — ®1(trt1, te) |-
Lemma G.6. For k € [K] and s € Ty, let ®1(s,t)) and ®o(s,ty) denote the solution to the ODEs

%@1(3, 1) = (A(s) + B(s)K(5))®1 (s, 1), %@z(s, t) = A(5)®s(s, £) + B(s)Ke(th).

with initial conditions ®1(ty,ty) = Pa(tg, tx) = L Then, if tLe < 1/2,
X5 — X3 = [ @o(thers tr) — R1(trsr, )| < 20° (Lppic Mg + 3LE) .
Proof. It suffices to bound, for all initial conditions, ¢ € R® with [|£|| = 1, the solutions y;(s) = ®;(s)¢. We apply

the Picard Lemma, with z(s) < yi(s), and express y2(s) = f(y2(s),s), where f(y,s) = A(s)y + B(s)K(t). As
|A(s)|| < Ly, the Picard Lemma (Lemma C.9) yields

92 0k0) =3t < (st =) [ IAGI() + BRI~ ya(o)as
<en(ym) [ _ JA(s)y1(5) + B(JK(t)€ — (A(s) + B(s)K(s))y1 (5)]1ds
< exn(tm) | _ IB(s) (K(s)y1(s) — K(t)$) ds
< Lyesa(Ly) [ 1K (s)y1 (5) — K (t)€]lds
< Lyesp(Ly) [ (I (s) — K(#))El] + [K()(€ — y1(s)))ds
< tpospl) [ G - KO + Lol 16

< exp(1/2) Lyrmax(|[K(s) — K(to)[| + Lypicll€ — y1(s)])

where the second-to-last line uses ||£]| = 1 and || K(8)|| < Ly firic, and the last uses T < 1/2L, and well as a bound of an
integral by a maximum. By claims Claims G.4 and G.6,

max(|[K(s) — K(t)ll + Ly picll€ — y1(s)l)
<t (Mffffuric + L;IL&) + Ly piric exp(1/2)TLe
=T (urichIif + Lo (L piric exp(1/2) + L;chl))
<t (urichnf + 3L;1L§1) ,

where in the last inequality we use exp(1/2) < 2 and Lypyic < (1 + Lypyic) = LdLJ?l. Therefore, again using
exp(1/2) <2,

Iy1(ths1) — y2(ter) || < 27° (LppeicMyry 4 3L7) .

Quantifying over all unit-norm initial conditions ¢ concludes the proof. O

We now establish a qualitatively similar bound on ||yt — Y5uP||.
Lemma G.7. [|Y5' — Y3"|| < 212 (Myrppd Ly + TpicL3).

Proof. Recall the definitions
tr
¥t ;:/ B, (s, t2) (1 + K(s) TK(s))®1 (s, t)ds
s=t

YU = (I + K(t) TK (t))
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We can then express

Y§ v = v (T4 K (1)K (1) ') = /_k Zy(s),
Zk(s) = {@1(87 tk)T(I + K(S)TK(S))Ql(& tk) — (I + K(tk)TK(tk))} ds
Thus,

¥ — ¥l < tmax||Zy(s)]- (G.9)
s€TL

With numerous applications of the triangle inequality,

1Zi ()11 < 1T — @1 (s, 1) [ [T+ K(s) "K(s) || @1(s, 1)
+ [T+ K(s) TK ()T = @1(s, 1) + 1K (s) = K(tx) [(IK ()] + [K(E)])-

Using ||K(s)|| V [|K(tx)|| < Lfpric due to Claim G.3, we have

1Zr ()l < (1+ Lipfie) (1 + (@1 (s, i) DT — @15, )| + 2pwic L g K (5) — K(t) |

<3(1+ Lipgio) |1 — @1(s, ta) || + 2pme Lp [ K () — K () (Claim G.6)
< 6TLa(l+ Lipk) 4 2uic Ly K(s) — K(ty) (Claim G.6)
< 120L e (1 + L3 %) + 2t Ly (Mfﬁ fhric + L7 Lgl) , (Claim G.4)

We can upper bound L3 (1 + Liu%.) < L3(1 + Lypwic)* = L2, and simplify 2Tpuyic Ly (Mflif/lric + L;ngl) =
21 (MyrppZ Ly + puicL?). This gives
1Zx(s)]| < 12T/‘ricLzl + 21 (Mf’ifﬂgich + Nrichl) =2t (Mf’fflufich + 7Nrichl) .

Plugging the above bound into Eq. (G.9) concludes. O

G.2.4. CONCLUDING THE PROOF OF PROPOSITION G.2

From Lemmas G.6 and G.7, we have
X5 — X)) < 20 (LppnicMyrg +3L3) ,  [IVE — Vi) < 20 e (MymgpmicLy + TLE)
Therefore, using fiic > 1
2X5 — X + 1Y — V5P| < 27 pie (BM gk ppnic Ly + 13L7) . (G.10)

Now, we invoke Proposition F.12. We construct linear interpolation (here, s € [0, 1] parametrizes the interpolation and not
time)

Xi(s) = (1 — 8)XE + sX5P Yp(s) = (1 — s) Y5 + sY5UP.

Then, by Lemma G.5, the interpolator Ay (s) defined in Proposition F.12 satisfies Ax(0) = PS* and A, (1) = P5eP. In
particular,

101 +1(0) lmax,op = max [|PSF| (since A, = P$® and definition of || - ||max,op)
ke[K11]

_ P(t by Eq. (G.7
kéﬁ?’iu” (te)]] (by Eq. (G.7))

sup [|P(t)]]
te[T)

S Hric, (Gll)

IN
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where the last inequality is by Assumption 4.3. Moreover, the term A(s) defined in Eq. (F.14) satisfies
Vs € [0,1], A(s) = T (2%E" — X2+ wl|vE - v
< T 2pnic (BMykppnicLy +13L7) . (by Eq. (G.10))

Hence, recalling ||A1:x+1(0)|lmax,op < tiric due to Eq. (G.11), it holds that long as 2T;Lfic (3Mfl€f,urich + 13L§1) < %,
it holds that

& H[ll?‘jfl HPSUbH - ||A1 K-‘,—l( )Hmax,op S 2HA1:K+1(0)”max,op S 2//Lric~
Lastly, we note the condition 2tu2, (3M ki ppuicLy + 13L%) < 1 is equivalent to
< 1
= Apge BMykppic Ly +13L%)
1
< = Tric (Definition of L. in Eq. (G.6))
4/’Lfic (3Mf"<‘f/f4rich + 13L?(1 + quric)Q)

This concludes the proof of Proposition G.2. O
G.3. Proof of Lemma G.3

The proof is similar to Proposition G.2. Let 7 = M. As K7 = 0 for all k, we that L, = 1, and that A% 11 = I, and

A = (A% ) AT AT + T (G.12)
On the other hand, following the arguments of Proposition G.2, we it can be shown that V™ (¢x;u = 0,£) = & Tpgtg , where
P§' satisfies the recursion P§¢ ; = I'and

ty

= @1 (thy,th) PR @ (tegr, te) + Y5, Y5 :=/ Py (s, ty) " ®1(s,tx)ds,
S

s=ty,
where ®1(s,s) = I and where (using that we consider V™ (t;;u = 0,€) with u = 0, so the corresponding K(¢) in
Eq. (G.8) vanishes)
d
&‘I’l(t s) = Adi(s)®1(t, s).
Hence, ®1 (tg41,tk) = A7) 1> so that

ti
B! = (05,0 PR D+ Y Y [ ()T (0 ds
S

=t

Along the lines of Lemma G.7, it can be shown that for T < Ty, ®1(s,t3) " ®1(s,tx) = 1I for all t € Z;,. Thus,

1
t T t
Py = (AgLk) PigihoLk + 51-

Comparing to Eq. (G.12), we find that P{* = 1AT. As |P{| = SuDg, e V(i = 0,€) < jue, we conclude
AT < 2pric, as neeeded.

G.4. Proof of Lemma A.1

We recall the definitions £ o := maxi<j<k<i+1 [|®7 & j ||, and

K+1
K1 i= ken[llé(liil T ; ||q>c1 k,]” \ ; ||q>c1
k K41
K7, :ké{}?)jl T 4 187 4117 V Z 185 kl” |

Jj=1
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and recall the definitions A%, ; = I, and A}, = (Aéﬁ,k)TAZHAS,k + 7L and pir s 1= MaAXpe kg ko+1,..., K413 AR |-

Let us first bound [[&7, ;. ;|| for j > ko.

Claim G.7. Forj > ko, and © < 1/6L Ly, |97 ;. ;|| < \/max{1,6L; Lz }ir (1 — T/pir )57

Proof.: We apply Lemma F.10 with X, <= A7, ,, Q = I, and Y, = 0, and only take the recursion back to k£ = ko. That
lemma shows that, as long as [|A7, ;, — I|| < &t for some x < 2/7, it holds that (for j > ko)

19715117 < max{1, 26} i (1 = T/ bt o)

Lemmas 1.3 and 1.4, and using L, > 1, we have that for T < 1/4Ly, ||A7}, — I|| < [[AT), — || + [[BY) (K7l <
exp(1/4)TLy(1 + L) < 2exp(1/4)tLyL, < 31LyL,. Hence, for T < 1/6LfL,r, we can take K := =3LsL, and have
k < 1/27. For this choice of k, we get

181051 < max{1, 6Ly Lix bt o (1 =/ i ).

Next, we bound |27 ;. .|| for k < ko.
Claim G.8. For k > ko, |87 . ;|| < exp(koTLy).

Proof. For j < k < ko, we have K7 = 0. Hence A7} ; = A7, ,, and from Lemma 1.4, we get [[A) ;|| < exp(tLy). Thus

| < Ty a0l < exp(kTLf) < exp(kotLy). 0

H clk,j

Finally, we bound we bound ||#7, , /|| for j < ko.

Claim G.9. For j < ko, ||#7) ;. ;|| < v/max{1,6L Ly }ir . exp(thkoLy).

Proof. For j < ko, we have [|e7, i = (187 k80 kil < 18044, I125 1, ;- The first term is at most
max{1l,6L;Lr}pur . by Claim G.7, and the second term at most exp(tkoL ;) by Claim G.8. O

We can now bound all terms of interest. Directly from the dichotmoty in Claim G.7, we have Kpo <
v/max{1, 6L L }pr . exp(tkoLy). Next, for any k, we can bound via Claims G.7 and G.9

k ko k
TZ 187 54117 < TZ 187 54117+ T Z 187 54117
=1 =1

Jj=ko
k
< max{1,6L Ly} pir. | (Tho) exp(2thoLys) + T Y (1 =1/ pir )k 7H0 (Claims G.7 and G.9)
Jj=ko
< max{1,6L Ly }pir . | (Tho) exp(2thoLys) + 7 Y (1= T/ptr )"
n=0

— 1 —
ST ) M /T

<max{1,6L Ly} pir« ((Tho) exp(2TkoLs) + fir ) -
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and show the same bound for T ZKH

TZ ||q>cl kg

|87, ik |2, which yields the desired upper bound on £ ». Finally, to bound x 1,

| < TZ ||q>cl k,j” +T Z Hq)cl k,]

Jj=ko

k
< v/max{1l,6L Ly} ir, | (Tho) exp(thoLy) + T Z \/(1 — T/ pig ) Ko (Claims G.7 and G.9)
Jj=ko

< \/max{l 6L¢L },u,r*<’tk:0 exp(ThkoLy) +TZ’/ 1— 7T/t y) )

S \/max{1,6LfL7r},u7r* (Thko) exp(thkoLy) —I—QTZ I—=7/pr)" >
n=0

- \/max{l, 6L Lo} im.s (ko) exp(thoLs) + 24im.r)

where in (i), we use that >0 -4 +/(1 - = Yuso VA=) + /[T =) < 23 50 V(=) =

23 ,50(1 —7)". One can establish the same bound for T ZK+1 ||q’c1 .|l which gives the desired bound on £ 1. O
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H. Optimization Proofs
H.1. Proof of Descent Lemma (Lemma A.13)

Proof of Lemma A.13. For simplicity, write Erry = Errg () (0), Lv,r,c0 = Ly x(n) o0» and Errg = Errz(0) and Erry(9)
and M > My i, ~. Note that if 7 and 7 have the same input sequence but possibly different gains, J. dise () =
Jise(7). Therefore,

jdlsc( n+1)) jd]bc( n+1))

Define the input
ﬁ,g") = u,g") T;Av,in) + ng (xp — %i)

Then, as in Eq. (E.3),

() IR () () IR ()

Ug = Uorac,k (uliK) =4 (uliK)7 Xk = Xorac,k (uliK) = Xk (ﬁliK)7 Vk € [K]

Consequently, we have the quality

isc/~(n 7+ disc . 7(™ (™ disc /. (™ disc, 7™ -(n
FieEm) = gp T i) = I8 k) =I5k + ),
where we introduced
~(n < (n n = (n) ™4
6u,(C )= u,(C ) —u,(C ) = —ng +Ki (xp — %)
—_——
— (™)
:6ﬁ§€n;l) =ou,
Claim H.1. We have
n 1
Val8ukclle, < VT(n(Lymc + ZErre) + Errz)
1
max Héu )H < (M(Lv,r00 + ;Errv) + Errz)
Proof. The first bound follows from the second. We have that
max |54 ) < max 15| + max 562
< T max HV H + Err;
A B
(™ disc n
< 7 (|77 " ) + Brve ) + o
< g(TLV,‘n',oo + Erry) + Errg (Lemma A.8)

1
=n(Lvroco + ;Errv) + Err;

As a consequence of the above claim, it holds that if

1 . Rfeas Bta 2,
L T,00 -E E z < aBsa W?Ba inf, 7, . )
(77( V,m,00 T T rrv) + krr ) = mll’l{ S tab, tay,inf, \/T

then (a) Lemma A.7 implies stability of 7("):

M) o S 2 w5 Lzoy = L,
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and (b) the Taylor expansion in Lemma A.6 implies that

(™ disc n n
T ) = 7 i+ su)

is n . (n (" disc 7™
= () + (50, Oar e ur ) ) + B sunhl,

(AM-GM)

2
. : ﬂ_(n) is n
< g (™) + 37 (sa{d, v (i) ) + Mol sal
i=1

Term;

It remains to massage the above display to obtain the descent descent guarantee:
_(n;1 (™) disc /. (™ 1
Termy = (sa{/3, VI ™ (ulig) ) + Mrefsul0 1,

< (8ulmY Vi) + ||ou ”||er Erry + M|sal")|2,

< (B, V) + B+ 20 sl |,
= (2 2 G, + B
> L)% f’}ine2 Pt

where the last step uses 7 < 7. Then,

n; (") disc /. 7 (™) n;
Termy = <5u§ I?),VJT A (g, )>+M Héu( 2)th2
n;2 (n) ,disc (n) n;2
< 18872 e IVT7 = T lew + Mo |12,
< Va5a\" g, - VETLy r 00 + Me||55" 2)\|42 (Lemma A.8)
< \Fm,?xn&ik D\ VETLy r 00 + MK max||5t |
= T(Errs Ly x 00 + MErr2).
Thus,

jjqiSC(,]T(n-‘rl)) _ jjf_%isc(ﬂ("))
< Term; + Termsy

~ (n)
_%HVLK”Z + (4M 2Errv—l—Err,;LvﬂOo—I—MEI“I" ).

H.2. Proof of Proposition 4.1

The proof of Proposition 4.1 makes liberal use of the definitions of the linearizations given in Appendix C.1, which we
recall without further comment. Going forward, introduce the Jacobian linearization of the stabilized cost:

T
T (@) o= VE (1| w) + / QE™(t | ), & (¢ | ), t)dt.

We now characterize some properties of 77/,

Lemma H.1 (Valid First-Order Approximation). We have that Vo J; () = Vg J2"* (@0).

Proof. Immediate from the chain rule, and the fact that the Jacobian linearizations are defined as the first-order Taylor
expansion of the true dynamics. O
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Lemma H.2 (Congruence with the Open-Loop).

inf 7792 (@1) = inf 73 (@; u™).

Proof. We prove infg J77%°(11) < infg J3*°(1@; u™); the converse can be proved similarly. Fix any @; € 2. It suffices to
exhibit some @12 € U such that, for all ¢ € [0, T,

XTI | Tp) = ¥(t | @y u™), W(t | ) =y (t).
By substracting off x™(¢) and u™ (¢), it suffices to show that
SX™IC(t | Tg) = 8x°(¢ | g3 u™), SUWT(t | ) = Sy (t).

It can be directly checked from Lemmas C.1 and C.2 that the input U(t) = 11 () — Kj t)éxjac(t | @y;u™) ensures the
above display holds. O

The last lemma contains our main technical endeavor, and its proof is defered to Lemma H.3 just below.

Lemma H.3 (Strong Convexity). Suppose T < min{i, ﬁ} Then, @ — J7 () —ax|alZ, ) is convex, where

—— (8]
Qm = Gamax{1,L2}"

We may now conclude the proof of our proposition.

Proof of Proposition 4.1. Suppose that 7 satisfies Definition 4.7, and suppose T < min{i,ﬁ} and

Va7 (@)| _ »llzo@y) < €. By Lemma H.1, Hvﬁj}r’jac(ﬁﬂﬁzm||£2(u)) < €o. By Lemma H.3 and the fact that
strong convex functions satisfy the PL-inequality (e.g. Karimi et al. (2016, Theorem 2)), we have

; - 2 - 643 1,L2
TR (u) < inf J5 (@) + o _ inf 779 (@) + e max{1, w}_
u T u (67
Finally, by Lemma H.2, infg J 18°(7) = infg j%ac(ﬁ; u), which implies the proposition. O

H.2.1. PROOF OF LEMMA H.3

Proof. We claim that suffices to show the following PSD lower bound:

T
VaeU, Q"(u) > —lullz,, (H.1)

where we define
T . .
Q" (u) ::/o ([8x™32e(t | w)[|* + [|su™(¢ | w)[|*)dt,

and where we define the deviations 6(-) as in Lemma C.2.

Claim H.2. IfEq. (H.1) holds, then Lemma H.3 holds.

Proof of Claim H.2. Note that 1 — X™2°(¢ | 1) and @ ~ U™2°(¢ | u) are affine, that dX™2¢(t | ) = x™Iac(¢ |
@) — x7(t) and dSU™2¢(¢ | @) = W™2°(¢ | @) — u™(t) are linear (no affine term), and that the diferences X™#2¢(¢ |
1) — 0X™I2¢(¢ | i) = x™ (¢) and W™I3¢(¢ | @) — dSU™*(¢ | ) = u™(¢) are independent of . Hence, we cocnlude Q7 (1)
is a quadratic function with no linear term, and or (u) — Q™ (u) is linear, where we define

t
t

T
Q" (u) ::/0 (™t | @) + @<t | @)]*)dt,

Assumption 2.1 implies that 7 92¢() — aQ™ () is convex, and since the difference O™ () — Q™ (a) is linear, that
J7%(a) — aQ™(n) is also convex. Lastly, as Q™ () is quadratic with no linear term, Eq. (H.1) implies a Q™ (21) —

a|[a]2, is convex. Thus, 777 (1) — ax[[ul|%, = (J77%°(a) — Q™ (@) — (@ Q™ (1) — ax|[ul|%,) is convex. O
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To verify Eq. (H.1), let us define a few salient operators. Let X' denote the space of Lo bounded curves x(t) € R%. We
define linear operators T : U/ - X and Ty : U - X and K : X — U via

Ty[u](t) = 8% (tyry | @), Tolu)(t) = 6x™2°(t | w),  K[X](t) = Kf,)x(1).
Then, letting I;; denote the identity operator of U, we can write
Q7 (1) = | T2[ull|Z, v + (T + KT1)[u]l|Z, 0r)-

Next, we relate Ty and T;. Define the operators L : X — X and W : i/ — X by
t
Lx|(t) = ®5,(¢, tery)X(t), WA(t) = / . 51(t, 5)BL(s)u(s)ds.
5=t (1)

Then, it can be checked from Lemmas C.2 and C.10 that

Te[a] = LTy [a] + W[a].
Hence,

Q" () = [[(ILTy + W)[@][|Z, (x) + | (T + KT1)[@]]|7, -

With this representation of Q™, we establish a lower bound by applying the following lemma, whose proof we below:

Lemma H4. Let A, B be Hilbert spaces with norms || - || 4 and || - ||, let I 4 denote the identity operator on U, and
let TW: A — B L:B— B and K : B — A be linear operators, and let || - ||op denote operator norms. Then, if

([Wllop < %, it holds for any a € A,

min{1, omin (L)}
16 max{1, [[K[2,}

I(LT +W)[al[|5 + [[(La +KT)[a][% > [[al® -
where 0min (L) := infy)|a) =1 [|Lal 4.

To apply the lemma, we first perform a few computations. Throughout, we use || - ||op to denote operator norm, and o yin
to denote minimal singular value as an operator, e.g.

IKX]l|.co @)

e
[ o (L) = inf ILIX] [l 22 )
1%l 25 ()

[Kllop = sup -
P %40 %20 |X| 2, x)

Claim H.3. Under Definition 4.7,

Kllop < L.

Proof. Since K is a (block-)diagonal operator in ¢, i.e. K[X](t) = K}, X(t), its L2(X) — L2(U) operator is bounded by
maxy, |KL ||, which is at most L, under Definition 4.7. O

Claim H4. Fort < Ly/4, omin(L) > 1 — tLyexp(tLy) > 1.

Proof. Again, since L is a block-diagonal operator in ¢, ie. L[X](t) = ot tywy)X(t), omin(L) =
infte[O,T] Umin(égl(ty tk(t))) By ey ||¢’g1(t, tk(t)) — IH S TLfT(TLf) S 1/2 Thus,infte[o’T] O'min((I’gl(t, tk(t))) 2
1/2. O

Claim H.5. ||W||o, < TLyexp(tLy), which is at most 2tLy for T < Ly /4.
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Proof. For any u, we bound

T
W12, ) = /

=0

2
t
[ B
5=tk(t)

T ¢
< / (t— tk(t))/ | @7 (¢, )BT (s)u(s)ds||? (Cauchy-Schwartz)
t=0 s=1g(t)
< texp(2tLy) / / IBZ ()| [[a(s)ds||? (t =t < T, Lemma 1.4)
5=th(1)
< tL? 7 exp(2tLy) / / (s)ds|” (Assumption 4.1)
5= tk(t)

th+1(t)
—TLfexp 2tLy) / O/t (s)ds||® ds

< LfeXp(ZTLf)/ (s)ds|? ds
s=0

= (tLs exp(tLy))?[[al|Z, w0

O
With the above three claims, Lemma H.4 implies that as long as T < min{ﬁ7 ﬁ},
1 o
T(m) =712 =112 _or
Q™ (u) = [[(LTy + W)[u]l|Z, ) + |(Xr + KT)[U] |7, 0y 2 FAmax(L, 12} o
O
Proof of Lemma H.4. Without loss of generality, assume ||a]|4 = 1, and define = % . We consider two
cases: First, if ||Tal| < n, then
1 1
T+ W)fall+ (L + KD)[a] % > L+ KD)fall > (o] = [Kopn)? = (1 = 52 >
Otherwise, suppose ||Ta|| > 7. Then,
min{l, omin(L)}
I(LT + W)[a] |3 + [[(La + KT)[a][% > [[(LT + W)[a]| > (n — [W]lopllal)® = (——5r—— — [Wllop)*.

2[Klop

Hence, if [|[W]|op < W, the above is at least
op

min{1, omin (L)?}
16 max{1, ||K]|2 p}'

I. Discretization Arguments

In this section, we use discretizations of the Markov and transition operators. Again, we assume 7 is feasible. We define
the shorthand.

Definition I.1 (Useful Shorthand). Define the short hand
Un(k2, k1) = (128 gy ky1ll, Lot == exp(TLy), L1

and note that ¥ (ka, k1) < Kz oo due to Lemma A.1.
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I.1. Discretization of Open-Loop Linearizations

All lemmas in this section assume 7 is feasible.
Lemma I.1 (Continuity of X" (-)). Then,

X" (t) —x"(¢)I] < rglt — ]
Proof. Assume without loss of generality that ¢ > ¢. By Assumption 4.1 feasibility of ,
d
I X" ()l = [l fayn (x7(s), ™ (s)] < iy

Hence, as x™ (t') = x™ (t) + fst/:t fayn(x™(s),u™(s))ds, the bound follows. O
Lemma L2. Forall k, s € Iy, we have |B7 (t) — BZ(s)|| V [|AL () — AL (s)]| < Ty My.

Proof. We bound ||B7,(t) — BZ,(s)]| as ||AZ(t) — A7 (s)| is similar. Assume s < ¢ without loss of generality. Then,
IBG() = BGi(8)l| = [10ufayn (x (), 0" () — Oufayn(x"(s), u"(s))
= [[Oufayn (X7 (), 0" (5)) — Oufayn(x"(s), u"(s))]| (u” € Ux)
= [[0ufayn (X7 (), 0" (5)) = Ou fayn (x"(s), u"(s))]| (u" € Ux)
< |Ix™ () — x"(9)|| m[%xl] [|0u fayn(ax™(t) + (1 — a)x"(s),u™(s))||  (Mean Value Theorem)
< ||x™(t) — x"(s)|| My (Assumption 4.1 and convexity of feasibility)
<(t—s)kfMy < T My. (Lemma I.1)
O
Lemma 1.3 (Bound on B, ;). Foranyk € [K], ||BY) || < TLo1Ly = TLysexp(TLy).

tre+1 ™ ™
Proof. B3, =[5 @7y (ths1, 8B (s)ds < tmax.es, @7 (terr, s)][IBE(s)]. We bound [BEy(s)] < Ly by
Assumption 4.1 and ||<I>01 (tk+1,5)|| < Lol by Lemma 1.4 below. O

I.2. Discretization of Transition and Markov Operators

We begin by discretizing the open-loop transition operator.
Lemma 1.4 (Discretization of Open-Loop Transition Operator). Recall L,y = exp(tLe). ||®5,(¢,t) — I < (¢ —
t)Lyexp((t' —t)Ly). Moreover, ®((t,t') < exp((t' — t)Ly). In particular, if t,t € Iy, then

1@5(t,t) =T < TLpLot,  BG(H,1) < Lot = exp(TLy)

Proof of Lemma 1.4. For the first part, it suffices to bound the ODE y(t") = ®,(¢', )€, where £ 6 R% is an arbitrary
initial condition with ||¢|| = 1. Then y(t) = ®7(¢,t)¢ = &, and & LY(s) = A’OT( s)y ( ). LY < Lelly(s)]]-

The result now follows by comparison to the constant ODE z(t) = y(¢), %z(s) = 0, and Picard’s Lemma (Lemma C.9).

The second part follows from Picard’s lemma with comparison the to the stationary curve z(0) = 0. O

Next, we bound the difference between the operator 'i>:1 in the definition of @)

<> and the identity matrix.
Lemma L5. Recall the definition Ly = exp(TtLy) and

S

BT\ (s, t4) = BT (s t5) + ( / 7 (s, ') B (s')ds)Ky

S':tk

Then,

@2 (t trey) — I < TLyLoi(1+ L)
Similary,

@5 (s thry) — I < TLyLor(1 + L)

78



Learned Locally Linear Models for Nonlinear Policy Optimization

Proof of Lemma 1.5. Letty =ty for shorthand. We have

t

1Dt t) = TI| = | @ (4 tr) +/ ®31(t, 5)BG (s)ds)K — 1]

s=ty

< [1Raits tr) = Tl + [t = te[[[KE] Jnax [@61(,5)BGi (s)]l

< || @5 (t,ty) = I|| + |t —tg|L-Ly H[laX] @5 (t, )] (Assumption 4.1)
s€[tr,t
< |t —tg|Lyexp(Ly(t —t)) + |t —tyg|LaLy n%ax] exp(Ly(t —tx)) (Lemma 1.4)
sE|ty,t

<TLs(1+ Lr)exp(Lyt) =TLs(1 4 Lr)Lor.

The bound on ||® (¢, tit)) — I|| can be derived similarly.
O

Lemma 1.6 (Discretization of Closed-Loop Transition Operator). Let s > t such that tys) > tg(;). Then, under Defini-
tion 4.7,

[@a (s te(ny+1) = 2 k(o) ke[l < 2L g Lot Lnthn (K(s), k(2))-
Proof of Lemma 1.6. As ty,s) > ty(), we can write s € Iy, and ¢ € Iy, for ko > ky; then
ko =k(s), k1 =k(t).
We now have

[ Ra(S, th(r)+1) — B k(s) k(t)+1ll = 1D (5, try) — 1) - [Ewa—
= ”écl(svt/@) - I” . 1/}%(]{:27 kl)

Directly from Lemma L.5 and kg = k(s), | ®L(s, ts,) — I|| < TL¢Loi(1 + Ly). This yields, with L, > 1,

RS, trt)+1) = 82 k(o) by 41l < TLyLol(L + La)r(ko, k1) < 2Ly Lot Lrtr (ka, k1).

Lemma L.7. Suppose Definition 4.7 holds and that T < 1/4Ly max{1, L }. Then,

ikl <5/3.

Proof. We have
1821 kt1.1 1l = [[®o1(tkt15tk) + Boy kK|l < (| @01 (Ek+15 k) | + L |[Boy il
where we use [Kgl| < Lp under Definition 4.7. By Lemma 13, [B] .|| < ~tLyexp(tL;) and by

Lemma L4,[[ @5, (tk41, k)|l < Lot = exp(tLy). Then, |87 ;. 4[| < exp(tly)(1+TLyLy). Fort <1/Lymax{l, L},
we have [|#7) ;4[| < exp(1/4)(1+1/4) <5/3. O

Finally, we turn to a discretization of the Markov operator:
Lemma 1.8 (Discretization of Closed-Loop Markov Operator). The following bounds hold:
(a) For any ko > ki, we have

—1gm I ri < 2 .
tezﬁli’é% [ F a(s )l < wor(kz, k1) Loy (kM + 4LfL7r)

L
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(b) For any ko > ki, we have

Sup T 0 g ey — Pl (s )| < WKy k) Loy (kg My + 2L%)
k1

Lcl,2
< T oo Lol (Kf My + 2L7) .
(c) Forany (s,t) with Li(s) = tr(r), we have

||‘I/ < LolLf

a |
cLitk(systeey Il =

(d) Foranyl < ky < ky < K and t for which tyy) = ki,
1 T s
;H\I’cl,kg,kl || \% H‘Ilcl(tkwt)n < LOlLflpTr(k‘% kl) < LOlLfK‘Tr,OO~

Proof. Let us start with the first bound. Set k1 = k(t), and k2 = k(s). Note that ¥7, , , :=@7, , BT,

[Tk ke — O, )]

= 1T 8% py ks +1Baik, — POty +1) R (b 41, ) B (1) |

<88 ky ey +1 (PG (Ery 41, 1) BE () — TilBgl,kl)” + (RS try+1) — kg .1y +1)Bar ()l

< Yr (2, k1) | R (try 11, £)BG (1) — TilBgI,kl |+ Lell®& (s, thy+1) — 8¢ gy k1]l (Assumption 4.1 and Eq. (I.1))

< Yk, k1) | @7 (try 1, ) B () — T "B g, | + 2TLF Lot Lo (K2, 1), (Lemma L.6)
Finally, we bound

@8 (tey+1,1) B () — T_lBgI,kl [

try+1
= [ @51tk +1,H)BG (1) — T_l/ D01 (tki 11, 5)BG (s)ds||
s=tg
t ' t
<19 1 B0 7 [ @ OB+ [ @ 1,9) @1, B )]
S=tk1 S=tkl

<16 (Ery 1, )| max [BE(¢) =BG (s)[| + Ly max [ @Gk, +1,5) — Pai (1, D[ [Ba(s)]
SEIkl SGIkl
< Loy My + Ly max [ @)t 11,5) — By (1, 11,0)|
& k1
< TLOlﬁfo + 2TL?¢L01
where the second-tolast step uses Lemmas 1.2 and 1.4 and Assumption 4.1, and the last step uses ||||®],(tk,+1,5) —

ote 11,0 < |1 @5 (Eky+1,8) — I|| + || B (tky 41, ) — I|| < 2TtL;L, by Lemma 1.4, Combining with the previous
display,

T T ey, — PE(s, )]

< W (k2, k1) (Lot My + 2L§0Lol + QL?Lole)

< TLoWr(ka, k1) (kp My +4L3 L) (Lx>1)
This concludes the proof of (a).

For (b), the argument is the same, but the contribution of 2L§L01L,r vanishes, as <I>21(tk(s), thy41) = <I>§Lk2,kl+1.

For (c), we note that if 5y = ti), [[®5(s,0)[ = [|®5,(s,1)BY(t)[| < LoiLy by Assumption 4.1 and Lemma I.4. For
the final inequality, we have by Eq. (I.1) and Lemma 1.3 that

||\I,gl7tk(s)7tk(t)|| = H@gl,kg,kl—‘,-lBgl,kl” S TLOlqupﬂ(kQ?kl)'

The bound on || ¥7,(tx,,t)|| is similar.

cl
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L.3. Discretization of the Gradient (Proof of Proposition A.4)

We use the shorthand from Definition I.1. Recall that V.77 (7) = Lt(V7gis¢(m)) is the continuous-time inclusion of the
discrete-time gradient, renormalized by 1~1. Thus, from Lemma C.7,

VTr(m)(t) = T*IQ”(tk(t)) + T ¥ 1) | (0V(XT(T)))
+ Z Vinm) | Q1) +K;Q0 ().
j=k(t)+1

From Lemma C.6, we can write

VIr(m)(t) = Qi (t) + LT, )T (8:V (x™(T)))

t

+ (s, )T Q7 (s)ds
5=t (1)
K
- / (T (5, QT (s) + T (15, )TK; TQT(5)) s,
i=k(t)+17 <L

and therefore decompose the error into five terms via the triangle inequality.

VT (7)(t) = VTr (@) ()] < 1Q5 () — QF (tap)l| + I(E(T ) = T (¥ 14, ) T (8:V (X)) |

:=Term; =Termy
Lr(t)+1
[ 1) ) T Qs
=
:=Termsy
K
+T Z Termy ; + Terms ;,
G=k(t)+1

where we further define

Termy j := sup [|Wa(s, 1)z (s) - TN k) (@QE()]

sel;

Terms ; == sup [ @7 (t;,1) " (&))" Q7 (s) = T (¥ k) " (K5) T QU (E)]

sel;

Before contitnuous, we apply the following lemma.

Lemma 1.9 (Discretization of Cost-Gradient). For z € {z,u},
1Q7 () — Q7 (E)II vV QG (1) — QL (Ek ()] < TMeost (1 + Ky).
Proof. We bound || Q7 (t) — Q7 (t(t))]| as the bound on ||QT (t) — QT (¢, (t))|| is similar.

1Q7 (1) — Q7 (tr())l = 0:Q(X" (), u™ (#), 1)) — (X (o)) 0™ (tke)), teeo)) |

= [10:Q(x (t), u” (tx(s)), )) QX" (t(ty)s 0 (trey) s treey) |l (™ () € Uq)
< Meost|t — tk(t)| + Meost||X™ (tk(t)) x" ()] (Integrating Assumption 4.2)
< Meost T+ Meosth T = TMeost (1 + K ). (Lemma I.1)

O

From Lemma 1.9, we bound

Term1 S TMcost(l + Hf)
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Next, using that 7'/ is integral by assumption, i.e. t = t;(1, we have

Termy = [[(®4(Tt) — T 1( ATitn)) | 0V (XT(T))) ||
< Leost||PL(T, t) — (@Cl’T’tk(t))H (Assumption 4.2)
S TLcosthl,Q’(/}ﬂ'( (T)7 ( )) = TLCOStLCI,QwTF (K + 17 k<t))a (Lemma Ig(b))

For the third term, we have

tr(t)+1 . T
Terms — / 17ty ) TQE () s

=t

tr(t)+1
chost/ IO (ths) trry) ' llds (Assumption 4.2)
s=t

S TLleost  max || ¥F (tes), tk(t)) I (ignoring interval endpoint due to integration)
SE€[ttr(ty+1)
= LcostLolLf7
where in the last step we use Lemma 1.8(c). Summarizing these the bounds on the first and third term,

Term; + Termy + Terms < T(Leost LotLf + Meost (1 + K1) + Leost Let 2 (K + 1, k(t)) 1.2)

Next, we turn to the fourth and and fifth terms. We bound

Termy,; := sup |7 (s, )QF(s) — T (¥3 ;1) (QE (1)l

SEL;

L SRR sup 197 (5) = QI + T8, ko) — Ta(s, DIIQE(E5)]

< LoLgx (5, k(t)) - sup Q% (5) — QL (ti)|| + TLer 1t (4, k(1)) [|Q7 (t5)]] (Lemma L.8(a&c))
< Lot Lthr (4, k(t)) - TMeost (1 + K£¢)) + TLe1,107 (4, k(t)) Leost (Assumption 4.2 and Lemma 1.9)

= T'l;/}w(ja k(t))(LolLchost(l + /{f) + Lcosthl,l)-

Moreover,

Terms ; = sup 13 (t5,1) " () TQU(s) — T (¥ ) T (i) T Q)]

< e (k) K sup [|Qu(s) — Qult)
s€1Z;

+ sup 1T (¥ k) — A OIS IQE ()]

< Ll (4000 sup Q1) ~ Q1)
L sup 77 (4 000) — WA DRI (Definition 4.7)
< LuLaLigtn (5 h(0) sup Q5(5) = Q7011 (Lemma L8(d))
L Lazta (G, k) QI () (Lemma L8(b))

<AL Lo Lty (4, k(t)) Meost (1 + K§) + Lz Lar,2®x (4, k(t)) Leost (Assumption 4.2 and Lemma 1.9)
= T%r(]) k(t)) (LTFLOlLfMCOSt<1 + "ff) + LTFLCLQLCOS(]) .

Hence,

Termy ; + Terms ; < T (4, k(t)) (1 + Lx) Lot L Meost (1 4+ Kf) + Leost (Let,1 + LxLel2))
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Using the definitions of L 1, L¢,2 in Lemma .8 and L, > 1, we have

(Lety + LaLea2) = Lol(kg My +4AL7 Ly + Ly (rky My + 2L7))
Loi((1+ Lp)kg My + 6L7 Ly < L (257 My 4 6L7))

Substituing into the the previous display and again using L, > 1,

Termy j + Terms ; < Tr(f, k() Lot (2Lr Ly Meost (1 + i g) + Leoss Lx (265 My + 6L7))
< 2L Ti/).,r(], k( )) ol (Lchogt(l + fif) + Lcoqt(lifo + 3Lf))
< T’L/)ﬂ'(.% (t)) 2L Lo (LfMCOSt(l + Hf) + Lcoat("‘?fo + 3Lf))

::LCI,S
Hence,

K

K
T Y Termy; + Terms ; < TLeys - (T Z Vr (4, k(1))
J=k(t)+1 =k(t)+1

K ) K .
< TLCI,3K"IT,1' (T Zj:k(t)+1 wﬂ'(.ﬁ k(t>) = TZj:k(t)+1 ||<I>cl,j,kH < K;ﬂ',l)

In sum, we conclude that

VT (m)(t) — VTr(m) ()|

< T (Leost Lot L + Meost (1 + K5) + Leost Ler,2®a (K + 1, k(1)) + Krx1La13)

< T (LeostLotLf + Meost (1 + K¢) + Leost Lot 26m 00 + K1 L1 3)

< tmax{kr,oos K15 1} (LeostLolLf + Meost (1 4+ £¢) + (Leost Lier,2 + Le1,3)) -

Finally, using the definition of Lo = Lg (Kan I +2L?) in Lemma I.8(b) and the definition of Lo 3 :=
2L L (LfMCOSt(l + K¢) + Leost (kMg + 3L?)) defined above, and L, > 1,

Mcost(l + K:f) + LcostLolLf + Lcosthl,Q + LCL,?) < Lﬂ'Lol ((1 + Lf)Mcost(l + I’if) + Lcost(3’€fo + SL% + Lf)) .

Thus, recalling L) = exp(tLy),

INTr(m) () — VTr(m) ()| < te™™ max{rr o, fim,1, 1} Lr (1 + Ly)Meost (1 + fif) + Leost (3, My + 8L% + Ly)) |

as needed.

Part 11
Experiments

J. Experiments Details
J.1. Implementation Details

trajax (Frostig et al., 2021) is used for nonlinear iLQR trajectory optimization and haiku+optax (Hennigan et al.,
2020; Babuschkin et al., 2020) for training neural network dynamics models.
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J.2. Environments
J.2.1. PENDULUM

We consider simple pendulum dynamics with state (6, 9) and input u:
0 = sin(0) + w.

To integrate these dynamics, we use a standard forward Euler approximation with step size 7 = 0.15, applying a zero-order
hold to the input. The goal is to swing up the pendulum to the origin state (0, 0). We consider the cost function:

c((8,v),u) = 0% +v* + .

Evaluation details. All methods were evaluated over a horizon of length 7' = 25 on initial states sampled from
Unif([-1 4 7,1+ 7] x {0}).

Random state sampling distribution. For learning from random states and actions, we sample the initial condition from
Unif([—5,5]?) and random actions from Unif([—1, 1]).

Optimization Details. We use N = 100 samples

J.2.2. QUADROTOR

The 2D quadrotor is described by the state vector:

(x7 Z, ¢7 i.C7 2.:7 (;5)7
with input © = (u1, ug) and dynamics:
& = —uy sin(¢)/m,
= uy cos(p)/m — g,

The specific constants we use are m = 0.8, ¢ = 0.1, and I, = 0.5. Again, we integrate these dynamics using forward
Euler with step size 7 = 0.1. The task is to move the quadrotor to the origin state. The cost function we use is:

c((z, 2,0, 0,2, 0), (1, up)) = 22 + 22 + 10¢? + 0.1(i% + 2% 4+ ¢?) + 0.1(u? + u2).

Evaluation details. All methods were evaluated over a horizon of length 7' = 25 on initial states sampled from
Uniform([—0.5,0.5]% x {0}%)

Random state sampling distribution. For learning from random states and actions, we sample the initial condition from
Unif([—1,1]%) and random actions from Unif([—0.5,0.5]).

J.3. Neural network training

For modeling environment dynamics, we consider three layer fully connected neural networks For pendulum, we set the
width to 96, the learning rate to 1073, and the activation to swish. For quadrotor, we set the width to 128, the learning rate
to 5 x 1073, and the activation to gelu. We use the Adam optimizer with 10~ additive weight decay and a cosine decay
learning schedule.
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J.4. Least Squares
While Algorithm 1 features a method of moments estimator to estimate the Markov transition operators, our implementa-

tion relies on using regularized least squares. Specifically, we solve:
-1

. . T .
i’ w1 [ Wy
.y N0 O N |0 @) T
7, — Z 2 2 +AI Z 2 (v — %) J.1)
. i=1 N 'i i=1 |
-1 v [, v
ERdx X (3 —1)dy €RG—1)dy

J.5. Scaling the gain matrix
In order to stabilize the gain computation during gain estimation (Algorithm 3), we scale the update to the Pj, matrix as:

- N 1
Py« Pp  — .
1+ 0.01|By
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