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Abstract

This work introduces an unconventional inexact augmented Lagrangian method where the
augmenting term is a Euclidean norm raised to a power between one and two. The proposed
algorithm is applicable to a broad class of constrained nonconvex minimization problems
that involve nonlinear equality constraints. In a first part of this work, we conduct a
full complexity analysis of the method under a mild regularity condition, leveraging an
accelerated first-order algorithm for solving the Hölder-smooth subproblems. Interestingly,
this worst-case result indicates that using lower powers for the augmenting term leads to
faster constraint satisfaction, albeit with a slower decrease of the dual residual. Notably,
our analysis does not assume boundedness of the iterates. Thereafter, we present an inexact
proximal point method for solving the weakly-convex and Hölder-smooth subproblems, and
demonstrate that the combined scheme attains an improved rate that reduces to the best-
known convergence rate whenever the augmenting term is a classical squared Euclidean
norm. Different augmenting terms, involving a lower power, further improve the primal
complexity at the cost of the dual complexity. Finally, numerical experiments validate the
practical performance of unconventional augmenting terms.

1 Introduction

We consider nonconvex minimization problems with possibly nonlinear equality constraints of the form

min
x∈Rn

φ(x) := f(x) + g(x) s.t. A(x) = 0. (P)

Here f : Rn → R denotes a nonconvex continuously differentiable function, g : Rn → R a proper, lsc and
convex function, and A : Rn → Rm a continuously differentiable mapping. Inequality constraints B(x) ≤ 0
can be incorporated into (P) by introducing slack variables s ∈ Rm subject to B(x) + s = 0 and s ≥ 0.

The general formulation (P) incorporates a wide variety of problems arising in areas such as machine learning
(Kulis et al., 2007; Ge et al., 2016; Tepper et al., 2018) and computer science (Ibaraki & Katoh, 1988;
Zhao et al., 1998). Typical examples include generalized eigenvalue problems, nonconvex Burer-Monteiro
reformulations (Burer & Monteiro, 2003; 2005), and Neyman-Pearson classification (Neyman et al., 1997),
while recently this formulation has also been considered for neural network training (Sangalli et al., 2021;
Evens et al., 2021; Liu et al., 2023).

This work focuses on first-order methods for solving (P), as they scale well with the problem dimensions and
require significantly less memory compared to higher-order methods. These advantageous properties become
increasingly important, particularly in applications that involve large amounts of data. Whereas existing
works usually focus on problems with simple (‘proximable’) constraints, recent works also analyze first-order
methods that handle more complicated constraints, see, e.g., (Xu, 2021; Li et al., 2021; Lin et al., 2022).

This paper proposes an unconventional augmented Lagrangian method (ALM) to solve (P) and analyzes
its complexity under a mild regularity condition (cf. Assumption 4) while taking explicitly into account the
inexact solutions of the subproblems. Notably, our framework is the first to conduct such an analysis in the
presence of a generic convex term g under Assumption 4 (cf. subsection 2.1), without assuming compactness
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of domφ (cf. Lemma 2), and under relaxed smoothness assumptions. Moreover, unlike existing works,
our analysis considers distinct primal and dual tolerances εA, εφ > 0. This is relevant for a number of
reasons. First, absolute tolerances are sensitive to a rescaling of the objective and constraints. Indeed, after
such a rescaling, a given (εφ, εA)-stationary point (cf. Definition 1) becomes (ε′

φ, ε
′
A)-stationary for some

potentially different ε′
φ, ε

′
A > 0. Also in practice this distinction appears highly relevant, as general-purpose

solvers typically support distinct primal and dual tolerances. Moreover, it is not uncommon to analyze
the convergence of a method for distinct primal and dual tolerances, see e.g. (Hermans et al., 2022) for a
proximal ALM for solving nonconvex quadratic programming problems. However, complexity analyses for
classical ALMs do not consider the case εφ ̸= εA explicitly, since the obtained primal and dual complexities
are similar.

1.1 Background and motivation

Penalty methods address (P) by solving, for some penalty function ϕ : Rm → R, a sequence of problems of
the form

minimize
x∈Rn

φ(x) + βϕ(A(x)), (1)

in which the penalty parameter β > 0 is gradually increased. A common penalty function is the squared
Euclidean norm, i.e., ϕ(·) = 1

2 ∥·∥2. However, it is well-known that quadratic penalty methods are empirically
outperformed by ALMs.

This last class of methods is based on the augmented Lagrangian (AL) function Lβ : Rn × Rm → R, which,
for a penalty parameter β > 0 and squared Euclidean norm ϕ, reads

Lβ(x, y) := φ(x) + ⟨y,A(x)⟩ + βϕ(A(x)). (2)

The augmented Lagrangian is similar to the objective of (1), but involves an additional term ⟨y,A(x)⟩, where
y ∈ Rm are called the dual variables or multipliers. Every classical ALM iteration updates the primal-dual
pair (xk, yk) by alternatingly minimizing Lβ with respect to the primal variable, and by consecutively taking
a dual ascent step on Lβ , i.e.,

xk+1 ∈ arg min
x∈Rn

Lβ(x, yk), yk+1 = yk + σA(xk+1) (3)

for some dual step size σ ≥ 0. The primal ALM update can in general only be computed by means of an
inner solver, and hence inexactly. In recent years, various works have taken this inexactness explicitly into
account when analyzing the complexity of the method, which is then referred to as inexact ALM (iALM),
see e.g., (Sahin et al., 2019).

In this work we consider an iALM based on a generalization of the classical augmented Lagrangian (2), in
which the penalty term equals

ϕ = 1
ν+1 ∥ · ∥ν+1, ν ∈ (0, 1]. (4)

When distinguishing with the classical setup, i.e., ν = 1, we refer to this as the power augmented Lagrangian,
and corresponding method.

In the convex setting (Rockafellar, 1976) showed that classical ALM is equivalent to the proximal point
method (PPM) applied to the negative Lagrange dual function ϱ, in the sense that {yk}k∈N generated by

yk+1 = proxβϱ(yk) := arg min
y∈Rm

ϱ(y) + 1
2β ∥y − yk∥2 (5)

coincides with the sequence of multipliers defined by (3) with dual step size σ = β. More recently, (Oikono-
midis et al., 2024b) showed that in the convex regime a similar dual interpretation exists for the so-called
power ALM (3) (with ϕ as in (4)) if the dual update is modified to yk+1 = yk + β∇ϕ(A(xk+1)), where

∇ϕ(x) = 1
∥x∥1−ν x (6)

for all x ̸= 0 and ∇ϕ(0) = 0. More precisely, the convex power ALM corresponds to a high-order PPM
which is obtained by replacing the quadratic penalty in (5) with a higher power 1

βp(p+1) ∥ · ∥p+1
2 , p ≥ 1 of the
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Euclidean norm ∥ · ∥2 such that 1
ν+1 + 1

p+1 = 1. The proposed nonconvex power augmented Lagrangian (2)
reduces to the convex one when φ is convex and A is affine (Oikonomidis et al., 2024b, Example 2.1).

Although the connection to higher-order methods does not extend to the nonconvex setup considered in this
work, it motivates considering augmenting terms ϕ as in (4). Moreover, the rapid advancements regarding
first-order methods for Hölder-smooth objectives over the past decade (Nesterov, 2015; Lan, 2015) potentially
allow for faster solutions of the inner problems, which are Hölder smooth in this setting (cf. Lemma 3).

1.2 Related work

The augmented Lagrangian method, initially introduced in 1969 by Hestenes (1969); Powell (1969), is a
popular algorithm that allows one to cast the constrained problem (P) into a sequence of smooth problems.
Over the years it has been studied extensively, see e.g., the monographs (Bertsekas, 1982; Birgin & Martínez,
2014). ALM is also closely related to the popular Alternating Direction Method of Multipliers (Gabay
& Mercier, 1976; Glowinski & Le Tallec, 1989), which has recently been studied for nonconvex equality
constrained problems (Cohen et al., 2022; El Bourkhissi et al., 2023). In the convex regime, ALM was shown
to be equivalent to the proximal point method (PPM) applied to the Lagrangian dual problem (Rockafellar,
1976). However, in the nonconvex regime this interpretation is lost at least globally (Rockafellar, 2023).
Instead, we assume validity of a mild regularity condition (El Bourkhissi et al., 2025) (Assumption 4) to
establish global convergence of the proposed scheme. An alternative approach that requires a (close to)
feasible initial point, is explored by Grapiglia & Yuan (2021); Grapiglia (2023).

Inexact ALMs explicitly take into account inexactness in the primal update. They have been analyzed
following the paper (Sahin et al., 2019), which establishes an Õ(ε−4) complexity for finding an ε-stationary
point of (P) under a slightly different regularity condition – see subsection 2.1 for details. More recently,
Li et al. (2021) employ a triple-loop scheme, based on an inexact proximal point method to solve the iALM
subproblems, and obtain an improved complexity Õ(ε−3) under this regularity condition. This is the best-
known rate of convergence of a first-order method for solving (P). Moreover, Lu (2022) proposes a single-loop
primal-dual method that attains the same Õ(ε−3) complexity under a similar condition. We also mention
that Lin et al. (2022) present a penalty method that attains the same Õ(ε−3) complexity.

To the best of our knowledge, the ‘nonlinear’ or higher-order proximal point method (using prox-term
1

p+1 ∥ · ∥p+1, p ≥ 1) was first studied in (Luque, 1987), which also analyzed its dual counterpart, the ‘nonlinear’
ALM (Luque, 1986). Besides being restricted to the convex case, these works provide only a local complexity
analysis of the outer loop, neglecting the inherent difficulty of the Hölder-smooth subproblems – a challenge
addressed by this paper. Recently, (Nesterov, 2023) studied the joint global complexity of high-order proximal
point methods in the convex case; see also (Ahookhosh & Nesterov, 2021; 2024). Its dual counterpart, the
power ALM for convex optimization has been recently studied in (Oikonomidis et al., 2024b).

Since the power augmented Lagrangian is the sum of a Hölder-smooth function (cf. Lemma 3) and a convex
function, a first-order method that tackles such problems is desired. Besides the universal optimal methods
by Nesterov (2015); Lan (2015) for convex problems, we highlight the accelerated methods by Ghadimi & Lan
(2016); Ghadimi et al. (2019) for the convex and nonconvex setting respectively. Interesting developments
in this area include the linesearch-free adaptive method by Li & Lan (2024) for convex problems, as well as
a recent family adaptive proximal-gradient methods by Malitsky & Mishchenko (2020); Latafat et al. (2024)
which were recently shown to also converge for locally Hölder-smooth problems (Oikonomidis et al., 2024a).

1.3 Contributions

We propose a novel inexact augmented Lagrangian method (iALM) with unconventional powers ν ∈ (0, 1] of
the augmenting term ϕ (cf. (4)) for solving a general class of nonconvex problems with nonlinear constraints.
The case ν = 1 reduces to the standard iALM (Sahin et al., 2019). The complexity of the proposed method
is analyzed, taking explicitly into account distinct primal and dual tolerances εA, εφ > 0. Notably,

• Under a mild regularity condition (Assumption 4) we prove convergence to first-order stationary
points at a rate of ω−k and show that the constraint violation decreases at a faster rate of ω−k/ν ,
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where k is the number of (outer) iterations and ω determines the rate of increase of the penalty
parameters. The joint complexity is then analyzed with the accelerated first-order method from
(Ghadimi et al., 2019) as an inner solver for the nonconvex and Hölder-smooth subproblems. For
ν = 1, we subsume the complexity of (Sahin et al., 2019); for ν < 1, we obtain faster constraint
satisfaction at the cost of a slower decrease in suboptimality. Thus, the sharper penalties of the AL
are reflected in the complexity analysis.

• Our complexity analysis relaxes the standard Lipschitz smoothness assumption on f to local Hölder
smoothness. Contrary to existing works, no boundedness of the iterates is assumed, and a generic
convex term g is included in the objective.

• Under slightly more restrictive assumptions on f and A, we present a novel inexact proximal point
method to exploit the structure of the weakly-convex and Hölder-smooth subproblems. Using this
inner solver, we further strengthen our complexity analysis to match the best-known Õ(ε−3) rate of
convergence for the case ν = 1. As before, ν < 1 yields a better primal complexity at the cost of a
worse dual complexity. The complexity is further improved when A(x) is a linear mapping.

Finally, numerical simulations indicate that unconventional powers ν < 1 also perform well in practice.

1.4 Notation, definitions, and technical assumptions

We denote the Euclidean inner product and norm on Rn by ⟨·, ·⟩ and ∥ · ∥, respectively. For matrices ∥ · ∥
denotes the spectral norm. The Euclidean distance from a point x to a set X is denoted by dist(x,X ) =
minz∈X ∥x−z∥. Given a differentiable mapping A : Rn → Rm, we denote its Jacobian at x by JA(x) ∈ Rm×n.
The Õ-notation suppresses logarithmic dependencies. We write lsc for lower semi-continuous and denote by
R := R ∪ {+∞} the extended real line. For an extended-valued function g : Rn → R we denote by
dom g = {x ∈ Rn | g(x) < ∞} its domain and say that g is proper if dom g ̸= ∅. For a convex function
g : Rn → R we denote by ∂g(x) its (convex) subdifferential at x ∈ Rn. A function φ : Rn → R is called level-
coercive if φ is bounded below on bounded sets and satisfies lim inf∥x∥→∞ φ(x)/∥x∥ > 0. For a closed, convex
set X we define for any x ∈ Rn the normal cone of X at x as NX (x) = {v ∈ Rn | ⟨v, y − x⟩ ≤ 0,∀y ∈ X },
if x ∈ X , and NX (x) = ∅ otherwise. We define by C1(Rn) the class of continuously differentiable functions
on Rn. We say that a mapping F : Rn → Rm is H-Hölder continuous of order ν ∈ (0, 1] on X ⊆ Rn if
∥F (x′)−F (x)∥ ≤ H∥x′ −x∥ν for all x, x′ ∈ X where H > 0. We say that a differentiable function f : Rn → R
is (H, ν)-Hölder smooth on X if ∇f(x) is H-Hölder-continuous of order ν on X . When omitted, we assume
X = Rn, and sometimes we simply write ν-Hölder smooth. Finally, the function f is Lf -Lipschitz smooth
on X if it is (Lf , 1)-Hölder smooth on X .

Optimality conditions If (P) has a local minimizer x ∈ Rn satisfying the constraint qualification

−J⊤
A (x)y ∈ Ndom g(x), A(x) = 0 =⇒ y = 0, (CQ)

then – this follows by applying the subdifferential chain rule (Rockafellar & Wets, 1998, Theorem 10.6) in a
similar way as in Rockafellar & Wets (1998, Exercise 10.7) – there exists a vector y ∈ Rm such that

A(x) = 0, −∇f(x) − J⊤
A (x)y ∈ ∂g(x).

This set of (generalized) equations, describing the stationary points of (P), is naturally extended to ac-
commodate approximately stationary points: we call x an ε-stationary point if there exists a y ∈ Rm such
that

∥A(x)∥ ≤ ε, dist
(
−∇f(x) − J⊤

A (x)y, ∂g(x)
)

≤ ε.

In this paper we introduce two distinct tolerances for dist
(
−∇f(x) − J⊤

A (x)y, ∂g(x)
)

and ∥A(x)∥, leading
to the definition of (εφ, εA)-stationary points. We refer to εA as the primal residual tolerance and to εφ as
the dual residual tolerance.
Definition 1 ((εφ, εA)-stationary points). Given εφ ≥ 0 and εA ≥ 0, a point x ∈ Rn is called an (εφ, εA)-
stationary point of (P) if there is a vector y ∈ Rm such that

∥A(x)∥ ≤ εA, and dist
(
−∇f(x) − J⊤

A (x)y, ∂g(x)
)

≤ εφ. (7)
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Assumptions Throughout this work, we make the following assumptions on f , g and A. Notably, no
compactness of domφ is assumed, contrary to related existing works (Sahin et al., 2019; Li et al., 2021; Lu,
2022; El Bourkhissi et al., 2025).
Assumption 1. For any nonempty compact set S ⊆ dom g, there exist positive constants
Hf , HA, Amax, JAmax,∇fmax such that the following statements hold:

(i) There exists an νf ∈ (0, 1] such that ∥∇f(x′) − ∇f(x)∥ ≤ Hf ∥x′ − x∥νf for all x, x′ ∈ S;

(ii) There exists an νA ∈ (0, 1] such that ∥JA(x′) − JA(x)∥ ≤ HA∥x′ − x∥νA for all x, x′ ∈ S;

(iii) ∥∇f(x)∥ ≤ ∇fmax, ∥A(x)∥ ≤ Amax and ∥JA(x)∥ ≤ JAmax for all x ∈ S.
Assumption 2. The function g is proper, lsc and convex, and dom g has nonempty interior. For any
nonempty compact set S ⊆ dom g, there exists G ≥ 0 such that ∥g(x′) − g(x)∥ ≤ G∥x′ − x∥ for all x, x′ ∈ S.
Assumption 3. The function φ ≡ f + g is level-coercive.

Assumption 1 is very mild: the conditions on f hold when f is differentiable with locally Hölder continuous
gradients, and likewise the conditions on A hold when A has locally Hölder continuous Jacobians. Slightly
more restrictive smoothness assumptions, i.e., with νf = νA = 1, have been used in various related works,
see e.g., Sahin et al. (2019); Li et al. (2021); Lu (2022). Also Assumption 2 is very mild: a proper, lsc and
convex function g is Lipschitz continuous on any nonempty compact subset of int dom g (Rockafellar, 1970,
Theorem 24.7). Therefore, any potential issue arises at relative boundary points of the effective domain, as
exemplified by the function x 7→ −

√
x. We highlight in particular that indicators of closed convex sets, and

real-valued convex functions all satisfy Assumption 2. Finally, note that φ is level-coercive if either f or g
is level-coercive while the other is bounded below (Rockafellar & Wets, 1998, Exercise 3.29). Alternatively,
it suffices that φ is coercive, as is the case when domφ ≡ dom g is bounded.

2 The inexact power augmented Lagrangian method

In this section we present the inexact power augmented Lagrangian method (power ALM), of which the
pseudocode is shown in Algorithm 1. This method generalizes the inexact augmented Lagrangian method
that was proposed and analyzed by Sahin et al. (2019); Li et al. (2021) to settings where ν ̸= 1. To adequately
exploit the composite structure of the augmented Lagrangian Lβ(x, y), we define

ψβ(x, y) := f(x) + ⟨A(x), y⟩ + β

2 ∥A(x)∥ν+1 (8)

and note that the augmented Lagrangian Lβ(x, y) = ψβ(x, y)+g(x) is the sum of a smooth and a nonsmooth
term. The ALM subproblem in step 2 entails inexactly minimizing the augmented Lagrangian, i.e.,

Algorithm 1 Inexact power augmented Lagrangian method
Require: x1 ∈ Rn, y1 ∈ Rm, λ > 0, ω > 1, σ1, β1 > 0, ν ∈ (0, 1].

1: for k = 1, 2, . . . do
2: Update the tolerance εk+1 = λ/βk and obtain xk+1 ∈ X such that

dist(−∇xψβk
(xk+1, yk), ∂g(xk+1)) ≤ εk+1. (9)

3: Update the dual step size as σk+1 = σ1 min(1, ∥A(x1)∥ν log2(2)
∥A(xk+1)∥ν (k+1) log2(k+2) ).

4: Update the multipliers yk+1 = yk + σk+1∇ϕ(A(xk+1)).
5: Update the penalty parameter βk+1 = ωβk.
6: end for

minimize
x∈Rn

Lβk
(x, yk) ≡ ψβk

(x, yk) + g(x), (10)

until the condition (9) is satisfied. Observe also that the dual step size update rule (step 3) is constructed
in a way that ensures boundedness of the multipliers. This is captured by the following lemma.
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Lemma 1. The sequence {yk}k∈N generated by Algorithm 1 is bounded, i.e., there exists a ymax ∈ R, such
that ∥yk∥ ≤ ymax for all k ≥ 1.

The proof is given in Appendix A.1. We remark that the results in this work can be extended to incorporate
unbounded sequences of multipliers, by following the proofs of Li et al. (2021). The next lemma establishes
that the iterates of Algorithm 1 remain in a compact set as long as the inner solver in step 2 monotonically
decreases its objective. Hereby, and contrary to existing works (Sahin et al., 2019; Li et al., 2021; El Bourkhissi
et al., 2025), no compactness assumption is required on dom g. A proof is given in Appendix A.1.
Lemma 2. Suppose that Assumption 3 holds, and let {xk}k∈N, {yk}k∈N, {βk}k∈N be generated by Algorithm 1.
For any β ∈ R, y ∈ Rm, x̄ ∈ dom g, the sublevel set Lβ,y(x̄) := {x ∈ Rn : Lβ(x, y) ≤ Lβ(x̄, y)} is nonempty
and compact. If, additionally, Lβk

(xk+1, yk) ≤ Lβk
(xk, yk) for k ≥ 1, then:

(i) the sublevel sets satisfy Lβk+1,yk+1(xk+1) ⊆ Lβk,yk (xk) for k ≥ 1;

(ii) the iterates {xk}k∈N remain in the (compact) initial sublevel set, i.e., xk+1 ∈ Lβ1,y1(x1) for k ≥ 1.

2.1 Complexity analysis

We analyze the computational complexity of Algorithm 1 under a regularity condition involving the nonlinear
mapping A and the normal cone Ndom g, which also naturally arises in the constraint qualification (CQ).
Assumption 4 (regularity). For any nonempty compact set S ⊆ dom g, there exists an R > 0 such that

dist(−J⊤
A (x)A(x), Ndom g(x)) ≥ R∥A(x)∥, for all x ∈ S. (R)

Assumption 4 was used by El Bourkhissi et al. (2025) to analyze the complexity of an ALM. If g has
full domain, then Assumption 4 reduces to a Polyak-Lojasiewicz-inequality on the feasibility problem
minimizex

1
2 ∥A(x)∥2 (Sahin et al., 2019), and is a consequence of the uniform regularity condition by Bolte

et al. (2018, Definition 3) in the so-called information zone. On the other hand, if g = δX is the indicator
of a closed convex set X , and if the constraint qualification (CQ) – which is itself a generalization of the
Mangasarian-Fromovitz condition (Rockafellar, 1993) – holds at a point x̄ ∈ Rn, then (R) holds for the
singleton S = {x̄}. Assumption 4 moreover assumes the existence of a uniform constant R > 0 such that (R)
holds for any S ∈ dom g. Existing works on iALMs, such as Li et al. (2021); Lu (2022), typically only deal
with the case g ≡ δX , and analyze the corresponding complexity under Assumption 4. Sahin et al. (2019)
use a condition similar to (R) involving the subdifferential ∂g(x) instead of Ndom g(x). If g = δX , then this
is equivalent because ∂g(x) = Ndom g(x) = NX (x) for x ∈ X . However, if g has full domain and is strictly
continuous, it has been argued by El Bourkhissi et al. (2025) that Assumption 4 should not involve g, which
is the case if Ndom g is used, but not for ∂g. We refer to El Bourkhissi et al. (2025, §5) for an extensive
discussion and comparison to other regularity conditions.

Various problems satisfy Assumption 4, as shown by Sahin et al. (2019) for g = δX , including clustering, basis
pursuit and others. Moreover, Li et al. (2021) demonstrate that affine equality constrained problems with
an additional polyhedral constraint set or a ball constraint set also satisfy this condition. Some interesting
constraint functions A do not satisfy this condition globally. For example, (Bolte et al., 2018, Example 5)
show that for g ≡ 0 and for spherical constraints A, (R) only holds if S is bounded away from the origin.

Our first result describes the number of power ALM iterations to obtain an approximate stationary point.
Theorem 1 (Outer complexity). Let {xk}k∈N denote the sequence of iterates generated by Algorithm 1.
If Assumptions 1 to 4 hold, and if there exists a nonempty compact set S ⊆ dom g containing the iterates
{xk}k∈N, then xk+1 is a ( Qf

β1ωk−1 ,
QA

β
1
ν

1 ω
k−1

ν

)-stationary point of (P) with

Qf := λ+ JAmaxσ1
∇fmax+G+JAmaxymax+ε1

R , QA :=
(

∇fmax+G+JAmaxymax+ε1
R

)1/ν

. (11)

The proof is given in Appendix A.1. We highlight that there exists a nonempty compact set S containing
the iterates {xk}k∈N when the inner solver in step 2 of Algorithm 1 monotonically decreases its objective
(cf. Lemma 2). If dom g is compact, then this condition is always satisfied, regardless of the inner solver.
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Theorem 1 states that if such a nonempty compact set S exists, then Algorithm 1 finds a first order stationary
point of (P) at a rate of ω−k, where ω > 1 determines the rate of increase of the penalty parameters. This is
identical to the result of Sahin et al. (2019) for iALM. Remarkably, in the case of Algorithm 1, the constraint
violation ∥A(xk)∥ decreases at a faster rate of ω−k/ν . However, it is important to note that the described
rates are only in terms of the number of iterations of power ALM, i.e., the number of calls to the inner solver
in step 2. To obtain a full complexity analysis of the method, we must specify the inner solver and require
an estimate of its computational cost. This is related to the Hölder smoothness of x 7→ ψβ(x, y).
Lemma 3 (Augmented Lagrangian smoothness). Let Assumption 1 hold. Then, for any y ∈ Rm, the
function ψβ(·, y) as in (8) is (Hβ , q)-Hölder smooth on any nonempty compact set S ⊆ Rn, i.e., ∀x, x′ ∈ S :

∥∇xψβ(x, y) − ∇xψβ(x′, y)∥ ≤ Hβ∥x− x′∥q,

where q = min {νf , νA, ν} ∈ (0, 1] and the modulus of Hölder smoothness is given by

Hβ =
[
Hf +HA∥y∥ + β(21−νJA

1+ν
max +Aν

maxHA)
]

max
{

1, D1−q
}

with D := sup
x,x′∈S

∥x− x′∥.

The proof is given in Appendix A.1. The ALM subproblems of the form (10) in step 2 thus involve a composite
objective, i.e., the sum of a nonconvex and Hölder-smooth function and a convex function. Minimizing such
an objective typically results in a higher computational cost than its counterpart with ψβ Lipschitz-smooth
(Grimmer, 2024). The unified problem-parameter free accelerated gradient (UPFAG) method of Ghadimi
et al. (2019) appears one of the only accelerated first-order methods for which a worst-case complexity
analysis has been derived under both nonconvexity and Hölder smoothness. We proceed by deriving the total
complexity of power ALM when UPFAG is used in step 2. For ease of notation we write Lk(x) := Lβk

(x, yk).
Remark that the value L⋆

k := minx∈Rn Lk(x) > −∞ is finite, and hence the inner problems (10) in Algorithm 1
step 2 are well-defined. Indeed, from Assumptions 1 and 2 and Lemma 2, Lk is proper, lsc and level-bounded.
Lower boundedness then follows from (Rockafellar & Wets, 1998, Theorem 1.9). The following lemma upper
bounds the number of UPFAG iterations needed to inexactly solve an inner problem.
Lemma 4 (Inner complexity). Suppose that Assumptions 1 to 3 hold. Then the total number of (inner)
iterations performed by the UPFAG method, with a small enough step size and initial iterate xk, to obtain
an εk+1-stationary point to the power ALM inner problem (cfr. Algorithm 1 step 2) is bounded by

O

(
H

1/q
βk

[
Lk(xk)−L⋆

k

ε2
k+1

] 1+q
2q

)
. (12)

This result follows by the complexity result in (Ghadimi et al., 2019, Corollary 5). Since we require a different
termination criterion than the original work, we provide an explicit proof in Appendix A.1 for completeness.
We can now describe the complexity of power ALM in terms of UPFAG iterations.
Theorem 2 (Total complexity). Suppose that Assumptions 1 to 4 hold and the UPFAG method from Ghadimi
et al. (2019) is used for solving Algorithm 1 step 2 in the setting of Lemma 4. Given εφ > 0 and εA > 0,
Algorithm 1 finds an (εφ, εA)-stationary point of (P) after at most T = max{Tφ, TA} UPFAG iterations,
where for q = min{νf , νA, ν},

Tφ = Õ

(
ε

− 5+3q
2q

φ

)
, TA = Õ

(
ε

− ν
q − 3ν(1+q)

2q

A

)
. (13)

The proof is given in Appendix A.1. In the Lipschitz smooth setting, our analysis subsumes the one from
Sahin et al. (2019): if we choose ν = 1 and εφ = εA = ε, we obtain Tφ = TA = Õ

(
ε−4). In the same setting,

by choosing ν < 1 we get a worse convergence rate for the dual residual and a better one for the primal.
This result is in line with the intuition behind choosing a sharper augmenting term for the AL function,
which highly penalizes the constraint violation.

3 An inexact proximal point inner solver with improved complexity

This section presents an inexact proximal point method for solving the inner problems of Algorithm 1.
The proposed scheme is essentially a double-loop algorithm that uses an accelerated gradient method for

7
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computing the proximal point updates, inspired by Kong et al. (2019); Li et al. (2021) and adapted to the
Hölder smooth setting of our paper. However, we emphasize that this extension is not straightforward, since
a Hölder-smooth subproblem cannot be made strongly convex by adding a sufficiently large quadratic term,
and strong convexity of the inner-most problem is essential in obtaining an improved overall complexity.
Henceforth we restrict Assumptions 1 to 3 as follows.
Assumption 5. The function g = δX is the indicator of a non-empty, convex and compact set X ⊆ Rn with
diameter D > 0. There exist positive constants Lf , LA, Amax, JAmax,∇fmax such that:

(i) ∥∇f(x′) − ∇f(x)∥ ≤ Lf ∥x′ − x∥ for all x, x′ ∈ X ;

(ii) ∥JA(x′) − JA(x)∥ ≤ LA∥x′ − x∥ for all x, x′ ∈ X ;

(iii) ∥∇f(x)∥ ≤ ∇fmax, ∥A(x)∥ ≤ Amax and ∥JA(x)∥ ≤ JAmax for all x ∈ X .

Under Assumption 5 we have νf = νA = 1, and hence by Lemma 3 the power AL has Hölder-continuous
gradients of order q = ν on X . Moreover, in this setting the power AL function is weakly-convex:
Lemma 5. Suppose that Assumptions 4 and 5 hold. Then, for any y ∈ Rm the power augmented Lagrangian
Lβ(·, y) is ρ-weakly convex on X , with ρ := Lf + LA(∥y∥ + βAν

max).

The proof is given in Appendix A.2. Therefore, every subproblem (10) in Algorithm 1 step 2 is of the form

min
x∈X

ψ(x) := Lβ(x, y), (14)

for some y ∈ Rm, where ψ is (Hβ , ν)-Hölder-smooth and ρ-weakly convex on the compact set X . The weak
convexity of ψ motivates the use of an inexact proximal point method, described in Algorithm 2. Note that
the inexact proximal point updates entail minimizing a strongly convex and Hölder smooth function over
a compact set and thus we can utilize the Fast Gradient Method (FGM) from Devolder et al. (2014) to
compute them. Our approach differentiates from standard analyses in that the objective function of (14) has
qualitatively distinct lower and upper bounds, obtained from the weak-convexity and Hölder-smoothness,
respectively. To the best of our knowledge, the forthcoming analysis of the proposed inexact proximal point
method is the first to exploit this, and as such enables an improved total complexity of Algorithms 1 and 2.

Algorithm 2 Inexact proximal point method for (14)
Require: x1 ∈ Rn, tolerance ε > 0.

1: for k = 1, 2, . . . do
2: Let F (·) := ψ(·) + ρ∥ · −xk∥2 and obtain xk+1 ∈ X such that

dist(−∇F (xk+1), NX (xk+1)) ≤ ε/4.

3: If 2ρ∥xk+1 − xk∥ ≤ ε
2 then return xk+1.

4: end for

3.1 Complexity analysis of the inexact proximal point method

The computation of a proximal point update, defined in Algorithm 2 step 2, involves a problem of the form

min
x∈X

F (x) (15)

where F : Rn → R is (HF , ν)-Hölder-smooth with HF := Hβ +2ρmax
{

1, D1−q
}

, and ρ-strongly convex. We
denote the minimizer of F over X by x⋆ = arg minx∈X F (x). The following theorem describes the number
of FGM iterations needed to obtain a point satisfying the inequality in Algorithm 2 step 2, and is based
on (Devolder et al., 2014, §6.2). Its proof also handles the different termination criterion that we require
compared to (Devolder et al., 2014, §6.2), and for this reason becomes rather technical.

8
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Theorem 3. Let F be as in Algorithm 2 step 2 and suppose that Assumption 5 hold. Then, we need at most
T FGM iterations to obtain a point x+ ∈ X that satisfies dist(−∇F (x+), NX (x+)) ≤ ε, where

T = Õ

(
H

2
1+3ν

F

ρ
ν+1

3ν+1
H

1+ν
ν

1−ν
1+3ν ε− 1+ν

ν
1−ν

1+3ν

)
, with H = H1−ν

F (2HF (1 +HF )) ν
2 + (2HF (1 +HF ))1/2.

The proof is given in Appendix A.2. The next theorem, adapted from (Li et al., 2021, Theorem 1), provides
an upper bound on the number of iterations the inexact proximal point method presented in Algorithm 2
needs in order to terminate. Its proof is also found in Appendix A.2.
Theorem 4. Suppose that Assumption 5 holds. Then, Algorithm 2 stops within T iterations, where T =⌈ 32ρ

ε2 (ψ(x1) − ψ⋆) + 1
⌉
, and the output xT ∈ Rn satisfies dist(−∇ψ(xT ), NX (xT )) ≤ ε.

3.2 Joint complexity analysis of Algorithms 1 and 2

Having described the complexity of Algorithm 2 we now move on to the total complexity of the joint scheme,
which is the main result of this section. We highlight that this result improves upon Theorem 2. For ν = 1 it
subsumes the complexity result in (Li et al., 2021, Theorem 2), whereas for ν < 1 a better primal complexity
is obtained at the cost of a worse dual complexity. A proof is given in Appendix A.2.
Theorem 5 (Total complexity). Suppose that Assumptions 4 and 5 hold, and let {xk}k∈N denote the iterates
of Algorithm 1. If Algorithm 2 is used to solve the subproblems in Algorithm 1 step 2, and if the inexact
proximal point updates in Algorithm 2 are computed using FGM, then an (εφ, εA)-stationary point of (P) is
obtained after at most T = max{Tφ, TA} FGM iterations, where

Tφ = Õ

(
ε

−3− 1−ν
1+3ν

(
1+ 2(1+ν)

ν

)
φ

)
, TA = Õ

(
ε

−3ν− 1−ν
1+3ν (3ν+2)

A

)
.

3.3 Improved complexity for linear constraints

Theorem 5 describes the joint complexity of the triple-loop version of power ALM: Algorithm 1 in which
the primal update in step 2 is obtained through Algorithm 2, and where in turn the inexact proximal point
updates are computed using the FGM. If the constraint mapping A is linear, this worst-case complexity can
be further improved. It is obtained by following the exact same steps as in the proof of Theorem 5, and by
remarking that if A is linear, then LA = 0. By Lemma 5, we have ρ = Lf + LA(∥y∥ + βAν

max), and hence
ρ = Lf = O(1) if A is linear, instead of ρ = O(β) for nonlinear constraints. The following result subsumes
the Õ

(
ε− 5

2

)
complexity of (Li et al., 2021, Theorem 2) for ν = 1. A proof is given in Appendix A.2.

Theorem 6 (Total complexity). Suppose that the conditions of Theorem 5 hold, and additionally assume
that the mapping A is linear. If Algorithm 2 is used to solve the subproblems in Algorithm 1 step 2, and
if the inexact proximal point updates in Algorithm 2 are computed using FGM, then an (εφ, εA)-stationary
point of (P) is obtained after at most T = max{Tφ, TA} FGM iterations, where

Tφ = Õ

(
ε

−2−2 1−ν
1+3ν

1+ν
ν − 2

1+3ν
φ

)
, TA = Õ

(
ε

−2ν−2 1−ν
1+3ν (1+ν)− 2ν

1+3ν

A

)
.

4 Numerical results

In this section, we compare the practical performance of power ALM (Algorithm 1) for various choices of
the parameter ν ∈ (0, 1] to illustrate the empirical behavior of the proposed method in practice. Recall
that the choice ν = 1 reduces to the iALM from Sahin et al. (2019), and therefore is always included as a
baseline comparison. All experiments are run in Julia on an HP EliteBook with 16 cores and 32 GB memory.
Unless mentioned otherwise, the subproblems in Algorithm 1 step 2 are solved using an accelerated proximal
gradient method (APGM) Beck & Teboulle (2009).1 Although APGM has no convergence guarantees that

1We use the implementation from https://github.com/JuliaFirstOrder/ProximalAlgorithms.jl

9

https://github.com/JuliaFirstOrder/ProximalAlgorithms.jl


Under review as submission to TMLR

0 0.5 1 1.5 2 2.5 3 3.5
·104

10−7

10−4

10−1

102

# Gradients

∥A
(x

)∥

ν = 1
ν = 0.9
ν = 0.8
ν = 0.7

(a) Constraint violation

0 0.5 1 1.5 2 2.5 3 3.5
·104

10−7

10−4

10−1

102

# Gradients

|f
(x

)−
f

∗ |

ν = 1
ν = 0.9
ν = 0.8
ν = 0.7

(b) Suboptimality

0.7 0.75 0.8 0.85 0.9 0.95 1

2

3

4
·104

Power ν

#
G

ra
di

en
ts

(c) # gradients, εφ = εA = 10−5.

Figure 1: Comparison of power ALM with various powers ν on solving the clustering problem with
Fashion-MNIST data Xiao et al. (2017). The case ν = 1 corresponds to iALM from Sahin et al. (2019).

fully cover our setting, i.e., nonconvex and Hölder-smooth objectives, it appears that convergence issues can
be mitigated by sufficiently decreasing the step size. In our experience, this approach works well in practice,
and does not usually underperform when compared to the presented triple-loop scheme based on Algorithm 2,
despite the improved worst-case convergence rate of the latter approach. Some additional experiments are
included in Appendix B.

4.1 Clustering

First, we consider a clustering problem which, following Sahin et al. (2019), can be reformulated in the form
(P) through a rank-r Burer-Monteiro relaxation with

f(x) =
n∑

i=1

n∑
j=1

Di,j⟨xi, xj⟩, A(x) =
[
x⊤

1
∑n

i=1 xi − 1, . . . , x⊤
n

∑n
i=1 xi − 1

]⊤
.

Here x :=
[
x⊤

1 , . . . x
⊤
n

]⊤ ∈ Rrn with xi ∈ Rr for i ∈ [1, n], and X is the intersection of the nonnegative
orthant with the Euclidean ball of radius

√
s. The scalar s denotes the number of clusters, and D ∈ Rn×n

is a distance matrix generated by some given data points {zi}n
i=1, i.e., such that Di,j = ∥zi − zj∥.

We test Algorithm 1 on two problem instances, being the MNIST dataset Deng (2012) and the Fashion-
MNIST dataset Xiao et al. (2017). The setup is similar to that of Sahin et al. (2019), which is in turn based
on Mixon et al. (2016). In particular, a simple two-layer neural network was used to first extract features
from the data, and then this neural network was applied to n = 1000 random test samples from the dataset,
yielding the vectors {zi}n=1000

i=1 that generate the distance matrix D. We define s = 10, r = 20.

We use the same smoothness constant as Sahin et al. (2019) to determine the APGM step size. For ν = 0.7
and ν = 0.75 these step sizes appear too large and are further decreased by a factor of 5 and 2, respectively,
to ensure convergence. Furthermore, we tune σ1 = 10, λ = 1, β1 = 5, ω = 5, and impose a maximum of
N = 5000 APGM iterations per subproblem. We remark that Sahin et al. (2019) showed that Assumption 4
is satisfied for this clustering problem.

The results are visualized in Figures 1 and 2. We observe that for both datasets, ν = 0.8 performs best,
requiring roughly 40% fewer gradient evaluations to converge to a 10−5-stationary point when compared to
the iALM of Sahin et al. (2019) (ν = 1).

4.2 Quadratic programs

Second, we consider nonconvex quadratic programs (QPs) of the form (P) with

f(x) = 1
2x

⊤Qx+ ⟨q, x⟩, X = {x | x ≤ x ≤ x̄} , A(x) = Cx− b.

Here Q ∈ Rn×n, C ∈ Rm×n, b ∈ Rm, and q ∈ Rn, with Q symmetric and indefinite, are randomly generated,
and xi = −5 and x̄i = 5 for i ∈ N[1,n]. We sample the entries of a diagonal matrix Λ ∈ Rn×n from a

10
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Figure 2: Comparison of power ALM with various powers ν on solving the clustering problem with MNIST
data Deng (2012). The case ν = 1 corresponds to iALM from Sahin et al. (2019).

Gaussian N (0, 50), and the entries of a matrix Σ ∈ Rn×n from the standard Gaussian. Then, we normalize
Σ̂ = Σ/∥Σ∥ and define Q := Σ̂⊤ΛΣ̂. The entries of q are sampled from a Gaussian N (0, 2), and the entries
of C are sampled from the standard Gaussian. We construct a vector µ ∈ Rn with standard Gaussian
entries, and define b := Cµ. A maximum of N = 105 APGM iterations per subproblem is imposed, and the
parameters β1 = 0.01, ω = 3 follow the tuning of Li et al. (2021). As before, we define λ = 1, σ1 = 10. For
the QP experiments we use tolerances εφ = εA = 10−3. Remark that the AL function with penalty βk has
∥Q+ βkC

⊤C∥-Lipschitz continuous gradients for ν = 1. This smoothness constant is used to determine the
APGM step size for ν ∈ {0.9, 1}. To ensure convergence for ν = 0.5, ν ∈ {0.6, 0.7}, and ν = 0.8, we further
restrict this step size by a factor of 50, 10, and 2, respectively. We highlight that the dual residual can be
efficiently computed by following the procedure described by (Nedelcu et al., 2014, Eq. 2.7 and below).

We generate 100 random QP instances of size n = 200,m = 10, and visualize the total number of gradient
evaluations and the objective value at the returned points by means of violin plots in Figure 3. We remark
that we discarded and resampled one QP instance, since power ALM with ν = 0.6 required a slightly more
restrictive step size to converge. We observe that ν = 0.8 appears to perform best in terms of gradient
evaluations. Yet, we also note the more robust performance of ν = 0.6. When it comes to the quality of
the (local) solutions, Figure 3b indicates that the use of unconventional powers ν does not yield significantly
better or worse solutions than the classical choice ν = 1.
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Figure 3: Power ALM for various powers ν on solving 100 random QPs of size n = 100,m = 20.

Table 1 reports the number of gradients performed by power ALM for the first 10 randomly generated QPs,
and also includes the obtained primal and dual residuals. The power ν = 0.8 performs well compared to the
classical setup ν = 1, and requires roughly two times fewer gradient calls on average.

We now compare these results to Table 2, which is similar to Table 1, but uses the triple loop version
of power ALM, i.e., Algorithm 1 in which the primal update in step 2 is computed using Algorithm 2
(iPPM). The inexact proximal point updates are computed using the accelerated adaptive proximal-gradient
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Table 1: Power ALM with APGM inner solver on solving random QPs of size n = 100,m = 20.

trial
1
2
3
4
5
6
7
8
9
10

avg.

ν = 0.6 ν = 0.7 ν = 0.8 ν = 0.9 ν = 1.0
pres dres # grads pres dres. # grads pres dres # grads pres dres # grads pres dres # grads
3.6 · 10−4 3.1 · 10−4 69,434 7.6 · 10−4 3.6 · 10−4 74,003 4.9 · 10−4 2.6 · 10−5 19,066 5.3 · 10−4 2.4 · 10−5 1.1 · 105 5.2 · 10−4 8.1 · 10−6 1.7 · 105

3.9 · 10−4 3.2 · 10−4 96,568 7.6 · 10−4 2.3 · 10−4 32,083 4.1 · 10−4 5.4 · 10−5 21,931 6.2 · 10−4 2.5 · 10−5 31,150 5 · 10−4 9.8 · 10−6 23,924
2.6 · 10−4 2.9 · 10−4 42,014 5.1 · 10−4 2.4 · 10−4 70,608 9.1 · 10−4 8.1 · 10−5 59,939 8.1 · 10−4 7.5 · 10−5 15,295 4.7 · 10−4 3 · 10−6 86,832
3.5 · 10−4 3.1 · 10−4 45,578 2.2 · 10−4 6.2 · 10−5 51,059 5.3 · 10−4 5.8 · 10−5 27,566 6.9 · 10−4 2.7 · 10−5 25,207 3.8 · 10−4 8.5 · 10−6 74,645
2.8 · 10−4 2.6 · 10−4 77,633 7.1 · 10−4 2.8 · 10−4 68,234 2.9 · 10−4 3.3 · 10−5 73,289 7.5 · 10−4 5.7 · 10−5 2.6 · 105 4 · 10−4 1 · 10−5 98,281
4 · 10−4 2.4 · 10−4 33,504 2.5 · 10−4 1.1 · 10−4 1.1 · 105 7.9 · 10−4 7.6 · 10−5 56,195 5 · 10−4 3.1 · 10−5 41,984 7.4 · 10−4 3.4 · 10−5 42,081
3.2 · 10−4 2.3 · 10−4 95,455 7.8 · 10−4 2.5 · 10−4 67,553 9.9 · 10−4 7.5 · 10−5 71,327 4.4 · 10−4 3.3 · 10−5 43,103 4.3 · 10−4 4.2 · 10−6 26,204
2.6 · 10−4 1.8 · 10−4 50,234 6.3 · 10−4 9.6 · 10−5 78,994 8.5 · 10−4 9.8 · 10−5 17,493 6.9 · 10−4 2.4 · 10−4 45,065 4 · 10−4 3.2 · 10−5 63,392
4.5 · 10−4 2.4 · 10−4 65,422 2.1 · 10−4 9.7 · 10−5 1.2 · 105 6 · 10−4 9.7 · 10−5 55,069 7.4 · 10−4 3 · 10−5 74,012 3.9 · 10−4 1.1 · 10−5 1.1 · 105

3.6 · 10−4 2.4 · 10−4 46,126 6.9 · 10−4 2.9 · 10−4 51,514 8.7 · 10−4 9.7 · 10−5 43,067 6.5 · 10−4 3.2 · 10−5 57,920 4.2 · 10−4 1.1 · 10−5 87,354
3.4 · 10−4 2.6 · 10−4 62,196.8 5.5 · 10−4 2 · 10−4 72,067.9 6.7 · 10−4 7 · 10−5 44,494.2 6.4 · 10−4 5.7 · 10−5 69,472.4 4.7 · 10−4 1.3 · 10−5 78,460.7

algorithm presented in (Malitsky & Mishchenko, 2020, Algorithm 2), which, although a heuristic, significantly
outperforms the other methods we tried. We tuned β1 = 1, ω = 1.1, λ = 0.01. Although the triple-loop
version of power ALM has a better worst-case complexity, in practice we find that it is usually outperformed
by its double-loop variant, as confirmed in this table. We do, nevertheless, observe that the triple-loop
method is more stable, in the sense that the number of gradient calls fluctuates less between QP realizations.
This was also observed for ν = 1 in Li et al. (2021). Moreover, remark that as ν decreases, the primal residual
or constraint violation also decreases, thus qualitatively confirming our theoretical results that decreasing ν
yields faster constraint satisfaction.

Table 2: Power ALM with iPPM inner solver on solving random QPs of size n = 100,m = 20.

trial
1
2
3
4
5
6
7
8
9
10

avg.

ν = 0.6 ν = 0.7 ν = 0.8 ν = 0.9 ν = 1.0
pres dres # grads pres dres. # grads pres dres # grads pres dres # grads pres dres # grads
1.4 · 10−5 9.7 · 10−4 1.2 · 105 3.8 · 10−5 8.4 · 10−4 1.2 · 105 1.2 · 10−5 9.4 · 10−4 1.4 · 105 9.3 · 10−6 1 · 10−3 1.3 · 105 1.3 · 10−4 9.4 · 10−4 1.1 · 105

1.3 · 10−5 9.4 · 10−4 1.3 · 105 4.7 · 10−4 7 · 10−4 1.2 · 105 2.2 · 10−4 8.1 · 10−4 1.1 · 105 3.6 · 10−4 5.2 · 10−4 93,423 8.8 · 10−4 5.4 · 10−4 1 · 105

8.7 · 10−6 6.3 · 10−4 1.3 · 105 2.8 · 10−5 5.4 · 10−4 1.4 · 105 2 · 10−4 8.8 · 10−4 1.4 · 105 6.1 · 10−5 9.5 · 10−4 1.6 · 105 3.8 · 10−5 9.3 · 10−4 1.8 · 105

1.6 · 10−7 9.1 · 10−4 2.9 · 106 5.7 · 10−5 7.2 · 10−4 1 · 105 1.3 · 10−4 4.8 · 10−4 99,070 1.8 · 10−4 7.9 · 10−4 87,422 7.1 · 10−4 7.1 · 10−4 1.2 · 105

9.5 · 10−8 9.7 · 10−4 1.7 · 106 2.9 · 10−7 9.6 · 10−4 1.9 · 105 1.5 · 10−4 8.1 · 10−4 2.2 · 105 1.7 · 10−4 3 · 10−4 1.6 · 105 5.4 · 10−4 8.7 · 10−4 1.9 · 105

5 · 10−8 9.8 · 10−4 9.5 · 105 8.6 · 10−7 1 · 10−3 1.6 · 105 4.1 · 10−6 9.9 · 10−4 1.3 · 105 1.8 · 10−5 9.4 · 10−4 1.2 · 105 7.6 · 10−4 9.6 · 10−4 1.3 · 105

1 · 10−6 8.8 · 10−4 1.3 · 106 6.6 · 10−6 9.4 · 10−4 2.5 · 105 2.9 · 10−5 9.3 · 10−4 1.3 · 105 1.1 · 10−4 8.5 · 10−4 1.6 · 105 2.7 · 10−4 8.8 · 10−4 1.6 · 105

2.1 · 10−5 4.6 · 10−4 95,543 1.6 · 10−4 5.9 · 10−4 1.2 · 105 8.7 · 10−4 2.5 · 10−4 3.2 · 105 5.2 · 10−4 7.1 · 10−4 1.2 · 105 8.1 · 10−5 8.8 · 10−4 1.2 · 105

8.5 · 10−7 9.7 · 10−4 8.7 · 105 2.5 · 10−6 9.8 · 10−4 3 · 105 2.7 · 10−5 9.6 · 10−4 1.1 · 105 4 · 10−5 8.3 · 10−4 1.3 · 105 1.6 · 10−4 8.9 · 10−4 1.6 · 105

2.7 · 10−4 4.2 · 10−4 89,998 6.3 · 10−5 7 · 10−4 87,063 1.7 · 10−5 9 · 10−4 1.1 · 105 9.5 · 10−5 8.4 · 10−4 1.6 · 105 7.8 · 10−5 9.1 · 10−4 1.1 · 105

3.3 · 10−5 8.1 · 10−4 8.4 · 105 8.3 · 10−5 8 · 10−4 1.6 · 105 1.7 · 10−4 7.9 · 10−4 1.5 · 105 1.6 · 10−4 7.7 · 10−4 1.3 · 105 3.6 · 10−4 8.5 · 10−4 1.4 · 105

5 Conclusion

In this paper we introduced and analyzed an inexact augmented Lagrangian method for nonconvex problems
with nonlinear constraints, involving a potentially sharper penalty function. Taking into account the com-
posite structure of the corresponding augmented Lagrangian function, we study the joint complexity of the
scheme using two different subproblem oracles. One of these oracles is a novel proximal point scheme that
exploits the specific structure of the subproblems, of which the objectives are Hölder smooth and weakly
convex. The proposed augmented Lagrangian method generalizes existing works with conventional penalty
terms that attain the best known convergence rate for nonconvex minimization with first-order methods.
Notably, we proved that unconventional penalty terms yield faster constraint satisfaction at the cost of a
slower decrease of the cost, thereby reflecting the sharper penalties in the complexity analysis. It is note-
worthy that our analysis also improves upon existing works by considering a generic convex term g in the
objective, and by not assuming boundedness of the iterates. Numerical experiments indicate that also in
practice such penalty terms perform well.
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A Proofs

A.1 Proofs of section 2

Proof of Lemma 1

Proof. By consecutively using the multiplier update (step 4), the triangle inequality, and the dual step size
update rule (step 3) we obtain that

∥yk+1∥ =
∥∥∥∥y1 +

k∑
i=2

σiA(xi)∥A(xi)∥q−1
∥∥∥∥

≤ ∥y1∥ +
k∑

i=2
σi∥A(xi)∥q

≤ ∥y1∥ +
k∑

i=2
σ1

∥A(x1)∥(log 2)2

i (log(i+ 1))2

≤ ∥y1∥ + c∥A(x1)∥ log2(2) =: ymax,

where c =
∑∞

i=2
1

i log2(i+1) < ∞.

Proof of Lemma 2

We first establish the following lemma.
Lemma 6. Let {xk}k∈N, {yk}k∈N, {βk}k∈N be generated by Algorithm 1. Then for any x ∈ dom g and k ≥ 1,

Lβk+1,yk+1(x) ⊆ Lβk,yk (x)

Proof. From the definition of the augmented Lagrangian, the multiplier update and the penalty parameter
update with ω > 1 we have for k ≥ 1

Lβk+1,yk+1(x) = φ(x) + ⟨A(x), yk+1⟩ + βk+1

2 ∥A(x)∥ν+1

= φ(x) + ⟨A(x), yk⟩ + σk+1∥A(x)∥1+ν + ω
βk

2 ∥A(x)∥ν+1

≥ φ(x) + ⟨A(x), yk⟩ + βk

2 ∥A(x)∥ν+1

= Lβk,yk (x).

It follows immediately that
Lβk+1,yk+1(x) ⊆ Lβk,yk (x).

We now provide a proof for Lemma 2.
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Proof. The nonemptyness claim follows from the observation that x̄ ∈ Lβ,y(x̄) always holds by definition
of the sublevel set. For the compactness claim, recall that the augmented Lagrangian can be expressed as
Lβ(x, y) = φ(x) + ⟨A(x), y⟩ + β

2 ∥A(x)∥ν+1. By (Rockafellar & Wets, 1998, Corollary 3.27), it suffices to
establish level-coercivity of Lβ(x, y) with respect to the primal variable. A sufficient condition for this is
that φ is level-coercive, as guaranteed by Assumption 3, and that x 7→ ⟨A(x), y⟩ + β

2 ∥A(x)∥ν is bounded
below (Rockafellar & Wets, 1998, Exercise 3.29 (b)). Note that ⟨A(x), y⟩ + β

2 ∥A(x)∥ν+1 ≥ −∥A(x)∥∥y∥ +
β
2 ∥A(x)∥ν+1. If ∥A(x)∥ν ≤ 2

β ∥y∥, the claimed boundedness follows from the fact that

⟨A(x), y⟩ + β

2 ∥A(x)∥ν+1 ≥ −
(

2
β

∥y∥
) 1

ν

∥y∥ + β

2 ∥A(x)∥ν+1 ≥ −
(

2
β

∥y∥
) 1

ν

∥y∥.

Else ∥A(x)∥ν > 2
β ∥y∥, and hence

⟨A(x), y⟩ + β

2 ∥A(x)∥ν+1 ≥ −∥A(x)∥∥y∥ + β

2
2
β

∥A(x)∥∥y∥ = 0,

which also implies the claimed boundedness.

We now show Lemma 2(i) by induction. First, observe that the assumption Lβk
(xk+1, yk) ≤ Lβk

(xk, yk)
implies for k ≥ 1 that

Lβk,yk (xk+1) ⊆ Lβk,yk (xk). (16)
The base case k = 1 follows by consecutively applying Lemma 6 and (16), i.e.,

Lβ2,y2(x2) ⊆ Lβ1,y1(x2) ⊆ Lβ1,y1(x1)

Suppose that Lemma 2(i) holds for some k ≥ 1. Then by Lemma 6 we have

Lβk+1,yk+1(xk+1) ⊆ Lβk,yk (xk+1) ⊆ Lβk,yk (xk),

where again we applied Lemma 6 and (16). This establishes Lemma 2(i).

Finally, Lemma 2(ii) follows by consecutive application of Lemma 2(i) and by compactness of Lβ1,y1(x1).

Proof of Theorem 1

Proof. We first prove the claimed rate of εA,k+1 := QA

β
1
ν

k

, and then that of εφ,k+1 := Qf

βk
. From Algorithm 1

step 2 we have that
dist(−∇xψβk

(xk+1, yk), ∂g(xk+1)) ≤ εk+1, ∀k ≥ 0. (17)
By definition of ψβ we therefore have that ∀k ≥ 0

dist(−∇f(xk+1) − J⊤
A (xk+1)yk − βkJ

⊤
A (xk+1)∇ϕ(A(xk+1)), ∂g(xk+1)) ≤ εk+1

which yields, after application of the triangle inequality,

dist(−βkJ
⊤
A (xk+1)∇ϕ(A(xk+1)), ∂g(xk+1)) ≤ ∥∇f(xk+1)∥ + ∥J⊤

A (xk+1)yk∥ + εk+1. (18)

By (Rockafellar, 1970, Theorem 25.6) it follows that for all x ∈ Rn,

∂g(x) = cl(convS(x)) +Ndom g(x),

where S(x) is the set of all limits of sequences of the form ∇g(x1),∇g(x2), . . . such that g is differentiable
at xi and xi → x, and cl(convS(x)) is the closure of the convex hull of S(x). By Assumption 2 the function
g is G-Lipschitz continuous on S, and therefore any v ∈ cl(convS(x)) satisfies ∥v∥ ≤ G .

By again applying the triangle inequality to (18), we obtain

dist(−βkJ
⊤
A (xk+1)∇ϕ(A(xk+1)), Ndom g(xk+1)) ≤ ∥∇f(xk+1)∥ +G+ ∥J⊤

A (xk+1)yk∥ + εk+1.
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Since ∇ϕ(A(xk+1)) = ∥A(xk+1)∥ν−1A(xk+1), we can further lower bound the l.h.s. of the previous inequality.
We have that dist(αx,Ndom g(xk+1)) = minz∈Ndom g(xk+1) ∥αx− z∥ = αminz∈Ndom g(xk+1) ∥x− z

α ∥ for α > 0
and thus since Ndom g(xk+1) is a cone, using Assumption 4 we obtain

∥∇f(xk+1)∥ +G+ ∥J⊤
A (xk+1)yk∥ + εk+1 ≥ βk∥A(xk+1)∥ν−1 dist(−J⊤

A (xk+1)A(xk+1), Ndom g(xk+1))
≥ Rβk∥A(xk+1)∥ν .

Therefore, we have the following inequality

∥A(xk+1)∥ν ≤ ∥∇f(xk+1)∥ +G+ ∥J⊤
A (xk+1)yk∥ + εk+1

Rβk
. (19)

By Lemma 1, we have that ∥yk∥ ≤ ymax for all k ≥ 0. Thus, the constraint violation is upper bounded by

∥A(xk+1)∥ ≤
(

∇fmax +G+ JAmaxymax + εk+1

Rβk

)1/ν

, (20)

where we have used the Cauchy-Schwarz inequality. The claim regarding εA,k+1 now follows from the fact
that εk+1 ≤ εk. Now for εφ,k+1, we have by the triangle inequality that

dist(−∇xψβk
(xk+1, yk+1), ∂g(xk+1))

≤ dist(−∇xψβk
(xk+1, yk), ∂g(xk+1)) + ∥∇xψβk

(xk+1, yk+1) − ∇xψβk
(xk+1, yk)∥

The first term of the r.h.s. is upper bounded by εk+1 due to Algorithm 1 step 2, i.e.,

dist(−∇xψβk
(xk+1, yk), ∂g(xk+1)) ≤ εk+1

and for the second term we have that

∥∇xψβk
(xk+1, yk+1) − ∇xψβk

(xk+1, yk)∥ = ∥J⊤
A (xk+1)(yk+1 − yk)∥ ≤ JAmax∥yk+1 − yk∥

= JAmaxσk+1∥A(xk+1)∥ν .

Therefore, in combination with (19), we obtain

dist(−∇xψβk
(xk+1, yk+1), ∂g(xk+1)) ≤ εk+1 + JAmaxσk+1

∇fmax +G+ JAmaxymax + εk+1

Rβk

Thus, since σk ≤ σ1, εk+1 ≤ εk and εk+1 = λ/βk, we conclude that xk+1 is (εφ,k+1, εA,k+1)-stationary with
multiplier yk+1 + βk∇ϕ(A(xk+1)).

Proof of Lemma 3

Proof. Since the gradient of ψβ with respect to its first argument, evaluated at (x, y), is given by

∇xψβ(x, y) = ∇f(x) + J⊤
A (x)y + βJ⊤

A (x)∇ϕ(A(x)), (21)

it follows for x, x′ ∈ S that

∥∇xψβ(x′, y) − ∇xψβ(x, y)∥ ≤ ∥∇f(x′) − ∇f(x)∥ + ∥JA(x′) − JA(x)∥ · ∥y∥
+ β∥J⊤

A (x′)∇ϕ(A(x′)) − J⊤
A (x)∇ϕ(A(x))∥. (22)

Using Assumption 1 and Lemma 1, the first two terms are bounded by

∥∇f(x′) − ∇f(x)∥ ≤ Hf ∥x′ − x∥νf , (23)
∥JA(x′) − JA(x)∥ · ∥y∥ ≤ HA∥y∥ · ∥x′ − x∥νA , (24)
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As for the third term in (22), we have that

β∥J⊤
A (x′)∇ϕ(A(x′)) − J⊤

A (x)∇ϕ(A(x))∥
≤ β∥J⊤

A (x′)∇ϕ(A(x′)) − J⊤
A (x)∇ϕ(A(x′))∥ + β∥J⊤

A (x)∇ϕ(A(x′)) − J⊤
A (x)∇ϕ(A(x))∥

≤ β∥A(x′)∥ν ∥JA(x′) − JA(x)∥ + β∥JA(x)∥∥∇ϕ(A(x′)) − ∇ϕ(A(x))∥
≤ βHA∥A(x′)∥ν∥x′ − x∥νA + βJAmax∥∇ϕ(A(x′)) − ∇ϕ(A(x))∥, (25)

where we have used consecutively the triangle inequality, the fact that ∥∇ϕ(A(x′))∥ = ∥A(x′)∥ν , Assump-
tion 1 and the boundedness of ∥JA∥ on S. In light of (Rodomanov & Nesterov, 2020, Theorem 6.3), the
function ϕ is (21−ν , ν)-Hölder smooth. Hence, it follows that

∥∇ϕ(A(x′)) − ∇ϕ(A(x))∥ ≤ 21−ν∥A(x′) −A(x)∥ν ≤ 21−νJA
ν
max∥x′ − x∥ν

where in the last inequality we also used the Lipschitz continuity of A on S. Putting this back into (25), we
obtain

β∥J⊤
A (x′)∇ϕ(A(x′)) − J⊤

A (x)∇ϕ(A(x))∥ ≤ βHAA
ν
max∥x′ − x∥νA + 21−νβJA

1+ν
max∥x′ − x∥ν (26)

Finally, the claim follows by summing the previous inequalities and using the fact that

∥x′ − x∥νf = ∥x′ − x∥νf −q · ∥x′ − x∥q ≤ Dνf −q∥x′ − x∥q ≤ max
{

1, D1−q
}

∥x′ − x∥q

∥x′ − x∥νA = ∥x′ − x∥νA−q · ∥x′ − x∥q ≤ DνA−q∥x′ − x∥q ≤ max
{

1, D1−q
}

∥x′ − x∥q

∥x′ − x∥ν = ∥x′ − x∥ν−q · ∥x′ − x∥q ≤ Dν−q∥x′ − x∥q ≤ max
{

1, D1−q
}

∥x′ − x∥q.

Proof of Lemma 4

Proof. We first remark that UPFAG monotonically decreases the objective, and hence by Lemma 2 the
iterates remain in a compact set. Let {x̄ag

i }i∈N and {xag
i }i∈N be the sequences of iterates generated by the

UPFAG method described in (Ghadimi et al., 2019, Algorithm 2) when applied to ψk. Let {γi}i∈N be the
sequence of stepsizes defined in (Ghadimi et al., 2019, Equation (3.6)). Then in light of (Ghadimi et al.,

2019, Equation (3.33)), after discarding some constants, we need O
(
H

1/q
βk

[
Lk(xk)−L⋆

k

ε2
k+1

] 1+q
2q

)
inner iterations

to obtain a point ∥x̄ag
i − xag

i−1∥/γi ≤ εk+1
2 . Now, note that from (Ghadimi et al., 2019, Equation (3.8)) we

have that
x̄ag

i = arg min
u∈Rn

⟨u,∇ψk(xag
i−1)⟩ + g(u) + 1

2γi
∥u− xag

i−1∥2

and from the optimality conditions for this minimization problem (Rockafellar & Wets, 1998, Theorem 6.12):

−∇ψk(xag
i−1) − 1

γi
(x̄ag

i − xag
i−1) ∈ ∂g(x̄ag

i )

By adding and subtracting ∇ψk(x̄ag
i ) we further have:

−∇ψk(x̄ag
i ) + ∇ψk(x̄ag

i ) − ∇ψk(xag
i−1) − 1

γi
(x̄ag

i − xag
i−1) ∈ ∂g(x̄ag

i )

Therefore, dist(−∇ψk(x̄ag
i ) + ∇ψk(x̄ag

i ) − ∇ψk(xag
i−1) − 1

γi
(x̄ag

i − xag
i−1), ∂g(x̄ag

i )) = 0 and from the triangle
inequality

dist(−∇ψk(x̄ag
i ), ∂g(x̄ag

i )) ≤ ∥∇ψk(x̄ag
i ) − ∇ψk(xag

i−1)∥ + 1
γi

∥x̄ag
i − xag

i−1∥

≤ Hβk
∥x̄ag

i − xag
i−1∥q + εk+1

2 ≤ Hβk

εq
k+1γq

i

2q + εk+1
2 ,

where in the third inequality we used the bound ∥x̄ag
i − xag

i−1∥/γi ≤ εk+1
2 and the Hölder continuity of ∇ψk,

Lemma 3. Therefore, by choosing γi ≤ ε
(1−q)/q

k+1
(21−qHβk

)1/q we obtain the claimed result.

19



Under review as submission to TMLR

Proof of Theorem 2

Proof. Remark that by Lemma 2(ii) the iterates remain in a compact set. Let us start by defining the first
power ALM (outer) iteration KA for which

εA ≥ εA,KA+1 =
(

∇fmax +G+ JAmaxymax + ε1

RβKA

) 1
ν

:= QA

β
1/ν
KA

. (27)

or, equivalently, for which βKA
≥ QA

ϵν
A

. Since KA is the smallest iteration index for which this holds and βk

is increasing, it follows that βKA−1 <
QA

εν
A

. It follows from

∥A(xKA+1)∥ ≤
(

∇fmax +G+ JAmaxymax + ε1

RβKA

) 1
ν

(28)

that also εA ≥ ∥A(xKA+1)∥ holds. From the update rule for βk we have that

ωKA−2 <
1
εν

A

(
QA

β1

)
:= Q′

A

εν
A

. (29)

After taking the logarithm of both sides, we obtain that

KA =
⌈

logω

(
Q′

A

εν
A

)⌉
+ 2. (30)

Now, the number of total UPFAG iterations needed to obtain a point xKA+1 satisfying (28) is upper bounded
by the sum of the calls to UPFAG for all outer (power ALM) iterations. Note that since βk is increasing
geometrically, the Hölder smoothness modulus defined in Lemma 3 is determined by it for large enough k.
Therefore, in light of Lemma 4 we require at most TA UPFAG iterations, where

TA =
KA∑
k=1

O

H1/q
βk

[
Lk(xk) − L⋆

k

ε2
k+1

] 1+q
2q

 =
KA∑
k=1

O

(
β

1/q
k

[
Dq+1β3

k

] 1+q
2q

)

= O

(
KAβ

1/q
KA

[
Dq+1β3

KA

] 1+q
2q

)
≤ O

KA
(ωQA)1/q

ε
ν/q
A

[
Dq+1

(
ω
QA

εν
A

)3
] 1+q

2q


= O

KA
QA

1/q

ε
ν/q
A

D
(q+1)2

2q
QA

3 1+q
2q

ε
3ν 1+q

2q

A

 = O

KAQA

5+3q
2q D

(1+q)2
2q

ε
ν
q + 3ν(1+q)

2
A

 ,

where the first equality follows by Lemma 3 and by the fact that εk+1 = λ/βk. The second equality follows
by unrolling the sum and the first inequality by the fact that βk = ωβk−1 ≤ ωQA

εν
A

. Thus, we obtain

TA = O

 logω

(
Q′

A

εν
A

)
QA

5+3q
2q D

(1+q)2
2q

ε
ν
q + 3ν(1+q)

2
A

 = Õ

Q 5+3q
2q

A D
(1+q)2

2q

ε
ν
q + 3ν(1+q)

2
A

 .

Regarding the suboptimality tolerance, we can in a similar way define the first power ALM (outer) iteration
Kφ for which

εφ ≥ εφ,Kφ+1 = 1
βKφ

(
λ+ JAmaxσ1

∇fmax +G+ JAmaxymax + ε1

R

)
:= Qf

βKφ

(31)

or, equivalently, βKφ
≥ Qf

εφ
. Since Kφ is the first iteration for which this holds, it follows that βKφ−1 <

Qf

εφ
.

From the update rule for βk we have that

ωKφ−2 <
1
εφ

(
Qf

β1

)
:=

Q′
f

εφ
(32)
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After taking the logarithm on both sides, we obtain

Kφ =
⌈

logω

(
Q′

f

εφ

)⌉
+ 2. (33)

Hence, we require at most Tφ UPFAG iterations to obtain a point xKφ+1 satisfying (31), where

Tφ =
Kφ∑
k=1

O

H1/q
βk

[
Lk(xk) − L⋆

k

ε2
k+1

] 1+q
2q

 =
Kφ∑
k=1

O

(
β

1/q
k

[
Dq+1β3

k

] 1+q
2q

)

= O

(
Kφβ

1/q
Kφ

[
Dq+1β3

Kφ

] 1+q
2q

)
≤ O

Kφ

Q
1/q
f

ε
1/q
φ

[
Dq+1

(
ω
Qf

εφ

)3
] 1+q

2q


= O

Kφ

Q
1/q
f

ε
1/q
φ

D
(q+1)2

2q
Q

3(q+1)
2q

f

ε
3(q+1)

2q
φ

 = O

KφQ
5+3q

2q

f D
(1+q)2

2q

ε
5+3q

2q
φ

 ,

and the sequence of bounds follows from similar arguments as for TA. Thus, we obtain

Tφ = O

 logω

(
Q′

f

εφ

)
Q

5+3q
2q

f D
(1+q)2

2q

ε
5+3q

2q
φ

 = Õ

Q 5+3q
2q

f D
(1+q)2

2q

ε
5+3q

2q
φ

 .

A.2 Proofs of section 3

Proof of Lemma 5

Proof. The function f is Lf -weakly convex, since it is Lf -Lipschitz smooth, i.e. for any x, x′ ∈ X the
following inequality holds:

f(x) ≥ f(x′) + ⟨∇f(x′), x− x′⟩ − Lf

2 ∥x− x′∥2 (34)
Moreover, following the proof of (Drusvyatskiy & Paquette, 2019, Lemma 4.2), we have for any x, x′ ∈ X ,
and y ∈ Rm that

⟨y,A(x′)⟩ = ⟨y,A(x)⟩ + ⟨y,A(x′) −A(x)⟩

≥ ⟨y,A(x)⟩ + ⟨y, JA(x)(x′ − x)⟩ − LA∥y∥
2 ∥x′ − x∥2

= ⟨y,A(x)⟩ + ⟨J⊤
A (x)y, (x′ − x)⟩ − LA∥y∥

2 ∥x′ − x∥2, (35)

where the inequality follows from the Lipschitz-continuity of JA, i.e., from the fact that ∥A(x′) − A(x) −
JA(x)(x′ − x)∥ ≤ LA

2 ∥x′ − x∥2. Likewise, for any x, x′ ∈ X we have that
βϕ(A(x)) ≥ βϕ(A(x′)) + ⟨∇ϕ(A(x′)), A(x) −A(x′)⟩

≥ βϕ(A(x′)) + ⟨∇ϕ(A(x′)), JA(x′)(x− x′)⟩ − LA∥∇ϕ(A(x′))∥
2 ∥x− x′∥2

≥ βϕ(A(x′)) + β⟨J⊤
A (x′)∇ϕ(A(x′)), x− x′⟩ − βLAA

ν
max

2 ∥x− x′∥2 (36)

by consecutively exploiting convexity of ϕ between points A(x) and A(x′), Lipschitz-smoothness of A and
the fact that ∥∇ϕ(A(x))∥ = ∥A(x)∥ν ≤ Aν

max. Summing up (34), (35) and (36) we obtain:

Lβ(x, y) ≥ Lβ(x′, y) + ⟨∇xLβ(x′, y), x− x′⟩ − Lf +LA∥y∥+βLAAν
max

2 ∥x− x′∥2

These observations directly imply that for any y ∈ Rm the augmented Lagrangian is ρ-weakly convex on X
in its first argument, with

ρ := Lf + LA(∥y∥ + βAν
max).
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Proof of Theorem 3

The proof requires the following series of lemmata. Note that F is defined in Algorithm 2 step 2 and is a
(HF , ν)-Hölder smooth and ρ-strongly convex function.

Lemma 7. Let x ∈ X and define the point x+ := arg minu∈X ⟨∇F (x), u−x⟩+ 1
2γ ∥u−x∥2 with γ = 1

HF
ε

1−ν
1+ν ,

ε > 0. Then,
1

2γ ∥x+ − x∥2 ≤ F (x) − F (x+) + HF

2 ε. (37)

Proof. The inner problem in the definition of x+ is 1
γ -strongly convex and as such for any u ∈ X we obtain

⟨∇F (x), x+ − x⟩ + 1
2γ ∥x+ − x∥2 ≤ ⟨∇F (x), x− u⟩ + 1

2γ ∥x− u∥2 − 1
2γ ∥x+ − u∥2.

By choosing u = x ∈ X we get
0 ≥ ⟨∇F (x), x+ − x⟩ + 1

γ ∥x+ − x∥2 (38)

In light of Young’s inequality we have for any a, b ≥ 0 that ab ≤ ap1

p1
+ bp2

p2
with 1

p1
+ 1

p2
= 1. Choosing

p1 = 2
1+ν , p2 = 2

1−ν , it follows for a = ε− 1−ν
2 , b = ε

1−ν
2 that

∥x+ − x∥ν+1 ≤ 1+ν
2 ε− 1−ν

1+ν ∥x+ − x∥2 + 1−ν
2 ε. (39)

Note that for ν = 1 the inequality becomes an equality and thus the case ν = 1 is also covered. Therefore,
from the Hölder smoothness inequality for F between points x, x+ ∈ X we get:

F (x+) ≤ F (x) + ⟨∇F (x), x+ − x⟩ + HF

ν+1 ∥x+ − x∥ν+1

≤ F (x) + ⟨∇F (x), x+ − x⟩ + HF

2 ε− 1−ν
1+ν ∥x+ − x∥2 + 1−ν

1+ν
HF

2 ε (40)

Substituting (40) in (38) we obtain:

0 ≥ F (x+) − F (x) + 1
2γ ∥x+ − x∥2 − 1−ν

1+ν
HF

2 ε

which proves the claim.

Lemma 8. Suppose that a point x ∈ X satisfies F (x) − F (x⋆) ≤ ε for some ε > 0. Let γ = 1
HF

ε
1−ν
1+ν and

x+ = arg minu∈X ⟨∇F (x), u− x⟩ + 1
2γ ∥u− x∥2. Then, ∥x+−x∥2

γ2 ≤ 2HF (1 +HF )ε 2ν
1+ν .

Proof. From Lemma 7 and F (x) − F (x+) ≤ F (x) − F (x⋆) ≤ ε it follows that

∥x+ − x∥2

γ2 ≤ 2
γ

(
ε+ HF

2 ε

)
(41)

= 2HF ε
− 1−ν

1+ν

(
ε+ HF

2 ε

)
. (42)

Therefore, we obtain
∥x+ − x∥2

γ2 ≤ 2HF (1 +HF )ε 2ν
1+ν .

Lemma 9. Suppose that a point x ∈ X satisfies F (x) − F (x⋆) ≤ ε for some ε > 0. Let γ = 1
HF

ε
1−ν
1+ν and

x+ = arg minu∈X ⟨∇F (x), u− x⟩ + 1
2γ ∥u− x∥2. Then,

dist(−∇F (x+), NX (x+)) ≤
(
H1−ν

F (2HF (1 +HF )) ν
2 + (2HF (1 +HF ))1/2

)
ε

ν
1+ν .
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Proof. By the optimality conditions of the inner minimization in x+ = arg minu∈X ⟨∇F (x), u−x⟩+ 1
2γ ∥u−x∥2,

we have that
−∇F (x) − 1

γ (x+ − x) ∈ NX (x+),
which implies that

−∇F (x+) +
(

∇F (x+) − ∇F (x) − 1
γ (x+ − x)

)
∈ NX (x+).

Observe that from the triangle inequality and the Hölder smoothness of F , we have

∥∇F (x+) − ∇F (x) − 1
γ (x+ − x)∥ ≤ HF ∥x+ − x∥ν + 1

γ ∥x+ − x∥ (43)

and by Lemma 8 we can further bound

HF ∥x+ − x∥ν + 1
γ ∥x+ − x∥ ≤ γνHF

∥x+−x∥ν

γν + 1
γ ∥x+ − x∥

= γνHF

[
(2HF (1 +HF )) ν

2 ε
ν2

1+ν

]
+ (2HF (1 +HF ))1/2ε

ν
1+ν

=
[
( 1
HF

)νε
ν(1−ν)

1+ν

]
HF

[
(2HF (1 +HF )) ν

2 ε
ν2

1+ν

]
+ (2HF (1 +HF ))1/2ε

ν
1+ν

= ε
ν

ν+1

(
H1−ν

F (2HF (1 +HF )) ν
2 + (2HF (1 +HF ))1/2

)
The result then follows by the fact that dist(−∇F (x+), NX (x+)) ≤ dist(∇F (x+) − ∇F (x) − 1

γ (x+ −
x), NX (x+)) ≤ ∥∇F (x+) − ∇F (x) − 1

γ (x+ − x)∥.

Proof. Consider a point x ∈ X such that

F (x) − F (x⋆) ≤ ε̄ :=
[
H

−1
ε
] 1+ν

ν

.

Then, it follows from Lemma 9 that for γ = 1
HF

ε̄
1−ν
1+ν = 1

HF

[
H

−1] 1−ν
ν

ε
1−ν

ν the point x+ satisfies

dist(−∇F (x+), NX (x+)) ≤ H̄ε̄
ν

1+ν = ε.

Thus, in light of (Devolder et al., 2014, §6.2 ), it takes at most T iterations of the FGM, and a single
proximal-gradient step with stepsize γ to find such a point x+, where

T = Õ

H 2
1+3ν

F

ρ
ν+1

3ν+1
ε̄− 1−ν

1+3ν

 (44)

= Õ

H 2
1+3ν

F

ρ
ν+1

3ν+1

(
H

− 1+ν
ν ε

1+ν
ν

)− 1−ν
1+3ν

 (45)

= Õ

H 2
1+3ν

F

ρ
ν+1

3ν+1
H

1+ν
ν

1−ν
1+3ν ε− 1+ν

ν
1−ν

1+3ν

 . (46)

Proof of Theorem 4

Proof. Let Fk(x) := ψ(x) + ρ∥x − xk∥2. Since ψ is ρ-weakly convex and has (H, ν)-Hölder continuous
gradients, it follows that Fk is ρ-strongly convex and has (HF , ν)-Hölder continuous gradients on X , with
HF = H + ρmax

{
1, D1−ν

}
.

We can now trace the steps of (Li et al., 2021, Theorem 1) to conclude that Algorithm 2 terminates after at
most

T = ⌈32ρ
ε2 (ψ(x1) − ψ⋆) + 1⌉
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iterations and that the output x satisfies dist(−∇ψ(x), NX (x)) ≤ ε.

Denote henceforth F ⋆
k = minx∈X Fk(x). By Algorithm 2 step 3 and (Rockafellar & Wets, 1998, Theorem

10.1) we have that dist(0, ∂(Fk+δX )(xk+1)) = dist(−∇Fk(xk+1), NX (xk+1)) ≤ ε
4 , and by ρ-strong convexity

of Fk and convexity of δX we have that

F ⋆
k ≥ Fk(xk+1) + ⟨vk+1, x⋆ − xk+1⟩ + ρ

2∥xk+1 − x⋆∥2, vk+1 ∈ ∂(Fk + δX )(xk+1).

Combining these two inequalities yields Fk(xk+1) − F ⋆
k ≤ ε2

32ρ and hence we obtain ψ(xk+1) + ρ∥xk+1 −
xk∥2 − ψ(xk) ≤ ε2

32ρ . Thus,

ψ(xT ) − ψ(x1) + ρ

T −1∑
k=1

∥xk+1 − xk∥2 ≤ (T − 1) ε
2

32ρ

(T − 1) min
1≤k≤T −1

∥xk+1 − xk∥2 ≤ 1
ρ

(
(T − 1) ε

2

32ρ +
[
ψ(x1) − ψ(xT )

])
2ρ min

1≤k≤T −1
∥xk+1 − xk∥ ≤ 2

√
ε2

32 + ρ [ψ(x1) − ψ⋆]
T − 1

For T − 1 ≥ 32ρ
ε2 (ψ(x1) − ψ⋆) this yields

2ρ min
1≤k≤T

∥xk+1 − xk∥ ≤ ε

2 ,

meaning that Algorithm 2 must have terminated. Denote by xT the iterate returned by Algorithm 2 upon
termination. Since 2ρ∥xT − xT −1∥ ≤ ε

2 and dist(0, ∂(FT −1 + δX )(xT )) ≤ ε
4 , we conclude that

dist(0, ∂(ψ + δX (xT ))) ≤ dist(0, ∂(FT −1 + δX (xT ))) + 2ρ∥xT − xT −1∥ ≤ ε.

This concludes the proof, since ∂(ψ + δX )(·) = ∇ψ(·) +NX (·).

Proof of Theorem 5

Proof. We denote the t-th iterate of Algorithm 2 (iPPM) within the k-th power ALM outer iteration by
xt

k. At xt
k, Nesterov’s FGM is used to minimize F t

k := Lβk
(·, yk) + ρk∥ · −xt

k∥2, which is ρk-strongly convex
and (HFk

, ν)-Hölder smooth with HFk
= Hk + ρk max{1, D1−ν}. In light of Theorem 3, we require at most

TF GM
k iterations to find an εk+1

4 stationary point of F t
k + δX , with

TF GM
k = Õ

H 2
1+3ν

Fk

ρ
1+ν

1+3ν

k

H
1+ν

ν
1−ν

1+3ν

k ε
− 1+ν

ν
1−ν

1+3ν

k+1

 , (47)

where Hk = H1−ν
Fk

(2HFk
(1 +HFk

)) ν
2 + (2HFk

(1 +HFk
))1/2. Remark that TF GM

k is independent of t. Since
ρk = O(βk), HFk

= O(βk), H̄k = O(βk), this expression simplifies to

TF GM
k = Õ

(
β

1−ν
1+3ν (1+ 1+ν

ν )
k ε

− 1+ν
ν

1−ν
1+3ν

k+1

)
.

Likewise, at xk, the iPPM is used to minimize Lβk
(·, yk), which is ρk-weakly convex. By Theorem 4, we

require at most TP P M
k iterations of Algorithm 2 to find a point satisfying the update rule of step 2 in

Algorithm 1, where

TP P M
k = ⌈32ρk

ε2
k+1

(ψk(xk) − ψ⋆
k) + 1⌉ (48)
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From (19) we have that ∥A(xk)∥q ≤
(

∇fmax+G+JAmaxymax+εk

Rβk−1

)
for all k ≥ 1 and using βk = ωβk−1 we obtain

βk∥A(xk)∥ν ≤ ω
∇fmax +G+ JAmaxymax + εk

R
(49)

and hence we obtain the following bound for k ≥ 2:

ψk(xk) = f(xk) + ⟨yk, A(xk)⟩ + βk

1 + ν
∥A(xk)∥ν+1

≤ fmax + ymax∥A(xk)∥ + ω

1 + ν

(
∇fmax +G+ JAmaxymax + εk

R

)
∥A(xk)∥

≤ fmax + ymax

(
∇fmax +G+ JAmaxymax + εk

Rβk−1

) 1
ν

+ ω

1 + ν

(
∇fmax +G+ JAmaxymax + εk

R

)(
∇fmax +G+ JAmaxymax + εk

Rβk−1

) 1
ν

≤ fmax + ymax +
(

∇fmax +G+ JAmaxymax + ε1

Rβ1

) 1
ν

+ ω

1 + ν

(
∇fmax +G+ JAmaxymax + ε1

R

)(
∇fmax +G+ JAmaxymax + ε1

Rβ1

) 1
ν

=: C.

The first inequality follows by f being continuous on the compact set X , f(xk) ≤ maxx∈X f(x) := fmax, and
(49) and the second one by (20). The last inequality follows by εk < ε1 and βk > β1. Moreover, we have for
all x ∈ X

ψk(x) ≥ f(x) + ⟨yk, A(x)⟩ ≥ −fmax − ymaxAmax

and as such we can bound
ψk(xk) − ψ⋆ ≤ C + fmax + ymaxAmax.

Using this expression and Lemma 5, we can rewrite the number of iPPM iterations as

TP P M
k = Õ

(
βk

ε2
k+1

)

We now define the first power ALM (outer) iteration KA for which

εA ≥ εA,KA+1 =
(

∇fmax +G+ JAmaxymax + ε1

RβKA

) 1
ν

:= QA

β
1/ν
KA

(50)

and from (30) we have that

KA =
⌈

logω

(
Q′

A

εν
A

)⌉
+ 2.

Hence, we require at most TA total FGM iterations to obtain a point xKA+1, where

TA =
KA∑
k=1

TP P M
k TF GM

k

=
KA∑
k=1

Õ

(
βk

ε2
k+1

β
1−ν

1+3ν (1+ 1+ν
ν )

k ε
− 1+ν

ν
1−ν

1+3ν

k+1

)
=

KA∑
k=1

Õ

(
β

1+ 1−ν
1+3ν (1+ 1+ν

ν )
k β

2+ 1+ν
ν

1−ν
1+3ν

k

)

=
KA∑
k=1

Õ

(
β

3+ 1−ν
1+3ν (1+2 1+ν

ν )
k

)
≤ Õ

(
KAβ

3+ 1−ν
1+3ν (1+2 1+ν

ν )
KA

)
= Õ

(
β

3+ 1−ν
1+3ν (1+2 1+ν

ν )
KA

)
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By substitution of βKA
= ωβKA−1 <

QA

εν
A

this yields

TA = Õ

(
ε

−3ν− 1−ν
1+3ν (3ν+2)

A

)
.

In a similar way to the proof of Theorem 2 we can define the first power ALM (outer) iteration Kφ for which

εφ ≥ εφ,Kφ+1 = 1
βKφ

(
λ+ JAmaxσ1

∇fmax +G+ JAmaxymax + ε1

R

)
:= Qf

βKφ

and obtain
Kφ =

⌈
logω

(
Q′

f

εφ

)⌉
+ 2.

Tφ = Õ

(
β

3+ 1−ν
1+3ν (1+2 1+ν

ν )
Kφ

)
By substitution of βKφ

= ωβKφ−1 <
Qf

εφ
this yields

Tφ = Õ

(
ε

−3− 1−ν
1+3ν

(
1+ 2(1+ν)

ν

)
φ

)
.

Proof of Theorem 6

Proof. We denote the t-th iterate of Algorithm 2 (iPPM) within the k-th power ALM outer iteration by
xt

k. At xt
k, Nesterov’s FGM is used to minimize F t

k := Lβk
(·, yk) + ρk∥ · −xt

k∥2, which is ρk-strongly convex
and (HFk

, ν)-Hölder smooth with HFk
= Hk + ρk max{1, D1−ν}. In light of Theorem 3, we require at most

TF GM
k iterations to find an εk+1

4 stationary point of F t
k + δX , with

TF GM
k = Õ

H 2
1+3ν

Fk

ρ
1+ν

1+3ν

k

H
1+ν

ν
1−ν

1+3ν

k ε
− 1+ν

ν
1−ν

1+3ν

k+1

 , (51)

where Hk = H1−ν
Fk

(2HFk
(1 +HFk

)) ν
2 + (2HFk

(1 +HFk
))1/2. Remark that TF GM

k is independent of t. Since
ρk = O(1), HFk

= O(βk), H̄k = O(βk), this expression simplifies to

TF GM
k = Õ

(
β

1−ν
1+3ν

1+ν
ν + 2

1+3ν

k ε
− 1+ν

ν
1−ν

1+3ν

k+1

)
.

Likewise, at xk, the iPPM is used to minimize Lβk
(·, yk), which is ρk-weakly convex. By Theorem 4, we

require at most TP P M
k iterations of Algorithm 2 to find a point satisfying the update rule of step 2 in

Algorithm 1, where

TP P M
k = ⌈32ρk

ε2
k+1

(ψk(xk) − ψ⋆
k) + 1⌉ (52)

Following the same steps as in the proof of Theorem 5, we can bound for some C > 0,

ψk(xk) − ψ⋆ ≤ C + fmax + ymaxAmax.

Using this expression and ρk = O(1) (cf. Lemma 5), we can rewrite the number of iPPM iterations as

TP P M
k = Õ

(
ε−2

k+1
)
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We now define the first power ALM (outer) iteration KA for which

εA ≥ εA,KA+1 =
(

∇fmax + JAmaxymax + ε1

vβKA

) 1
ν

:= QA

β
1/ν
KA

(53)

and from (30) we have that

KA =
⌈

logω

(
Q′

A

εν
A

)⌉
+ 2.

Hence, we require at most TA total FGM iterations to obtain a point xKA+1, where

TA =
KA∑
k=1

TP P M
k TF GM

k

=
KA∑
k=1

Õ

(
ε−2

k+1β
1−ν

1+3ν
1+ν

ν + 2
1+3ν

k ε
− 1+ν

ν
1−ν

1+3ν

k+1

)
=

KA∑
k=1

Õ

(
β

1−ν
1+3ν

1+ν
ν + 2

1+3ν

k β
2+ 1+ν

ν
1−ν

1+3ν

k

)

=
KA∑
k=1

Õ

(
β

2+2 1−ν
1+3ν

1+ν
ν + 2

1+3ν

k

)
≤ Õ

(
KAβ

2+2 1−ν
1+3ν

1+ν
ν + 2

1+3ν

KA

)
= Õ

(
β

2+2 1−ν
1+3ν

1+ν
ν + 2

1+3ν

KA

)
By substitution of βKA

= ωβKA−1 <
QA

εν
A

this yields

TA = Õ

(
ε

−2ν−2 1−ν
1+3ν (1+ν)− 2ν

1+3ν

A

)
.

In a similar way to the proof of Theorem 2 we can define the first power ALM (outer) iteration Kφ for which

εφ ≥ εφ,Kφ+1 = 1
βKφ

(
λ+ JAmaxσ1

∇fmax + JAmaxymax + ε1

v

)
:= Qf

βKφ

and obtain
Kφ =

⌈
logω

(
Q′

f

εφ

)⌉
+ 2.

Tφ = Õ

(
β

2+2 1−ν
1+3ν

1+ν
ν + 2

1+3ν

Kφ

)
By substitution of βKφ = ωβKφ−1 <

Qf

εφ
this yields

Tφ = Õ

(
ε

−2−2 1−ν
1+3ν

1+ν
ν − 2

1+3ν
φ

)
.

B Additional experiments

B.1 Generalized eigenvalue problem

We consider the generalized eigenvalue problem (GEVP)

min
x∈Rn

x⊤Cx s.t. x⊤Bx = 1,
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where B,C ∈ Rn×n are symmetric matrices and B is positive definite. Clearly, the GEVP is of the form (P),
and satisfies the regularity condition Assumption 4 Sahin et al. (2019). We sample the entries of a matrix
Ĉ ∈ Rn×n from a Gaussian N (0, 0.1) and define C := 1

2 (Ĉ+ Ĉ⊤). The matrix B is defined as Q⊤Q, where Q
is the orthonormal matrix in the QR-decomposition of a random matrix with entries sampled uniformly from
the unit interval. We again use APGM as an inner solver and tune its step size to 0.5/(10∥C∥+5000+500β).
As with the quadratic programs we follow the tuning of Li et al. (2021) β1 = 0.01, ω = 3, λ = 1, σ1 = 10,
and impose a maximum of N = 105 APGM iterations per subproblem.

Table 3 reports the number of gradient calls that power ALM requires to attain an (εφ, εA)-stationary
point with εφ = εA = 10−3 for various powers ν ∈ (0, 1]. Also the constraint violation ∥A(x)∥ and the
suboptimality |f(x) − f∗| are listed. Every trial denotes a random realization of the GEVP with n = 500,
and the first trial is further illustrated in Figure 4. We observe that smaller values of ν perform significantly
better than larger values, with ν = 0.4 requiring an order of magnitude fewer gradient evaluations than ν = 1.
The figure corresponding to the first realization confirms that both constraint violation and suboptimality
decrease steadily, even for a small power ν = 0.4.
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Figure 4: Comparison of the proposed power ALM with various powers ν on solving a representative
GEVP with n = 500. The case ν = 1 corresponds to the iALM from Sahin et al. (2019).

Table 3: Performance of power ALM with APGM inner solver on solving random GEVPs of size n = 500.

trial
1
2
3
4
5
6
7
8
9
10

avg.

ν = 0.2 ν = 0.4 ν = 0.6 ν = 0.8 ν = 1.0
const. viol. subopt # grads const. viol. subopt. # grads const. viol. subopt # grads const. viol. subopt # grads const. viol. subopt # grads
6.1 · 10−4 9.6 · 10−4 2 · 105 9 · 10−5 2.4 · 10−4 30,808 2.9 · 10−4 4.6 · 10−4 79,695 5.7 · 10−4 8.9 · 10−4 2.8 · 105 2.8 · 10−4 4.3 · 10−4 5.8 · 105

1.6 · 10−4 2.5 · 10−4 1 · 105 1 · 10−4 4 · 10−4 31,540 3.1 · 10−4 4.9 · 10−4 1 · 105 6.2 · 10−4 9.6 · 10−4 2.8 · 105 3 · 10−4 4.6 · 10−4 6.1 · 105

1.6 · 10−4 2.6 · 10−4 1 · 105 1 · 10−4 2.3 · 10−4 31,498 3.2 · 10−4 5.1 · 10−4 1.1 · 105 1.6 · 10−4 2.6 · 10−4 3.9 · 105 3.1 · 10−4 4.9 · 10−4 6.5 · 105

6.1 · 10−4 9.8 · 10−4 2 · 105 9.1 · 10−5 2.5 · 10−4 31,926 3 · 10−4 4.7 · 10−4 82,429 5.8 · 10−4 9.3 · 10−4 2.8 · 105 2.8 · 10−4 4.5 · 10−4 6.4 · 105

1.7 · 10−4 2.6 · 10−4 1 · 105 1 · 10−4 3.2 · 10−4 28,301 3.1 · 10−4 4.9 · 10−4 88,925 6.2 · 10−4 9.6 · 10−4 2.8 · 105 3 · 10−4 4.6 · 10−4 6.2 · 105

1.9 · 10−4 2.9 · 10−4 1 · 105 1.1 · 10−4 7 · 10−4 36,529 3.2 · 10−4 5.1 · 10−4 1.6 · 105 1.7 · 10−4 2.6 · 10−4 3.9 · 105 3.2 · 10−4 4.9 · 10−4 6.6 · 105

1.8 · 10−4 2.8 · 10−4 1 · 105 4.7 · 10−5 8.6 · 10−5 1.5 · 105 3.2 · 10−4 5 · 10−4 2.1 · 105 6.3 · 10−4 9.8 · 10−4 3.8 · 105 3 · 10−4 4.7 · 10−4 6.6 · 105

1.8 · 10−4 2.8 · 10−4 1 · 105 1 · 10−4 2.8 · 10−4 33,362 3.1 · 10−4 4.8 · 10−4 1 · 105 6.2 · 10−4 9.5 · 10−4 3 · 105 3 · 10−4 4.6 · 10−4 6.5 · 105

1.6 · 10−4 2.4 · 10−4 1 · 105 4.7 · 10−5 6.7 · 10−4 1.3 · 105 3.1 · 10−4 5.7 · 10−4 2.3 · 105 6.1 · 10−4 9.5 · 10−4 4.4 · 105 2.9 · 10−4 4.6 · 10−4 7.6 · 105

6.2 · 10−4 9.6 · 10−4 2 · 105 1 · 10−4 2.2 · 10−4 25,497 3 · 10−4 4.7 · 10−4 86,236 5.9 · 10−4 9.3 · 10−4 2.7 · 105 2.9 · 10−4 4.5 · 10−4 6.2 · 105

3 · 10−4 4.8 · 10−4 1.3 · 105 8.9 · 10−5 3.4 · 10−4 52,839.4 3.1 · 10−4 5 · 10−4 1.2 · 105 5.2 · 10−4 8.1 · 10−4 3.3 · 105 3 · 10−4 4.6 · 10−4 6.4 · 105
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