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ABSTRACT

What can an agent learn in a stochastic Multi-Armed Bandit (MAB) problem from
a dataset that contains just a single sample for each arm? Surprisingly, in this work,
we demonstrate that even in such a data-starved setting it may still be possible
to find a policy competitive with the optimal one. This paves the way to reliable
decision-making in settings where critical decisions must be made by relying only
on a handful of samples. Our analysis reveals that stochastic policies can be
substantially better than deterministic ones for offline decision-making. Focusing
on offline multi-armed bandits, we design an algorithm called Trust Region of
Uncertainty for Stochastic policy enhancemenT (TRUST) which is quite different
from the predominant value-based lower confidence bound approach. Its design
is enabled by localization laws, critical radii, and relative pessimism. We prove
that its sample complexity is comparable to that of LCB on minimax problems
while being substantially lower on problems with very few samples. Finally, we
consider an application to offline reinforcement learning in the special case where
the logging policies are known.

1 INTRODUCTION

In several important problems, critical decisions must be made with just very few samples of pre-
collected experience. For example, collecting samples in robotic manipulation may be slow and costly,
and the ability to learn from very few interactions is highly desirable (Hester & Stone, 2013} |Liu et al.|
2021). Likewise, in clinical trials and in personalized medical decisions, reliable decisions must be
made by relying on very small datasets (Liu et al.,[2017). Sample efficiency is also key in personalized
education (Bassen et al.||2020; |[Ruan et al.,|2023)). However, to achieve good performance, the state-
of-the-art algorithms may require millions of samples (Fu et al., 2020). These empirical findings
seem to be supported by the existing theories: the sample complexity bounds, even minimax optimal
ones, can be large in practice due to the large constants and the warmup factors (Ménard et al., [2021}
Li et al.| [2022; |Azar et al., 2017; Zanette et al., 2019).

In this work, we study whether it is possible to make reliable decisions with only a few samples.
We focus on an offline Multi-Armed Bandit (MAB) problem, which is a foundation model for
decision-making (Lattimore & Szepesvari, |2020). In online MAB, an agent repeatedly chooses an
arm from a set of arms, each providing a stochastic reward. Offline MAB is a variant where the agent
cannot interact with the environment to gather new information and instead, it must make decisions
based on a pre-collected dataset without playing additional exploratory actions, aiming at identifying
the arm with the highest expected reward (Audibert et al.,2010; Garivier & Kaufmann, [2016} Russo,
2016;|/Ameko et al., 2020).

The standard approach to the problem is the Lower Confidence Bound (LCB) algorithm (Rashidinejad
et al.} 2021)), a pessimistic variant of UCB (Auer et al., [2002) that involves selecting the arm with the
highest lower bound on its performance. LCB encodes a principle called pessimism under uncertainty,
which is the foundation principle for most algorithms for offline bandits and reinforcement learning
(RL) (Jin et al., 2020} |Zanette et al., [2020; [Xie et al., 2021} [Yin & Wang, |2021; [Kumar et al.,
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2020; [Kostrikov et al.,|2021). Unfortunately, the available methods that implement the principle of
pessimism under uncertainty can fail in a data-starved regime because they rely on confidence intervals
that are too loose when just a few samples are available. For example, even on a simple MAB instance
with ten thousand arms, the best-known (Rashidinejad et al.l 2021)) performance bound for the LCB
algorithm requires 24 samples per arm in order to provide meaningful guarantees, see Section [2]
In more complex situations, such as in the sequential setting with function approximation, such a
problem can become more severe due to the higher metric entropy of the function approximation
class and the compounding of errors through time steps.

These considerations suggest that there is a “barrier of entry” to decision-making, both theoretically
and practically: one needs to have a substantial number of samples in order to make reliable decisions
even for settings as simple as offline MAB where the guarantees are tighter. Given the above technical
reasons, and the lack of good algorithms and guarantees for data-starved decision problems, it is
unclear whether it is even possible to find good decision rules with just a handful of samples.

In this paper, we make a substantial contribution towards lowering such barriers of entry. We discover
that a carefully-designed algorithm tied to an advanced statistical analysis can substantially improve
the sample complexity, both theoretically and practically, and enable reliable decision-making with
just a handful of samples. More precisely, we focus on the offline MAB setting where we show that
even if the dataset contains just a single sample in every arm, it may still be possible to compete with
the optimal policy. This is remarkable, because with just one sample per arm—for example from
a Bernoulli distribution—it is impossible to estimate the expected payoff of any of the arms! Our
discovery is enabled by several key insights:

* We search over stochastic policies, which can yield better performance for offline-decision
making;

* We use a localized notion of metric entropy to carefully control the size of the stochastic
policy class that we search over;

* We implement a concept called relative pessimism to obtain sharper guarantees.

These considerations lead us to design a trust region policy optimization algorithm called Trust Region
of Uncertainty for Stochastic policy enhancemenT (TRUST), one that offers superior theoretical as
well as empirical performance compared to LCB in a data-scarce situation.

Moreover, we apply the algorithm to selected reinforcement learning problems from (Fu et al.| 2020)
in the special case where information about the logging policies is available. We do so by a simple
reduction from reinforcement learning to bandits, by mapping policies and returns in the former to
actions and rewards in the latter, thereby disregarding the sequential aspect of the problem. Although
we rely on the information of the logging policies being available, the empirical study shows that our
algorithm compares well with a strong deep reinforcement learning baseline (i.e, CQL from (Kumar|
et al.| 2020)), without being sensitive to partial observability, sparse rewards, and hyper-parameters.

2 DATA-STARVED MULTI-ARMED BANDITS

In this section, we describe the MAB setting and give an example of a “data-starved” MAB instance
where prior methods (such as LCB) can fail. We informally say that an offline MAB is “data-starved”
if its dataset contains only very few samples in each arm.

Notation. We let [n] = {1,2,...,n} for a positive integer n. We let ||-||, denote the Euclidean norm

for vectors and the operator norm for matrices. We hide constants and logarithmic factors in the 5()
notation. We let BY(s) = {z € R* : [z]l, < s}forany s > 0andp > 1.a < b(a 2 b) means
a < Cb (a > Cb) for some numerical constant C. a ~ b means that both ¢ < b and b < a hold.

Multi-armed bandits. We consider the case where there are d arms in a set A = {ay,..., a4}
with expected reward r(a;), i € [d]. We assume access to an offline dataset D = {(z,7:)};¢[n Of
action-reward tuples, where the experienced actions {z;}, c[N] are i.i.d. from a distribution p. Each
experienced reward is a random variable with expectation E[r;] = r(z;) and independent Gaussian
noises ¢; := r(x;) — E[r;]. For i € [d], we denote the number of pulls to arm a; in D by N(a;)
or N;, while the variance of the noise for arm a; is denoted by o2. We denote the optimal arm
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as a* € argmax,¢ 4[r(a)] and the single policy concentrability as C* = 1/p(a*) where p is the
distribution that generated the dataset. Without loss of generality, we assume the optimal arm is
unique. We also write 7 = (r1, 79, ...,7¢) | . Without loss of generality, we assume there is at least
one sample for each arm (such arm can otherwise be removed).

Lower confidence bound algorithm. One simple but effective method for the offline MAB prob-
lem is the Lower Confidence Bound (LCB) algorithm, which is inspired by its online counterpart
(UCB) (Auer et al.,[2002). Like UCB, LCB computes the empirical mean 7; associated to the reward
of each arm ¢ along with its half confidence width b;. They are defined as

1 202 2d
ri= — E i = 1] — . 1
" Ny e b N(a;) ® ( 5) M
T =Q;

This definition ensures that each confidence interval brackets the corresponding expected reward with
probability 1 — 4:

The width of the confidence level depends on the noise level o;, which can be exploited by variance-
aware methods (Zhang et al.| 2021} |Min et al.| 2021} |Yin et al., 2022} |Dai et al., [2022). When the
true noise level is not accessible, we can replace it with the empirical standard deviation or with a
high-probability upper bound. For example, when the reward for each arm is restricted to be within
[0, 1], a simpler upper bound is 0?7 < 1/4.

Unlike UCB, the half-width of the confidence intervals for LCB is not added, but subtracted, from
the empirical mean, resulting in the lower bound I; = 7; — b;. The action identified by LCB is then
the one that maximizes the resulting lower bound, thereby incorporating the principle of pessimism
under uncertainty (Jin et al., [2020; | Kumar et al., 2020). Specifically, given the dataset D, LCB selects
the arm using the following rule:
?iLCB (= argmax li, (3)
a; €A

(Rashidinejad et al.,|2021) analyzed the LCB strategy. Below we provide a modified version of their
theorem.

Theorem 2.1 (LCB Performance). Suppose the noise of arm a; is sub-Gaussian with proxy variance
o?. Let § € (0,1/2). Then, we have

1. (Comparison with any arm) With probability at least 1 — §, for any comparator policy a; € A, it
holds that r(a;) — r(dLcg) < /802 log(2d/5)/N(a;).

2. (Comparison with the optimal arm) Assume o; = 1 for any i € [d] and N > 8C* log (1/6) . Then,
with probability at least 1 — 26, one has r(a*) — r(aLcg) < /4C*log(2d/8)/N.

The statement of this theorem is slightly different from that in (Rashidinejad et al.,[2021), in the sense
that their suboptimality is over Ep[r (a™) — r (aLcg)] instead of a high-probability one. (Rashidinejad
et al.| 2021)) proved the minimax optimality of the algorithm when the single policy concentrability
C* > 2 and the sample size N > O(C*).

A data-starved MAB problem and failure of LCB. In order to highlight the limitation of a strategy
such as LCB, let us describe a specific data-starved MAB instance, specifically one with d = 10000
arms, equally partitioned into a set of good arms (i.e., Ay) and a set of bad arms (i.e., Ap). Each
good arm returns a reward following the uniform distribution over [0.5, 1.5], while each bad arm
returns a reward which follows N'(0, 1/4).

Assume that we are given a dataset that contains only one sample per each arm. Instantiating the LCB
confidence interval in equationwith 0; <1/2and § = 0.1, one obtains 7; —2.5 < r(a;) < 7;+2.5.
Such bound is uninformative, because the lower bound for the true reward mean is less than the
reward value of the worst arm. The performance bound for LCB confirms this intuition, because
Theorem 2.1|requires at least N (a;) > [8 * log(1/0.05)] = 24 samples in each arm to provide any
guarantee with probability at least 0.9 (here C* = d).

Can stochastic policies help? At a first glance, extracting a good decision-making strategy for the
problem discussed in Section[2]seems like a hopeless endeavor, because it is information-theoretically
impossible to reliably estimate the expected payoff of any of the arms with just a single sample on
each. In order to proceed, the key idea is to enlarge the search space to contain stochastic policies.
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Definition 2.2 (Stochastic Policies). A stochastic policy over a MAB is a probability distribution
w € R w; > O,Zle w; = 1.

To exemplify how stochastic policies can help, consider the behavioral cloning policy, which mimics
the policy that generated the dataset for the offline MAB in Section[2] Such policy is stochastic, and
it plays all arms uniformly at random, thereby achieving a score around 0.5 with high probability.
The value of the behavioral cloning policy can be readily estimated using the Hoeffding bound (e.g.,
Proposition 2.5 in (Wainwright, |2019)): with probability at least 1 — § = 0.9, (here d = 10000 is
the number of arms and o = 1/2 is the true standard deviation), the value of behavioral cloning
policy is greater or equal than 1/2 — /202 1og (2/0) /d = 0.488. Such value is higher than the one
guaranteed for LCB by Theorem [2.1] Intuitively, a stochastic policy that selects multiple arms can
be evaluated more accurately because it averages the rewards experienced over different arms. This
consideration suggests optimizing over stochastic policies.

By optimizing a lower bound on the performance of the stochastic policies, it should be possible to
find one with a provably high return. Such an idea leads to solving an offline linear bandit problem,
as follows

weRd7,u}i§)?§g:1 wi=1 Z Ww;T; C(w) (4)
where c(w) is a suitable confidence interval for the policy w and 7; is the empirical reward for the i-th
arm defined in equation[I} While this approach is appealing, enlarging the search space to include all
stochastic policies brings an increase in the metric entropy of the function class, and concretely, a v/d
factor (Abbasi-Yadkori et al., 2011} Rusmevichientong & Tsitsiklis, |2010; [Hazan & Karnin, 2016;
Jun et al.,|[2017; Kim et al.l[2022) in the confidence intervals c¢(w) (in equation, which negates all
gains that arise from considering stochastic policies. In the next section, we propose an algorithm
that bypasses the need for such v/d factor by relying on a more careful analysis and optimization
procedure.

3 TRUST REGION OF UNCERTAINTY FOR STOCHASTIC POLICY
ENHANCEMENT (TRUST)

In this section, we introduce our algorithm, called Trust Region of Uncertainty for Stochastic policy
enhancemenT (TRUST). At a high level, the algorithm is a policy optimization algorithm based on a
trust region centered around a reference policy. The size of the trust region determines the degree of
pessimism, and its optimal problem-dependent size can be determined by analyzing the supremum of
a problem-dependent empirical process. In the sequel, we describe 1) the decision variables, 2) the
trust region optimization program, and 3) some techniques for its practical implementation.

3.1 DECISION VARIABLES

The algorithm searches over the class of stochastic policies given by the weight vector w =
(wy,wa, ...,wq) " of Definition Instead of directly optimizing over the weights of the stochastic
policy, it is convenient to center w around a reference stochastic policy ji which is either known to
perform well or is easy to estimate. In our theory and experiments, we consider a simple setup and
use the behavioral cloning policy weighted by the noise levels {o; } if they are known. Namely, we

consider )
~ Ni/o;

Wi = —7————=

3251 N3/

When the size of the noise o; is constant across all arms, the policy i is the behavioral cloning

policy; when o; differs across arms, fi minimizes the variance of the empirical reward i =

arg Miny,cpd 1, 0,57, wy=1 Var (w" -7), where 7 = (71,...,74) " is defined in equation |I| Us-

ing such definition, we define as decision variable the policy improvement vector A := w — . This

preparatory step is key: it allows us to implement relative pessimism, namely pessimism on the

improvement—represented by A—rather than on the absolute value of the policy w. Moreover, by

restricting the search space to a ball around Ji, one can efficiently reduce the metric entropy of the
policy class and obtain tighter confidence intervals.

Vi € [d]. 5)
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3.2 TRUST REGION OPTIMIZATION

Trust region. TRUST (Algo-
rithm[I)) returns the stochastic policy
TTRUST = E +ne Rd, where [i is
the reference policy defined in equa-
tion [5| and A is the policy improve-
ment vector. In order to accurately
quantify the effect of the improvement
vector A, we constrain it to a trust re-
gion C () centered around [i where
€ > 0 is the radius of the trust region.
More concretely, for a given radius
€ > 0, the trust region is defined as

0.5

Weight 3

0.0
0.0

Cle) = {A:Aiwzo,

0.5 1

A+, =1, Q\é\q\*‘

d 0_2
d AL < 52}. (6)
plAL

The trust region above serves two

pAurpoAses.: it ensures that Fhe policy Figure 1: A simple diagram for the trust regions on a 3-dim
A + pu still represents a valid stochas-  gimplex. The central point is the reference (stochastic) policy,

tic policy, and it regularize§ the/\POHCY while red ellipses are trust regions around this reference
around the reference policy pi. We  policy.

then search for the best policy within
C (&) by solving the optimization program

0.5
Weigh, 1 10 1.0

A= argmax A 7. @)
A€eC(e)

Computationally, the program equation [/|is a second-order cone program (Alizadeh & Goldfarb,

2003; Boyd & Vandenberghe, [2004), which can be solved efficiently with standard off-the shelf

libraries (Diamond & Boyd, 2016).

When ¢ = 0, the trust region only includes the vector A = 0, and the reference policy i is the only
feasible solution. When € — oo, the search space includes all stochastic policies. In this latter case,
the solution identified by the algorithm coincides with the greedy algorithm which chooses the arm
with the highest empirical return. Rather than leaving ¢ as a hyper-parameter, in the following we
highlight a selection strategy for ¢ based on localized Gaussian complexities.

Critical radius. The choice of ¢ is crucial to the performance of our algorithm because it balances
optimization with regularization. Such consideration suggests that there is an optimal choice for the
radius € which balances searching over a larger space with keeping the metric entropy of such space
under control. The optimal problem-dependent choice &, can be found as a solution of a certain
equation involving a problem-dependent supremum of an empirical process. More concretely, let £
be the feasible set of € (e.g., E = R™). We define the critical radius as

Definition 3.1 (Critical Radius). The critical radius &, of the trust region is the solution to the
program

€, = arg max 3; -T—=G(e)]. 8)
eelR

Such equation involves a quantile of the localized gaussian complexity G (¢) of the stochastic policies
identified by the trust region. Mathematically, this is defined as

Definition 3.2 (Quantile of the supremum of Gaussian process). We denote the noise vector as 77 =
7 — 7, which by our assumption is coordinate-wise independent and satisfies 7; ~ N (0,02/N(a;)) .
We define G () as the smallest quantity such that with probability at least 1 — 6, for any € € E, it
holds that supaccio) ATn < G (e).
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In essence, G (&) is an upper quantile of the supremum of the Gaussian process sup AEC(e) ATy
which holds uniformly for every € € E. We also remark that this quantity depends on the feasible set
E and the trust region C (£), and hence, is highly problem-dependent.

The critical radius plays a crucial role: it is the radius of the trust region that optimally balances
optimization with uncertainty. Enlarging € enlarges the search space for A, enabling the discovery of
policies with potentially higher return. However, this also brings an increase in the metric entropy
of the policy class encoded by G (), which means that each policy can be estimated less accurately.
The critical radius represents the optimal tradeoff between these two forces. The final improvement
vector that TRUST returns, which we denote as A, is determined by solving equation |7| with the
critical radius £, defined in equation In mathematical terms, we express this as

A, = argmax A 7. ©
A€C(Ey)

Implementation details. Since it can be difficult to solve equation [§| for a continuous value of
€ € E = R*, we use a discretization argument by considering the following candidate subset:

E= {ao%ﬁ} (10)

where o > 1 is the decaying rate and ¢ is the largest possible radius, which is the maximal
weighted distance from the reference policy to any vertex. Mathematically, this is defined as

£0 = MaX;e(g) \/Z#i fi30% /N;j + (1 — [i;)?07 /N;. Our analysis that leads to TheoremHtakes

into account such discretization argument.

In line 2 of Algorithm |1} the algorithm works by estimating the quantile of the supremum of the
localized Gaussian complexity G (&) that appears in Definition and then choose the ¢ that
maximizes the objective function in equation Although G (&) can be upper bounded analytically, in
our experiments we aim to obtain tighter guarantees and so we estimate it via Monte-Carlo. This can
be achieved by 1) sampling independent noise vectors 7, 2) solving supaec(c) ATn and 3) estimating
the quantile via order statistics. More details can be found in Appendix

In summary, our practical algorithm can be
seen as solving the optimization problem

~ ~ Algorithm 1 Trust Region of Uncertainty for Stochas-
(€x,As) = argmax {AT? - (5)} tic policy enhancemenT (TRUST)
sePASCE) Input: Offline dataset D, failure probability ¢, the
where 7 € R is the empirical reward vec- candidate set for the trust region widths £ (in prac-
tor with 7; defined in equation Here, tice, this is chosen as quation [10).

G (e) is computed according to the Monte- 1. Fore € I, compute A, from equation
Carlo method defined in Algorithm[ZJin Ap- 2. For ¢ € E, estimate G () via Monte-Carlo
pendix [D]and E is the candidate subset for ~ method (see Algorithm [2]in Appendix D).

radius defined in equation@} This indicates 3. Solve equation to obtain the critical radius &,.
a balance between the empirical reward ofa 4. Compute the optimal improvement vector in
stochastic policy and the local entropy metric C (&.) via equation|9} denoted as A..

it induces. 5. Return the stochastic policy nrrusT = i+ 3*

4 THEORETICAL GUARANTEES

Problem-dependent analysis In this section, we provide some theoretical guarantees for the policy
mrrustT returned by TRUST. We present 1) an improvement over the reference policy i, 2) a
sub-optimality gap with respect to any comparator policy 7 and 3) an actionable lower bound on
the performance of the output policy. Given a stochastic policy 7, we let V™ = E, .. [r(a)] denote
its value function. Furthermore, we denote a comparator policy 7 by a triple (¢, A, 7) such that
e>0,AeC(e),r=pn+A.

Theorem 4.1 (Main theorem). TRUST has the following properties.
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1. With probability at least 1 — §, the improvement over the behavioral policy is at least

yrrRUsT Vi > qup  [ATr—2G([e])], where [e] =inf{e' € E,&’ >¢}.
e<e,AeC(e)
(1D

2. With probability at least 1 — 6, for any stochastic comparator policy (e, A, ), the sub-optimality
of the output policy can be upper bounded as

VT — VTTRUST < 2G ([€]). (12)

3. With probability at least 1 — 20, the data-dependent lower bound on V™TRUST sqtisfies

= = 21og(1/0)
VTTRUST > o1 _ 1) — , 13
> mrrust? — G ([E4]) 1/ 25:1 Nj/JJQ- (13)

where TrrusT = 1 + A, is the policy output by Algorithm

The proof of Theorem[d.1]is deferred to Appendix [B] A fine-grained analysis for the suboptimality
is contained in Appendix [E] Our guarantees are problem-dependent as a function of the Gaussian
process G (-); in Section [5| we show how these can be instantiated on an actual problem, highlighting
the tightness of the analysis. Equation (T highlights the improvement with respect to the behavioral
policy. It is expressed as a trade-off between maximizing the improvement A "7 and minimizing its
uncertainty G ([¢]). The presence of the sup, indicates that TRUST achieves an optimal balance
between these two factors. The state of the art guarantees that we are aware of highlight a trade-off
between value and variance (Jin et al.,[2021; Min et al.,|2021). The novelty of our result lies in the
fact that TRUST optimally balances the uncertainty implicitly as a function of the ‘coverage’ as well
as the metric entropy of the search space. That is, TRUST selects the most appropriate search space
by trading off its metric entropy with the quality of the policies that it contains. The right-hand side in
Equation (I3)) gives actionable statistical guarantees on the quality of the final policy and it can be fully
computed from the available dataset; we give an example of the tightness of the analysis in Section [5]

Localized Gaussian complexity Upper bound of the localized Gaussian width
G (&_). In Theorem we up- 1 over a shifted simplex in d = 10000 dimension

per bound the suboptimality V'™ —
VTTRUST yija a notion of local-

-
)

ized metric entropy G (-). It is £

the quantile of the supremum of § ¢

a Gaussian process, which can g °

hardly be calculated analytically 54 The v log(ed?) term
but can be efficiently estimated 2 —— The eVd term

via Monte Carlo method (which 0

does not collect additional sam- %% % % %% % e e e e e e e e % %

ples, e.g., see Appendix D). It can c
also be concentrated around its ex-

pectation, which is also localized

Gaussian width, a concept well- Figure 2: The upper bound for the localized Gaussian width
established in statistical learning oOver a shifted simplex on d = 10000 dimension. The shifted
theory (Bellec, 2019; Wei et al) simplex is {A € R?: Zle A; = 0}. The two-staged upper
2020; [Wainwright, 2019). More bound is based on Theorem 1 in (Bellec| [2019)

concretely, this is the localized

Gaussian width for an affine sim-

plex: Efsupacce) A1) = E[supga-1ngasa), <y A7), where S~ denotes the simplex in R

and X := diag (X/i;’ ;—%7 s Iff—%) is the weighted matrix. Moreover, this localized Gaussian width
can be upper bound via
E| sup ATp| <min { log (de?), s\/g} . (14)
AeC(e)
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To make it clearer, we plot this upper bound for localized Gaussian width in Figure 2] In equation[T4]
the rate matches the minimax lower bound up to universal constant (Gordon et al.,[2007; Lecué &
Mendelson, [2013; Bellec, [2019). To see the implication of the upper bound equation|I4] let’s consider
a simple example where the logging policy is uniform over all arms. We denote the optimal arm as
a* and define C* := 1/u(a*) as the concentrability coefficient. By applying equation and some
concentration techniques (see Wainwright, |2019), we can perform a fine-grained analysis for the
suboptimality induced by w1 gy s7. Specifically, with probability at least 1 — 6, one has

V™ —yrrRusT <\ /C* log(2d|E|/5)/N. (15)

Note that, the high-probability upper bound here is minimax optimal up to constant and logarithmic
factor (Rashidinejad et al][2021)) when C* > 2. Moreover, this example of uniform logging policy is
an instance where LCB achieves minimax sub-optimality (up to constant and log factors) (see the
proof of Theorem 2 in Rashidinejad et al.,[2021). In this case, TRUST will achieve the same level of
guarantees for the suboptimality of the output policy. We also empirically show the effectiveness of
TRUST in Section 5] The full theorem for a fine-grained analysis for the suboptimality and its proof
are deferred to Appendix

Augmentation with LCB. Compared to classical LCB, Algorithm|T|considers a much larger searching
space, which encompasses not only the vertices of the simplex but the inner points as well. This
enlargement of searching space shows great advantage, but this also comes with the price of larger
uncertainty, especially when the width ¢ is large. In LCB, one considers the uncertainty by upper
bound the noise at each vertex uniformly, while in our case, the uniform upper bound for a sub-region
of the shifted simplex must be considered. When ¢ is large, the trust region method will induce
larger uncertainty and tend to select a more stochastic policy than LCB and hence, can achieve worse
performance. Moreover, when each arm has sufficiently many data samples to roughly estimate its
mean return to reasonable accuracy, LCB works well because it chooses the arm with a tight lower
bound. However the current results for LCB do not cover the important case where only few samples
(e.g., less than 24 as described in Section [2)) are available. Encouragingly our work shows strong
results in such settings. To determine the most effective final policy, one can always combine TRUST
(Algorithm [T)) with LCB and select the better one between them based on the lower bound induced by
two algorithms. By comparing the lower bounds of LCB and TRUST, the value of the finally output
policy is guaranteed to outperform the lower bound for either LCB or TRUST with high probability.
We defer the detailed algorithm and its theoretical guarantees to Appendix [G]

5 EXPERIMENTS

We present simulated experiments where we show the failure of LCB and the strong performance of
TRUST. Moreover, we also present an application of TRUST to offline reinforcement learning.

Simulated experiments: A data-starved MAB. We consider a data-starved MAB problem with
d = 10000 arms denoted by a;,i € [d]. The reward distributions are

r(a;) ~ Uniform(0.5, 1.5) for i < 5000; 7(a;) ~ N (0,1/4) fori > 5000. (16)

Namely, the set of good arms have reward random variables from a uniform distribution over [0.5, 1.5]
with unit mean, while the bad arms return a Gaussian reward with zero mean. We consider a dataset
that contains a single sample for each of these arms.

We test Algorithm 1| on this MAB instance with fixed variance level o; = 1/2. We set the reference
policy fi to be the behavioral cloning policy, which coincides with the uniform policy. We also test
LCB and the greedy method which simply chooses the policy with the highest empirical reward.

In this example, the greedy algorithm fails because it erroneously selects an arm with a reward
> 1.5, but such reward can only originate from a normal distribution with mean zero. Despite LCB
incorporates the principle of pessimism under uncertainty, it selects an arm with average return equal
to zero; its performance lower bound given by the confidence intervals is —1.5, which is almost
vacuous and very uninformative. The behavioral cloning policy performs better, because it selects an
arm uniformly at random, achieving the score 0.5.
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Behavior LCB Lower | Improvement TRUST
Policy | Oredy | LCB | "piind by TRUST | 'RUST || wer Bound
0.5 0 0 -1.5 0.42 0.92 0.6

Table 1: Results of simulated experiments in a 10000-arm bandit. The reward distribution is described
in equation[I6] The offline dataset includes one sample for each arm. The greedy method chooses the
arm with the highest empirical reward. LCB selects an arm based on equation[3] The lower bound for
LCB and TRUST follow equation [2]and equation [I3] respectively.

Algorithm [T] achieves the best performance: the value of the policy that it identifies is 0.92, which
almost matches the optimal policy. The lower bound on its performance computed by instantiating
the RHS in equation [I3]is around 0.6, a guarantee much tighter than that for LCB.

In order to gain intuition on the learning mechanics of TRUST, in Figure 3] we progressively enlarge
the radius of the trust region from zero to the largest possible radius (on the x axis) and plot the value
of the policy that maximizes the linear objective AT7, A € C(e) for each value of the radius .
Note that we rescale the range of ¢ to make the largest possible € be one. In the same figure we also
plot the lower bound computed with the help of equation equation T3]

Initially, the value of the policy in-
creases because the optimization in
equation[7]is performed over a larger
set of stochastic policies. However,
when ¢ approaches the maximal pos-
sible radius, all stochastic policies are
included in the optimization program.
In this case, TRUST greedily selects
the arm with the highest empirical re-
ward, which is from a normal distri-

=)

N
/.

L d
o  }

——— \

—e— Policy Value \

o o
S =)
o

Policy value and lower bound
=}
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e = 0.0116¢qp, which is the point
where the lower bound is the highest.

Figure 3: Policy values and their lower bounds for a data-
starved MAB instance with 10000 arms whose reward distri-
bution is described in equation [L6]

A more general data-starved MAB.
Besides the data-starved MAB we
constructed, we also show that in
general MABs, the performance of
TRUST is on par with LCB, but
TRUST will have a much tighter statistical guarantee, i.e., a larger lower bound for the value
of the returned policy. We did experiments on a d = 1000-arm MAB where the reward distribution is
r(a;) ~ N(i/1000,1/4), Vi € [d]. We ran TRUST Algorithm [1]and LCB over 8 different random
seeds. When we have a single sample for each arm, TRUST will get a similar score as LCB. However,
TRUST give a much tighter statistical guarantee than LCB, in the sense that the lower bound output by
TRUST is much higher than that output by LCB so that TRUST can output a policy that is guaranteed
to achieved a higher value. Moreover, we found the policies output from TRUST are much more
stable than those from LCB. In all runs, while the lowest value of the arm chosen by LCB is around
0.24, all policies returned by TRUST have values above 0.65 with a much smaller variance, as shown
in Table 21

Offline reinforcement learning. In this section, we apply Algorithm [I]to the offline reinforcement
learning (RL) setting under the assumption that the logging policies which generated the dataset are
accessible. To be clear, our goal is not to exceed the performance of the state of the art deep RL
algorithms—our algorithm is designed for bandit problems—but rather to illustrate the usefulness of
our algorithm and theory.

Since our algorithm is designed for bandit problems, in order to apply it to the sequential setting, we
map MDPs to MABs. Each policy in the MDP maps to an action in the MAB, and each trajectory
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return in the MDP maps to an experienced return in the MAB setting. Notice that this reduction
disregards the sequential aspect of the problem and thus our algorithm cannot perform ‘trajectory
stitching’ (Levine et al., 2020; Kumar et al., 2020; Kostrikov et al.,2021). Furthermore, it can only
be applied under the assumption that the logging policies are known.

Specifically we consider a setting
where there are multiple known log-

ging policies, each generating few tra- ILCB | TRUST
jectories. We test Algorithm [1] on mean reward 0718 | 0725
some selected environments from the . :
1 bound | 0.156 .544
D4RL dataset (Fu et al.l 2020) and mean Jower boun > 0.5
variance 0.265 0.038

compare its performance to the (CQL)
algorithm (Kumar et al., [2020), a

g(.)pugi a?d s'télong lggselntllel: f]giuglf: Table 2: Comparison between LCB and TRUST (Algo-
dlrtle ¢ da gon r(rjls : ;ln ce le de th rithm [I) on a data-starved MAB with 1000 arms whose
ataset does not directly Include the .o 4 distribution follows r(a;) ~ A(i/1000, 1/4). Both

logging pohcles', we generate new - .ihds are repeated on 8 random seeds.
datasets by running Soft Actor Critic

(SAC) (Haarnoja et al., 2018) for 1000
episodes. We store 100 intermediate policies generated by SAC, and roll out 1 trajectory from each
policy.

minimal reward 0.239 0.658

We use some default hyper-parameters for CQL We report the unnormalized scores in Table
each averaged over 4 random seeds. Algorithm|[I|achieves a score on par with or higher than that
of CQL, especially when the offline dataset is of poor quality and when there are very few—or just
one—trajectory generated from each logging policy. Notice that while CQL is not guaranteed to
outperform the behavioral policy, TRUST is backed by Theorem {.T}

Additionally, while CQL took around
16-24 hours on one NVIDIA GeForce

ETX ZOSOIT)i,gIE{[}JSTT%nly took'O.S—l CQL TRUST
ours on —F s, 16 expernmen- 1-traj-low 499 999
tal details are mcluded in Appendix Hopper I-traj-high 2606 3437
Moreover, while the performance of -
L . . 1-traj-low 748 763
CQL is highly reliant on the choice Ant 1-trai-hi
. -traj-high 4115 4488
of hyper-parameters, TRUST is essen- Tt 317 316
tially hyper-parameters free Walker2d -traj-low
) 1-traj-high 4093 4097
1-traj-low 5775 5473
6 CONCLUSION HalfCheetah | 1 i high | 9067 | 10380

Table 3: Unnormalized score of CQL and TRUST in 4 en-
vironments from D4RL. In 1-traj-low case, we take the first
100 policies in the running of SAC. In 1-traj-high case, we
take the (10x + 1)-th policy for « € [100]. We sample one
trajectory from each policy we take in all experiments.

In this paper we make a substan-
tial contribution towards sample ef-
ficient decision making, by designing
a data-efficient policy optimization al-
gorithm that leverages offline data for
the MAB setting. The key intuition of
this work is to search over stochastic policies, which can be estimated more easily than deterministic
ones. The design of our algorithm is enabled by a number of key insights, such as the use of the local-
ized gaussian complexity which leads to the definition of the critical radius for the trust region. We
believe that these concepts can be used more broadly to help design truly sample efficient algorithms,
which can in turn enable the application of decision making to new settings where a high sample
efficiency is critical.
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A ADDITIONAL RELATED WORK

Multi-armed bandit (MAB) is a classical decision-making framework (Lattimore & Szepesvari,
2020; |La1 & Robbins, [1985; |Lail |1987; Langford & Zhang, 2007} |Auer, | 2002} |Bubeck et al., [2012;
Audibert et al.} 2009} IDegenne & Perchet, 2016). The natural approach in offline MABs is the LCB
algorithm (Ameko et al.| [2020; |Si et al.| |2020), an offline variant of the classical UCB method (Auer|
et al.,|2002) which is minimax optimal (Rashidinejad et al.,|2021). The optimization over stochastic
policies is also considered in combinatorial multi-armed bandits (CMAB) (Combes et al., [2015).
Most works on CMAB focus on variants of the UCB algorithm (Kveton et al., [2015; |Combes et al.|
2015} |(Chen et al.} 2016)) or of Thompson sampling (Wang & Chen, [2018; [Liu & Rockova, [2023)),
and they are generally online. Our framework can also be applied to offline reinforcement learning
(RL) (Sutton & Barto| [2018)) whenever the logging policies are accessible. There exist a lot of
practical algorithms for offline RL (Fujimoto et al.,|2019; |Peng et al., 2019; Wu et al., 2019; Kumar|
et al.| [2020; Kostrikov et al.,2021). Theory has also been investigated extensively in tabular domain
and function approximation setting (Nachum et al., 2019} |Xie & Jiang, [2020} [Zanette et al., 2021}
Xie et al., 2021 |Yin et al., 2022 Xiong et al., 2022)). Some works also tried to establish general
guarantees for deep RL algorithms via sophisticated statistical tools, such as bootstrapping (Thomas
et al., 2015} [Nakkiran et al.,|2020; Hao et al.,[2021; |Wang et al.| 2022; Zhang et al.l 2022).

We rely on the notion of pessimism, which is a key concept in offline bandits and RL. While most prior
works focused on the so-called absolute pessimism (Jin et al., [2020} Xie et al., [2021} [Yin et al., [2022}
Rashidinejad et al.} 2021} [Li et al., 2023), the work of (Cheng et al.,|2022) applied pessimism not on
the policy value but on the difference (or improvement) between policies. However, their framework
is very different from ours. We make extensive use of two key concepts, namely localization laws and
critical radii (Wainwright, |2019), which control the relative scale of the signal and uncertainty. The
idea of localization plays a critical role in the theory of empirical process (Geer, 2000) and statistical
learning theory (Koltchinskii, [2001f 2006} Bartlett & Mendelsonl 2002; Bartlett et al.,[2005)). The
concept of critical radius or critical inequality is used in non-parametric regression (Wainwright,
2019) and in off-policy evaluation (Duan et al.,|2021; Duan & Wainwright, 2022} 2023} |Mou et al.,
2022).

B PROOF OF THEOREM [4.1]

To prove Lemma|E.3] we first define the following event

AEC(e)

S:z{ sup ATngg(s) VEEE}. 17

When £ happens, the quantity G (¢) can upper bound the supremum of the Gaussian process we care
about, and hence, we can effectively upper bound the uncertainty for any stochastic policy using
G () . It follows from the Definition [3.2]that the event £ happens with probability a leas 1 — 4.

We can now prove all the claims in the theorem, starting from the first and the second. A comparator
policy 7 identifies a weight vector w, an improvement vector A and a radius € such that w = 1 + A
and A € C(¢). In fact, we can always take € to be the minimal value such that A € C(¢). The first
claim in Equation can be proved by establishing that with probability at least 1 — §

wTr—W;RUSTr:ATr—KIT§29(|—d), (18)

where mrry g7 is the policy weight returned by Algorithm [T} In order to show Equation (T8)), we can
decompose A, 7 using the fact that £, € E and A, € C(&,) to obtain

Alr=Al7—Aln>Al7-gE)=Al7-G([a]). (19)

To further lower bound the RHS above, we have the following lemma, which shows that Algorithmﬂ]
can be written in an equivalent way.

Lemma B.1. The output of Algorithm[l| satisfies

(5*73*) = argmax [AT7-G([e])]. (20)

e<eo,A€C(e)
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This shows that Algorlthmﬂ] optimizes over an objective function which con51sts of a signal term
(i.e., AT7) minus a noise term (i.e., G ([£])). Applying this lemma to equatlon L we know

Alr>AT7—G([e))=ATr+ ATy -G ([<]). 1)
After recalling that under £
ATp< sup ATp< sup ATp<G([e]), (22)
A€EC(e) AeC([e])

plugging the equation [22] back into equation 21| concludes the bound in Equation (I8)), which also
proves our first claim. Rearranging the terms in Equation (I8)) and taking supremum over all
comparator policies, we obtain

Alr>  sup  [ATr—26([<])]. 23)
e<ep,AeC(e)

which proves the first claim since V7TrRUST — VI = A*Tr

In order to prove the last claim, it suffices to lower bound the policy value of the reference policy fi.

From equation [5} we have i (77— r) ~ N (0,1/ [ijl N;/c?]), which implies with probability at

least 1 — 4,

o 2log(1/0)
p(r—r) < —d 2

>im1 Ni/ s
from the standard Hoeffding inequality (e.g., Prop 2.5 in (Wainwright, 2019)). Combining equation|T9]
and equation [24] we obtain

(24)

W;F—RUSTT =0"r+ AIT > F+aT(r—7)+ 31—?7 G (&%) (From equation [T9)
21log(1/0)
d
Zi:l Ni/ai2

with probability at least 1 — 2§. Therefore, we conclude.

> mipustt — G (Bx) — (From equation

C ONE-SAMPLE CASE WITH STRONG SIGNALS

In this section, we give a simple example of one-sample-per-arm case. This can be view as a special
case of data-starved MAB and Theorem[4.T|can be applied to get a non-trivial guarantees. Spec1ﬁcally,
consider an MAB with 2d arms. Assume the true mean reward vector is 7 = (1,1,...,1,0,0,...,0) "
and the noise vector is 7 ~ AN(0,0%I54) That is, the first d arms have rewards 1ndependent1y
sampled from N'(1, 1) and the rewards for other d arms are independently sampled from N (0, 0).
The stochastic reference policy is set to the uniform one, i.e., i = (;, [11, (11)

We apply Algorithm|[I]to this MAB instance. In the next theorem, we will show that for a specific

€, the optimal improvement in C (¢) (denoted as 35 in equation can achieve an improved reward
value of constant level.

Proposition C.1. Assume r = (1,1,...,1,0,0,...,0) " and noise n ~ N (0, Izq). For any 0 < ¢ <
%, with probability at least 1 — 0, the improvement of policy value can be lower bounded by

&ETTZ&/E[;—G<1+ 810gd(2/5)>]7

where the improvement vector in C (g) is defined in equationE] Therefore, for ¢ = ﬁ and d >
8log (2/8) , with probability at least 1 — 8, we can get a constant policy improvement

~ 1
A;r > — — 20.
2
Proof. We define the optimal improvement vector as
A* ;= argmax A Tr.

€
A€EC(e)
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Then, from the definition of 35, we have

Alr=Al7-Aln> (A" 7—Aln=(AN"Tr+ A n—Aln>(A) " r— | sup ATp—(A2)" g
‘WI—/ AeC(e)
signa

noise

(25)

In order to lower bound the policy value improvement, it suffices to lower bound the signal part and
d

upper bound the noise. We denote % = {z € R? : > i1 x; = 0} as a hyperplane in R?. To deal
with the signal part, it suffices to notice that
C(e) C HNBI(e).

We denote 7| as the orthogonal projection of r on the H and r; = r — /. In the strong signal case,

we have
11 1 1 1 1\ " 11 111 1\'
TN = T T ey T T T T T ey T T T = T Ty ey T T T eeey T .
Il 2527 727 27 27 ’ 2 ’ 1 272a 7252727 72

Then, the signal part satisfies

' v
sup ATr= sup ATr” < sup ATTH =|e- . T =¢ HrHH2 — Ve (26)
AeC(e) AEC(e) AEHNBL (c) H2 2

On the other hand, we notice that when ¢ < ﬁ,
T
| :(6 £ e e & _6)
I, ~ \Vavava T va v
So actually the inequality in the equation [26]should be an equation, which implies
d
sup AT = i
AEC(e) 2

e C(e).

27

For the noise part, we decompose the noise as n = 1. + 7, where 7 is the orthogonal projection of
n on H. Then, from C (¢) C H N BY(¢), one has

sup ATnp= sup AT (nH —l—m_) = sup ATnH < sup ATnH
AeC(e) AeC(e) AeC(e) AEHNBL(e)

)
- ( ’“) m =< lmll, <<l

]l

This implies AT > (A2) " 7 — [¢ |n]l, — (AZ) " 5]. From our assumption, 5 ||7]|3 is a chi-square
random variable with degree d, so from the Example 2.11 in (Wainwright, 2019), we know with
probability at least 1 — 6/2, one has

8log (2/9)

2
.
do? — d '

This implies

Inlly < da2<1+ W)gma@ 21552/6>>

The last inequality comes from /1 4 u < 1 + % for positive u. Moreover, since A7 is a fixed vector,
we know (AY) " ~ N (O, o2 ||Af ||§) . So with probability at least 1 — §/2, one has

(@) > o latly 2108 () 2 ~oey 2108 5

17
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Combining the two terms above, one has with probability at least 1 — 4, it holds

a|n2—<A:>Tn<aﬁa<l+ W)”\/@ . do<1+ 81gd<2/6>>

(28)

Combining equation [25] equation 27 and equation [28] we finish the proof. O

D MONTE CARLO COMPUTATION

Algorithm 2 Monte-Carlo method for computing G (&)
Input: Offline dataset D, the radius value € € E, the total sample size M and threshold M.
1. Independently sample M noise vectors, denoted as n; for ¢ € [M], where n; ~
NO0,02/N(a;),0? is the noise variance for the i-th arm and N (a;) is the sample size for a;
in D.
2. Solve X; := supaec(.) AT n;i fori € [M] and order them as X (1) < X(2) < ... < X(ap).
3. Return X j/_ .41 as an estimate of G (¢) defined in Deﬁnition

As discussed in Section [3] we can estimate G (&) using classical Monte Carlo method. In this
section, we illustrate the detailed implementation. We first sample M i.i.d. noise and then solve
SUPAec(e) ATn for each to get M suprema. We eventually select the M-th largest values of all
suprema as our estimate for the bonus function, where M, is a pre-computed integer dependent
on M and the pre-determined failure probability § > 0. Here, the program sup AEC(e) ATpisa
second-order cone program and can be efficiently solved via standard off-the shelf libraries (Alizadeh
& Goldfarb, 2003; Boyd & Vandenberghe, [2004; Diamond & Boyd|, 2016)). The pseudocode for the
Monte-Carlo sampling is in Algorithm 2]

To determine Mo, we denote 7); as the i.i.d. noise vector for i € [M] and X; = supacc(s) AT
We denote the order statistics of X;-s as X (1) < X9y < ... < X(p). Suppose the cumulative
distribution function of X; is F'(x), then from the property of the order statistics, we know the
cumulative distribution function of X a7 _pz,41) 18
M
. ) M
FXopagan @ = > Ol (F@) (1 - Fx)" 7.

j=M—Mo+1
We denote ¢q;_s as the (1 — §)-lower quantile of the random variable X, then we have
FX (o nigeny (01-6) = ijviMfMOH (1 = 8)7(8)M=J. For integer M and § > 0, we define
Q(M, 6) as the maximal integer M such that Ej]‘iMfMOH Co, (1 —6)7(6)M=3 < §. With this
definition, we take a fixed M and a total failure tolerance § for all ¢ € F, then we take

)
My = M, —
=@ (M 575

as the threshold number. Under this choice, for any ¢ € E, with probability at least 1 — §/2|E]|,
it holds X (a7—aro+1) > G1—5/2|k|- On the other hand, with probability 1 — ¢/2|E|, it holds that
SUDA Qo) ATy < g1_s/2)| This implies

sup AN < qi_s/9m) < X(M—Mo+1)
A€eC(e)

with probability at least 1 — §/| E'|. From a union bound, we know with probability at least 1 — 4§, the
bound above holds for any € € E.

E A FINE-GRAINED ANALYSIS TO THE SUBOPTIMALITY

We have shown a problem-dependent upper bound for the suboptimality in equation [I2] In this
section, we will give a further upper bound for G (¢) and hence, for the suboptimality. We have the
following theorem. The proof is deferred to Appendix

18
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Theorem E.1. For a policy 7 (deterministic or stochastic), we denote its reward value as V™. TRUST

has the following properties.

1. We denote a comparator policy as a triple (¢, A, ) such that ¢ = Zle U’jv?? ,m =1+ A We
take the discrete candidate set E defined in equation[I0| With probability at least 1 — &, for any
stochastic comparator policy (e, A, ), the sub-optimality of the output policy of Algorithm|I|can
be upper bounded as

d

AZg2 2|E
VT VTTRUST < 9 220‘&‘% 10g< |5 |) +2min
i=1 i

where D is defined as any quantity satisfying

o2 202 S Njo?
D>\/max [N—N} +%. (30)

o is the decaying rate defined in equation[I0} log,, (a) = max(1,log(a)).

2. (Comparison with the optimal policy) We further assume o; = 1 for i € [d] and assume the offline
dataset is generated from the policy i(-) with min;e(q) p1(a;) > 0. Without loss of generality we
assume a; is the optimal arm and denote the optimal policy as .. We write

1 1

C*i=——, Cumini=— . €1y
min;e (g pu(a;)

n(ar)’
When N > 8Cnin log(d/§), with probability at least 1 — 26, one has

Chnin dC+ C* 2|E|
‘/77* ‘/WTRUST < —_
N\/ N o8+ (cmin> \/N 1°g< 5 ) (2)

Specially, when C\i, ~ C*, we have with probability at least 1 — 2§,

[C 2d|E)
T« _ Y/TTRUST < L
V V < log ( 5 ) (33)

We remark that equation [29|is problem-dependent, and it gives an explicit upper bound for G ([£])
in equation (12, This is derived by first concentrating G (&) around Esupacc(.) ATn, which is
well-defined as localized Gaussian width or local Gaussian complexity (Koltchinskii, 2006), and then
upper bounding the localized Gaussian width of a convex hull via tools in convex analysis (Bellec|
2019). Different from Theorem 2.1} when m = a; represents a single arm, equation [29]relies not only
on o2 /N, but on 0]2 /N for j # i as well, since the size of trust regions depend on o2 /N; for all
i€ [d].

Notably, equation gives an analogous upper bound depending on ((-) and N, which is comparable
to the bound for LCB in Theorem[2.T|up to constant and logarithmic factors. This indicates that, when
behavioral cloning policy is not too imbalanced, TRUST is guaranteed to achieve the same level of
performance as LCB. In fact, this improvement is remarkable since TRUST is exploring a much larger
policy searching space than LCB, which encompasses all stochastic policies (the whole simplex)
rather than the set of all single arms only. We also remark that both the bound in Theorem [2.T]and
in equation [46|are worst-case upper bound, and in practice, we will show in Section [5]that in some
settings, TRUST can achieve good performance while LCB fails completely.

Is TRUST minimax-optimal? We consider the hard cases in MAB (Rashidinejad et al., [2021)
where LCB achieves the minimax-optimal upper bound and we show for these hard cases, TRUST
will achieve the same sample complexity as LCB up to log and constant factors. More specifically, we
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consider a two-arm MAB A4 = {1, 2} and the uniform behavioral cloning policy u(1) = u(2) = 1/2.
For 6 in[0,1/4], we define M; and My are two MDPs whose reward distributions are as follows.

M :r(1) ~ Bernoulli <;> , 7(2) ~ Bernoulli <; + 5)
(1 (1
My : (1) ~ Bernoulli <2) , 7(2) ~ Bernoulli (2 — 5) ,

where Bernoulli (p) is the Bernoulli distribution with probability p. The next result is a corollary from
Theorem [E1]

Corollary E.2. We define My, mdp, as above for § € [0,1/4]. Assume N > O(1). Then, we have

1. The minimax optimal lower bound for the suboptimality of LCB is

inf s Eplr(a®) —r(@cs)] 2\ S

; (34)
aLCBG‘AMG{Ml,Mz} N

where Ep [-] is the expectation over the offline dataset D.

2. The upper bound for suboptimality of TRUST mathces the lower bound above up to log factor.
Namely, for any M € { M1, M5}, one has

*1 N
B (o) — vrreosr] g | S8R (35)

The first claim comes from Theorem 2 of (Rashidinejad et al.l [2021), while the second claim is a
direct corollary to Theorem [E.T]

E.1 PROOF OF THEOREM[E ]

Proof. Recall from Theorem that for any comparator policy (e, A, ) defined above, one has
Vﬂ' _ Vﬂ'TRUST S 2g ("51) ,

where [¢] := inf {¢’ € E : ¢ < &'} . The following lemma upper bounds the quantile of Gaussian
suprema G (¢) for each ¢ € E. The proof is deferred to Appendix

Lemma E.3. Fore € E, one can upper bound G (¢) as follows.

g(g)gmin{g.\/cj’ 4D\/log+ (46Dd2€2)}+\/25210g (2|§J) (36)

where log | (a) = max(1,log(a)) and D is a quantity satisfying

2 9242 4 N.o?
D>\/max {Ul_gl} +M_ (37)

Applying Lemma[E.3to [¢] € E, we obtain

Vﬁ_VwTRUSTSQmm{M.\/&AD log., (46‘g§]z>}+2\/2[51210g<2|6m). (38)

2 A2
i

. d oA
Sincee = Y ;| &
- K

, we know from our discretization scheme in equation

2 A2
[g]nggiﬁi. (39)

i=1

20



Under review as a conference paper at ICLR 2025

Bridging equation [39]into equation [38] we obtain our first claim. In order to get the second claim, we
take o; = 1 fori € [d] and A = 7, — i, which is the vector pointing at the vertex corresponding to
the optimal arm from the uniform reference policy /i defined in equation[5] Then, we have

A2g? 1 2 1 1 1 1
IE LR <%
N, N, N N N, N-N,

where Ny is the sample size for the optimal arm a;. Therefore, we can further bound equation [38]as

e v <ap o, (o) o 2 ().
1 1

Finally, we take a specific value of D and lower bound N; via Chernoff bound in Lemma[E.7] From
LemmalE.7} we know that when N > 8C\y;n log(d/8), with probability at least 1 — 4, we have

N, > §Nu<ai) @1
for any i € [d]. Recall the definition of D in equation we know that D can be arbitrary value
d o2
greater than \/ max;e|(d] {7\2 2](:;'2} + % Then, when o; = 1, one has

2 2g2 4 No? 1
max i 2% +ZJ_1 A < - .
icld) | IV; N N2 min; (g Vs

We denote N; = min;¢(g) IV; (when there are multiple minimizers, we arbitrarily pick one). Then,
we have

.. [Uf 2012] n ] 1 g < 2 2Cmin
X |- — = .
ield | N; N N,u a;) N - min;e(q p(a;) N

Therefore, we take D = 20# in equationand apply N1 > 2N pu(a;) to obtain

2Cmin 4oedC™* aC* 2|E|
T« _ VTTRUST < (4 1 4 1 —_— 42
Vv Vv < \/ N og. ( o > + \/ N og < ; ), (42)

which proves equation@ Finally, when C* ~ C\,;y,, one has

C* 2d|E|
T« _ Y/TTRUST < 1 .
\%4 \% S \/N 0g< 5 )

Therefore, we conclude. O

E.2 PROOF OF LEMMA[E.J

Proof. Recall that A = (A, Ay, ..., Ay) " is the improvement vector, n = (01,72, .- ,nd) is the
noise vector, where entries are independent and 7; ~ N'(0, 52 /N;) and N; is the sample size of arm
a; in the offline dataset. To proceed with the proof, let’s further define

~ ~ ~ ~ T
= (1,72, )| A:(Al,Ag,...,Ad) . where 7 =mn; (43)

With this notation, one has B
T~N(01a), n'A=7q"A.
We also write the equivalent trust region (for ﬁ) as

E@):{zemd;m&mmo, Z[F~ ]_, HZH2<6}, (44)

v i=1

21



Under review as a conference paper at ICLR 2025

where 71 = (fiy, [i2, .-, fiq) | is the policy weight for the reference policy. From the definition above,

one has for any € > 0, N
AeC(e) & AeC(e).
Then, we apply Lemmato SUPAeC(e) ATpforae € E. One has with probability at least 1 — -

|E]
2¢2log (2|5E>

From a union bound, one immediately has with probability at least 1 — ¢, for any € € E, it holds that

sup ATp—F sup ATp| <
AeC(e) A€C(e)

2|FE
sup AT <E sup ATn+/22log (") (45)
AeC(e) A€eC(e) d

From the definition of G (¢) in equation we know that G (¢) is the minimal quantity that satisfy
equation 43| with probability at least 1 — §. Therefore, one has

E ~
G(e) <E sup ATn+ 262102;( |5 |) =Ejonop | sup AT
AeC(e) AeC(e)

(46)
Note that, the first term in the RHS of equation @] is well- deﬁned as localized Gaussian width over
the convex hull defined by the trust region C (&) (or equivalently, C (¢)). We denote

d
—{KeRd:@Ni 7i; >0, Z{*{:’Zﬁﬁi]—l}. 47)

i=1 ¢

We immediately have that 7" is a convex hull of d points in R? and the vertices of this convex hull are
the vertices of the simplex in R? shifted by the reference policy 7i. In what follows, we plan to apply
Lemma@] to the localized Gaussian width of 7' N eB9. However, T’ is not subsumed by the unit ball
in R?, so we need to do some additional scaling. Note that, the zero vector is included in T'. Let’s
compute the farthest distance for the vertices of 7. We denote the ¢-th vertex of 7" as

E 01 Oi—1 ~ g; (1 —~ ) Oi+1  ~ 0d ~ (48)
= =M1y ey — Hi—1, — M)y T —Mit1y s — = Hd | -
VN VNi-1 VN; Netr' V' Na

The ¢5-norm of this improvement vector is

ZL lNa
NN T N

where N is the total sample size of the ofﬂme dataset. Therefore, the maximal radius of 7" can be
upper bounded by D, where D is any quantity that satisfies

0'.2 20’2 Zd—l Nj0'2
D> P — == I 49
_\/Eré%[m N}-ﬁ* e (49)
We denote S = % T = {% -x T E T} . Then, from Lemma E one has

sup ETﬁ
AeC(e)

EGn(0,14)

AETNeBy

:EﬁNN(O,Id)[ sup ATH

=D -Exono,12) _ sup AT
AeSNE By

(SN 5 - Bz can be got by scaling 7' N By bt %)

{9

(Take s = 5 and M = d in Lemma

o [ ) o]

(ESDforanyEEE)
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This finishes the proof. O

E.3 AUXILIARY LEMMAS

Lemma E.4 (Concentration of Gaussian suprema, Exercise 5.10 in (Wainwright, 2019)). Let
{Xo9,0 € T} be a zero-mean Gaussian process, and define Z = supycr Xg. Then, we have

PllZ ~ B1Z) 2 6] < 2o (- > )

202

where 0 := supycp var (Xg) is the maximal variance of the process.

Lemma E.5 (Localized Gaussian Width of a Convex Hull, Proposition 1 in (Bellec, 2019)). Let
d>1,M > 2and T be the convex hull of M points in R%. We write By = {x € R : [|z[[, < 1}

and sBy = {s-z:z € R, ||z|, <1} . Assume T C B3(1). Let g € R be a standard Gaussian
vector. Then, for all s > 0, one has

E[ sup ng] < (4\/10g+ (4eM (s2 A 1))) A (sx/d/\M), (50)

x€TNsBy

where log , (a) = max(1,log(a)),a A b = min {a, b} .

Lemma E.6 (Chernoff bound for binomial random variables, Theorem 2.3.1 in (Vershynin, |2020)).
Let X; be independent Bernoulli random variables with parameters p;. Consider their sum Sy =

Zz]-\[:l X; and denote its mean by y = ESN. Then, for any t > u, we have

P{Sy >t} <e " (%)t

Lemma E.7 (Chernoff bound for offline MAB). Under the setting in Theorem[E.1} we have

N - minjeq) M(%‘))
8 )

P <Ni > %Nﬂ(ai) Vi € [d]> <1—dexp <_

Proof. Forarm i € [d], we take pn = Np(a;) and t = $Mpi(a;) in Lemmaand obtain
3 Nu(a;)
1 Nu(a;) \ 2 1 Nu(a;
P (M 2 5Nu(e) ) < o (-Nuta) (ed ) e (Niutan) |1+ Jiopc20)] ) < exp (- %)
2 5Np(a;) 2 8

We finish the proof by a union bound for all arms. O

F PROOF OF LEMMA [B_1]

Proof. Recall the definition of [£] :
[e] =inf{' € E:& >¢}. (51)

We additionally define
le] :=sup{e' € E:&' <¢}. (52)

Specially, if there is no ¢’ € E such that ¢’ < ¢, then we define |¢] = 0. Then we know for any
€ < egg € I (g9 is the largest possible radius) and a finite set /2, it holds that

le] <e<Je], and e=[e]ifandonlyife € E. (53)
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For any ¢ € E, recall 35 is the optimal improvement vector within C (¢) defined in equation It

holds that
A. : = argmax AT = arg max [AT? -G(e)] (since G (&) does not depend on A)
AeC(e) AeC(e)
=argmax [AT7— G ([¢]) ] (e€E,s0[e] =¢)
A€eC(e)

< arg max [AT?— g (fs/])]
e’e(le],[e]],AeC(e)

On the other hand, whene € Eand ¢’ € (|¢], [e]], one has [¢'] = [e] =&, s0

arg max [ATF—G([€)] = arg max [ATF—G([e])] < argmax [AT7 -G ([e])],
e'e(le],fe]],AeC(e") e'e(le],le]],AeC(e") A€eC(e)

where the last inequality comes from the fact that C (¢') C C(¢) when &’ < [e] = ¢ by definition of
the trust region in equation[6| Combining two inequalities above, we have for any ¢ € E,
(5, 35) =  argmax  [ATF-G([]], (54)
e'e(lel.[e]],A€C(e)
where the variables in RHS above are ¢’ and A, and Therefore, from the definition of we have
(g*, 3*> = arg max arg max [AT?f G([€N)] = argmax [ATAf G ([e])]-
e€E  e’e(le],[e]],AeC(e) e<eo,A€C(e)
This finishes the proof. O

G AUGMENTATION WITH LCB

To determine the most effective final policy, we can compare the outputs of the LCB and Algorithm ]
and combine both policies, based on the relative magnitude of their corresponding lower bounds.
Specifically, the combined policy is

Tcombined =
2log(1
Gies T maxl; > wiei— G ([&]) — , |—208(L/0)
ai€A d N o2
7 ZJ:l ]/U] (55)
21og(1/9)

wrr If maxl; < wig? — G ([E.]) — -
a; €A Zj:l Nj/UJQ'

where [; = 7; — b; is defined in equation[I]and G () is defined in Definition [3.2} This combined

policy will perform at least as well as LCB with high probability. More specifically, we have

Corollary G.1. We denote the arm chosen by LCB as aicg. We also denote r(-) as the true reward
of a policy (deterministic or stochastic). With probability at least 1 — 30, one has

|/ Teombined > max ;. (56)
aiEA

Proof. We denote 7" (aLcg) = 4. and 7(wTr) as the empirical reward of the policy returned by LCB
and Algorithm|[I] respectively. Recall the uncertainty term of LCB in equation [T]and of Algorithm [T]
in equation we write b(aLcg) = bg, and b(wtr) = G ([E4]) + \/2 10g(1/5)/[2?21 N;/o?].
Then, from Theorem [4.1] equation [2and a union bound, we know with probability at least 1 — 34, it
holds that

r(aLes) > 7(aLes) — b(avce), r(wtr) > r(wtr) — b(wTr),
which implies

Y/ eombined > (T combined) — O(Tcombined )
> 7

7(aLcs) — b(aLce) (By equation[55)
= max l;. (By the definition of @ cg in equation [3)
a; €
Therefore, we conclude. O
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H EXPERIMENT DETAILS

We did experiments on Mujoco environment in the D4RL dataset (Fu et al.,[2020). All environments
we test on are v3. Since the original D4RL dataset does not include the exact form of logging policies,
we retrain SAC (Haarnoja et al.l [2018)) on these environment for 1000 episodes and keep record
of the policy in each episode. We test 4 environments in two settings, denoted as ’1-traj-low’ and
*1-traj-high’. In either setting, the offline dataset is generated from 100 policies with one trajectory
from each. In the ’1-traj-low’ setting, the data is generated from the first 100 policies in the training
process of SAC, while in the ’1-traj-high’ setting, it is generated from the policy in (10x + 1)-th
episodes in the training process.

For all experiments on Mujoco, we average the results over 4 random seeds (from 2023 to 2026), and
to run CQL, we use default hyper-parameters in https://github.com/young-geng/CQL
to run 2000 episodes. For TRUST, we run it using a fixed standard deviation level o; = 150 for all
experiments.
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