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ABSTRACT

What can an agent learn in a stochastic Multi-Armed Bandit (MAB) problem from
a dataset that contains just a single sample for each arm? Surprisingly, in this work,
we demonstrate that even in such a data-starved setting it may still be possible
to find a policy competitive with the optimal one. This paves the way to reliable
decision-making in settings where critical decisions must be made by relying only
on a handful of samples. Our analysis reveals that stochastic policies can be
substantially better than deterministic ones for offline decision-making. Focusing
on offline multi-armed bandits, we design an algorithm called Trust Region of
Uncertainty for Stochastic policy enhancemenT (TRUST) which is quite different
from the predominant value-based lower confidence bound approach. Its design
is enabled by localization laws, critical radii, and relative pessimism. We prove
that its sample complexity is comparable to that of LCB on minimax problems
while being substantially lower on problems with very few samples. Finally, we
consider an application to offline reinforcement learning in the special case where
the logging policies are known.

1 INTRODUCTION

In several important problems, critical decisions must be made with just very few samples of pre-
collected experience. For example, collecting samples in robotic manipulation may be slow and costly,
and the ability to learn from very few interactions is highly desirable (Hester & Stone, 2013; Liu et al.,
2021). Likewise, in clinical trials and in personalized medical decisions, reliable decisions must be
made by relying on very small datasets (Liu et al., 2017). Sample efficiency is also key in personalized
education (Bassen et al., 2020; Ruan et al., 2023). However, to achieve good performance, the state-
of-the-art algorithms may require millions of samples (Fu et al., 2020). These empirical findings
seem to be supported by the existing theories: the sample complexity bounds, even minimax optimal
ones, can be large in practice due to the large constants and the warmup factors (Ménard et al., 2021;
Li et al., 2022; Azar et al., 2017; Zanette et al., 2019).

In this work, we study whether it is possible to make reliable decisions with only a few samples.
We focus on an offline Multi-Armed Bandit (MAB) problem, which is a foundation model for
decision-making (Lattimore & Szepesvári, 2020). In online MAB, an agent repeatedly chooses an
arm from a set of arms, each providing a stochastic reward. Offline MAB is a variant where the agent
cannot interact with the environment to gather new information and instead, it must make decisions
based on a pre-collected dataset without playing additional exploratory actions, aiming at identifying
the arm with the highest expected reward (Audibert et al., 2010; Garivier & Kaufmann, 2016; Russo,
2016; Ameko et al., 2020).

The standard approach to the problem is the Lower Confidence Bound (LCB) algorithm (Rashidinejad
et al., 2021), a pessimistic variant of UCB (Auer et al., 2002) that involves selecting the arm with the
highest lower bound on its performance. LCB encodes a principle called pessimism under uncertainty,
which is the foundation principle for most algorithms for offline bandits and reinforcement learning
(RL) (Jin et al., 2020; Zanette et al., 2020; Xie et al., 2021; Yin & Wang, 2021; Kumar et al.,
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2020; Kostrikov et al., 2021). Unfortunately, the available methods that implement the principle of
pessimism under uncertainty can fail in a data-starved regime because they rely on confidence intervals
that are too loose when just a few samples are available. For example, even on a simple MAB instance
with ten thousand arms, the best-known (Rashidinejad et al., 2021) performance bound for the LCB
algorithm requires 24 samples per arm in order to provide meaningful guarantees, see Section 2.
In more complex situations, such as in the sequential setting with function approximation, such a
problem can become more severe due to the higher metric entropy of the function approximation
class and the compounding of errors through time steps.

These considerations suggest that there is a “barrier of entry” to decision-making, both theoretically
and practically: one needs to have a substantial number of samples in order to make reliable decisions
even for settings as simple as offline MAB where the guarantees are tighter. Given the above technical
reasons, and the lack of good algorithms and guarantees for data-starved decision problems, it is
unclear whether it is even possible to find good decision rules with just a handful of samples.

In this paper, we make a substantial contribution towards lowering such barriers of entry. We discover
that a carefully-designed algorithm tied to an advanced statistical analysis can substantially improve
the sample complexity, both theoretically and practically, and enable reliable decision-making with
just a handful of samples. More precisely, we focus on the offline MAB setting where we show that
even if the dataset contains just a single sample in every arm, it may still be possible to compete with
the optimal policy. This is remarkable, because with just one sample per arm—for example from
a Bernoulli distribution—it is impossible to estimate the expected payoff of any of the arms! Our
discovery is enabled by several key insights:

• We search over stochastic policies, which can yield better performance for offline-decision
making;

• We use a localized notion of metric entropy to carefully control the size of the stochastic
policy class that we search over;

• We implement a concept called relative pessimism to obtain sharper guarantees.

These considerations lead us to design a trust region policy optimization algorithm called Trust Region
of Uncertainty for Stochastic policy enhancemenT (TRUST), one that offers superior theoretical as
well as empirical performance compared to LCB in a data-scarce situation.

Moreover, we apply the algorithm to selected reinforcement learning problems from (Fu et al., 2020)
in the special case where information about the logging policies is available. We do so by a simple
reduction from reinforcement learning to bandits, by mapping policies and returns in the former to
actions and rewards in the latter, thereby disregarding the sequential aspect of the problem. Although
we rely on the information of the logging policies being available, the empirical study shows that our
algorithm compares well with a strong deep reinforcement learning baseline (i.e, CQL from (Kumar
et al., 2020)), without being sensitive to partial observability, sparse rewards, and hyper-parameters.

2 DATA-STARVED MULTI-ARMED BANDITS

In this section, we describe the MAB setting and give an example of a “data-starved” MAB instance
where prior methods (such as LCB) can fail. We informally say that an offline MAB is “data-starved”
if its dataset contains only very few samples in each arm.

Notation. We let [n] = {1, 2, ..., n} for a positive integer n. We let ∥·∥2 denote the Euclidean norm
for vectors and the operator norm for matrices. We hide constants and logarithmic factors in the Õ(·)
notation. We let Bd

p(s) = {x ∈ Rd : ∥x∥p ≤ s} for any s ≥ 0 and p ≥ 1. a ≲ b (a ≳ b) means
a ≤ Cb (a ≥ Cb) for some numerical constant C. a ≃ b means that both a ≲ b and b ≲ a hold.

Multi-armed bandits. We consider the case where there are d arms in a set A = {a1, ..., ad}
with expected reward r(ai), i ∈ [d]. We assume access to an offline dataset D = {(xi, ri)}i∈[N ] of
action-reward tuples, where the experienced actions {xi}i∈[N ] are i.i.d. from a distribution µ. Each
experienced reward is a random variable with expectation E[ri] = r(xi) and independent Gaussian
noises ζi := r(xi) − E[ri]. For i ∈ [d], we denote the number of pulls to arm ai in D by N(ai)
or Ni, while the variance of the noise for arm ai is denoted by σ2

i . We denote the optimal arm
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as a∗ ∈ argmaxa∈A[r(a)] and the single policy concentrability as C∗ = 1/µ(a∗) where µ is the
distribution that generated the dataset. Without loss of generality, we assume the optimal arm is
unique. We also write r = (r1, r2, ..., rd)

⊤. Without loss of generality, we assume there is at least
one sample for each arm (such arm can otherwise be removed).

Lower confidence bound algorithm. One simple but effective method for the offline MAB prob-
lem is the Lower Confidence Bound (LCB) algorithm, which is inspired by its online counterpart
(UCB) (Auer et al., 2002). Like UCB, LCB computes the empirical mean r̂i associated to the reward
of each arm i along with its half confidence width bi. They are defined as

r̂i :=
1

N(ai)

∑
k:xk=ai

xk, bi :=

√
2σ2

i

N(ai)
log

(
2d

δ

)
. (1)

This definition ensures that each confidence interval brackets the corresponding expected reward with
probability 1− δ:

r̂i − bi ≤ r (ai) ≤ r̂i + bi ∀i ∈ [d]. (2)
The width of the confidence level depends on the noise level σi, which can be exploited by variance-
aware methods (Zhang et al., 2021; Min et al., 2021; Yin et al., 2022; Dai et al., 2022). When the
true noise level is not accessible, we can replace it with the empirical standard deviation or with a
high-probability upper bound. For example, when the reward for each arm is restricted to be within
[0, 1], a simpler upper bound is σ2

i ≤ 1/4.

Unlike UCB, the half-width of the confidence intervals for LCB is not added, but subtracted, from
the empirical mean, resulting in the lower bound li = r̂i − bi. The action identified by LCB is then
the one that maximizes the resulting lower bound, thereby incorporating the principle of pessimism
under uncertainty (Jin et al., 2020; Kumar et al., 2020). Specifically, given the dataset D, LCB selects
the arm using the following rule:

âLCB := argmax
ai∈A

li, (3)

(Rashidinejad et al., 2021) analyzed the LCB strategy. Below we provide a modified version of their
theorem.
Theorem 2.1 (LCB Performance). Suppose the noise of arm ai is sub-Gaussian with proxy variance
σ2
i . Let δ ∈ (0, 1/2). Then, we have

1. (Comparison with any arm) With probability at least 1− δ, for any comparator policy ai ∈ A, it
holds that r(ai)− r(âLCB) ≤

√
8σ2

i log(2d/δ)/N(ai).

2. (Comparison with the optimal arm) Assume σi = 1 for any i ∈ [d] and N ≥ 8C∗ log (1/δ) . Then,
with probability at least 1− 2δ, one has r(a∗)− r(âLCB) ≤

√
4C∗ log(2d/δ)/N.

The statement of this theorem is slightly different from that in (Rashidinejad et al., 2021), in the sense
that their suboptimality is over ED[r (a

∗)−r (âLCB)] instead of a high-probability one. (Rashidinejad
et al., 2021) proved the minimax optimality of the algorithm when the single policy concentrability
C∗ ≥ 2 and the sample size N ≥ Õ(C∗).

A data-starved MAB problem and failure of LCB. In order to highlight the limitation of a strategy
such as LCB, let us describe a specific data-starved MAB instance, specifically one with d = 10000
arms, equally partitioned into a set of good arms (i.e., Ag) and a set of bad arms (i.e., Ab). Each
good arm returns a reward following the uniform distribution over [0.5, 1.5], while each bad arm
returns a reward which follows N (0, 1/4).

Assume that we are given a dataset that contains only one sample per each arm. Instantiating the LCB
confidence interval in equation 2 with σi ≤ 1/2 and δ = 0.1, one obtains r̂i−2.5 ≤ r(ai) ≤ r̂i+2.5.
Such bound is uninformative, because the lower bound for the true reward mean is less than the
reward value of the worst arm. The performance bound for LCB confirms this intuition, because
Theorem 2.1 requires at least N(ai) ≥ ⌈8 ∗ log(1/0.05)⌉ = 24 samples in each arm to provide any
guarantee with probability at least 0.9 (here C∗ = d).

Can stochastic policies help? At a first glance, extracting a good decision-making strategy for the
problem discussed in Section 2 seems like a hopeless endeavor, because it is information-theoretically
impossible to reliably estimate the expected payoff of any of the arms with just a single sample on
each. In order to proceed, the key idea is to enlarge the search space to contain stochastic policies.
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Definition 2.2 (Stochastic Policies). A stochastic policy over a MAB is a probability distribution
w ∈ Rd, wi ≥ 0,

∑d
i=1 wi = 1.

To exemplify how stochastic policies can help, consider the behavioral cloning policy, which mimics
the policy that generated the dataset for the offline MAB in Section 2. Such policy is stochastic, and
it plays all arms uniformly at random, thereby achieving a score around 0.5 with high probability.
The value of the behavioral cloning policy can be readily estimated using the Hoeffding bound (e.g.,
Proposition 2.5 in (Wainwright, 2019)): with probability at least 1 − δ = 0.9, (here d = 10000 is
the number of arms and σ = 1/2 is the true standard deviation), the value of behavioral cloning
policy is greater or equal than 1/2−

√
2σ2 log (2/δ) /d ≈ 0.488. Such value is higher than the one

guaranteed for LCB by Theorem 2.1. Intuitively, a stochastic policy that selects multiple arms can
be evaluated more accurately because it averages the rewards experienced over different arms. This
consideration suggests optimizing over stochastic policies.

By optimizing a lower bound on the performance of the stochastic policies, it should be possible to
find one with a provably high return. Such an idea leads to solving an offline linear bandit problem,
as follows

max
w∈Rd,wi≥0,

∑d
i=1 wi=1

d∑
i=1

wir̂i − c(w) (4)

where c(w) is a suitable confidence interval for the policy w and r̂i is the empirical reward for the i-th
arm defined in equation 1. While this approach is appealing, enlarging the search space to include all
stochastic policies brings an increase in the metric entropy of the function class, and concretely, a

√
d

factor (Abbasi-Yadkori et al., 2011; Rusmevichientong & Tsitsiklis, 2010; Hazan & Karnin, 2016;
Jun et al., 2017; Kim et al., 2022) in the confidence intervals c(w) (in equation 4), which negates all
gains that arise from considering stochastic policies. In the next section, we propose an algorithm
that bypasses the need for such

√
d factor by relying on a more careful analysis and optimization

procedure.

3 TRUST REGION OF UNCERTAINTY FOR STOCHASTIC POLICY
ENHANCEMENT (TRUST)

In this section, we introduce our algorithm, called Trust Region of Uncertainty for Stochastic policy
enhancemenT (TRUST). At a high level, the algorithm is a policy optimization algorithm based on a
trust region centered around a reference policy. The size of the trust region determines the degree of
pessimism, and its optimal problem-dependent size can be determined by analyzing the supremum of
a problem-dependent empirical process. In the sequel, we describe 1) the decision variables, 2) the
trust region optimization program, and 3) some techniques for its practical implementation.

3.1 DECISION VARIABLES

The algorithm searches over the class of stochastic policies given by the weight vector w =
(w1, w2, ..., wd)

⊤ of Definition 2.2. Instead of directly optimizing over the weights of the stochastic
policy, it is convenient to center w around a reference stochastic policy µ̂ which is either known to
perform well or is easy to estimate. In our theory and experiments, we consider a simple setup and
use the behavioral cloning policy weighted by the noise levels {σi} if they are known. Namely, we
consider

µ̂i =
Ni/σ

2
i∑d

j=1 Nj/σ2
j

∀i ∈ [d]. (5)

When the size of the noise σi is constant across all arms, the policy µ̂ is the behavioral cloning
policy; when σi differs across arms, µ̂ minimizes the variance of the empirical reward µ̂ =
argminw∈Rd,wi≥0,

∑
i wi=1 Var

(
w⊤ · r̂

)
, where r̂ = (r̂1, ..., r̂d)

⊤ is defined in equation 1. Us-
ing such definition, we define as decision variable the policy improvement vector ∆ := w − µ̂. This
preparatory step is key: it allows us to implement relative pessimism, namely pessimism on the
improvement—represented by ∆—rather than on the absolute value of the policy w. Moreover, by
restricting the search space to a ball around µ̂, one can efficiently reduce the metric entropy of the
policy class and obtain tighter confidence intervals.

4
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3.2 TRUST REGION OPTIMIZATION

Figure 1: A simple diagram for the trust regions on a 3-dim
simplex. The central point is the reference (stochastic) policy,
while red ellipses are trust regions around this reference
policy.

Trust region. TRUST (Algo-
rithm 1) returns the stochastic policy
πTRUST = ∆̂ + µ̂ ∈ Rd, where µ̂ is
the reference policy defined in equa-
tion 5 and ∆̂ is the policy improve-
ment vector. In order to accurately
quantify the effect of the improvement
vector ∆, we constrain it to a trust re-
gion C (ε) centered around µ̂ where
ε > 0 is the radius of the trust region.
More concretely, for a given radius
ε > 0, the trust region is defined as

C (ε) :=

{
∆ : ∆i + µ̂i ≥ 0,

∥∆+ µ̂∥1 = 1,

d∑
i=1

∆2
i

σ2
i

Ni
≤ ε2

}
. (6)

The trust region above serves two
purposes: it ensures that the policy
∆̂ + µ̂ still represents a valid stochas-
tic policy, and it regularizes the policy
around the reference policy µ̂. We
then search for the best policy within
C (ε) by solving the optimization program

∆̂ε := argmax
∆∈C(ε)

∆⊤r̂. (7)

Computationally, the program equation 7 is a second-order cone program (Alizadeh & Goldfarb,
2003; Boyd & Vandenberghe, 2004), which can be solved efficiently with standard off-the shelf
libraries (Diamond & Boyd, 2016).

When ε = 0, the trust region only includes the vector ∆ = 0, and the reference policy µ̂ is the only
feasible solution. When ε → ∞, the search space includes all stochastic policies. In this latter case,
the solution identified by the algorithm coincides with the greedy algorithm which chooses the arm
with the highest empirical return. Rather than leaving ε as a hyper-parameter, in the following we
highlight a selection strategy for ε based on localized Gaussian complexities.

Critical radius. The choice of ε is crucial to the performance of our algorithm because it balances
optimization with regularization. Such consideration suggests that there is an optimal choice for the
radius ε which balances searching over a larger space with keeping the metric entropy of such space
under control. The optimal problem-dependent choice ε̂∗ can be found as a solution of a certain
equation involving a problem-dependent supremum of an empirical process. More concretely, let E
be the feasible set of ε (e.g., E = R+). We define the critical radius as
Definition 3.1 (Critical Radius). The critical radius ε̂∗ of the trust region is the solution to the
program

ε̂∗ = argmax
ε∈E

[
∆̂⊤

ε · r̂ − G (ε)
]
. (8)

Such equation involves a quantile of the localized gaussian complexity G (ε) of the stochastic policies
identified by the trust region. Mathematically, this is defined as
Definition 3.2 (Quantile of the supremum of Gaussian process). We denote the noise vector as η =
r̂− r, which by our assumption is coordinate-wise independent and satisfies ηi ∼ N

(
0, σ2

i /N(ai)
)
.

We define G (ε) as the smallest quantity such that with probability at least 1− δ, for any ε ∈ E, it
holds that sup∆∈C(ε) ∆

⊤η ≤ G (ε) .

5
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In essence, G (ε) is an upper quantile of the supremum of the Gaussian process sup∆∈C(ε) ∆
⊤η

which holds uniformly for every ε ∈ E. We also remark that this quantity depends on the feasible set
E and the trust region C (ε), and hence, is highly problem-dependent.

The critical radius plays a crucial role: it is the radius of the trust region that optimally balances
optimization with uncertainty. Enlarging ε enlarges the search space for ∆, enabling the discovery of
policies with potentially higher return. However, this also brings an increase in the metric entropy
of the policy class encoded by G (ε), which means that each policy can be estimated less accurately.
The critical radius represents the optimal tradeoff between these two forces. The final improvement
vector that TRUST returns, which we denote as ∆̂∗, is determined by solving equation 7 with the
critical radius ε̂∗ defined in equation 8. In mathematical terms, we express this as

∆̂∗ := argmax
∆∈C(ε̂∗)

∆⊤r̂. (9)

Implementation details. Since it can be difficult to solve equation 8 for a continuous value of
ε ∈ E = R+, we use a discretization argument by considering the following candidate subset:

E =
{
ε0,

ε0
α
, ...,

ε0
α|E|−1

}
, (10)

where α > 1 is the decaying rate and ε0 is the largest possible radius, which is the maximal
weighted distance from the reference policy to any vertex. Mathematically, this is defined as
ε0 = maxi∈[d]

√∑
j ̸=i µ̂

2
jσ

2
j /Nj + (1− µ̂i)2σ2

i /Ni. Our analysis that leads to Theorem 4.1 takes
into account such discretization argument.

In line 2 of Algorithm 1, the algorithm works by estimating the quantile of the supremum of the
localized Gaussian complexity G (ε) that appears in Definition 3.2, and then choose the ε that
maximizes the objective function in equation 8. Although G (ε) can be upper bounded analytically, in
our experiments we aim to obtain tighter guarantees and so we estimate it via Monte-Carlo. This can
be achieved by 1) sampling independent noise vectors η, 2) solving sup∆∈C(ε) ∆

⊤η and 3) estimating
the quantile via order statistics. More details can be found in Appendix D.

Algorithm 1 Trust Region of Uncertainty for Stochas-
tic policy enhancemenT (TRUST)

Input: Offline dataset D, failure probability δ, the
candidate set for the trust region widths E (in prac-
tice, this is chosen as equation 10).
1. For ε ∈ E, compute ∆̂ε from equation 7.
2. For ε ∈ E, estimate G (ε) via Monte-Carlo
method (see Algorithm 2 in Appendix D).
3. Solve equation 8 to obtain the critical radius ε̂∗.
4. Compute the optimal improvement vector in
C (ε̂∗) via equation 9, denoted as ∆̂∗.

5. Return the stochastic policy πTRUST = µ̂+∆̂∗.

In summary, our practical algorithm can be
seen as solving the optimization problem

(ε̂∗, ∆̂∗) = argmax
ε∈E,∆∈C(ε)

{
∆⊤r̂ − Ĝ(ε)

}
where r̂ ∈ Rd is the empirical reward vec-
tor with r̂i defined in equation 1. Here,
Ĝ(ε) is computed according to the Monte-
Carlo method defined in Algorithm 2 in Ap-
pendix D and E is the candidate subset for
radius defined in equation 10. This indicates
a balance between the empirical reward of a
stochastic policy and the local entropy metric
it induces.

4 THEORETICAL GUARANTEES

Problem-dependent analysis In this section, we provide some theoretical guarantees for the policy
πTRUST returned by TRUST. We present 1) an improvement over the reference policy µ̂, 2) a
sub-optimality gap with respect to any comparator policy π and 3) an actionable lower bound on
the performance of the output policy. Given a stochastic policy π, we let V π = Ea∼π[r(a)] denote
its value function. Furthermore, we denote a comparator policy π by a triple (ε,∆, π) such that
ε > 0,∆ ∈ C (ε) , π = µ̂+∆.

Theorem 4.1 (Main theorem). TRUST has the following properties.

6
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1. With probability at least 1− δ, the improvement over the behavioral policy is at least

V πTRUST − V µ̂ ≥ sup
ε≤ε0,∆∈C(ε)

[
∆⊤r − 2G (⌈ε⌉)

]
, where ⌈ε⌉ = inf{ε′ ∈ E, ε′ ≥ ε}.

(11)

2. With probability at least 1− δ, for any stochastic comparator policy (ε,∆, π), the sub-optimality
of the output policy can be upper bounded as

V π − V πTRUST ≤ 2G (⌈ε⌉) . (12)

3. With probability at least 1− 2δ, the data-dependent lower bound on V πTRUST satisfies

V πTRUST ≥ π⊤
TRUST r̂ − G (⌈ε̂∗⌉)−

√
2 log(1/δ)∑d
j=1 Nj/σ2

j

, (13)

where πTRUST = µ̂+ ∆̂∗ is the policy output by Algorithm 1.

The proof of Theorem 4.1 is deferred to Appendix B. A fine-grained analysis for the suboptimality
is contained in Appendix E. Our guarantees are problem-dependent as a function of the Gaussian
process G (·); in Section 5 we show how these can be instantiated on an actual problem, highlighting
the tightness of the analysis. Equation (11) highlights the improvement with respect to the behavioral
policy. It is expressed as a trade-off between maximizing the improvement ∆⊤r and minimizing its
uncertainty G (⌈ε⌉). The presence of the supε indicates that TRUST achieves an optimal balance
between these two factors. The state of the art guarantees that we are aware of highlight a trade-off
between value and variance (Jin et al., 2021; Min et al., 2021). The novelty of our result lies in the
fact that TRUST optimally balances the uncertainty implicitly as a function of the ‘coverage’ as well
as the metric entropy of the search space. That is, TRUST selects the most appropriate search space
by trading off its metric entropy with the quality of the policies that it contains. The right-hand side in
Equation (13) gives actionable statistical guarantees on the quality of the final policy and it can be fully
computed from the available dataset; we give an example of the tightness of the analysis in Section 5.

Figure 2: The upper bound for the localized Gaussian width
over a shifted simplex on d = 10000 dimension. The shifted
simplex is {∆ ∈ Rd :

∑d
i=1 ∆i = 0}. The two-staged upper

bound is based on Theorem 1 in (Bellec, 2019)

Localized Gaussian complexity
G (ε). In Theorem 4.1, we up-
per bound the suboptimality V π −
V πTRUST via a notion of local-
ized metric entropy G (·) . It is
the quantile of the supremum of
a Gaussian process, which can
hardly be calculated analytically
but can be efficiently estimated
via Monte Carlo method (which
does not collect additional sam-
ples, e.g., see Appendix D). It can
also be concentrated around its ex-
pectation, which is also localized
Gaussian width, a concept well-
established in statistical learning
theory (Bellec, 2019; Wei et al.,
2020; Wainwright, 2019). More
concretely, this is the localized
Gaussian width for an affine sim-
plex: E[sup∆∈C(ε) ∆

⊤η] = E[supSd−1∩{∆:∥∆∥Σ≤ε} ∆
⊤η], where Sd−1 denotes the simplex in Rd

and Σ := diag
(

σ2
1

N1
,
σ2
2

N2
, ...,

σ2
d

Nd

)
is the weighted matrix. Moreover, this localized Gaussian width

can be upper bound via

E

[
sup

∆∈C(ε)

∆⊤η

]
≲ min

{√
log (dε2), ε

√
d
}
. (14)
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To make it clearer, we plot this upper bound for localized Gaussian width in Figure 2. In equation 14,
the rate matches the minimax lower bound up to universal constant (Gordon et al., 2007; Lecué &
Mendelson, 2013; Bellec, 2019). To see the implication of the upper bound equation 14, let’s consider
a simple example where the logging policy is uniform over all arms. We denote the optimal arm as
a∗ and define C∗ := 1/µ(a∗) as the concentrability coefficient. By applying equation 14 and some
concentration techniques (see Wainwright, 2019), we can perform a fine-grained analysis for the
suboptimality induced by πTRUST . Specifically, with probability at least 1− δ, one has

V π∗ − V πTRUST ≲
√
C∗ log(2d|E|/δ)/N. (15)

Note that, the high-probability upper bound here is minimax optimal up to constant and logarithmic
factor (Rashidinejad et al., 2021) when C∗ ≥ 2. Moreover, this example of uniform logging policy is
an instance where LCB achieves minimax sub-optimality (up to constant and log factors) (see the
proof of Theorem 2 in Rashidinejad et al., 2021). In this case, TRUST will achieve the same level of
guarantees for the suboptimality of the output policy. We also empirically show the effectiveness of
TRUST in Section 5. The full theorem for a fine-grained analysis for the suboptimality and its proof
are deferred to Appendix E.

Augmentation with LCB. Compared to classical LCB, Algorithm 1 considers a much larger searching
space, which encompasses not only the vertices of the simplex but the inner points as well. This
enlargement of searching space shows great advantage, but this also comes with the price of larger
uncertainty, especially when the width ε is large. In LCB, one considers the uncertainty by upper
bound the noise at each vertex uniformly, while in our case, the uniform upper bound for a sub-region
of the shifted simplex must be considered. When ε is large, the trust region method will induce
larger uncertainty and tend to select a more stochastic policy than LCB and hence, can achieve worse
performance. Moreover, when each arm has sufficiently many data samples to roughly estimate its
mean return to reasonable accuracy, LCB works well because it chooses the arm with a tight lower
bound. However the current results for LCB do not cover the important case where only few samples
(e.g., less than 24 as described in Section 2) are available. Encouragingly our work shows strong
results in such settings. To determine the most effective final policy, one can always combine TRUST
(Algorithm 1) with LCB and select the better one between them based on the lower bound induced by
two algorithms. By comparing the lower bounds of LCB and TRUST, the value of the finally output
policy is guaranteed to outperform the lower bound for either LCB or TRUST with high probability.
We defer the detailed algorithm and its theoretical guarantees to Appendix G.

5 EXPERIMENTS

We present simulated experiments where we show the failure of LCB and the strong performance of
TRUST. Moreover, we also present an application of TRUST to offline reinforcement learning.

Simulated experiments: A data-starved MAB. We consider a data-starved MAB problem with
d = 10000 arms denoted by ai, i ∈ [d]. The reward distributions are

r(ai) ∼ Uniform(0.5, 1.5) for i ≤ 5000; r(ai) ∼ N (0, 1/4) for i > 5000. (16)

Namely, the set of good arms have reward random variables from a uniform distribution over [0.5, 1.5]
with unit mean, while the bad arms return a Gaussian reward with zero mean. We consider a dataset
that contains a single sample for each of these arms.

We test Algorithm 1 on this MAB instance with fixed variance level σi = 1/2. We set the reference
policy µ̂ to be the behavioral cloning policy, which coincides with the uniform policy. We also test
LCB and the greedy method which simply chooses the policy with the highest empirical reward.

In this example, the greedy algorithm fails because it erroneously selects an arm with a reward
> 1.5, but such reward can only originate from a normal distribution with mean zero. Despite LCB
incorporates the principle of pessimism under uncertainty, it selects an arm with average return equal
to zero; its performance lower bound given by the confidence intervals is −1.5, which is almost
vacuous and very uninformative. The behavioral cloning policy performs better, because it selects an
arm uniformly at random, achieving the score 0.5.
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Behavior
Policy Greedy LCB LCB Lower

Bound
Improvement
by TRUST TRUST TRUST

Lower Bound
0.5 0 0 -1.5 0.42 0.92 0.6

Table 1: Results of simulated experiments in a 10000-arm bandit. The reward distribution is described
in equation 16. The offline dataset includes one sample for each arm. The greedy method chooses the
arm with the highest empirical reward. LCB selects an arm based on equation 3. The lower bound for
LCB and TRUST follow equation 2 and equation 13, respectively.

Algorithm 1 achieves the best performance: the value of the policy that it identifies is 0.92, which
almost matches the optimal policy. The lower bound on its performance computed by instantiating
the RHS in equation 13 is around 0.6, a guarantee much tighter than that for LCB.

In order to gain intuition on the learning mechanics of TRUST, in Figure 3 we progressively enlarge
the radius of the trust region from zero to the largest possible radius (on the x axis) and plot the value
of the policy that maximizes the linear objective ∆⊤r̂, ∆ ∈ C (ε) for each value of the radius ε.
Note that we rescale the range of ε to make the largest possible ε be one. In the same figure we also
plot the lower bound computed with the help of equation equation 13.

Figure 3: Policy values and their lower bounds for a data-
starved MAB instance with 10000 arms whose reward distri-
bution is described in equation 16.

Initially, the value of the policy in-
creases because the optimization in
equation 7 is performed over a larger
set of stochastic policies. However,
when ε approaches the maximal pos-
sible radius, all stochastic policies are
included in the optimization program.
In this case, TRUST greedily selects
the arm with the highest empirical re-
ward, which is from a normal distri-
bution with a mean zero. The opti-
mal balance between the size of the
policy search space and its metric en-
tropy is given by the critical radius
ε = 0.0116ε0, which is the point
where the lower bound is the highest.

A more general data-starved MAB.
Besides the data-starved MAB we
constructed, we also show that in
general MABs, the performance of
TRUST is on par with LCB, but
TRUST will have a much tighter statistical guarantee, i.e., a larger lower bound for the value
of the returned policy. We did experiments on a d = 1000-arm MAB where the reward distribution is
r(ai) ∼ N (i/1000, 1/4), ∀i ∈ [d]. We ran TRUST Algorithm 1 and LCB over 8 different random
seeds. When we have a single sample for each arm, TRUST will get a similar score as LCB. However,
TRUST give a much tighter statistical guarantee than LCB, in the sense that the lower bound output by
TRUST is much higher than that output by LCB so that TRUST can output a policy that is guaranteed
to achieved a higher value. Moreover, we found the policies output from TRUST are much more
stable than those from LCB. In all runs, while the lowest value of the arm chosen by LCB is around
0.24, all policies returned by TRUST have values above 0.65 with a much smaller variance, as shown
in Table 2.

Offline reinforcement learning. In this section, we apply Algorithm 1 to the offline reinforcement
learning (RL) setting under the assumption that the logging policies which generated the dataset are
accessible. To be clear, our goal is not to exceed the performance of the state of the art deep RL
algorithms—our algorithm is designed for bandit problems—but rather to illustrate the usefulness of
our algorithm and theory.

Since our algorithm is designed for bandit problems, in order to apply it to the sequential setting, we
map MDPs to MABs. Each policy in the MDP maps to an action in the MAB, and each trajectory
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return in the MDP maps to an experienced return in the MAB setting. Notice that this reduction
disregards the sequential aspect of the problem and thus our algorithm cannot perform ‘trajectory
stitching’ (Levine et al., 2020; Kumar et al., 2020; Kostrikov et al., 2021). Furthermore, it can only
be applied under the assumption that the logging policies are known.

LCB TRUST
mean reward 0.718 0.725

mean lower bound 0.156 0.544
variance 0.265 0.038

minimal reward 0.239 0.658

Table 2: Comparison between LCB and TRUST (Algo-
rithm 1) on a data-starved MAB with 1000 arms whose
reward distribution follows r(ai) ∼ N (i/1000, 1/4). Both
methods are repeated on 8 random seeds.

Specifically we consider a setting
where there are multiple known log-
ging policies, each generating few tra-
jectories. We test Algorithm 1 on
some selected environments from the
D4RL dataset (Fu et al., 2020) and
compare its performance to the (CQL)
algorithm (Kumar et al., 2020), a
popular and strong baseline for of-
fline RL algorithms. Since the D4RL
dataset does not directly include the
logging policies, we generate new
datasets by running Soft Actor Critic
(SAC) (Haarnoja et al., 2018) for 1000
episodes. We store 100 intermediate policies generated by SAC, and roll out 1 trajectory from each
policy.

We use some default hyper-parameters for CQL.1 We report the unnormalized scores in Table 3,
each averaged over 4 random seeds. Algorithm 1 achieves a score on par with or higher than that
of CQL, especially when the offline dataset is of poor quality and when there are very few—or just
one—trajectory generated from each logging policy. Notice that while CQL is not guaranteed to
outperform the behavioral policy, TRUST is backed by Theorem 4.1.

CQL TRUST

Hopper 1-traj-low 499 999
1-traj-high 2606 3437

Ant 1-traj-low 748 763
1-traj-high 4115 4488

Walker2d 1-traj-low 311 346
1-traj-high 4093 4097

HalfCheetah 1-traj-low 5775 5473
1-traj-high 9067 10380

Table 3: Unnormalized score of CQL and TRUST in 4 en-
vironments from D4RL. In 1-traj-low case, we take the first
100 policies in the running of SAC. In 1-traj-high case, we
take the (10x+ 1)-th policy for x ∈ [100]. We sample one
trajectory from each policy we take in all experiments.

Additionally, while CQL took around
16-24 hours on one NVIDIA GeForce
RTX 2080 Ti, TRUST only took 0.5-1
hours on 10 CPUs. The experimen-
tal details are included in Appendix H.
Moreover, while the performance of
CQL is highly reliant on the choice
of hyper-parameters, TRUST is essen-
tially hyper-parameters free.

6 CONCLUSION

In this paper we make a substan-
tial contribution towards sample ef-
ficient decision making, by designing
a data-efficient policy optimization al-
gorithm that leverages offline data for
the MAB setting. The key intuition of
this work is to search over stochastic policies, which can be estimated more easily than deterministic
ones. The design of our algorithm is enabled by a number of key insights, such as the use of the local-
ized gaussian complexity which leads to the definition of the critical radius for the trust region. We
believe that these concepts can be used more broadly to help design truly sample efficient algorithms,
which can in turn enable the application of decision making to new settings where a high sample
efficiency is critical.
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Yi Liu and Veronika Ročková. Variable selection via thompson sampling. Journal of the American
Statistical Association, 118(541):287–304, 2023.

Ying Liu, Brent Logan, Ning Liu, Zhiyuan Xu, Jian Tang, and Yangzhi Wang. Deep reinforcement
learning for dynamic treatment regimes on medical registry data. In 2017 IEEE international
conference on healthcare informatics (ICHI), pp. 380–385. IEEE, 2017.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent,
and Michal Valko. Fast active learning for pure exploration in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 7599–7608. PMLR, 2021.

Yifei Min, Tianhao Wang, Dongruo Zhou, and Quanquan Gu. Variance-aware off-policy evaluation
with linear function approximation. Advances in neural information processing systems, 34:
7598–7610, 2021.

Wenlong Mou, Martin J Wainwright, and Peter L Bartlett. Off-policy estimation of linear functionals:
Non-asymptotic theory for semi-parametric efficiency. arXiv preprint arXiv:2209.13075, 2022.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

Preetum Nakkiran, Behnam Neyshabur, and Hanie Sedghi. The deep bootstrap framework: Good
online learners are good offline generalizers. arXiv preprint arXiv:2010.08127, 2020.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. arXiv preprint arXiv:2103.12021,
2021.

Sherry Ruan, Allen Nie, William Steenbergen, Jiayu He, JQ Zhang, Meng Guo, Yao Liu, Kyle Dang
Nguyen, Catherine Y Wang, Rui Ying, et al. Reinforcement learning tutor better supported lower
performers in a math task. arXiv preprint arXiv:2304.04933, 2023.

Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411, 2010.

Daniel Russo. Simple bayesian algorithms for best arm identification. In Conference on Learning
Theory, pp. 1417–1418. PMLR, 2016.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nian Si, Fan Zhang, Zhengyuan Zhou, and Jose Blanchet. Distributionally robust policy evaluation
and learning in offline contextual bandits. In International Conference on Machine Learning, pp.
8884–8894. PMLR, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press, 2018.

Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High confidence policy
improvement. In International Conference on Machine Learning, pp. 2380–2388. PMLR, 2015.

Roman Vershynin. High-dimensional probability. University of California, Irvine, 2020.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cam-
bridge university press, 2019.

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren, Weinan Zhang, and Dongsheng Li. Bootstrapped
transformer for offline reinforcement learning. Advances in Neural Information Processing Systems,
35:34748–34761, 2022.

Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits. In International
Conference on Machine Learning, pp. 5114–5122. PMLR, 2018.

Yuting Wei, Billy Fang, and Martin J. Wainwright. From gauss to kolmogorov: Localized measures
of complexity for ellipses. 2020.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Tengyang Xie and Nan Jiang. Batch value-function approximation with only realizability. arXiv
preprint arXiv:2008.04990, 2020.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning. arXiv preprint arXiv:2106.06926, 2021.

Wei Xiong, Han Zhong, Chengshuai Shi, Cong Shen, Liwei Wang, and Tong Zhang. Nearly minimax
optimal offline reinforcement learning with linear function approximation: Single-agent mdp and
markov game. arXiv preprint arXiv:2205.15512, 2022.

Ming Yin and Yu-Xiang Wang. Towards instance-optimal offline reinforcement learning with
pessimism. arXiv preprint arXiv:2110.08695, 2021.

Ming Yin, Yaqi Duan, Mengdi Wang, and Yu-Xiang Wang. Near-optimal offline reinforcement
learning with linear representation: Leveraging variance information with pessimism. arXiv
preprint arXiv:2203.05804, 2022.

Andrea Zanette, Emma Brunskill, and Mykel J. Kochenderfer. Almost horizon-free structure-aware
best policy identification with a generative model. In Advances in Neural Information Processing
Systems, 2019.

Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill. Provably effi-
cient reward-agnostic navigation with linear value iteration. In Advances in Neural Information
Processing Systems, 2020.

Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic methods
for offline reinforcement learning. arXiv preprint arXiv:2108.08812, 2021.

Ruiqi Zhang, Xuezhou Zhang, Chengzhuo Ni, and Mengdi Wang. Off-policy fitted q-evaluation
with differentiable function approximators: Z-estimation and inference theory. In International
Conference on Machine Learning, pp. 26713–26749. PMLR, 2022.

Zihan Zhang, Jiaqi Yang, Xiangyang Ji, and Simon S Du. Improved variance-aware confidence sets
for linear bandits and linear mixture mdp. Advances in Neural Information Processing Systems,
34:4342–4355, 2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORK

Multi-armed bandit (MAB) is a classical decision-making framework (Lattimore & Szepesvári,
2020; Lai & Robbins, 1985; Lai, 1987; Langford & Zhang, 2007; Auer, 2002; Bubeck et al., 2012;
Audibert et al., 2009; Degenne & Perchet, 2016). The natural approach in offline MABs is the LCB
algorithm (Ameko et al., 2020; Si et al., 2020), an offline variant of the classical UCB method (Auer
et al., 2002) which is minimax optimal (Rashidinejad et al., 2021). The optimization over stochastic
policies is also considered in combinatorial multi-armed bandits (CMAB) (Combes et al., 2015).
Most works on CMAB focus on variants of the UCB algorithm (Kveton et al., 2015; Combes et al.,
2015; Chen et al., 2016) or of Thompson sampling (Wang & Chen, 2018; Liu & Ročková, 2023),
and they are generally online. Our framework can also be applied to offline reinforcement learning
(RL) (Sutton & Barto, 2018) whenever the logging policies are accessible. There exist a lot of
practical algorithms for offline RL (Fujimoto et al., 2019; Peng et al., 2019; Wu et al., 2019; Kumar
et al., 2020; Kostrikov et al., 2021). Theory has also been investigated extensively in tabular domain
and function approximation setting (Nachum et al., 2019; Xie & Jiang, 2020; Zanette et al., 2021;
Xie et al., 2021; Yin et al., 2022; Xiong et al., 2022). Some works also tried to establish general
guarantees for deep RL algorithms via sophisticated statistical tools, such as bootstrapping (Thomas
et al., 2015; Nakkiran et al., 2020; Hao et al., 2021; Wang et al., 2022; Zhang et al., 2022).

We rely on the notion of pessimism, which is a key concept in offline bandits and RL. While most prior
works focused on the so-called absolute pessimism (Jin et al., 2020; Xie et al., 2021; Yin et al., 2022;
Rashidinejad et al., 2021; Li et al., 2023), the work of (Cheng et al., 2022) applied pessimism not on
the policy value but on the difference (or improvement) between policies. However, their framework
is very different from ours. We make extensive use of two key concepts, namely localization laws and
critical radii (Wainwright, 2019), which control the relative scale of the signal and uncertainty. The
idea of localization plays a critical role in the theory of empirical process (Geer, 2000) and statistical
learning theory (Koltchinskii, 2001; 2006; Bartlett & Mendelson, 2002; Bartlett et al., 2005). The
concept of critical radius or critical inequality is used in non-parametric regression (Wainwright,
2019) and in off-policy evaluation (Duan et al., 2021; Duan & Wainwright, 2022; 2023; Mou et al.,
2022).

B PROOF OF THEOREM 4.1

To prove Lemma E.3, we first define the following event

E :=

{
sup

∆∈C(ε)

∆⊤η ≤ G (ε) ∀ε ∈ E

}
. (17)

When E happens, the quantity G (ε) can upper bound the supremum of the Gaussian process we care
about, and hence, we can effectively upper bound the uncertainty for any stochastic policy using
G (·) . It follows from the Definition 3.2 that the event E happens with probability a leas 1− δ.

We can now prove all the claims in the theorem, starting from the first and the second. A comparator
policy π identifies a weight vector w, an improvement vector ∆ and a radius ε such that w = µ̂+∆
and ∆ ∈ C (ε) . In fact, we can always take ε to be the minimal value such that ∆ ∈ C (ε) . The first
claim in Equation (11) can be proved by establishing that with probability at least 1− δ

w⊤r − π⊤
TRUST r = ∆⊤r − ∆̂⊤

∗ r ≤ 2G (⌈ε⌉) , (18)

where πTRUST is the policy weight returned by Algorithm 1. In order to show Equation (18), we can
decompose ∆̂⊤

∗ r using the fact that ε̂∗ ∈ E and ∆̂∗ ∈ C (ε̂∗) to obtain

∆̂⊤
∗ r = ∆̂⊤

∗ r̂ − ∆̂⊤
∗ η ≥ ∆̂⊤

∗ r̂ − G (ε̂∗) = ∆̂⊤
∗ r̂ − G (⌈ε̂∗⌉) . (19)

To further lower bound the RHS above, we have the following lemma, which shows that Algorithm 1
can be written in an equivalent way.
Lemma B.1. The output of Algorithm 1 satisfies(

ε̂∗, ∆̂∗

)
= argmax

ε≤ε0,∆∈C(ε)

[
∆⊤r̂ − G (⌈ε⌉)

]
. (20)
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This shows that Algorithm 1 optimizes over an objective function which consists of a signal term
(i.e., ∆⊤r̂) minus a noise term (i.e., G (⌈ε⌉)). Applying this lemma to equation 19, we know

∆̂⊤
∗ r ≥ ∆⊤r̂ − G (⌈ε⌉) = ∆⊤r +∆⊤η − G (⌈ε⌉) . (21)

After recalling that under E

∆⊤η ≤ sup
∆∈C(ε)

∆⊤η ≤ sup
∆∈C(⌈ε⌉)

∆⊤η ≤ G (⌈ε⌉) , (22)

plugging the equation 22 back into equation 21 concludes the bound in Equation (18), which also
proves our first claim. Rearranging the terms in Equation (18) and taking supremum over all
comparator policies, we obtain

∆̂⊤
∗ r ≥ sup

ε≤ε0,∆∈C(ε)

[
∆⊤r − 2G (⌈ε⌉)

]
, (23)

which proves the first claim since V πTRUST − V µ̂ = ∆̂⊤
∗ r.

In order to prove the last claim, it suffices to lower bound the policy value of the reference policy µ̂.

From equation 5, we have µ̂ (r̂ − r) ∼ N (0, 1/[
∑d

i=1 Ni/σ
2
i ]), which implies with probability at

least 1− δ,

µ̂ (r̂ − r) ≤
√

2 log(1/δ)∑d
i=1 Ni/σ2

i

(24)

from the standard Hoeffding inequality (e.g., Prop 2.5 in (Wainwright, 2019)). Combining equation 19
and equation 24, we obtain

π⊤
TRUST r = µ̂⊤r + ∆̂⊤

∗ r ≥ µ̂⊤r̂ + µ̂⊤(r − r̂) + ∆̂⊤
∗ r̂ − G (ε̂∗) (From equation 19)

≥ π⊤
TRUST r̂ − G (ε̂∗)−

√
2 log(1/δ)∑d
i=1 Ni/σ2

i

(From equation 24)

with probability at least 1− 2δ. Therefore, we conclude.

C ONE-SAMPLE CASE WITH STRONG SIGNALS

In this section, we give a simple example of one-sample-per-arm case. This can be view as a special
case of data-starved MAB and Theorem 4.1 can be applied to get a non-trivial guarantees. Specifically,
consider an MAB with 2d arms. Assume the true mean reward vector is r = (1, 1, ..., 1, 0, 0, ..., 0)⊤

and the noise vector is η ∼ N (0, σ2I2d) That is, the first d arms have rewards independently
sampled from N (1, 1) and the rewards for other d arms are independently sampled from N (0, 0).
The stochastic reference policy is set to the uniform one, i.e., µ̂ = ( 1d ,

1
d , ...

1
d )

⊤.

We apply Algorithm 1 to this MAB instance. In the next theorem, we will show that for a specific
ε, the optimal improvement in C (ε) (denoted as ∆̂ε in equation 7) can achieve an improved reward
value of constant level.
Proposition C.1. Assume r = (1, 1, ..., 1, 0, 0, ..., 0)⊤ and noise η ∼ N (0, I2d). For any 0 ≤ ε ≤
1√
d
, with probability at least 1− δ, the improvement of policy value can be lower bounded by

∆̂⊤
ε r ≥ ε

√
d

[
1

2
− σ

(
1 +

√
8 log (2/δ)

d

)]
,

where the improvement vector in C (ε) is defined in equation 7. Therefore, for ε = 1√
d

and d ≥
8 log (2/δ) , with probability at least 1− δ, we can get a constant policy improvement

∆̂⊤
ε r ≥ 1

2
− 2σ.

Proof. We define the optimal improvement vector as

∆∗
ε := argmax

∆∈C(ε)

∆⊤r.
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Then, from the definition of ∆̂ε, we have

∆̂⊤
ε r = ∆̂⊤

ε r̂ − ∆̂⊤
ε η ≥ (∆∗

ε)
⊤
r̂ − ∆̂⊤

ε η = (∆∗
ε)

⊤
r + (∆∗

ε)
⊤
η − ∆̂⊤

ε η ≥ (∆∗
ε)

⊤
r︸ ︷︷ ︸

signal

−

[
sup

∆∈C(ε)

∆⊤η − (∆∗
ε)

⊤
η

]
︸ ︷︷ ︸

noise

.

(25)

In order to lower bound the policy value improvement, it suffices to lower bound the signal part and
upper bound the noise. We denote H = {x ∈ Rd :

∑d
i=1 xi = 0} as a hyperplane in Rd. To deal

with the signal part, it suffices to notice that

C (ε) ⊂ H ∩ Bd
2(ε).

We denote r∥ as the orthogonal projection of r on the H and r⊥ = r − r∥. In the strong signal case,
we have

r∥ =

(
1

2
,
1

2
, ...,

1

2
,−1

2
,−1

2
, ...,−1

2

)⊤

, r⊥ =

(
1

2
,
1

2
, ...,

1

2
,
1

2
,
1

2
, ...,

1

2

)⊤

.

Then, the signal part satisfies

sup
∆∈C(ε)

∆⊤r = sup
∆∈C(ε)

∆⊤r∥ ≤ sup
∆∈H∩Bd

2(ε)

∆⊤r∥ =

(
ε ·

r∥∥∥r∥∥∥2
)⊤

r∥ = ε
∥∥r∥∥∥2 =

ε
√
d

2
. (26)

On the other hand, we notice that when ε ≤ 1√
d
,

ε ·
r∥∥∥r∥∥∥2 =

(
ε√
d
,

ε√
d
, ...,

ε√
d
,− ε√

d
,− ε√

d
, ...,− ε√

d

)⊤

∈ C (ε) .

So actually the inequality in the equation 26 should be an equation, which implies

sup
∆∈C(ε)

∆⊤ =
ε
√
d

2
. (27)

For the noise part, we decompose the noise as η = η⊥ + η∥, where η∥ is the orthogonal projection of
η on H. Then, from C (ε) ⊂ H ∩ Bd

2(ε), one has

sup
∆∈C(ε)

∆⊤η = sup
∆∈C(ε)

∆⊤ (η∥ + η⊥
)
= sup

∆∈C(ε)

∆⊤η∥ ≤ sup
∆∈H∩Bd

2(ε)

∆⊤η∥

=

(
ε ·

η∥∥∥η∥∥∥2
)⊤

η∥ = ε
∥∥η∥∥∥2 ≤ ε ∥η∥2 .

This implies ∆̂⊤
ε r ≥ (∆∗

ε)
⊤
r − [ε ∥η∥2 − (∆∗

ε)
⊤
η]. From our assumption, 1

σ2 ∥η∥22 is a chi-square
random variable with degree d, so from the Example 2.11 in (Wainwright, 2019), we know with
probability at least 1− δ/2, one has

∥η∥22
dσ2

≤ 1 +

√
8 log (2/δ)

d
.

This implies

∥η∥2 ≤

√√√√dσ2

(
1 +

√
8 log (2/δ)

d

)
≤

√
dσ

(
1 +

√
2 log (2/δ)

d

)
.

The last inequality comes from
√
1 + u ≤ 1 + u

2 for positive u. Moreover, since ∆∗
ε is a fixed vector,

we know (∆∗
ε)

⊤
η ∼ N

(
0, σ2 ∥∆∗

ε∥
2
2

)
. So with probability at least 1− δ/2, one has

(∆∗
ε)

⊤
η ≥ −σ ∥∆∗

ε∥2

√
2 log

(
2

δ

)
≥ −σε

√
2 log

(
2

δ

)
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Combining the two terms above, one has with probability at least 1− δ, it holds

ε ∥η∥2−(∆∗
ε)

⊤
η ≤ ε

√
dσ

(
1 +

√
2 log (2/δ)

d

)
+σε

√
2 log

(
2

δ

)
= ε

√
dσ

(
1 +

√
8 log (2/δ)

d

)
.

(28)

Combining equation 25, equation 27 and equation 28, we finish the proof.

D MONTE CARLO COMPUTATION

Algorithm 2 Monte-Carlo method for computing G (ε)

Input: Offline dataset D, the radius value ε ∈ E, the total sample size M and threshold M0.
1. Independently sample M noise vectors, denoted as ηi for i ∈ [M ], where ηi ∼
N0, σ2

i /N(ai), σ
2
i is the noise variance for the i-th arm and N(ai) is the sample size for ai

in D.
2. Solve Xi := sup∆∈C(ε) ∆

⊤ηi for i ∈ [M ] and order them as X(1) ≤ X(2) ≤ ... ≤ X(M).

3. Return X(M−M0+1) as an estimate of G (ε) defined in Definition 3.2.

As discussed in Section 3, we can estimate G (ε) using classical Monte Carlo method. In this
section, we illustrate the detailed implementation. We first sample M i.i.d. noise and then solve
sup∆∈C(ε) ∆

⊤η for each to get M suprema. We eventually select the M0-th largest values of all
suprema as our estimate for the bonus function, where M0 is a pre-computed integer dependent
on M and the pre-determined failure probability δ > 0. Here, the program sup∆∈C(ε) ∆

⊤η is a
second-order cone program and can be efficiently solved via standard off-the shelf libraries (Alizadeh
& Goldfarb, 2003; Boyd & Vandenberghe, 2004; Diamond & Boyd, 2016). The pseudocode for the
Monte-Carlo sampling is in Algorithm 2.

To determine M0, we denote ηi as the i.i.d. noise vector for i ∈ [M ] and Xi = sup∆∈C(ε) ∆
⊤η.

We denote the order statistics of Xi-s as X(1) ≤ X(2) ≤ ... ≤ X(M). Suppose the cumulative
distribution function of Xi is F (x), then from the property of the order statistics, we know the
cumulative distribution function of X(M−M0+1) is

FX(M−M0+1)
(x) =

M∑
j=M−M0+1

Cj
M (F (x))

j
(1− F (x))

M−j
.

We denote q1−δ as the (1 − δ)-lower quantile of the random variable X , then we have
FX(M−M0+1)

(q1−δ) =
∑M

j=M−M0+1 C
j
M (1 − δ)j(δ)M−j . For integer M and δ > 0, we define

Q(M, δ) as the maximal integer M0 such that
∑M

j=M−M0+1 C
j
M (1 − δ)j(δ)M−j ≤ δ. With this

definition, we take a fixed M and a total failure tolerance δ for all ε ∈ E, then we take

M0 = Q

(
M,

δ

2|E|

)
as the threshold number. Under this choice, for any ε ∈ E, with probability at least 1 − δ/2|E|,
it holds X(M−M0+1) > q1−δ/2|E|. On the other hand, with probability 1 − δ/2|E|, it holds that
sup∆∈C(ε) ∆

⊤η ≤ q1−δ/2|E| This implies

sup
∆∈C(ε)

∆⊤η ≤ q1−δ/2|E| < X(M−M0+1)

with probability at least 1− δ/|E|. From a union bound, we know with probability at least 1− δ, the
bound above holds for any ε ∈ E.

E A FINE-GRAINED ANALYSIS TO THE SUBOPTIMALITY

We have shown a problem-dependent upper bound for the suboptimality in equation 12. In this
section, we will give a further upper bound for G (ε) and hence, for the suboptimality. We have the
following theorem. The proof is deferred to Appendix E.1.
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Theorem E.1. For a policy π (deterministic or stochastic), we denote its reward value as V π . TRUST
has the following properties.

1. We denote a comparator policy as a triple (ε,∆, π) such that ε =
∑d

i=1
σ2
i∆

2
i

Ni
, π = µ̂+∆. We

take the discrete candidate set E defined in equation 10. With probability at least 1− δ, for any
stochastic comparator policy (ε,∆, π), the sub-optimality of the output policy of Algorithm 1 can
be upper bounded as

V π − V πTRUST ≤ 2

√√√√2

d∑
i=1

α∆2
iσ

2
i

Ni
log

(
2|E|
δ

)
+ 2min


√√√√ d∑

i=1

α∆2
iσ

2
i

Ni
, 4D

√√√√√log+

4ed
∑d

i=1
α∆2

iσ
2
i

Ni

D2




(29)

where D is defined as any quantity satisfying

D ≥

√
max
i∈[d]

[
σ2
i

Ni
− 2σ2

i

N

]
+

∑d
j=1 Njσ2

j

N2
. (30)

α is the decaying rate defined in equation 10, log+(a) = max(1, log(a)).

2. (Comparison with the optimal policy) We further assume σi = 1 for i ∈ [d] and assume the offline
dataset is generated from the policy µ(·) with mini∈[d] µ(ai) > 0. Without loss of generality we
assume a1 is the optimal arm and denote the optimal policy as π∗. We write

C∗ :=
1

µ(a1)
, Cmin :=

1

mini∈[d] µ(ai)
. (31)

When N ≥ 8Cmin log(d/δ), with probability at least 1− 2δ, one has

V π∗ − V πTRUST ≲

√
Cmin

N
log+

(
dC∗

Cmin

)
+

√
C∗

N
log

(
2|E|
δ

)
. (32)

Specially, when Cmin ≃ C∗, we have with probability at least 1− 2δ,

V π∗ − V πTRUST ≲

√
C∗

N
log

(
2d|E|
δ

)
. (33)

We remark that equation 29 is problem-dependent, and it gives an explicit upper bound for G (⌈ε⌉)
in equation 12. This is derived by first concentrating G (ε) around E sup∆∈C(ε) ∆

⊤η, which is
well-defined as localized Gaussian width or local Gaussian complexity (Koltchinskii, 2006), and then
upper bounding the localized Gaussian width of a convex hull via tools in convex analysis (Bellec,
2019). Different from Theorem 2.1, when π = ai represents a single arm, equation 29 relies not only
on σ2

i /Ni, but on σ2
j /Nj for j ̸= i as well, since the size of trust regions depend on σ2

i /Ni for all
i ∈ [d].

Notably, equation 33 gives an analogous upper bound depending on µ(·) and N , which is comparable
to the bound for LCB in Theorem 2.1 up to constant and logarithmic factors. This indicates that, when
behavioral cloning policy is not too imbalanced, TRUST is guaranteed to achieve the same level of
performance as LCB. In fact, this improvement is remarkable since TRUST is exploring a much larger
policy searching space than LCB, which encompasses all stochastic policies (the whole simplex)
rather than the set of all single arms only. We also remark that both the bound in Theorem 2.1 and
in equation 46 are worst-case upper bound, and in practice, we will show in Section 5 that in some
settings, TRUST can achieve good performance while LCB fails completely.

Is TRUST minimax-optimal? We consider the hard cases in MAB (Rashidinejad et al., 2021)
where LCB achieves the minimax-optimal upper bound and we show for these hard cases, TRUST
will achieve the same sample complexity as LCB up to log and constant factors. More specifically, we
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consider a two-arm MAB A = {1, 2} and the uniform behavioral cloning policy µ(1) = µ(2) = 1/2.
For δ in[0, 1/4], we define M1 and M2 are two MDPs whose reward distributions are as follows.

M1 : r(1) ∼ Bernoulli

(
1

2

)
, r(2) ∼ Bernoulli

(
1

2
+ δ

)
M2 : r(1) ∼ Bernoulli

(
1

2

)
, r(2) ∼ Bernoulli

(
1

2
− δ

)
,

where Bernoulli (p) is the Bernoulli distribution with probability p. The next result is a corollary from
Theorem E.1.

Corollary E.2. We define M1,mdp2 as above for δ ∈ [0, 1/4]. Assume N ≥ Õ(1). Then, we have

1. The minimax optimal lower bound for the suboptimality of LCB is

inf
âLCB∈A

sup
M∈{M1,M2}

ED [r(a∗)− r(âLCB)] ≳

√
C∗

N
, (34)

where ED [·] is the expectation over the offline dataset D.

2. The upper bound for suboptimality of TRUST mathces the lower bound above up to log factor.
Namely, for any M ∈ {M1,M2} , one has

ED [r(a∗)− V πTRUST ] ≲

√
C∗ log(dN)

N
. (35)

The first claim comes from Theorem 2 of (Rashidinejad et al., 2021), while the second claim is a
direct corollary to Theorem E.1.

E.1 PROOF OF THEOREM E.1

Proof. Recall from Theorem 4.1 that for any comparator policy (ε,∆, π) defined above, one has

V π − V πTRUST ≤ 2G (⌈ε⌉) ,

where ⌈ε⌉ := inf {ε′ ∈ E : ε ≤ ε′} . The following lemma upper bounds the quantile of Gaussian
suprema G (ε) for each ε ∈ E. The proof is deferred to Appendix E.2.

Lemma E.3. For ε ∈ E, one can upper bound G (ε) as follows.

G (ε) ≤ min

{
ε ·

√
d , 4D

√
log+

(
4edε2

D2

)}
+

√
2ε2 log

(
2|E|
δ

)
(36)

where log+(a) = max(1, log(a)) and D is a quantity satisfying

D ≥

√
max
i∈[d]

[
σ2
i

Ni
− 2σ2

i

N

]
+

∑d
j=1 Njσ2

j

N2
. (37)

Applying Lemma E.3 to ⌈ε⌉ ∈ E, we obtain

V π − V πTRUST ≤ 2min

{
⌈ε⌉ ·

√
d , 4D

√
log+

(
4ed⌈ε⌉2
D2

)}
+ 2

√
2⌈ε⌉2 log

(
2|E|
δ

)
. (38)

Since ε =
∑d

i=1
σ2
i∆

2
i

Ni
, we know from our discretization scheme in equation 10

⌈ε⌉ ≤ α ·
d∑

i=1

σ2
i∆

2
i

Ni
. (39)
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Bridging equation 39 into equation 38, we obtain our first claim. In order to get the second claim, we
take σi = 1 for i ∈ [d] and ∆ = π∗ − µ̂, which is the vector pointing at the vertex corresponding to
the optimal arm from the uniform reference policy µ̂ defined in equation 5. Then, we have

d∑
i=1

∆2
iσ

2
i

Ni
=

1

N1
− 2

N
+

1

N
=

1

N1
− 1

N
≤ 1

N1
,

where N1 is the sample size for the optimal arm a1. Therefore, we can further bound equation 38 as

V π∗ − V πTRUST ≤ 4D

√
log+

(
4αed

N1D2

)
+ 2

√
2α

N1
log

(
2|E|
δ

)
. (40)

Finally, we take a specific value of D and lower bound N1 via Chernoff bound in Lemma E.7. From
Lemma E.7, we know that when N ≥ 8Cmin log(d/δ), with probability at least 1− δ, we have

Ni ≥
1

2
Nµ(ai) (41)

for any i ∈ [d]. Recall the definition of D in equation 37, we know that D can be arbitrary value

greater than

√
maxi∈[d]

[
σ2
i

Ni
− 2σ2

i

N

]
+

∑d
j=1 Njσ2

j

N . Then, when σi = 1, one has√
max
i∈[d]

[
σ2
i

Ni
− 2σ2

i

N

]
+

∑d
j=1 Njσ2

j

N2
≤
√

1

mini∈[d] Ni
.

We denote Nj = mini∈[d] Ni (when there are multiple minimizers, we arbitrarily pick one). Then,
we have√

max
i∈[d]

[
σ2
i

Ni
− 2σ2

i

N

]
+

∑d
j=1 Njσ2

j

N2
≤

√
1

Nj
≤

√
2

Nµ(aj)
≤
√

2

N ·mini∈[d] µ(ai)
=

√
2Cmin

N
.

Therefore, we take D =
√

2Cmin

N in equation 40 and apply N1 ≥ 1
2Nµ(ai) to obtain

V π∗ − V πTRUST ≤ 4

√
2Cmin

N
log+

(
4αedC∗

Cmin

)
+ 4

√
αC∗

N
log

(
2|E|
δ

)
, (42)

which proves equation 32. Finally, when C∗ ≃ Cmin, one has

V π∗ − V πTRUST ≲

√
C∗

N
log

(
2d|E|
δ

)
.

Therefore, we conclude.

E.2 PROOF OF LEMMA E.3

Proof. Recall that ∆ = (∆1,∆2, ...,∆d)
⊤ is the improvement vector, η = (η1, η2, ..., ηd)

⊤ is the
noise vector, where entries are independent and ηi ∼ N (0, σ2

i /Ni) and Ni is the sample size of arm
ai in the offline dataset. To proceed with the proof, let’s further define

η̃ = (η̃1, η̃2, ..., η̃d)
⊤
, ∆̃ =

(
∆̃1, ∆̃2, ..., ∆̃d

)⊤
, where η̃i = ηi

√
Ni

σi
, ∆̃i =

∆iσi√
Ni

. (43)

With this notation, one has
η̃ ∼ N (0, Id) , η⊤∆ = η̃⊤∆̃.

We also write the equivalent trust region (for ∆̃) as

C̃ (ε) =

{
∆̃ ∈ Rd :

√
Ni

σi
∆̃i + µ̂i ≥ 0,

d∑
i=1

[√
Ni

σi
∆̃i + µ̂i

]
= 1,

∥∥∥∆̃∥∥∥
2
≤ ε

}
, (44)
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where µ̂ = (µ̂1, µ̂2, ..., µ̂d)
⊤ is the policy weight for the reference policy. From the definition above,

one has for any ε > 0,

∆ ∈ C (ε) ⇔ ∆̃ ∈ C̃ (ε) .

Then, we apply Lemma E.4 to sup∆∈C(ε) ∆
⊤η for a ε ∈ E. One has with probability at least 1− δ

|E| ,∣∣∣∣∣ sup
∆∈C(ε)

∆⊤η − E sup
∆∈C(ε)

∆⊤η

∣∣∣∣∣ ≤
√
2ε2 log

(
2|E|
δ

)
.

From a union bound, one immediately has with probability at least 1− δ, for any ε ∈ E, it holds that

sup
∆∈C(ε)

∆⊤η ≤ E sup
∆∈C(ε)

∆⊤η +

√
2ε2 log

(
2|E|
δ

)
. (45)

From the definition of G (ε) in equation 3.2, we know that G (ε) is the minimal quantity that satisfy
equation 45 with probability at least 1− δ. Therefore, one has

G (ε) ≤ E sup
∆∈C(ε)

∆⊤η+

√
2ε2 log

(
2|E|
δ

)
= Eη̃∼N (0,Id)

[
sup

∆̃∈C̃(ε)

∆̃⊤η̃

]
+

√
2ε2 log

(
2|E|
δ

)
∀ε ∈ E.

(46)
Note that, the first term in the RHS of equation 46 is well-defined as localized Gaussian width over
the convex hull defined by the trust region C (ε) (or equivalently, C̃ (ε)). We denote

T :=

{
∆̃ ∈ Rd :

√
Ni

σi
∆̃i + µ̂i ≥ 0,

d∑
i=1

[√
Ni

σi
∆̃i + µ̂i

]
= 1

}
. (47)

We immediately have that T is a convex hull of d points in Rd and the vertices of this convex hull are
the vertices of the simplex in Rd shifted by the reference policy µ̂. In what follows, we plan to apply
Lemma E.5 to the localized Gaussian width of T ∩ εB2. However, T is not subsumed by the unit ball
in Rd, so we need to do some additional scaling. Note that, the zero vector is included in T. Let’s
compute the farthest distance for the vertices of T. We denote the i-th vertex of T as

∆̃ =

(
− σ1√

N1

µ̂1, ...,−
σi−1√
Ni−1

µ̂i−1,
σi√
Ni

(1− µ̂i) ,−
σi+1√
Ni+1

µ̂i+1, ...,−
σd√
Nd

µ̂d

)
. (48)

The ℓ2-norm of this improvement vector is∥∥∥∆̃∥∥∥
2
=

√
σ2
i

Ni
− 2σ2

i

N
+

∑d
i=1 Niσ2

i

N2
,

where N is the total sample size of the offline dataset. Therefore, the maximal radius of T can be
upper bounded by D, where D is any quantity that satisfies

D ≥

√
max
i∈[d]

[
σ2
i

Ni
− 2σ2

i

N

]
+

∑d
j=1 Njσ2

j

N2
. (49)

We denote S = 1
D · T :=

{
1
D · x : x ∈ T

}
. Then, from Lemma E.5, one has

Eη̃∼N (0,Id)

[
sup

∆̃∈C̃(ε)

∆̃⊤η̃

]
= Eη̃∼N (0,Id)

[
sup

∆̃∈T∩εB2

∆̃⊤η̃

]

= D · Eη̃∼N (0,Id)

[
sup

∆̃∈S∩ ε
D ·B2

∆̃⊤η̃

]
(S ∩ ε

D · B2 can be got by scaling T ∩ εB2 bt 1
D )

≤ D ·

[(
4

√
log+

(
4ed

(
ε2

D2
∧ 1

)))
∧
( ε

D

√
d
)]

(Take s = ε
D and M = d in Lemma E.5)

= D ·

[(
4

√
log+

(
4ed

(
ε2

D2

)))
∧
( ε

D

√
d
)]

.

(ε ≤ D for any ε ∈ E)
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This finishes the proof.

E.3 AUXILIARY LEMMAS

Lemma E.4 (Concentration of Gaussian suprema, Exercise 5.10 in (Wainwright, 2019)). Let
{Xθ, θ ∈ T} be a zero-mean Gaussian process, and define Z = supθ∈T Xθ. Then, we have

P[|Z − E[Z]| ≥ δ] ≤ 2 exp

(
− δ2

2σ2

)
,

where σ2 := supθ∈T var (Xθ) is the maximal variance of the process.

Lemma E.5 (Localized Gaussian Width of a Convex Hull, Proposition 1 in (Bellec, 2019)). Let
d ≥ 1,M ≥ 2 and T be the convex hull of M points in Rd. We write B2 =

{
x ∈ Rd : ∥x∥2 ≤ 1

}
and sB2 =

{
s · x : x ∈ Rd, ∥x∥2 ≤ 1

}
. Assume T ⊂ Bd

2(1). Let g ∈ Rd be a standard Gaussian
vector. Then, for all s > 0, one has

E
[

sup
x∈T∩sB2

x⊤g

]
≤
(
4
√
log+ (4eM (s2 ∧ 1))

)
∧
(
s
√
d ∧M

)
, (50)

where log+(a) = max(1, log(a)), a ∧ b = min {a, b} .

Lemma E.6 (Chernoff bound for binomial random variables, Theorem 2.3.1 in (Vershynin, 2020)).
Let Xi be independent Bernoulli random variables with parameters pi. Consider their sum SN =∑N

i=1 Xi and denote its mean by µ = ESN . Then, for any t > µ, we have

P {SN ≥ t} ≤ e−µ
(eµ

t

)t
.

Lemma E.7 (Chernoff bound for offline MAB). Under the setting in Theorem E.1, we have

P
(
Ni ≥

1

2
Nµ(ai) ∀i ∈ [d]

)
≤ 1− d exp

(
−
N ·minj∈[d] µ(aj)

8

)
,

Proof. For arm i ∈ [d], we take µ = Nµ(ai) and t = 1
2Mµ(ai) in Lemma E.6 and obtain

P
(
Ni ≥

1

2
Nµ(ai)

)
≤ exp (−Nµ(ai))·

(
eNµ(ai)
1
2Nµ(ai)

) 1
2Nµ(ai)

= exp

(
Nµ(ai)

[
−1 +

1

2
log(2e)

])
≤ exp

(
−Nµ(ai)

8

)
.

We finish the proof by a union bound for all arms.

F PROOF OF LEMMA B.1

Proof. Recall the definition of ⌈ε⌉ :

⌈ε⌉ := inf {ε′ ∈ E : ε′ ≥ ε} . (51)

We additionally define
⌊ε⌋ := sup {ε′ ∈ E : ε′ < ε} . (52)

Specially, if there is no ε′ ∈ E such that ε′ < ε, then we define ⌊ε⌋ = 0. Then we know for any
ε ≤ ε0 ∈ E (ε0 is the largest possible radius) and a finite set E, it holds that

⌊ε⌋ < ε ≤ ⌈ε⌉, and ε = ⌈ε⌉ if and only if ε ∈ E. (53)
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For any ε ∈ E, recall ∆̂ε is the optimal improvement vector within C (ε) defined in equation 7. It
holds that

∆̂ε : = argmax
∆∈C(ε)

∆⊤r̂ = argmax
∆∈C(ε)

[
∆⊤r̂ − G (ε)

]
(since G (ε) does not depend on ∆)

= argmax
∆∈C(ε)

[
∆⊤r̂ − G (⌈ε⌉)

]
(ε ∈ E, so ⌈ε⌉ = ε)

≤ argmax
ε′∈(⌊ε⌋,⌈ε⌉],∆∈C(ε′)

[
∆⊤r̂ − G (⌈ε′⌉)

]
.

On the other hand, when ε ∈ E and ε′ ∈ (⌊ε⌋ , ⌈ε⌉], one has ⌈ε′⌉ = ⌈ε⌉ = ε, so

argmax
ε′∈(⌊ε⌋,⌈ε⌉],∆∈C(ε′)

[
∆⊤r̂ − G (⌈ε′⌉)

]
= argmax

ε′∈(⌊ε⌋,⌈ε⌉],∆∈C(ε′)

[
∆⊤r̂ − G (⌈ε⌉)

]
≤ argmax

∆∈C(ε)

[
∆⊤r̂ − G (⌈ε⌉)

]
,

where the last inequality comes from the fact that C (ε′) ⊂ C (ε) when ε′ ≤ ⌈ε⌉ = ε by definition of
the trust region in equation 6. Combining two inequalities above, we have for any ε ∈ E,(

ε, ∆̂ε

)
= argmax

ε′∈(⌊ε⌋,⌈ε⌉],∆∈C(ε′)

[
∆⊤r̂ − G (⌈ε′⌉)

]
, (54)

where the variables in RHS above are ε′ and ∆, and Therefore, from the definition of we have(
ε̂∗, ∆̂∗

)
= argmax

ε∈E
argmax

ε′∈(⌊ε⌋,⌈ε⌉],∆∈C(ε′)

[
∆⊤r̂ − G (⌈ε′⌉)

]
= argmax

ε≤ε0,∆∈C(ε)

[
∆⊤r̂ − G (⌈ε⌉)

]
.

This finishes the proof.

G AUGMENTATION WITH LCB

To determine the most effective final policy, we can compare the outputs of the LCB and Algorithm 1
and combine both policies, based on the relative magnitude of their corresponding lower bounds.
Specifically, the combined policy is

πcombined =
âLCB If max

ai∈A
li ≥ w⊤

TRr̂ − G (⌈ε̂∗⌉)−
√

2 log(1/δ)∑d
j=1 Nj/σ2

j

,

wTR If max
ai∈A

li < w⊤
TRr̂ − G (⌈ε̂∗⌉)−

√
2 log(1/δ)∑d
j=1 Nj/σ2

j

,

(55)

where li = r̂i − bi is defined in equation 1 and G (ε) is defined in Definition 3.2. This combined
policy will perform at least as well as LCB with high probability. More specifically, we have
Corollary G.1. We denote the arm chosen by LCB as âLCB. We also denote r(·) as the true reward
of a policy (deterministic or stochastic). With probability at least 1− 3δ, one has

V πcombined ≥ max
ai∈A

li. (56)

Proof. We denote r̂ (âLCB) = râLCB
and r̂(wTR) as the empirical reward of the policy returned by LCB

and Algorithm 1, respectively. Recall the uncertainty term of LCB in equation 1 and of Algorithm 1

in equation 55, we write b(âLCB) = bâLCB
and b(wTR) = G (⌈ε̂∗⌉) +

√
2 log(1/δ)/[

∑d
j=1 Nj/σ2

j ].
Then, from Theorem 4.1, equation 2 and a union bound, we know with probability at least 1− 3δ, it
holds that

r(âLCB) ≥ r̂(âLCB)− b(âLCB), r(wTR) ≥ r̂(wTR)− b(wTR),

which implies

V πcombined ≥ r̂(πcombined)− b(πcombined)

≥ r̂(âLCB)− b(âLCB) (By equation 55)
= max

ai∈A
li. (By the definition of âLCB in equation 3)

Therefore, we conclude.
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H EXPERIMENT DETAILS

We did experiments on Mujoco environment in the D4RL dataset (Fu et al., 2020). All environments
we test on are v3. Since the original D4RL dataset does not include the exact form of logging policies,
we retrain SAC (Haarnoja et al., 2018) on these environment for 1000 episodes and keep record
of the policy in each episode. We test 4 environments in two settings, denoted as ’1-traj-low’ and
’1-traj-high’. In either setting, the offline dataset is generated from 100 policies with one trajectory
from each. In the ’1-traj-low’ setting, the data is generated from the first 100 policies in the training
process of SAC, while in the ’1-traj-high’ setting, it is generated from the policy in (10x + 1)-th
episodes in the training process.

For all experiments on Mujoco, we average the results over 4 random seeds (from 2023 to 2026), and
to run CQL, we use default hyper-parameters in https://github.com/young-geng/CQL
to run 2000 episodes. For TRUST, we run it using a fixed standard deviation level σi = 150 for all
experiments.
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