
A Implementation Details395

A.1 Dataset Description396

QM9 Dataset The QM9 dataset [41] is a significant resource in the field of quantum chemistry,397

offering a single equilibrium conformation and 12 labels that include geometric, energetic, electronic,398

and thermodynamic properties. For the purpose of performance evaluation, we select the following399

properties: HOMO, LUMO, gap, alpha, Cv , mu, R2, and ZPVE.400

COMPAS-1D Dataset The COMPAS-1D dataset is a part of the COMPAS Project, which is an401

acronym for the computational Database of Polycyclic Aromatic Systems. The dataset is specifically402

focused on data-condensed poly-benzenoid hydrocarbons, which are a type of polycyclic aromatic403

hydrocarbons (PAHs) with a unique structure where the benzene rings are connected edge-to-edge.404

The COMPAS-1D [43] contains 8,678 molecules and offers essential computational properties crucial405

for comprehending the behavior of polycyclic aromatic hydrocarbons and other organic molecules406

across various chemical and physical processes.407

A.2 Hyperparameter Settings408

In line with previous methods, we employ grid search to find the optimal hyper-parameters for tasks409

within the QM9 and COMPAS-1D datasets. The specific hyper-parameters are detailed in Table 7. In410

all experiments, we select the checkpoint with the lowest validation loss and report the corresponding411

test set results based on that checkpoint. For the COMPAS-1D dataset, experiments were conducted412

using a single A100 GPU, whereas for the QM9 dataset, the experiments were run on eight A100413

GPUs.414

Table 7: Hyper-paramters for fine-tuning on QM9 and COMPAS-1D Dataset

Hyperparameter Value or description

Learning rate [4e-5, 6e-5, 1e-4, 2e-4, 3e-4, 4e-4]
Batch size [32, 64, 128]
Epochs [40, 60, 80, 100, 200, 300]
Pooler dropout [0.0, 0.1]
Warmup ratio [0.0, 0.06, 0.1]

B Infrastructures415

We utilize an efficient distributed PyTorch framework called Uni-Core [46], specifically designed for416

swiftly developing high-performance PyTorch models [47], particularly those based on Transformer417

architectures[48]. Given the variability in molecule lengths, padding inputs to match the maximum418

molecular length is necessary during training. Consequently, the batch size for model training is419

influenced by the longest molecule in each batch. However, since molecule lengths follow a long-420

tail distribution (with the majority falling within a specific range), we employ dynamic batching421

techniques to enhance GPU utilization. By adjusting batch sizes according to the maximum lengths422

of different batches, we can significantly boost GPU utilization with minimal effort.423

The time consumption of reading data from distributed storage is often overlooked. We employ a424

singular, dedicated process on each computational node to asynchronously replicate the training425

dataset of each epoch onto the host machine. This strategy effectively mitigates time overheads,426

thereby obscuring the duration spent on data reading from distributed storage. To resume the427

corruption due to the infra and other factors effectively, we save model weight and optimizer state for428

every 1k step asynchronously. This means we will lose 1k step training resources in the worst case of429

hardware instability or loss spike during training. Meanwhile, any checkpoints exceeding the most430

recent ten files will be deleted to avoid consuming too much storage space.431

12



C Limitations432

The major limitation of our study pertains to the absence of an exploration of the optimal batch size433

and learning rate. Our investigation primarily focuses on analyzing and delineating the power-law434

relationships among validation loss, model size, dataset size, and computational resources. The435

predictive accuracy of performance aligns well with the scaling curve, indicating that the current436

optimal learning rate and batch size approximate the near-optimal values. However, existing research437

suggests a progressive increase in the optimal batch size with augmented computing resources, while438

the optimal learning rate tends to decrease gradually. It is necessary to note that as we further increase439

the model’s parameters, the final optimal values for learning rate and batch size may fall outside the440

currently identified range. Consequently, investigating the scaling law for optimal batch size and441

learning rate is also paramount.442

13


