
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

Appendix Contents

• A.1 Algorithm and code

• A.2 Additional Experimental Results

• A.3 Proofs of Theorems

• A.4 Model Architecture and Experiment Details

A.1 ALGORITHM AND CODE

A.1.1 PSEUDO CODE

Algorithm 1 Stochastic Layer-wise Learning
Require: Training batch data (x, y), learning rate ⌘, random projection matrix Rl ⇠ N
Ensure: Updated network weights ✓

1: for each layer l from 1 to L� 1 do

2: Detach From above layer: hl�1 = hl�1.detach()
3: Update activation: hl  f(hl�1, ✓l)
4: Approximate @hl:

5: Random Projection: vl = dp(Rl)hl or vl = dp(Rl)[hl, y]
6: Loss: Ll  LPred(vl, y) + LBC(softmax(vl), softmax(vl�1))
7: Activation drift: "l  @Ll

@hl

8: Weight Update: ✓l  ✓l � ⌘ · @hl
@✓l

"l
9: Clear unnecessary tensors

10: end for

11: hL�1 = hL�1.detach()
12: hL  f(hL�1, ✓L)
13: Loss: LL  LPred(hL, y) + Lfa(hL, vL�1)
14: ✓L  ✓L � ⌘ · @LL

@✓L

Activation drift is The first term (blue) captures the global contributions of activation hi to the global
loss in Eq:2.

A.1.2 PYTHON CODE FOR BHATTACHARYYA COEFFICIENT

Listing 1: Loss function
1 def L_BC_per(q: torch.Tensor, p: torch.Tensor,
2 reduction: str = "mean",
3 eps: float = 1e-12,
4 detach_p: bool = True) -> torch.Tensor:
5 """
6 q, p: [B, K] probabilities (nonnegative; rows ˜ sum to 1).
7 """
8 if detach_p:
9 p = p.detach()

10 q = (q.clamp_min(eps) / q.clamp_min(eps).sum(dim=-1, keepdim=True))
11 p = (p.clamp_min(eps) / p.clamp_min(eps).sum(dim=-1, keepdim=True))
12 # log BC via log-sum-exp for stability
13 log_bc = torch.logsumexp(0.5 * (q.log() + p.log()), dim=-1)
14 loss_per = -log_bc
15 return (loss_per.mean() if reduction == "mean"
16 else loss_per.sum() if reduction == "sum"
17 else loss_per)
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A.2 ADDITIONAL EXPERIMENTAL RESULTS

A.2.1 SMALL CNN

Method Model CIFAR-10 CIFAR-100

BP CNNApolinario et al. (2024) 87.57 ± 0.13 62.25 ± 0.29
DFA CNNApolinario et al. (2024) 71.53 ± 0.38 44.93 ± 0.52
PEPITA CNNDellaferrera & Kreiman (2022) 56.33 ± 1.35 27.56 ± 0.60
LLS CNNApolinario et al. (2024) 84.10 ± 0.27 55.32 ± 0.38
SVP CNN 87.48 ± 0.32 59.74 ± 0.27

Table A4: Comparison of different methods on CIFAR-10 and CIFAR-100 using a 3-layer CNN. All
methods are evaluated under the same network structure for a fair comparison.

A.2.2 ABLATION STUDY ON CIFAR-100

Figure A6: Ablation on CIFAR-100 showing that combining feature alignment loss (Lfa) and batch
normalization significantly improves test accuracy and convergence over variants without Lfa or BN.
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A.2.3 LAYER-WISE LOSS AND ACCURACY

Figure A7: Figure X. Layer-wise training dynamics under SLL. Top: Learning curves for training
dataset; bottom: earning curves for test dataset. Left: prediction loss Lpred on projected codes
v` = R`h`. Middle: classification accuracy from the head on v`. Right: Bhattacharyya alignment
loss LBC between induced posteriors (q`, p`). Curves are shown per layer; deeper layers achieve
lower Lpred and LBC and higher accuracy, indicating progressive local learning and strengthened
inter-layer consistency without cross-layer backpropagation.

A.3 PROOF OF THEOREMS

A.3.1 THEOREM 1: LAYER-WISE ELBO PROVIDES A VALID VARIATIONAL BOUND

Let LNN be the global Evidence Lower Bound (ELBO) of the network:

ENN = Eq[log p(y | hL)]�DKL(q(H)kp(H)). (6)

Then, the sum of layer-wise ELBOs in SVP provides a valid lower bound:

1

L

LX

i=1

Ei  ENN . (7)

Proof. We start with the marginal likelihood:

log p(y|x) = log

Z
p(y, h1, h2, ..., hL|x) dh1 . . . dhL. (8)

Here, we define H = HL = {h1, h2, ..., hL} as the set of activations. Introducing the variational
approximation q(H|x, y), we have:

log p(y|x) = log

Z
p(y,H|x)
q(H|x, y)q(H|x, y) dh1 . . . dhL. (9)

Applying Jensen’s inequality (since logarithm is a concave function):

log p(y|x) �
Z

log
p(y,H|x)
q(H|x, y)q(H|x, y) dh1 . . . dhL = Eq(H|x,y)


log

p(y,H|x)
q(H|x, y)

�
. (10)
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Using the joint probability factorization:

p(y,H|x) =
L+1Y

i=1

p(hi|hi�1, x), (11)

where h0 = x and hL+1 = y by convention.

Thus, we obtain the global ELBO:

ENN = Eq(H|x,y)

"
log p(y|hL, x) +

LX

i=1

log p(hi|hi�1, x)� log q(H|x, y)
#
. (12)

Using the variational factorization assumption in SLL:

q(H|x, y) =
LY

i=1

q(hi|hi�1, x, y), (Assumption 2)

where again h0 = x.

From the Assumption 1,2, the global ELBO can be rewritten as:

ENN = Eq(H|x,y)

"
log p(y|hL, x) +

LX

i=1

log p(hi|hi�1, x)�
LX

i=1

log q(hi|hi�1, x, y)

#
(13)

= Eq(H|x,y) [log p(y|hL, x)] +
LX

i=1

Eq(H|x,y) [log p(hi|hi�1, x)� log q(hi|hi�1, x, y)] . (14)

We can rewrite this in terms of KL divergence:

ENN = Eq(H|x,y) [log p(y|hL, x)]�
LX

i=1

Eq(H|x,y) [log q(hi|hi�1, x, y)� log p(hi|hi�1, x)] . (15)

where the expectation of the KL divergence terms can be rewritten as:

Eq(H|x,y) [log q(hi|hi�1, x, y)� log p(hi|hi�1, x)] (16)
=Eq(Hi|x,y) [DKL(q(hi|hi�1, x, y)kp(hi|hi�1, x))] . (17)

Therefore, the global ELBO becomes:

ENN = Eq(H|x,y) [log p(y|hL, x)]�
LX

i=1

Eq(Hi|x,y) [DKL(q(hi|hi�1, x, y)kp(hi|hi�1, x))] . (18)

Now, let’s define the layer-wise ELBO for each layer i:

Ei = Eq(Hi|x,y) [log p(y|hi, x)]� Eq(Hi|x,y) [DKL(q(hi|hi�1, x, y)kp(hi|hi�1, x))] . (19)

Summing the layer-wise ELBOs:
LX

i=1

Ei =
LX

i=1

Eq(Hi|x,y) [log p(y|hi, x)]�
LX

i=1

Eq(Hi|x,y) [DKL(q(hi|hi�1, x, y)kp(hi|hi�1, x))] .

(20)

Assumption 3: Monotone predictive gain under consistent measure. This assumption is well-
founded in established theoretical results showing that neural network expressivity grows exponen-
tially with depth, with deeper representations providing exponentially more representational capacity
than shallow ones Telgarsky (2016); Eldan & Shamir (2016). Then we assume: For all i < L:

Eq(hi|x,y)[log p(y|hi, x)]  Eq(hL|x,y)[log p(y|hL, x)] (Assumption 3)
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Assumption 4: KL budget constraint. This constraint ensures that the accumulated KL regulariza-
tion cost across all layers does not exceed the total predictive improvement gained from using the full
network depth, preventing the variational bound from becoming arbitrarily loose due to excessive
regularization. So, we assume:

L� 1

L

LX

i=1

Eq(hi�1|x,y)

⇥
DKL

�
q(hi|hi�1, x, y)kp(hi|hi�1, x)

�⇤

 1

L

LX

i=1

�
Eq(hL|x,y)[log p(y|hL, x)]� Eq(hi|x,y)[log p(y|hi, x)]

�
(Assumption 4)

Proof. Step 1: Using the Markov factorization, the global ELBO becomes:
ENN = Eq(hL|x,y)[log p(y|hL, x)]

�
LX

i=1

Eq(hi�1|x,y)

⇥
DKL

�
q(hi|hi�1, x, y)kp(hi|hi�1, x)

�⇤
(21)

where q(hL|x, y) is the marginal of the joint distribution q(H|x, y) under the Markov factorization.

Step 2: Define
Ai := Eq(hi|x,y)[log p(y|hi, x)] (22)

Ki := Eq(hi�1|x,y)

⇥
DKL

�
q(hi|hi�1, x, y)kp(hi|hi�1, x)

�⇤
� 0 (23)

Then:
Ei = Ai �Ki (24)

ENN = AL �
LX

i=1

Ki (25)

Step 3: Compute the difference:

1

L

LX

i=1

Ei � ENN =
1

L

LX

i=1

(Ai �Ki)�
 
AL �

LX

i=1

Ki

!
(26)

=
1

L

LX

i=1

Ai �AL �
1

L

LX

i=1

Ki +
LX

i=1

Ki (27)

=
1

L

LX

i=1

Ai �AL +
L� 1

L

LX

i=1

Ki (28)

= � 1

L

LX

i=1

(AL �Ai) +
L� 1

L

LX

i=1

Ki (29)

Step 4: Apply the assumptions:

• By Assumption 3: Each AL �Ai � 0, so � 1
L

PL
i=1(AL �Ai)  0

• By Assumption 4: L�1
L

PL
i=1 Ki  1

L

PL
i=1(AL �Ai). Justification: On average across

layers, the extra coding cost—quantified by the KL between q and p, i.e., L�1
L

PL
i=1 Ki—of

shaping the latents must be no larger than the predictive gain—the increase in expected
log-likelihood, i.e., 1

L

PL
i=1(AL � Ai). In short, depth’s benefit pays for its inference

complexity.

Step 5: Conclude:

1

L

LX

i=1

Ei � ENN = � 1

L

LX

i=1

(AL �Ai) +
L� 1

L

LX

i=1

Ki  0 (30)
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Therefore: 1
L

PL
i=1 Ei  ENN

This completes the proof that the mean of layer-wise ELBOs provides a valid lower bound for the
global ELBO.

A.3.2 THEOREM 2: MI PRESERVATION OF RANDOM PROJECTION

Let hi = fi(hi�1) 2 Rd
be the deterministic activation at layer i, and define the projected represen-

tation vi = Rihi using the fixed random matrix Ri ⇠ N (0, 1/d0). Assume hi has bounded second

moments. Let n denote the effective number of distinct activation patterns in the support of the

distribution of hi.” Then, for any " 2 (0, 1), if d0 = O("�2 log n), the mutual information satisfies,

with high probability over Ri,

I(x; vi) � I(x;hi)� �("), (31)

where �(")! 0 as "! 0, and x denotes the network input.

Proof. For any random variables X and Y , the mutual information is defined as:

I(X;Y ) = H(Y )�H(Y |X) (32)

Since hi is a deterministic function of x, we have H(hi|x) = 0, thus:

I(x;hi) = H(hi) (33)

For the projected representation, given x, vi|x follows a Gaussian distribution with entropy:

H(vi|x) =
d0

2
log(2⇡e

|hi(x)|2
d0

) (34)

By the Johnson-Lindenstrauss lemma Johnson et al. (1984), for any two points hi(x1) and hi(x2),
with high probability:

(1� ")khi(x1)� hi(x2)k2  kvi(x1)� vi(x2)k2  (1 + ")khi(x1)� hi(x2)k2 (35)

when d0 = O("�2 log n).

For Gaussian distributions with covariance ⌃ = 1
d0 Id0 , the KL divergence is:

DKL(p(vi|x1)|p(vi|x2)) =
d0

2
kRihi(x1)�Rihi(x2)k2 (36)

The preservation of distances directly implies preservation of distinguishability between different
inputs. By discretizing the spaces of hi and vi and applying quantization theory, we can derive:

I(x; vi) � (1� "0)I(x;hi)� C"0 log(1/"0) (37)

where "0 = O(") and C is a constant depending on the bounded second moments of hi.

Define �(") = "0I(x;hi) + C"0 log(1/"0). Since I(x;hi) is bounded by our assumptions, �(")! 0
as "! 0. Therefore, with high probability over the choice of Ri:

I(x; vi) � I(x;hi)� �(") (38)

where �(")! 0 as "! 0.

A.4 MODEL ARCHITECTURE AND EXPERIMENT DETAILS

A.4.1 COMPUTER RESOURCES

All experiments were conducted on a single NVIDIA A100 GPU with 40GB of memory. No
multi-GPU or distributed training was used.
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A.4.2 DATASETS

In this paper, we evaluate SVP on a range of benchmark datasets.

• MNIST is a handwritten digit image dataset over 10 classes including 60,000 images for
training and 10,000 images for testing. Each image is a 28 × 28 gray-scale image.

• Fashion MNIST contains fashion items images such as clothing and shoes. It consists of a
training set of 60,000 grayscale images and a test set of 10,000 images. Each image has a
28 × 28 size and is categorized into 10 classes.

• CIFAR-10 consists of 32 × 32 RGB images for object recognition with 50,000 images for
training and 10,000 images for testing. It has 10 classes, with 5,000 training and 1,000
testing images per class.

• CIFAR-100 comprises a total of 60,000 32 × 32 RGB images distributed across 100 classes.
Within each class, 500 images are allocated for training, while 100 images are for testing.

• Tiny-ImageNet is a downsampled subset of ImageNet to a size of 64 × 64. This dataset
consists of 200 classes and each class contains 500 images for training and 100 images for
testing.

• ImageNet-1Kis a large-scale image classification dataset containing over 1.28 million
training images and 50,000 validation images across 1,000 classes. Images are typically
resized to 224 × 224 pixels for training.

A.4.3 MLP

Architecture For MNIST, we use a 2-layer MLP with 800 neurons per layer and ReLU activations,
followed by dropout. For CIFAR-10 and CIFAR-100, we adopt a 3-layer MLP with 1000 neurons per
layer, also using ReLU activations and dropout regularization.

Experimental Details. During training, we apply random horizontal flipping and normalization as
standard data augmentation. Models are optimized using the Adamax optimizer with a learning rate
of 0.001, trained for 100 epochs across all datasets.

A.4.4 CNN

The architecture and training configurations used for CNN experiments are summarized in Table A5.
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Dataset Network Architecture Training Details

FMNIST
SIZE: 28⇥28
CLASS: 10

Conv64k3 - MaxPool2 - Conv128k3 - Max-
Pool2 - Conv256k3 - Conv256k3 - Max-
Pool2 - Conv512k3 - MaxPool2 - FC10

Data Aug: Normalize
Optimizer: Adam
Learning Rate: 0.003
Batch Size: 128
Epochs: 100

CIFAR10/100
SIZE: 32⇥32
CLASS: 100

Conv256k3 - MaxPool2 - Conv512k3 -
MaxPool2 - Conv512k3 - Conv1024k3 -
MaxPool2 - Conv1024k3 - MaxPool2 -
Conv1024k3 - Conv1024k3 - FC2048 -
FC100

Data Aug: Crop, Flip, Au-
toAugment, Normalize
Optimizer: Adam
Learning Rate: 0.003
Batch Size: 128
Epochs: 500

Imagenette
SIZE: 224⇥224

CLASS: 10
Conv64k3 - MaxPool2 - Conv128k3 -
MaxPool2 - Conv256k3 - Conv256k3 -
MaxPool2 - Conv512k3 - MaxPool2 -
Conv512k3 - Conv1024k3 - FC10

Data Aug: Crop, Flip, Nor-
malize
Optimizer: Adam
Learning Rate: 0.001
Batch Size: 128
Epochs: 500

Tiny-Imagenet
SIZE: 64⇥64
CLASS: 200

Conv64k3 - MaxPool2 - Conv128k3 -
MaxPool2 - Conv256k3 - Conv256k3 -
MaxPool2 - Conv512k3 - MaxPool2 -
Conv512k3 - Conv1024k3 - FC4096 -
FC200

Data Aug: Crop, Flip, Nor-
malize
Optimizer: Adam
Learning Rate: 0.001
Batch Size: 128
Epochs: 500

Table A5: Network architectures and training configurations for CNNs.

A.4.5 VIT

Details of the ViT architecture and experimental setup are provided in Table A6.

CIFAR10/100
SIZE: 32⇥32
CLASS: 100

blocks=7,
heads=12,
mlp-ratio=2,
embedding=384

Data Aug: Crop, Flip, Au-
toAugment, Normalize
Optimizer: AdamW
Learning Rate: 0.003
Batch Size: 128
Epochs: 500

Imagenette
SIZE: 224⇥224

CLASS: 10
blocks=7,
heads=12,
mlp-ratio=2,
embedding=384

Data Aug: Crop, Flip, Nor-
malize
Optimizer: AdamW
Learning Rate: 0.001
Batch Size: 128
Epochs: 500

Imagenet
SIZE: 224⇥224
CLASS: 1000

blocks=12,
heads=6,
mlp-ratio=3,
embedding=384

Data Aug: Crop, Flip, Nor-
malize
Optimizer: AdamW
Learning Rate: 0.0005
Batch Size: 256
Epochs: 500

Table A6: Network architectures and training configurations for ViTs.
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