
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

Appendix Contents

• A.1 Algorithm and code

• A.2 Additional Experimental Results

• A.3 Proofs of Theorems

• A.4 Model Architecture and Experiment Details

A.1 ALGORITHM AND CODE

A.1.1 PSEUDO CODE

Algorithm 1 Stochastic Layer-wise Learning
Require: Training batch data (x, y), learning rate ⌘, random projection matrix Rl ⇠ N
Ensure: Updated network weights ✓

1: for each layer l from 1 to L� 1 do

2: Detach From above layer: hl�1 = hl�1.detach()
3: Update activation: hl f(hl�1, ✓l)
4: Approximate @hl:

5: Random Projection: vl = dp(Rl)hl or vl = dp(Rl)[hl, y]
6: Loss: Ll LPred(vl, y) + LBC(softmax(vl), softmax(vl�1))
7: Activation drift: "l @Ll

@hl

8: Weight Update: ✓l ✓l � ⌘ · @hl
@✓l

"l
9: Clear unnecessary tensors

10: end for

11: hL�1 = hL�1.detach()
12: hL f(hL�1, ✓L)
13: Loss: LL LPred(hL, y) + Lfa(hL, vL�1)
14: ✓L ✓L � ⌘ · @LL

@✓L

Activation drift is The first term (blue) captures the global contributions of activation hi to the global
loss in Eq:2.

A.1.2 PYTHON CODE FOR BHATTACHARYYA COEFFICIENT

Listing 1: Loss function
1 def L_BC_per(q: torch.Tensor, p: torch.Tensor,
2 reduction: str = "mean",
3 eps: float = 1e-12,
4 detach_p: bool = True) -> torch.Tensor:
5 """
6 q, p: [B, K] probabilities (nonnegative; rows ˜ sum to 1).
7 """
8 if detach_p:
9 p = p.detach()

10 q = (q.clamp_min(eps) / q.clamp_min(eps).sum(dim=-1, keepdim=True))
11 p = (p.clamp_min(eps) / p.clamp_min(eps).sum(dim=-1, keepdim=True))
12 # log BC via log-sum-exp for stability
13 log_bc = torch.logsumexp(0.5 * (q.log() + p.log()), dim=-1)
14 loss_per = -log_bc
15 return (loss_per.mean() if reduction == "mean"
16 else loss_per.sum() if reduction == "sum"
17 else loss_per)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 ADDITIONAL EXPERIMENTAL RESULTS

A.2.1 SMALL CNN

Method Model CIFAR-10 CIFAR-100

BP CNNApolinario et al. (2024) 87.57 ± 0.13 62.25 ± 0.29
DFA CNNApolinario et al. (2024) 71.53 ± 0.38 44.93 ± 0.52
PEPITA CNNDellaferrera & Kreiman (2022) 56.33 ± 1.35 27.56 ± 0.60
LLS CNNApolinario et al. (2024) 84.10 ± 0.27 55.32 ± 0.38
SVP CNN 87.48 ± 0.32 59.74 ± 0.27

Table A4: Comparison of different methods on CIFAR-10 and CIFAR-100 using a 3-layer CNN. All
methods are evaluated under the same network structure for a fair comparison.

A.2.2 ABLATION STUDY ON CIFAR-100

Figure A6: Ablation on CIFAR-100 showing that combining feature alignment loss (Lfa) and batch
normalization significantly improves test accuracy and convergence over variants without Lfa or BN.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2.3 LAYER-WISE LOSS AND ACCURACY

Figure A7: Figure X. Layer-wise training dynamics under SLL. Top: Learning curves for training
dataset; bottom: earning curves for test dataset. Left: prediction loss Lpred on projected codes
v` = R`h`. Middle: classification accuracy from the head on v`. Right: Bhattacharyya alignment
loss LBC between induced posteriors (q`, p`). Curves are shown per layer; deeper layers achieve
lower Lpred and LBC and higher accuracy, indicating progressive local learning and strengthened
inter-layer consistency without cross-layer backpropagation.

A.3 PROOF OF THEOREMS

A.3.1 THEOREM 1: LAYER-WISE ELBO PROVIDES A VALID VARIATIONAL BOUND

Let LNN be the global Evidence Lower Bound (ELBO) of the network:

ENN = Eq[log p(y | hL)]�DKL(q(H)kp(H)). (6)

Then, the sum of layer-wise ELBOs in SVP provides a valid lower bound:

1

L

LX

i=1

Ei  ENN . (7)

Proof. We start with the marginal likelihood:

log p(y|x) = log

Z
p(y, h1, h2, ..., hL|x) dh1 . . . dhL. (8)

Here, we define H = HL = {h1, h2, ..., hL} as the set of activations. Introducing the variational
approximation q(H|x, y), we have:

log p(y|x) = log

Z
p(y,H|x)
q(H|x, y)q(H|x, y) dh1 . . . dhL. (9)

Applying Jensen’s inequality (since logarithm is a concave function):

log p(y|x) �
Z

log
p(y,H|x)
q(H|x, y)q(H|x, y) dh1 . . . dhL = Eq(H|x,y)


log

p(y,H|x)
q(H|x, y)

�
. (10)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Using the joint probability factorization:

p(y,H|x) =
L+1Y

i=1

p(hi|hi�1, x), (11)

where h0 = x and hL+1 = y by convention.

Thus, we obtain the global ELBO:

ENN = Eq(H|x,y)

"
log p(y|hL, x) +

LX

i=1

log p(hi|hi�1, x)� log q(H|x, y)
#
. (12)

Using the variational factorization assumption in SLL:

q(H|x, y) =
LY

i=1

q(hi|hi�1, x, y), (Assumption 2)

where again h0 = x.

From the Assumption 1,2, the global ELBO can be rewritten as:

ENN = Eq(H|x,y)

"
log p(y|hL, x) +

LX

i=1

log p(hi|hi�1, x)�
LX

i=1

log q(hi|hi�1, x, y)

#
(13)

= Eq(H|x,y) [log p(y|hL, x)] +
LX

i=1

Eq(H|x,y) [log p(hi|hi�1, x)� log q(hi|hi�1, x, y)] . (14)

We can rewrite this in terms of KL divergence:

ENN = Eq(H|x,y) [log p(y|hL, x)]�
LX

i=1

Eq(H|x,y) [log q(hi|hi�1, x, y)� log p(hi|hi�1, x)] . (15)

where the expectation of the KL divergence terms can be rewritten as:

Eq(H|x,y) [log q(hi|hi�1, x, y)� log p(hi|hi�1, x)] (16)
=Eq(Hi|x,y) [DKL(q(hi|hi�1, x, y)kp(hi|hi�1, x))] . (17)

Therefore, the global ELBO becomes:

ENN = Eq(H|x,y) [log p(y|hL, x)]�
LX

i=1

Eq(Hi|x,y) [DKL(q(hi|hi�1, x, y)kp(hi|hi�1, x))] . (18)

Now, let’s define the layer-wise ELBO for each layer i:

Ei = Eq(Hi|x,y) [log p(y|hi, x)]� Eq(Hi|x,y) [DKL(q(hi|hi�1, x, y)kp(hi|hi�1, x))] . (19)

Summing the layer-wise ELBOs:
LX

i=1

Ei =
LX

i=1

Eq(Hi|x,y) [log p(y|hi, x)]�
LX

i=1

Eq(Hi|x,y) [DKL(q(hi|hi�1, x, y)kp(hi|hi�1, x))] .

(20)

Assumption 3: Monotone predictive gain under consistent measure. This assumption is well-
founded in established theoretical results showing that neural network expressivity grows exponen-
tially with depth, with deeper representations providing exponentially more representational capacity
than shallow ones Telgarsky (2016); Eldan & Shamir (2016). Then we assume: For all i < L:

Eq(hi|x,y)[log p(y|hi, x)]  Eq(hL|x,y)[log p(y|hL, x)] (Assumption 3)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Assumption 4: KL budget constraint. This constraint ensures that the accumulated KL regulariza-
tion cost across all layers does not exceed the total predictive improvement gained from using the full
network depth, preventing the variational bound from becoming arbitrarily loose due to excessive
regularization. So, we assume:

L� 1

L

LX

i=1

Eq(hi�1|x,y)

⇥
DKL

�
q(hi|hi�1, x, y)kp(hi|hi�1, x)

�⇤

 1

L

LX

i=1

�
Eq(hL|x,y)[log p(y|hL, x)]� Eq(hi|x,y)[log p(y|hi, x)]

�
(Assumption 4)

Proof. Step 1: Using the Markov factorization, the global ELBO becomes:
ENN = Eq(hL|x,y)[log p(y|hL, x)]

�
LX

i=1

Eq(hi�1|x,y)

⇥
DKL

�
q(hi|hi�1, x, y)kp(hi|hi�1, x)

�⇤
(21)

where q(hL|x, y) is the marginal of the joint distribution q(H|x, y) under the Markov factorization.

Step 2: Define
Ai := Eq(hi|x,y)[log p(y|hi, x)] (22)

Ki := Eq(hi�1|x,y)

⇥
DKL

�
q(hi|hi�1, x, y)kp(hi|hi�1, x)

�⇤
� 0 (23)

Then:
Ei = Ai �Ki (24)

ENN = AL �
LX

i=1

Ki (25)

Step 3: Compute the difference:

1

L

LX

i=1

Ei � ENN =
1

L

LX

i=1

(Ai �Ki)�

AL �

LX

i=1

Ki

!
(26)

=
1

L

LX

i=1

Ai �AL �
1

L

LX

i=1

Ki +
LX

i=1

Ki (27)

=
1

L

LX

i=1

Ai �AL +
L� 1

L

LX

i=1

Ki (28)

= � 1

L

LX

i=1

(AL �Ai) +
L� 1

L

LX

i=1

Ki (29)

Step 4: Apply the assumptions:

• By Assumption 3: Each AL �Ai � 0, so � 1
L

PL
i=1(AL �Ai)  0

• By Assumption 4: L�1
L

PL
i=1 Ki  1

L

PL
i=1(AL �Ai). Justification: On average across

layers, the extra coding cost—quantified by the KL between q and p, i.e., L�1
L

PL
i=1 Ki—of

shaping the latents must be no larger than the predictive gain—the increase in expected
log-likelihood, i.e., 1

L

PL
i=1(AL � Ai). In short, depth’s benefit pays for its inference

complexity.

Step 5: Conclude:

1

L

LX

i=1

Ei � ENN = � 1

L

LX

i=1

(AL �Ai) +
L� 1

L

LX

i=1

Ki  0 (30)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Therefore: 1
L

PL
i=1 Ei  ENN

This completes the proof that the mean of layer-wise ELBOs provides a valid lower bound for the
global ELBO.

A.3.2 THEOREM 2: MI PRESERVATION OF RANDOM PROJECTION

Let hi = fi(hi�1) 2 Rd
be the deterministic activation at layer i, and define the projected represen-

tation vi = Rihi using the fixed random matrix Ri ⇠ N (0, 1/d0). Assume hi has bounded second

moments. Let n denote the effective number of distinct activation patterns in the support of the

distribution of hi.” Then, for any " 2 (0, 1), if d0 = O("�2 log n), the mutual information satisfies,

with high probability over Ri,

I(x; vi) � I(x;hi)� �("), (31)

where �(")! 0 as "! 0, and x denotes the network input.

Proof. For any random variables X and Y , the mutual information is defined as:

I(X;Y) = H(Y)�H(Y |X) (32)

Since hi is a deterministic function of x, we have H(hi|x) = 0, thus:

I(x;hi) = H(hi) (33)

For the projected representation, given x, vi|x follows a Gaussian distribution with entropy:

H(vi|x) =
d0

2
log(2⇡e

|hi(x)|2
d0

) (34)

By the Johnson-Lindenstrauss lemma Johnson et al. (1984), for any two points hi(x1) and hi(x2),
with high probability:

(1� ")khi(x1)� hi(x2)k2  kvi(x1)� vi(x2)k2  (1 + ")khi(x1)� hi(x2)k2 (35)

when d0 = O("�2 log n).

For Gaussian distributions with covariance ⌃ = 1
d0 Id0 , the KL divergence is:

DKL(p(vi|x1)|p(vi|x2)) =
d0

2
kRihi(x1)�Rihi(x2)k2 (36)

The preservation of distances directly implies preservation of distinguishability between different
inputs. By discretizing the spaces of hi and vi and applying quantization theory, we can derive:

I(x; vi) � (1� "0)I(x;hi)� C"0 log(1/"0) (37)

where "0 = O(") and C is a constant depending on the bounded second moments of hi.

Define �(") = "0I(x;hi) + C"0 log(1/"0). Since I(x;hi) is bounded by our assumptions, �(")! 0
as "! 0. Therefore, with high probability over the choice of Ri:

I(x; vi) � I(x;hi)� �(") (38)

where �(")! 0 as "! 0.

A.4 MODEL ARCHITECTURE AND EXPERIMENT DETAILS

A.4.1 COMPUTER RESOURCES

All experiments were conducted on a single NVIDIA A100 GPU with 40GB of memory. No
multi-GPU or distributed training was used.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.4.2 DATASETS

In this paper, we evaluate SVP on a range of benchmark datasets.

• MNIST is a handwritten digit image dataset over 10 classes including 60,000 images for
training and 10,000 images for testing. Each image is a 28 × 28 gray-scale image.

• Fashion MNIST contains fashion items images such as clothing and shoes. It consists of a
training set of 60,000 grayscale images and a test set of 10,000 images. Each image has a
28 × 28 size and is categorized into 10 classes.

• CIFAR-10 consists of 32 × 32 RGB images for object recognition with 50,000 images for
training and 10,000 images for testing. It has 10 classes, with 5,000 training and 1,000
testing images per class.

• CIFAR-100 comprises a total of 60,000 32 × 32 RGB images distributed across 100 classes.
Within each class, 500 images are allocated for training, while 100 images are for testing.

• Tiny-ImageNet is a downsampled subset of ImageNet to a size of 64 × 64. This dataset
consists of 200 classes and each class contains 500 images for training and 100 images for
testing.

• ImageNet-1Kis a large-scale image classification dataset containing over 1.28 million
training images and 50,000 validation images across 1,000 classes. Images are typically
resized to 224 × 224 pixels for training.

A.4.3 MLP

Architecture For MNIST, we use a 2-layer MLP with 800 neurons per layer and ReLU activations,
followed by dropout. For CIFAR-10 and CIFAR-100, we adopt a 3-layer MLP with 1000 neurons per
layer, also using ReLU activations and dropout regularization.

Experimental Details. During training, we apply random horizontal flipping and normalization as
standard data augmentation. Models are optimized using the Adamax optimizer with a learning rate
of 0.001, trained for 100 epochs across all datasets.

A.4.4 CNN

The architecture and training configurations used for CNN experiments are summarized in Table A5.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Dataset Network Architecture Training Details

FMNIST
SIZE: 28⇥28
CLASS: 10

Conv64k3 - MaxPool2 - Conv128k3 - Max-
Pool2 - Conv256k3 - Conv256k3 - Max-
Pool2 - Conv512k3 - MaxPool2 - FC10

Data Aug: Normalize
Optimizer: Adam
Learning Rate: 0.003
Batch Size: 128
Epochs: 100

CIFAR10/100
SIZE: 32⇥32
CLASS: 100

Conv256k3 - MaxPool2 - Conv512k3 -
MaxPool2 - Conv512k3 - Conv1024k3 -
MaxPool2 - Conv1024k3 - MaxPool2 -
Conv1024k3 - Conv1024k3 - FC2048 -
FC100

Data Aug: Crop, Flip, Au-
toAugment, Normalize
Optimizer: Adam
Learning Rate: 0.003
Batch Size: 128
Epochs: 500

Imagenette
SIZE: 224⇥224

CLASS: 10
Conv64k3 - MaxPool2 - Conv128k3 -
MaxPool2 - Conv256k3 - Conv256k3 -
MaxPool2 - Conv512k3 - MaxPool2 -
Conv512k3 - Conv1024k3 - FC10

Data Aug: Crop, Flip, Nor-
malize
Optimizer: Adam
Learning Rate: 0.001
Batch Size: 128
Epochs: 500

Tiny-Imagenet
SIZE: 64⇥64
CLASS: 200

Conv64k3 - MaxPool2 - Conv128k3 -
MaxPool2 - Conv256k3 - Conv256k3 -
MaxPool2 - Conv512k3 - MaxPool2 -
Conv512k3 - Conv1024k3 - FC4096 -
FC200

Data Aug: Crop, Flip, Nor-
malize
Optimizer: Adam
Learning Rate: 0.001
Batch Size: 128
Epochs: 500

Table A5: Network architectures and training configurations for CNNs.

A.4.5 VIT

Details of the ViT architecture and experimental setup are provided in Table A6.

CIFAR10/100
SIZE: 32⇥32
CLASS: 100

blocks=7,
heads=12,
mlp-ratio=2,
embedding=384

Data Aug: Crop, Flip, Au-
toAugment, Normalize
Optimizer: AdamW
Learning Rate: 0.003
Batch Size: 128
Epochs: 500

Imagenette
SIZE: 224⇥224

CLASS: 10
blocks=7,
heads=12,
mlp-ratio=2,
embedding=384

Data Aug: Crop, Flip, Nor-
malize
Optimizer: AdamW
Learning Rate: 0.001
Batch Size: 128
Epochs: 500

Imagenet
SIZE: 224⇥224
CLASS: 1000

blocks=12,
heads=6,
mlp-ratio=3,
embedding=384

Data Aug: Crop, Flip, Nor-
malize
Optimizer: AdamW
Learning Rate: 0.0005
Batch Size: 256
Epochs: 500

Table A6: Network architectures and training configurations for ViTs.

20

	Introduction
	Background
	Methodology
	From global loss to global ELBO
	From global ELBO to Layer-wise ELBO
	Stochastic Layer-wise Learning (SLL)

	Related Work
	Experiments
	Experiments on MLPs
	Scaling SLL to CNNs
	Scaling to Vision Transformer

	Discussion and Conclusions
	Appendix
	Algorithm and code
	pseudo code
	Python code for Bhattacharyya coefficient

	Additional Experimental Results
	Small CNN
	Ablation study on CIFAR-100
	Layer-wise loss and Accuracy

	Proof of Theorems
	Theorem 1: Layer-wise ELBO Provides a Valid Variational Bound
	Theorem 2: MI preservation of Random Projection

	Model Architecture and Experiment Details
	Computer Resources
	Datasets
	MLP
	CNN
	VIT

