APPENDIX

650 **Appendix Contents** 651

648

649

652

653

654 655

656

657 658

659 660

661 662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679 680 681

682 683 684

685

- A.1 Algorithm and code
- A.2 Additional Experimental Results
- A.3 Proofs of Theorems
- A.4 Model Architecture and Experiment Details

ALGORITHM AND CODE

A.1.1 PSEUDO CODE

Algorithm 1 Stochastic Layer-wise Learning

```
Require: Training batch data (x, y), learning rate \eta, random projection matrix R_l \sim \mathcal{N}
Ensure: Updated network weights \theta
 1: for each layer l from 1 to L-1 do
            Detach From above layer: h_{l-1} = h_{l-1}.detach()
 2:
 3:
            Update activation: h_l \leftarrow f(h_{l-1}, \theta_l)
 4:
            Approximate \partial h_l:
                   Random Projection: v_l = dp(R_l)h_l or v_l = dp(R_l)[h_l, y]
 5:
 6:
                   Loss: \mathcal{L}_l \leftarrow L_{Pred}(v_l, y) + L_{BC}(\operatorname{softmax}(v_l), \operatorname{softmax}(v_{l-1}))
                   Activation drift: \varepsilon_l \leftarrow \frac{\partial \mathcal{L}_l}{\partial h_l}
 7:
            Weight Update: \theta_l \leftarrow \theta_l - \eta \cdot \frac{\partial h_l}{\partial \theta_l} \varepsilon_l
 8:
 9:
            Clear unnecessary tensors
10: end for
11: h_{L-1} = h_{L-1}.detach()
12: h_L \leftarrow f(h_{L-1}, \theta_L)
13: Loss: \mathcal{L}_L \leftarrow L_{Pred}(h_L, y) + L_{fa}(h_L, v_{L-1})
14: \theta_L \leftarrow \theta_L - \eta \cdot \frac{\partial \mathcal{L}_L}{\partial \theta_L}
```

Activation drift is The first term (blue) captures the global contributions of activation h_i to the global loss in Eq:2.

A.1.2 PYTHON CODE FOR BHATTACHARYYA COEFFICIENT

Listing 1: Loss function

```
686
687
       def L_BC_per(q: torch.Tensor, p: torch.Tensor,
688
    2
                               reduction: str = "mean",
    3
689
                               eps: float = 1e-12,
                              detach_p: bool = True) -> torch.Tensor:
690
           11 11 11
691
           q, p: [B, K] probabilities (nonnegative; rows \tilde{\ } sum to 1).
692
    7
693
           if detach_p:
    8
694
               p = p.detach()
695 10
           q = (q.clamp_min(eps) / q.clamp_min(eps).sum(dim=-1, keepdim=True))
           p = (p.clamp_min(eps) / p.clamp_min(eps).sum(dim=-1, keepdim=True))
696
   12
           # log BC via log-sum-exp for stability
697
           log\_bc = torch.logsumexp(0.5 * (q.log() + p.log()), dim=-1)
   13
698 14
           loss per = -log bc
699 15
           return (loss_per.mean() if reduction == "mean"
700 16
                    else loss_per.sum() if reduction == "sum"
   17
                    else loss_per)
701
```

A.2 ADDITIONAL EXPERIMENTAL RESULTS

A.2.1 SMALL CNN

Method	Model	CIFAR-10	CIFAR-100
BP	CNNApolinario et al. (2024)	87.57 ± 0.13	62.25 ± 0.29
DFA	CNNApolinario et al. (2024)	71.53 ± 0.38	44.93 ± 0.52
PEPITA	CNNDellaferrera & Kreiman (2022)	56.33 ± 1.35	27.56 ± 0.60
LLS	CNNApolinario et al. (2024)	84.10 ± 0.27	55.32 ± 0.38
SVP	CNN	87.48 ± 0.32	59.74 ± 0.27

Table A4: Comparison of different methods on CIFAR-10 and CIFAR-100 using a 3-layer CNN. All methods are evaluated under the same network structure for a fair comparison.

A.2.2 ABLATION STUDY ON CIFAR-100

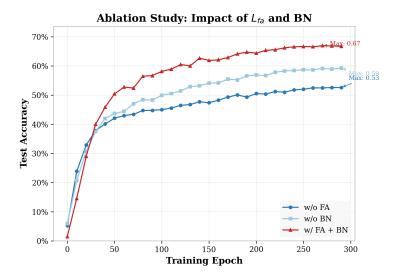


Figure A6: Ablation on CIFAR-100 showing that combining feature alignment loss (\mathcal{L}_{fa}) and batch normalization significantly improves test accuracy and convergence over variants without \mathcal{L}_{fa} or BN.

A.2.3 LAYER-WISE LOSS AND ACCURACY

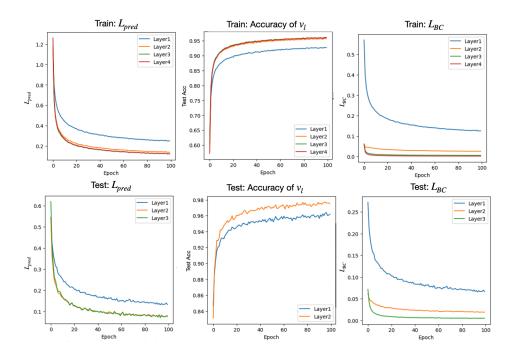


Figure A7: Figure X. Layer-wise training dynamics under SLL. Top: Learning curves for training dataset; bottom: earning curves for test dataset. Left: prediction loss \mathcal{L}_{pred} on projected codes $v_\ell = R_\ell h_\ell$. Middle: classification accuracy from the head on v_ℓ . Right: Bhattacharyya alignment loss \mathcal{L}_{BC} between induced posteriors (q_ℓ, p_ℓ) . Curves are shown per layer; deeper layers achieve lower \mathcal{L}_{pred} and \mathcal{L}_{BC} and higher accuracy, indicating progressive local learning and strengthened inter-layer consistency without cross-layer backpropagation.

A.3 PROOF OF THEOREMS

A.3.1 THEOREM 1: LAYER-WISE ELBO PROVIDES A VALID VARIATIONAL BOUND

Let \mathcal{L}_{NN} be the global Evidence Lower Bound (ELBO) of the network:

$$\mathcal{E}_{NN} = \mathbb{E}_q[\log p(y \mid h_L)] - D_{KL}(q(\mathcal{H}) || p(\mathcal{H})). \tag{6}$$

Then, the sum of layer-wise ELBOs in SVP provides a valid lower bound:

$$\frac{1}{L} \sum_{i=1}^{L} \mathcal{E}_i \le \mathcal{E}_{NN}. \tag{7}$$

Proof. We start with the marginal likelihood:

$$\log p(y|x) = \log \int p(y, h_1, h_2, ..., h_L|x) dh_1 ... dh_L.$$
 (8)

Here, we define $\mathcal{H} = \mathcal{H}_L = \{h_1, h_2, ..., h_L\}$ as the set of activations. Introducing the variational approximation $q(\mathcal{H}|x,y)$, we have:

$$\log p(y|x) = \log \int \frac{p(y, \mathcal{H}|x)}{q(\mathcal{H}|x, y)} q(\mathcal{H}|x, y) dh_1 \dots dh_L.$$
 (9)

Applying Jensen's inequality (since logarithm is a concave function):

$$\log p(y|x) \ge \int \log \frac{p(y, \mathcal{H}|x)}{q(\mathcal{H}|x, y)} q(\mathcal{H}|x, y) dh_1 \dots dh_L = \mathbb{E}_{q(\mathcal{H}|x, y)} \left[\log \frac{p(y, \mathcal{H}|x)}{q(\mathcal{H}|x, y)} \right]. \tag{10}$$

Using the joint probability factorization:

$$p(y, \mathcal{H}|x) = \prod_{i=1}^{L+1} p(h_i|h_{i-1}, x),$$
(11)

where $h_0 = x$ and $h_{L+1} = y$ by convention.

Thus, we obtain the global ELBO:

$$\mathcal{E}_{NN} = \mathbb{E}_{q(\mathcal{H}|x,y)} \left[\log p(y|h_L, x) + \sum_{i=1}^{L} \log p(h_i|h_{i-1}, x) - \log q(\mathcal{H}|x, y) \right]. \tag{12}$$

Using the variational factorization assumption in SLL:

$$q(\mathcal{H}|x,y) = \prod_{i=1}^{L} q(h_i|h_{i-1},x,y),$$
 (Assumption 2)

where again $h_0 = x$.

From the Assumption 1,2, the global ELBO can be rewritten as:

$$\mathcal{E}_{NN} = \mathbb{E}_{q(\mathcal{H}|x,y)} \left[\log p(y|h_L, x) + \sum_{i=1}^{L} \log p(h_i|h_{i-1}, x) - \sum_{i=1}^{L} \log q(h_i|h_{i-1}, x, y) \right]$$
(13)

$$= \mathbb{E}_{q(\mathcal{H}|x,y)} \left[\log p(y|h_L, x) \right] + \sum_{i=1}^{L} \mathbb{E}_{q(\mathcal{H}|x,y)} \left[\log p(h_i|h_{i-1}, x) - \log q(h_i|h_{i-1}, x, y) \right]. \tag{14}$$

We can rewrite this in terms of KL divergence:

$$\mathcal{E}_{NN} = \mathbb{E}_{q(\mathcal{H}|x,y)} \left[\log p(y|h_L, x) \right] - \sum_{i=1}^{L} \mathbb{E}_{q(\mathcal{H}|x,y)} \left[\log q(h_i|h_{i-1}, x, y) - \log p(h_i|h_{i-1}, x) \right].$$
 (15)

where the expectation of the KL divergence terms can be rewritten as:

$$\mathbb{E}_{q(\mathcal{H}|x,y)} \left[\log q(h_i|h_{i-1}, x, y) - \log p(h_i|h_{i-1}, x) \right]$$
 (16)

$$= \mathbb{E}_{q(\mathcal{H}_i|x,y)} \left[D_{KL}(q(h_i|h_{i-1},x,y) || p(h_i|h_{i-1},x)) \right]. \tag{17}$$

Therefore, the global ELBO becomes:

$$\mathcal{E}_{NN} = \mathbb{E}_{q(\mathcal{H}|x,y)} \left[\log p(y|h_L, x) \right] - \sum_{i=1}^{L} \mathbb{E}_{q(\mathcal{H}_i|x,y)} \left[D_{KL}(q(h_i|h_{i-1}, x, y) || p(h_i|h_{i-1}, x)) \right]. \tag{18}$$

Now, let's define the layer-wise ELBO for each layer i:

$$\mathcal{E}_{i} = \mathbb{E}_{q(\mathcal{H}_{i}|x,y)} \left[\log p(y|h_{i},x) \right] - \mathbb{E}_{q(\mathcal{H}_{i}|x,y)} \left[D_{KL}(q(h_{i}|h_{i-1},x,y) \| p(h_{i}|h_{i-1},x)) \right]. \tag{19}$$

Summing the layer-wise ELBOs:

$$\sum_{i=1}^{L} \mathcal{E}_{i} = \sum_{i=1}^{L} \mathbb{E}_{q(\mathcal{H}_{i}|x,y)} \left[\log p(y|h_{i},x) \right] - \sum_{i=1}^{L} \mathbb{E}_{q(\mathcal{H}_{i}|x,y)} \left[D_{\text{KL}}(q(h_{i}|h_{i-1},x,y) || p(h_{i}|h_{i-1},x)) \right].$$
(20)

Assumption 3: Monotone predictive gain under consistent measure. This assumption is well-founded in established theoretical results showing that neural network expressivity grows exponentially with depth, with deeper representations providing exponentially more representational capacity than shallow ones [Telgarsky] (2016); [Eldan & Shamir] (2016). Then we assume: For all i < L:

$$\mathbb{E}_{q(h_t|x,y)}[\log p(y|h_i,x)] \le \mathbb{E}_{q(h_L|x,y)}[\log p(y|h_L,x)]$$
(Assumption 3)

Assumption 4: KL budget constraint. This constraint ensures that the accumulated KL regularization cost across all layers does not exceed the total predictive improvement gained from using the full network depth, preventing the variational bound from becoming arbitrarily loose due to excessive regularization. So, we assume:

$$\frac{L-1}{L} \sum_{i=1}^{L} \mathbb{E}_{q(h_{i-1}|x,y)} \left[D_{\text{KL}} \left(q(h_{i}|h_{i-1},x,y) \| p(h_{i}|h_{i-1},x) \right) \right]$$

$$\leq \frac{1}{L} \sum_{i=1}^{L} \left(\mathbb{E}_{q(h_{L}|x,y)} [\log p(y|h_{L},x)] - \mathbb{E}_{q(h_{i}|x,y)} [\log p(y|h_{i},x)] \right)$$
(Assumption 4)

Proof. Step 1: Using the Markov factorization, the global ELBO becomes:

$$\mathcal{E}_{NN} = \mathbb{E}_{q(h_L|x,y)}[\log p(y|h_L, x)] - \sum_{i=1}^{L} \mathbb{E}_{q(h_{i-1}|x,y)} \left[D_{KL} \left(q(h_i|h_{i-1}, x, y) || p(h_i|h_{i-1}, x) \right) \right]$$
(21)

where $q(h_L|x,y)$ is the marginal of the joint distribution $q(\mathcal{H}|x,y)$ under the Markov factorization.

Step 2: Define

$$A_i := \mathbb{E}_{q(h_i|x,y)}[\log p(y|h_i,x)] \tag{22}$$

$$K_i := \mathbb{E}_{q(h_{i-1}|x,y)} \left[D_{KL} \left(q(h_i|h_{i-1}, x, y) \| p(h_i|h_{i-1}, x) \right) \right] \ge 0 \tag{23}$$

Then:

$$\mathcal{E}_i = A_i - K_i \tag{24}$$

$$\mathcal{E}_{NN} = A_L - \sum_{i=1}^{L} K_i \tag{25}$$

Step 3: Compute the difference:

$$\frac{1}{L} \sum_{i=1}^{L} \mathcal{E}_i - \mathcal{E}_{NN} = \frac{1}{L} \sum_{i=1}^{L} (A_i - K_i) - \left(A_L - \sum_{i=1}^{L} K_i \right)$$
 (26)

$$= \frac{1}{L} \sum_{i=1}^{L} A_i - A_L - \frac{1}{L} \sum_{i=1}^{L} K_i + \sum_{i=1}^{L} K_i$$
 (27)

$$= \frac{1}{L} \sum_{i=1}^{L} A_i - A_L + \frac{L-1}{L} \sum_{i=1}^{L} K_i$$
 (28)

$$= -\frac{1}{L} \sum_{i=1}^{L} (A_L - A_i) + \frac{L-1}{L} \sum_{i=1}^{L} K_i$$
 (29)

Step 4: Apply the assumptions:

- By Assumption 3: Each $A_L A_i \ge 0$, so $-\frac{1}{L} \sum_{i=1}^{L} (A_L A_i) \le 0$
- By **Assumption 4**: $\frac{L-1}{L}\sum_{i=1}^{L}K_{i}\leq\frac{1}{L}\sum_{i=1}^{L}(A_{L}-A_{i})$. Justification: On average across layers, the extra coding cost—quantified by the KL between q and p, i.e., $\frac{L-1}{L}\sum_{i=1}^{L}K_{i}$ —of shaping the latents must be no larger than the predictive gain—the increase in expected log-likelihood, i.e., $\frac{1}{L}\sum_{i=1}^{L}(A_{L}-A_{i})$. In short, depth's benefit pays for its inference complexity.

Step 5: Conclude:

$$\frac{1}{L} \sum_{i=1}^{L} \mathcal{E}_i - \mathcal{E}_{NN} = -\frac{1}{L} \sum_{i=1}^{L} (A_L - A_i) + \frac{L-1}{L} \sum_{i=1}^{L} K_i \le 0$$
 (30)

Therefore: $\frac{1}{L} \sum_{i=1}^{L} \mathcal{E}_i \leq \mathcal{E}_{NN}$

This completes the proof that the mean of layer-wise ELBOs provides a valid lower bound for the global ELBO.

A.3.2 THEOREM 2: MI PRESERVATION OF RANDOM PROJECTION

Let $h_i = f_i(h_{i-1}) \in \mathbb{R}^d$ be the deterministic activation at layer i, and define the projected representation $v_i = R_i h_i$ using the fixed random matrix $R_i \sim \mathcal{N}(0, 1/d')$. Assume h_i has bounded second moments. Let n denote the effective number of distinct activation patterns in the support of the distribution of h_i ." Then, for any $\varepsilon \in (0, 1)$, if $d' = O(\varepsilon^{-2} \log n)$, the mutual information satisfies, with high probability over R_i ,

$$I(x; v_i) \ge I(x; h_i) - \delta(\varepsilon),$$
 (31)

where $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$, and x denotes the network input.

Proof. For any random variables X and Y, the mutual information is defined as:

$$I(X;Y) = H(Y) - H(Y|X)$$
(32)

Since h_i is a deterministic function of x, we have $H(h_i|x) = 0$, thus:

$$I(x; h_i) = H(h_i) \tag{33}$$

For the projected representation, given $x, v_i | x$ follows a Gaussian distribution with entropy:

$$H(v_i|x) = \frac{d'}{2}\log(2\pi e^{\frac{|h_i(x)|^2}{d'}})$$
(34)

By the Johnson-Lindenstrauss lemma Johnson et al. (1984), for any two points $h_i(x_1)$ and $h_i(x_2)$, with high probability:

$$(1-\varepsilon)\|h_i(x_1) - h_i(x_2)\|^2 \le \|v_i(x_1) - v_i(x_2)\|^2 \le (1+\varepsilon)\|h_i(x_1) - h_i(x_2)\|^2$$
(35)

when $d' = O(\varepsilon^{-2} \log n)$.

For Gaussian distributions with covariance $\Sigma = \frac{1}{d'}I_{d'}$, the KL divergence is:

$$D_{KL}(p(v_i|x_1)|p(v_i|x_2)) = \frac{d'}{2} ||R_i h_i(x_1) - R_i h_i(x_2)||^2$$
(36)

The preservation of distances directly implies preservation of distinguishability between different inputs. By discretizing the spaces of h_i and v_i and applying quantization theory, we can derive:

$$I(x; v_i) \ge (1 - \varepsilon')I(x; h_i) - C\varepsilon' \log(1/\varepsilon')$$
(37)

where $\varepsilon' = O(\varepsilon)$ and C is a constant depending on the bounded second moments of h_i .

Define $\delta(\varepsilon) = \varepsilon' I(x; h_i) + C\varepsilon' \log(1/\varepsilon')$. Since $I(x; h_i)$ is bounded by our assumptions, $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$. Therefore, with high probability over the choice of R_i :

$$I(x; v_i) \ge I(x; h_i) - \delta(\varepsilon)$$
 (38)

where $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$.

A.4 MODEL ARCHITECTURE AND EXPERIMENT DETAILS

A.4.1 COMPUTER RESOURCES

All experiments were conducted on a single NVIDIA A100 GPU with 40GB of memory. No multi-GPU or distributed training was used.

A.4.2 DATASETS In this paper, we evaluate SVP on a range of benchmark datasets. • MNIST is a handwritten digit image dataset over 10 classes including 60,000 images for training and 10,000 images for testing. Each image is a 28 × 28 gray-scale image. Fashion MNIST contains fashion items images such as clothing and shoes. It consists of a training set of 60,000 grayscale images and a test set of 10,000 images. Each image has a 28×28 size and is categorized into 10 classes. • CIFAR-10 consists of 32 × 32 RGB images for object recognition with 50,000 images for training and 10,000 images for testing. It has 10 classes, with 5,000 training and 1,000 testing images per class. • CIFAR-100 comprises a total of 60,000 32 × 32 RGB images distributed across 100 classes. Within each class, 500 images are allocated for training, while 100 images are for testing. • Tiny-ImageNet is a downsampled subset of ImageNet to a size of 64×64 . This dataset consists of 200 classes and each class contains 500 images for training and 100 images for testing. ImageNet-1Kis a large-scale image classification dataset containing over 1.28 million training images and 50,000 validation images across 1,000 classes. Images are typically resized to 224×224 pixels for training. A.4.3 MLP **Architecture** For MNIST, we use a 2-layer MLP with 800 neurons per layer and ReLU activations, followed by dropout. For CIFAR-10 and CIFAR-100, we adopt a 3-layer MLP with 1000 neurons per layer, also using ReLU activations and dropout regularization. **Experimental Details.** During training, we apply random horizontal flipping and normalization as standard data augmentation. Models are optimized using the Adamax optimizer with a learning rate of 0.001, trained for 100 epochs across all datasets. A.4.4 CNN

The architecture and training configurations used for CNN experiments are summarized in Table A5.

Dataset	Network Architecture	Training Details
FMNIST SIZE: 28×28 CLASS: 10	Conv64k3 - MaxPool2 - Conv128k3 - Max- Pool2 - Conv256k3 - Conv256k3 - Max- Pool2 - Conv512k3 - MaxPool2 - FC10	Data Aug: Normalize Optimizer: Adam Learning Rate: 0.003 Batch Size: 128 Epochs: 100
CIFAR10/100 SIZE: 32×32 CLASS: 100	Conv256k3 - MaxPool2 - Conv512k3 - MaxPool2 - Conv512k3 - Conv1024k3 - MaxPool2 - Conv1024k3 - MaxPool2 - Conv1024k3 - Conv1024k3 - FC2048 - FC100	Data Aug: Crop, Flip, AutoAugment, Normalize Optimizer: Adam Learning Rate: 0.003 Batch Size: 128 Epochs: 500
Imagenette SIZE: 224×224 CLASS: 10	Conv64k3 - MaxPool2 - Conv128k3 - MaxPool2 - Conv256k3 - Conv256k3 - MaxPool2 - Conv512k3 - MaxPool2 - Conv512k3 - Conv1024k3 - FC10	Data Aug: Crop, Flip, Normalize Optimizer: Adam Learning Rate: 0.001 Batch Size: 128 Epochs: 500
Tiny-Imagenet SIZE: 64×64 CLASS: 200	Conv64k3 - MaxPool2 - Conv128k3 - MaxPool2 - Conv256k3 - Conv256k3 - MaxPool2 - Conv512k3 - MaxPool2 - Conv512k3 - Conv1024k3 - FC4096 - FC200	Data Aug: Crop, Flip, Normalize Optimizer: Adam Learning Rate: 0.001 Batch Size: 128 Epochs: 500

Table A5: Network architectures and training configurations for CNNs.

A.4.5 VIT Details of the ViT architecture and experimental setup are provided in Table A6.

CIFAR10/100 SIZE: 32×32 CLASS: 100	blocks=7, heads=12, mlp-ratio=2, embedding=384	Data Aug: Crop, Flip, AutoAugment, Normalize Optimizer: AdamW Learning Rate: 0.003 Batch Size: 128 Epochs: 500
Imagenette SIZE: 224×224 CLASS: 10	blocks=7, heads=12, mlp-ratio=2, embedding=384	Data Aug: Crop, Flip, Normalize Optimizer: AdamW Learning Rate: 0.001 Batch Size: 128 Epochs: 500
Imagenet SIZE: 224×224 CLASS: 1000	blocks=12, heads=6, mlp-ratio=3, embedding=384	Data Aug: Crop, Flip, Normalize Optimizer: AdamW Learning Rate: 0.0005 Batch Size: 256 Epochs: 500

Table A6: Network architectures and training configurations for ViTs.