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A APPENDIX
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A.1 ALGORITHM AND CODE

A.1.1 PSEUDO CODE

Algorithm 1 Stochastic Layer-wise Learning

Require: Training batch data (z,y), learning rate n, random projection matrix R; ~ A
Ensure: Updated network weights 6

1: for each layer [ from 1 to L — 1 do

2: Detach From above layer: h;_; = h;_;.detach()

3 Update activation: h; < f(h;—1,6;)

4 Approximate Oh,:

5: Random Projection: v; = dp(R;)h; or v; = dp(Ry)[h, y]

6: Loss: L) < Lprea(vi,y) + Lo (softmax(v;), softmax(v;—1))
7 Activation drift: £; < g—ﬁ;

8 Weight Update: 0, < 6, — n - %51

9: Clear unnecessary tensors '

10: end for

11: hp—1 = hp_1.detach()
12: hp < f(thl,eL)
13: Loss: L1, <= Lprea(hr,y) + La(hr,vn—1)

14: 9L<—9L—77'%§LL

Activation drift is The first term (blue) captures the global contributions of activation h; to the global

loss in Eq:2.
A.1.2 PYTHON CODE FOR BHATTACHARYYA COEFFICIENT

Listing 1: Loss function

def 1L_BC_per(g: torch.Tensor, p: torch.Tensor,
reduction: str = "mean",
eps: float = le-12,
detach_p: bool = True) -> torch.Tensor:

g, p: [B, K] probabilities (nonnegative; rows ~ sum to 1).
mnn
if detach_p:
p = p.detach()
q = (g.clamp_min (eps) / g.clamp_min (eps).sum(dim=-1, keepdim=True))
p = (p.clamp_min(eps) / p.clamp_min (eps).sum(dim=-1, keepdim=True))
# log BC via log-sum—-exp for stability
log_bc = torch.logsumexp (0.5 x (g.log() + p.log()), dim=-1)

loss_per = —-log_bc
return (loss_per.mean() if reduction == "mean"
else loss_per.sum() if reduction == "sum"

else loss_per)
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A.2 ADDITIONAL EXPERIMENTAL RESULTS

A.2.1 SMALL CNN

Method Model CIFAR-10 CIFAR-100
BP CNNApolinario et al. (2024) 87.57+£0.13 62.25+0.29
DFA CNNApolinario et al. (2024) 71.53 £0.38 44.93 +£0.52
PEPITA CNNDellaferrera & Kreiman|(2022) 56.33 &£ 1.35 27.56 + 0.60
LLS CNNApolinario et al. (2024) 84.10 £ 0.27 5532 £0.38
SVP CNN B 8748 £0.32  59.74 £ 0.27

Table A4: Comparison of different methods on CIFAR-10 and CIFAR-100 using a 3-layer CNN. All
methods are evaluated under the same network structure for a fair comparison.

A.2.2 ABLATION STUDY ON CIFAR-100

Ablation Study: Impact of L, and BN
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Figure A6: Ablation on CIFAR-100 showing that combining feature alignment loss (L¢,) and batch
normalization significantly improves test accuracy and convergence over variants without L¢, or BN.
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A.2.3 LAYER-WISE LOSS AND ACCURACY
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Figure A7: Figure X. Layer-wise training dynamics under SLL. Top: Learning curves for training
dataset; bottom: earning curves for test dataset. Left: prediction loss Lpq on projected codes
v = Ryhe. Middle: classification accuracy from the head on v,. Right: Bhattacharyya alignment
loss Lpc between induced posteriors (g¢, p¢). Curves are shown per layer; deeper layers achieve
lower Lprq and Lpc and higher accuracy, indicating progressive local learning and strengthened
inter-layer consistency without cross-layer backpropagation.

A.3 PROOF OF THEOREMS
A.3.1 THEOREM 1: LAYER-WISE ELBO PROVIDES A VALID VARIATIONAL BOUND

Let Ly be the global Evidence Lower Bound (ELBO) of the network:

Enn = Eqllogp(y | he)] = Dxe(a(H)]Ip(H)). (©6)
Then, the sum of layer-wise ELBOs in SVP provides a valid lower bound:

L

1

7 Z&‘ <&nn- @)
i=1

Proof. We start with the marginal likelihood:
tog (ole) = 105 [ by has ) dis . . ®)

Here, we define H = Hy = {hy, ho, ..., hy} as the set of activations. Introducing the variational
approximation ¢(7{|x, y), we have:

log p(y|z) = IOg/ ply, H|z)

Hl|z,y)dhy . ..dhy. 9
(M, 177 A @

Applying Jensen’s inequality (since logarithm is a concave function):

p(y, H|z) p(y,”Hlaf)] _ (10)

lo 56‘2/107 Hl|x,y)dhy...dhy =E 2 [lo
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Using the joint probability factorization:

L+1
ply, Hlz) = th|hz 1,7), (11)
where hg = x and hy1 = y by convention.
Thus, we obtain the global ELBO:
ENN = Eqatjzy) |logp(ylhr, ) + Zlogp ilhic1,x) —logq(H|x,y)| - (12)

Using the variational factorization assumption in SLL:

q(H|z,y) Hq (hilhi—1, z,y), (Assumption 2)

where again hy = x.

From the Assumption 1,2, the global ELBO can be rewritten as:

L L
ENN = Eqnjzy) |logp(ylhr, ) + Zlogp(hi|hz‘—1,$) - ZIOgQ(hi\hi—hxay) (13)
i—1 i=1
L
= Ey(2)2,y) log p(ylhr, z)] + ZEq(H\z,y) logp(hilhi—1,x) —logq(hi|lhi—1,2,y)].  (14)
i—1

We can rewrite this in terms of KL divergence:

L
ENN = Eqptjz,y) logp(ylhr, z)] — Z]Eq(mz,y) log q(hilhi—1,7,y) —log p(hi|hi—1,2)]. (15)

i=1

where the expectation of the KL divergence terms can be rewritten as:

Eq 3],y log q(hilhi—1,2,y) — log p(hilhi—1, x)] (16)
=E ¢ 12.y) [Dxr(q(hilhi-1, 2, y)p(hilhi-1,2))] . (17

Therefore, the global ELBO becomes:

L

ENN = Eytjag) ogp(ulhe, ©)] = > Boejoy) [Drla(hilhio1, z,y)[p(hilhi—1, x))] . (18)
=1

Now, let’s define the layer-wise ELBO for each layer i:
Ei = Eq(s1a.) 108 D(ylhis ©)] = Bgat,1ay) [Dre(a(hilhizr, 2, y) [p(hilhia, 2))] . (19)

Summing the layer-wise ELBOs:

L
D &= Eoaule logp@lhi, o)) = > Bor o) [Prulq(hlhiy, z,9)|[p(hilhi—1, 2))]

=1
(20)

Assumption 3: Monotone predictive gain under consistent measure. This assumption is well-
founded in established theoretical results showing that neural network expressivity grows exponen-
tially with depth, with deeper representations providing exponentially more representational capacity
than shallow ones Telgarsky| (2016)); Eldan & Shamir|(2016). Then we assume: For all ¢ < L:

Eq(hifap 1og p(ylhi, ©)] < Bqeny jo) [log p(yl L, )] (Assumption 3)
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Assumption 4: KL budget constraint. This constraint ensures that the accumulated KL regulariza-
tion cost across all layers does not exceed the total predictive improvement gained from using the full
network depth, preventing the variational bound from becoming arbitrarily loose due to excessive
regularization. So, we assume:

L-1g
Z]Eq(hz‘—ﬂm,y) [DKL(q(hz‘hzflvxvy)Hp(hz|hl717x))]
=1

. (Assumption 4)
Z a(hz o) (108 P(y|h, )] = Eqen,|2.4) l0g p(ylhi, 2)])

Proof. Step 1: Using the Markov factorization, the global ELBO becomes:

SNN = ]Eq(hL\I,y) [logp(y‘hln I)]
L

- Z Eq(hi 1 |oy) [Dxi(a(hilhiz1, 2, 9)|[p(hilhi—1, 2))] 2D
i=1

where q(hr|z,y) is the marginal of the joint distribution ¢(#|z, y) under the Markov factorization.

Step 2: Define

A = Eyn, |2,y [log p(ylhi, )] (22)
Ki =B, 11z [Dxr(a(hilhi—1,2,9)||p(hi|hi—1,x))] = 0 (23)
Then:
& = A — K, (24)
L
Enn =AL— Y K (25)

=1

Step 3: Compute the difference:

1 & z ¢
Zzgl SNN—EZ A K (AL_ZK1> (26)
i=1 1 z ) . =1 .
=Y A A -2 K+ YK @7)
=1 =1 =1
1 & L-1&
:Z;Ai—AL‘i‘T;Ki (28)
L
Z—%Z(AL—AJ*'%ZKZ' (29)
=1 1=1

Step 4: Apply the assumptions:

» By Assumption 3: Each A; — A; > 0,s0 —+ ZZ (AL —A4;) <0

* By Assumption 4: £-1 ZZ K<t 21 1 (AL — A;). Justification: On average across

layers, the extra codmg cost—quantified by the KL between g and p, i.e., =— ZZ | Ki—of
shaping the latents must be no larger than the predictive gain—the i 1ncrease in expected

log-likelihood, i.e., %Zle(AL — A;). In short, depth’s benefit pays for its inference
complexity.

Step 5: Conclude:

1 1 L-1&
ZZ&'—SNN:—Zz(AL—Ai)‘FTZKiSO (30)
; ; im1
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Therefore: + 27 & < Enn
This completes the proof that the mean of layer-wise ELBOs provides a valid lower bound for the
global ELBO.

A.3.2 THEOREM 2: MI PRESERVATION OF RANDOM PROJECTION

Let h; = f;(hi_1) € R? be the deterministic activation at layer i, and define the projected represen-
tation v; = R;h; using the fixed random matrix R; ~ N (0,1/d"). Assume h; has bounded second
moments. Let n denote the effective number of distinct activation patterns in the support of the
distribution of h;.” Then, for any ¢ € (0,1), if d' = O(c¢~2logn), the mutual information satisfies,
with high probability over R;,

I(x;v;) > I(x; hy) — d(e), (€29
where 6(¢) — 0 as € — 0, and x denotes the network input.

Proof. For any random variables X and Y, the mutual information is defined as:

I(X;Y)=HY)-HY|X) (32)
Since h; is a deterministic function of x, we have H (h;|z) = 0, thus:
I(x; h;) = H(h;) (33)
For the projected representation, given z, v;|z follows a Gaussian distribution with entropy:

! i 2
H(vi|z) = %log(Zﬂ'e |hl§;)|

) (34)
By the Johnson-Lindenstrauss lemma Johnson et al.|(1984), for any two points h;(x1) and h;(z2),
with high probability:

(1= e)[lhs(ar) = ha(z) > < [Jvi(z1) — vi(z2)|* < (1 + &) [|hs(a1) — ha(z2)|? (35)
when d’ = O(¢ 2 logn).

For Gaussian distributions with covariance > = %I 4, the KL divergence is:
d/
D (p(vil21)|p(vil22)) = EHRihi(xl) — Rihi(x2)|? (36)
The preservation of distances directly implies preservation of distinguishability between different
inputs. By discretizing the spaces of h; and v; and applying quantization theory, we can derive:
I(z;v;) > (1 =& (z; b)) — Ce'log(1/€) (37)

where ¢/ = O(¢) and C'is a constant depending on the bounded second moments of h;.

Define 6(g) = &'I(x; h;) + Ce’log(1/€’). Since I(x; h;) is bounded by our assumptions, §(¢) — 0
as € — 0. Therefore, with high probability over the choice of R;:

I(z;v5) = I(z; hi) — 6(e) (38)

where §(g) — Oase — 0.

A.4 MODEL ARCHITECTURE AND EXPERIMENT DETAILS
A.4.1 COMPUTER RESOURCES

All experiments were conducted on a single NVIDIA A100 GPU with 40GB of memory. No
multi-GPU or distributed training was used.
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A.4.2 DATASETS

In this paper, we evaluate SVP on a range of benchmark datasets.

MNIST is a handwritten digit image dataset over 10 classes including 60,000 images for
training and 10,000 images for testing. Each image is a 28 x 28 gray-scale image.

Fashion MNIST contains fashion items images such as clothing and shoes. It consists of a
training set of 60,000 grayscale images and a test set of 10,000 images. Each image has a
28 x 28 size and is categorized into 10 classes.

CIFAR-10 consists of 32 x 32 RGB images for object recognition with 50,000 images for
training and 10,000 images for testing. It has 10 classes, with 5,000 training and 1,000
testing images per class.

CIFAR-100 comprises a total of 60,000 32 x 32 RGB images distributed across 100 classes.
Within each class, 500 images are allocated for training, while 100 images are for testing.

Tiny-ImageNet is a downsampled subset of ImageNet to a size of 64 x 64. This dataset
consists of 200 classes and each class contains 500 images for training and 100 images for
testing.

ImageNet-1Kis a large-scale image classification dataset containing over 1.28 million
training images and 50,000 validation images across 1,000 classes. Images are typically
resized to 224 x 224 pixels for training.

A.4.3 MLP

Architecture For MNIST, we use a 2-layer MLP with 800 neurons per layer and ReLU activations,
followed by dropout. For CIFAR-10 and CIFAR-100, we adopt a 3-layer MLP with 1000 neurons per
layer, also using ReLLU activations and dropout regularization.

Experimental Details. During training, we apply random horizontal flipping and normalization as
standard data augmentation. Models are optimized using the Adamax optimizer with a learning rate
of 0.001, trained for 100 epochs across all datasets.

A.4.4 CNN

The architecture and training configurations used for CNN experiments are summarized in Table [A5.
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MaxPool2 - Conv512k3 - MaxPool2
Conv512k3 - Conv1024k3 - FC10

Dataset Network Architecture Training Details
FMNIST
SIZE: 28x28 Conv64k3 - MaxPool2 - Conv128k3 - Max- | Data Aug: Normalize
CLASS: 10 Pool2 - Conv256k3 - Conv256k3 - Max- | Optimizer: Adam
Pool2 - Conv512k3 - MaxPool2 - FC10 Learning Rate: 0.003
Batch Size: 128
Epochs: 100
CIFAR10/100
SIZE: 32x32 Conv256k3 - MaxPool2 - Conv512k3 - | Data Aug: Crop, Flip, Au-
CLASS: 100 MaxPool2 - Conv512k3 - Conv1024k3 - | toAugment, Normalize
MaxPool2 - Conv1024k3 - MaxPool2 - | Optimizer: Adam
Conv1024k3 - Conv1024k3 - FC2048 - | Learning Rate: 0.003
FC100 Batch Size: 128
Epochs: 500
Imagenette
SIZE: 224 x224 Conv64k3 - MaxPool2 - Conv128k3 - | Data Aug: Crop, Flip, Nor-
CLASS: 10 MaxPool2 - Conv256k3 - Conv256k3 - | malize

Optimizer: Adam
Learning Rate: 0.001
Batch Size: 128
Epochs: 500

Tiny-Imagenet
SIZE: 64 x64
CLASS: 200

Conv64k3 - MaxPool2 - Conv128k3
MaxPool2 - Conv256k3 - Conv256k3
MaxPool2 - Conv512k3 - MaxPool2
Conv512k3 - Conv1024k3 - FC4096
FC200

malize

Optimizer: Adam
Learning Rate: 0.001
Batch Size: 128
Epochs: 500

Table A5: Network architectures and training configurations for CNNs.

A.45 VIT

Details of the ViT architecture and experimental setup are provided in Table[A6.

CIFAR10/100
SIZE: 32x32 blocks=7, Data Aug: Crop, Flip, Au-
CLASS: 100 heads=12, toAugment, Normalize
mlp-ratio=2, Optimizer: AdamW
embedding=384 Learning Rate: 0.003
Batch Size: 128
Epochs: 500
Imagenette
SIZE: 224 x224 blocks=7, Data Aug: Crop, Flip, Nor-
CLASS: 10 heads=12, malize
mlp-ratio=2, Optimizer: AdamW
embedding=384 Learning Rate: 0.001
Batch Size: 128
Epochs: 500
Imagenet
SIZE: 224x224 | blocks=12, Data Aug: Crop, Flip, Nor-
CLASS: 1000 heads=6, malize
mlp-ratio=3, Optimizer: AdamW

embedding=384

Learning Rate: 0.0005
Batch Size: 256
Epochs: 500

Table A6: Network architectures and training configurations for ViTs.
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