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In this supplementary file, we first present additional results and
analyses on the effects of different hyperparameters (Section 1).
Then, we show more visual comparison results between state-of-
the-art method TDMI [1] and our method JM-Pose on challenging
scenes (Section 2). Finally, we demonstrate more visual results of
our JM-Pose on benchmark datasets (Section 3).

1 SUPPLEMENTARY EXPERIMENTS
In this section, we conduct more experiments on the PoseTrack2017
validation set to study the effects of different hyperparameters,
including the ratio 𝛼 of the trade-off loss (in the main paper Eq. 16)
and temporal span 𝛿 of supporting frames (in the main paper xxx).

Ablation study on loss ratio 𝛼 . In the Subsection 3.3 of the
main paper, we utilize 𝛼 to balance the two loss terms in the total
loss (in the main paper Eq. 16). We try utilizing different ratios
and present the results in Table 1. We observe that performance
drops from 86.4 mAP (𝛼 = 0.25) to 85.5 mAP (𝛼 = 0.01). This is
consistent with our intuition that a smaller ratio hinder the effect
of the proposed information orthogonality objective. Additionally,
the model performance tends to plateau as 𝛼 increases and the best
results (86.4 mAP) are obtained at 𝛼 = 0.25.

Table 1: Ablation study on the loss ratio 𝛼 .

Ratio 𝛼 𝛼 = 0.01 𝛼 = 0.25 𝛼 = 1
Mean 85.5 86.4 85.9

Declines ↓ 0.9 - ↓ 0.5

Ablation study on temporal span 𝛿 . Furthermore, we in-
vestigate the impact of using different temporal spans 𝛿 , which
constrains the number of supporting (neighboring) frames. We ex-
periment with three different temporal span settings: (a) 𝛿 = 1, (b)
𝛿 = 2, and (c) 𝛿 = 3. From the results in Table 2, we observe that
mAP improves with increasing 𝛿 , namely 85.3 for 𝛿 = 1, 86.4 for
𝛿 = 2, and 86.4 for 𝛿 = 3. This is in line with our intuition that
more temporal information can be obtained by employing more
supporting (neighboring) frames, which provides more cues for
pose estimation. When 𝛿 = 2 or 𝛿 = 3, the performance of pose
estimation tends to be similar, we adopt a temporal span of 𝛿 = 2.

Table 2: Ablation study on the temporal span 𝛿 .

Span 𝛿 (a) 𝛿 = 1 (𝑏)𝛿 = 2 (𝑐)𝛿 = 3
Mean 85.3 86.4 86.4

Declines ↓ 1.1 - -

2 MORE VISUAL COMPARISON RESULTS
As shown in Fig. 1, we visualize the comparison results for challeng-
ing scenes, such as self-occlusions, rapid-motion, and pose-occlusions.
We try to investigate the robustness of our method. In figure 1, we
observe that TDMI [1] fails to estimate some hard-to-detect joints
since TDMI ignores the implicit joint information encoded in initial
heatmaps. In contrast, our method JM-Pose displays more accurate
pose estimation results in the heavily crowded and challenging
scenarios.

3 MORE VISUAL RESULTS
As shown in Fig. 2, we present more visual results of our method on
challenging datasets. From this figure, we observe that our method
achieves accurate and robust pose estimation in various scenes.
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Figure 1: More visual comparisons of detection results obtained from state-of-the-art TDMI and our method JM-Pose on
challenging scenes. Inaccurate detections are highlighted with red circles.

Figure 2: More visual results of our JMI-Pose on benchmark datasets. Challenging scenes such as fast motion or occlusions are
involved.
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