
Supplementary Material530

In Section A, we discuss some potential negative societal impacts of our work. In Section B, we531

discuss some additional related work. In Section C, we give the definitions of some evaluation metrics.532

In Section D, we describe the baselines in detail. In Section E, we show the complete ASPEST533

algorithm and analyze its computational complexity. In Section F, we provide the details of the534

experimental setup. In Section G, we give some additional experimental results.535

A Potential Negative Societal Impacts536

The proposed framework yields more reliable predictions with more optimized utilization of humans537

in the loop. One potential risk of such a system is that if the humans in the loop yield inaccurate538

or biased labels, our framework might cause them being absorbed by the predictor model and the539

selection prediction mechanism, and eventually the outcomes of the system might be inaccurate and540

biased. We leave the methods for inaccurate label or bias detection to future work.541

B More Related Work542

Distribution shift. Distribution shift, where the training distribution differs from the test distribution,543

often occurs in practice and can substantially degrade the accuracy of the deployed DNNs [39, 70, 2].544

Distribution shift can also substantially reduce the quality of uncertainty estimation [53], which is545

often used for rejecting examples in selective prediction and selecting samples for labeling in active546

learning. Several techniques try to tackle the challenge caused by distribution shift, including accuracy547

estimation [6, 8], error detection [30, 23], out-of-distribution detection [60], domain adaptation [18,548

59], selective prediction [35] and active learning [37]. In our work, we combine selective prediction549

with active learning to address the issue of distribution shift.550

Deep ensembles. Ensembles of DNNs (or deep ensembles) have been successfully used to boost551

predictive performance [49, 74]. Deep ensembles can also be used to improve the predictive uncer-552

tainty estimation [41, 14]. [41] shows that random initialization of the NN parameters along with553

random shuffling of the data points are sufficient for deep ensembles to perform well in practice.554

However, training multiple DNNs from random initialization can be very expensive. To obtain deep555

ensembles more efficiently, recent papers explore using checkpoints during training to construct556

the ensemble [67, 31], or fine-tuning a single pre-trained model to create the ensemble [38]. In our557

work, we use the checkpoints during fine-tuning a source-trained model via active learning as the558

ensemble and further boost the ensemble’s performance via self-training. We also use the ensemble’s559

uncertainty measured by a margin to select samples for labeling in active learning.560

Self-training. Self-training is a common algorithmic paradigm for leveraging unlabeled data with561

DNNs. Self-training methods train a model to fit pseudo-labels (i.e., predictions on unlabeled data562

made by a previously-learned model) to boost the model’s performance [71, 22, 44, 68, 64]. In this563

work, we use self-training to improve selective prediction performance. Instead of using predicted564

labels as pseudo-labels as a common practice in prior works, we use the average softmax outputs of565

the checkpoints during training as the pseudo-labels and self-train the models in the ensemble on566

them with the KL-Divergence loss to improve selective prediction performance.567

C Evaluation Metrics568

The introduced accuracy and coverage metrics in Section 3.2 depend on the threshold τ . The following569

evaluation metrics are proposed to be agnostic to the threshold τ :570

Maximum Accuracy at a Target Coverage. Given a target coverage tc, the maximum accuracy is571

defined as:572

max
τ

acc(fs, τ), s.t. cov(fs, τ) ≥ tc (12)

We denote this metric as acc|cov ≥ tc.573
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Maximum Coverage at a Target Accuracy. Given a target accuracy ta, the maximum coverage is574

defined as:575

max
τ

cov(fs, τ), s.t. acc(fs, τ) ≥ ta (13)

When τ =∞, we define cov(fs, τ) = 0 and acc(fs, τ) = 1. We denote this metric as cov|acc ≥ ta.576

Area Under the Accuracy-Coverage Curve (AUC). We define the AUC metric as:577

AUC(fs) =

∫ 1

0

acc(fs, τ)dcov(fs, τ) (14)

We use the composite trapezoidal rule to estimate the integration.578

D Baselines579

We consider two selective classification baselines Softmax Response (SR) [19] and Deep Ensembles580

(DE) [41] and combine them with active learning techniques. We describe them in detail below.581

D.1 Softmax Response582

Suppose the neural network classifier is f where the last layer is a softmax. Let f(x | k) be the soft583

response output for the k-th class. Then the classifier is defined as f(x) = argmaxk∈Y f(x | k)584

and the selection scoring function is defined as g(x) = maxk∈Y f(x | k), which is also known585

as the Maximum Softmax Probability (MSP) of the neural network. Recall that with f and g, the586

selective classifier is defined in Eq (1). We use active learning to fine-tune the model f to improve587

selective prediction performance of SR on the unlabeled test dataset UX . The complete algorithm588

is presented in Algorithm 1. In our experiments, we always set λ = 1. We use the joint training589

objective (23) to avoid over-fitting to the small labeled test set ∪tl=1B̃l and prevent the model from590

forgetting the source training knowledge. The algorithm can be combined with different kinds of591

acquisition functions. We describe the acquisition functions considered for SR below.592

Uniform. In the t-th round of active learning, we select [MT ] data points as the batch Bt593

from UX \ ∪t−1l=0Bl via uniform random sampling. The corresponding acquisition function is:594

a(B, ft−1, gt−1) = 1. When solving the objective (22), the tie is broken randomly.595

Confidence. We define the confidence score of f on the input x as596

Sconf(x; f) = max
k∈Y

f(x | k) (15)

Then the acquisition function in the t-th round of active learning is defined as:597

a(B, ft−1, gt−1) = −
∑
x∈B

Sconf(x; ft−1) (16)

That is we select those test examples with the lowest confidence scores for labeling.598

Entropy. We define the entropy score of f on the input x as599

Sentropy(x; f) =
∑
k∈Y

−f(x | k) · log f(x | k) (17)

Then the acquisition function in the t-th round of active learning is defined as:600

a(B, ft−1, gt−1) =
∑
x∈B

Sentropy(x; ft−1) (18)

That is we select those test examples with the highest entropy scores for labeling.601

Margin. We define the margin score of f on the input x as602

Smargin(x; f) = f(x | ŷ)− max
k∈Y\{ŷ}

f(x | k) (19)

s.t. ŷ = argmax
k∈Y

f(x | k) (20)
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Then the acquisition function in the t-th round of active learning is defined as:603

a(B, ft−1, gt−1) = −
∑
x∈B

Smargin(x; ft−1) (21)

That is we select those test examples with lowest margin scores for labeling.604

kCG. We use the k-Center-Greedy algorithm proposed in [61] to select test examples for labeling in605

each round.606

CLUE. We use the Clustering Uncertainty-weighted Embeddings (CLUE) proposed in [56] to select607

test examples for labeling in each round. Following [56], we set the hyper-parameter T = 0.1 on608

DomainNet and set T = 1.0 on other datasets.609

BADGE. We use the Diverse Gradient Embeddings (BADGE) proposed in [1] to select test examples610

for labeling in each round.611

Algorithm 1 Softmax Response with Active Learning

Input: A training dataset Dtr, an unlabeled test dataset UX , the number of rounds T , the labeling
budget M , a source-trained model f̄ , an acquisition function a and a hyper-parameter λ.
Let f0 = f̄ .
Let B0 = ∅.
Let gt(x) = maxk∈Y ft(x | k).
for t = 1, · · · , T do

Select a batch Bt with a size of m = [MT ] from UX for labeling via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
a(B, ft−1, gt−1) (22)

Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Fine-tune the model ft−1 using the following training objective:

min
θ

E(x,y)∈∪t
l=1B̃l

`CE(x, y; θ) + λ · E(x,y)∈Dtr `CE(x, y; θ) (23)

where θ is the model parameters of ft−1 and `CE is the cross-entropy loss function.
Let ft = ft−1.

end for
Output: The classifier f = fT and the selection scoring function g = maxk∈Y f(x | k).

D.2 Deep Ensembles612

It has been shown that deep ensembles can significantly improve selective prediction performance [41],613

not only because deep ensembles are more accurate than a single model, but also because deep614

ensembles yield more calibrated confidence.615

Suppose the ensemble model f contains N models f1, . . . , fN . Let f j(x | k) denote the predicted616

probability of the model f j on the k-th class. We define the predicted probability of the ensemble617

model f on the k-th class as:618

f(x | k) =
1

N

N∑
j=1

f j(x | k). (24)

The classifier is defined as f(x) = argmaxk∈Y f(x | k) and the selection scoring function is defined619

as g(x) = maxk∈Y f(x | k). We use active learning to fine-tune each model f j in the ensemble to620

improve selective prediction performance of the ensemble on the unlabeled test dataset UX . Each621

model f j is first initialized by the source-trained model f̄ , and then fine-tuned independently via622

Stochastic Gradient Decent (SGD) with different sources of randomness (e.g., different random order623

of the training batches) on the training dataset Dtr and the selected labeled test data. Note that this624

way to construct the ensembles is different from the standard Deep Ensembles method, which trains625

the models from different random initialization. We use this way to construct the ensemble due to626

the constraint in our problem setting, which requires us to fine-tune a given source-trained model627
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f̄ . Training the models from different random initialization might lead to an ensemble with better628

performance, but it is much more expensive, especially when the training dataset and the model are629

large (e.g., training foundation models). Thus, the constraint in our problem setting is feasible in630

practice. The complete algorithm is presented in Algorithm 2. In our experiments, we always set631

λ = 1, N = 5, and ns = 1000. We also use joint training here and the reasons are the same as632

those for the Softmax Response baseline. The algorithm can be combined with different kinds of633

acquisition functions. We describe the acquisition functions considered below.634

Uniform. In the t-th round of active learning, we select [MT ] data points as the batch Bt635

from UX \ ∪t−1l=0Bl via uniform random sampling. The corresponding acquisition function is:636

a(B, ft−1, gt−1) = 1. When solving the objective (31), the tie is broken randomly.637

Confidence. The confidence scoring function Sconf for the ensemble model f is the same as that in638

Eq. (15) (f(x | k) for the ensemble model f is defined in Eq. (24)). The acquisition function in the639

t-th round of active learning is defined as:640

a(B, ft−1, gt−1) = −
∑
x∈B

Sconf(x; ft−1) (25)

That is we select those test examples with the lowest confidence scores for labeling.641

Entropy. The entropy scoring function Sentropy for the ensemble model f is the same as that in642

Eq. (17). The acquisition function in the t-th round of active learning is defined as:643

a(B, ft−1, gt−1) =
∑
x∈B

Sentropy(x; ft−1), (26)

That is we select those test examples with the highest entropy scores for labeling.644

Margin. The margin scoring function Smargin for the ensemble model f is the same as that in Eq. (19).645

The acquisition function in the t-th round of active learning is defined as:646

a(B, ft−1, gt−1) = −
∑
x∈B

Smargin(x; ft−1) (27)

That is we select those test examples with the lowest margin scores for labeling.647

Avg-KLD. The Average Kullback-Leibler Divergence (Avg-KLD) is proposed in [48] as a disagree-648

ment measure for the model ensembles, which can be used for sample selection in active learning.649

The Avg-KLD score of the ensemble model f on the input x is defined as:650

Skl(x; f) =
1

N

N∑
j=1

∑
k∈Y

f j(x | k) · log
f j(x | k)

f(x | k)
. (28)

Then the acquisition function in the t-th round of active learning is defined as:651

a(B, ft−1, gt−1) =
∑
x∈B

Skl(x; ft−1), (29)

That is we select those test examples with the highest Avg-KLD scores for labeling.652

CLUE. CLUE [56] is proposed for a single model. Here, we adapt CLUE for the ensemble model,653

which requires a redefinition of the entropy function H(Y | x) and the embedding function φ(x)654

used in the CLUE algorithm. We define the entropy function as Eq. (17) with the ensemble model655

f . Suppose φj is the embedding function for the model f j in the ensemble. Then, the embedding656

of the ensemble model f on the input x is [φ1(x), . . . , φN (x)], which is the concatenation of the657

embeddings of the models f1, . . . , fN on x. Following [56], we set the hyper-parameter T = 0.1 on658

DomainNet and set T = 1.0 on other datasets.659

BADGE. BADGE [1] is proposed for a single model. Here, we adapt BADGE for the ensemble660

model, which requires a redefinition of the gradient embedding gx in the BADGE algorithm. Towards661

this end, we propose the gradient embedding gx of the ensemble model f as the concatenation of the662

gradient embeddings of the models f1, . . . , fN .663
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Algorithm 2 Deep Ensembles with Active Learning

Input: A training dataset Dtr, An unlabeled test dataset UX , the number of rounds T , the total
labeling budget M , a source-trained model f̄ , an acquisition function a(B, f, g), the number of
models in the ensemble N , the number of initial training steps ns, and a hyper-parameter λ.
Let f j0 = f̄ for j = 1, . . . , N .
Fine-tune each model f j0 in the ensemble via SGD for ns training steps independently using the
following training objective with different randomness:

min
θj

E(x,y)∈Dtr `CE(x, y; θj) (30)

where θj is the model parameters of f j0 and `CE is the cross-entropy loss function.
Let B0 = ∅.
Let gt(x) = maxk∈Y ft(x | k).
for t = 1, · · · , T do

Select a batch Bt with a size of m = [MT ] from UX for labeling via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
a(B, ft−1, gt−1) (31)

Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Fine-tune each model f jt−1 in the ensemble via SGD independently using the following training
objective with different randomness:

min
θj

E(x,y)∈∪t
l=1B̃l

`CE(x, y; θj) + λ · E(x,y)∈Dtr `CE(x, y; θj) (32)

where θj is the model parameters of f jt−1.
Let f jt = f jt−1 for j = 1, . . . , N .

end for
Output: The classifier f = fT and the selection scoring function g = maxk∈Y f(x | k).
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Figure 3: Illustration of the checkpoint ensemble and pseudo-labeled set construction in the proposed ASPEST.

E ASPEST Algorithm and its Computational Complexity664

Algorithm 3 presents the overall ASPEST method. Figure 3 illustrates how the checkpoint ensemble665

and the pseudo-labeled set are constructed in the proposed ASPEST. Next, we will analyze the666

computational complexity of ASPEST.667

Let the complexity for one step of updating P and Ne be tu (mainly one forward pass of DNN);668

for one DNN gradient update step is tg (mainly one forward and backward pass of DNN); and for669

sample selection is ts (mainly sorting test examples). Then, the total complexity of ASPEST would670

be O
(
N · ns

cs
· tu + N · ns · tg + T · [ts + N · (ef + es · p) · nb · tg + N · es+efce

· tu]
)

, where ef671

is the number of fine-tuning epochs and es is the number of self-training epochs and b is the batch672

size. Although the training objectives include training on Dtr, the complexity doesn’t depend on the673

size of Dtr since we measure ef over ∪tl=1B̃l in training objective (9) and measure es over Rsub in674

training objective (11). In practice, we usually have ts � tg and tu � tg. Also, we set es · p < ef ,675
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Algorithm 3 Active Selective Prediction using Ensembles and Self-Training

Input: A training set Dtr, a unlabeled test set UX , the number of rounds T , the labeling budget M ,
the number of models N , the number of initial training steps ns, the initial checkpoint steps cs, a
checkpoint epoch ce, a threshold η, a sub-sampling fraction p, and a hyper-parameter λ.
Let f j0 = f̄ for j = 1, . . . , N .
Set Ne = 0 and P = 0n×K .
Fine-tune each f j0 for ns training steps using objective (7) and update P and Ne using Eq. (6)
every cs training steps.
for t = 1, · · · , T do

Select a batch Bt from UX for labeling using the sample selection objective (8).
Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Set Ne = 0 and P = 0n×K .
Fine-tune each f jt−1 using objective (9), while updating P and Ne using Eq (6) every ce training
epochs.
Let f jt = f jt−1.
Construct the pseudo-labeled set R via Eq (10) and create Rsub by randomly sampling up to
[p · n] data points from R.
Train each f jt further via SGD using the objective (11) and update P and Ne using Eq (6) every
ce training epochs.

end for
Output: The classifier f(xi) = argmaxk∈Y Pi,k and the selection scoring function g(xi) =

maxk∈Y Pi,k.

ns � n
b ·T ·ef and es+ef

ce
� (ef +es ·p) · nb . So the complexity of ASPEST isO

(
N ·T · nb ·ef · tg

)
.676

Suppose the size of Dtr is ntr and the number of source training epochs is ep. Then, the complexity677

for source training is O(ntr

b · ep · tg). In practice, we usually have N · T · n · ef � ntr · ep. Overall,678

the complexity of ASPEST would be much smaller than that of source training.679

F Details of Experimental Setup680

F.1 Computing Infrastructure and Runtime681

We run all experiments with TensorFlow 2.0 on NVIDIA A100 GPUs in the Debian GNU/Linux 10682

system. We report the total runtime of the proposed method ASPEST on each dataset in Table 4. Note683

that in our implementation, we train models in the ensemble sequentially. However, it is possible to684

train models in the ensemble in parallel, which can significantly reduce the runtime. With the optimal685

implementation, the inference latency of the ensemble can be as low as the inference latency of a686

single model.687

Dataset Total Runtime
MNIST→SVHN 24 min
CIFAR-10→CINIC-10 1 hour
FMoW 2 hour 48 min
Amazon Review 1 hour 34 min
DomainNet (R→C) 2 hours 10 min
DomainNet (R→P) 1 hour 45 min
DomainNet (R→S) 1 hour 51 min
Otto 18 min

Table 4: The runtime of ASPEST when the labeling budget M = 500. We use the default hyper-parameters for
ASPEST described in Section 5.1.
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F.2 Datasets688

We describe the datasets used below. For all image datasets, we normalize the range of pixel values689

to [0,1].690

MNIST→SVHN. The source training dataset Dtr is MNIST [42] while the target test dataset UX is691

SVHN [51]. MNIST consists 28×28 grayscale images of handwritten digits, containing in total 5,500692

training images and 1,000 test images. We resize each image to be 32×32 resolution and change693

them to be colored. We use the training set of MNIST as Dtr and the test set of MNIST as the source694

validation dataset. SVHN consists 32×32 colored images of digits obtained from house numbers in695

Google Street View images. The training set has 73,257 images and the test set has 26,032 images.696

We use the test set of SVHN as UX .697

CIFAR-10→CINIC-10. The source training dataset Dtr is CIFAR-10 [40] while the target test698

dataset UX is CINIC-10 [9]. CIFAR-10 consists 32×32 colored images with ten classes (dogs, frogs,699

ships, trucks, etc.), each consisting of 5,000 training images and 1,000 test images. We use the700

training set of CIFAR-10 as Dtr and the test set of CIFAR-10 as the source validation dataset. During701

training, we apply random horizontal flipping and random cropping with padding data augmentations702

to the training images. CINIC-10 is an extension of CIFAR-10 via the addition of downsampled703

ImageNet images. CINIC-10 has a total of 270,000 images equally split into training, validation, and704

test. In each subset (90,000 images) there are ten classes (identical to CIFAR-10 classes). There are705

9,000 images per class per subset. We use a subset of the CINIC-10 test set containing 30,000 images706

as UX .707

FMoW. We use the FMoW-WILDS dataset from [39]. FMoW-wilds is based on the Functional708

Map of the World dataset [7], which collected and categorized high-resolution satellite images from709

over 200 countries based on the functional purpose of the buildings or land in the image, over the710

years 2002–2018. The task is multi-class classification, where the input x is an RGB satellite image,711

the label y is one of 62 building or land use categories, and the domain d represents both the year712

the image was taken as well as its geographical region (Africa, the Americas, Oceania, Asia, or713

Europe). The training set contains 76,863 images from the years 2002-2013. The In-Distribution714

(ID) validation set contains 11,483 images from the years 2002-2013. The OOD test set contains715

22,108 images from the years 2016-2018. We resize each image to be 96×96 resolution to save716

computational cost. We use the training set as Dtr and the ID validation set as the source validation717

dataset. During training, we apply random horizontal flipping and random cropping with padding718

data augmentations to the training images. We use the OOD test set as UX .719

Amazon Review. We use the Amazon Review WILDS dataset from [39]. The dataset comprises720

539,502 customer reviews on Amazon taken from the Amazon Reviews dataset [52]. The task721

is multi-class sentiment classification, where the input x is the text of a review, the label y is a722

corresponding star rating from 1 to 5, and the domain d is the identifier of the reviewer who wrote723

the review. The training set contains 245,502 reviews from 1,252 reviewers. The In-Distribution724

(ID) validation set contains 46,950 reviews from 626 of the 1,252 reviewers in the training set. The725

Out-Of-Distribution (OOD) test set contains 100,050 reviews from another set of 1,334 reviewers,726

distinct from those of the training set. We use the training set as Dtr and the ID validation set as the727

source validation dataset. We use a subset of the OOD test set containing 22,500 reviews from 300728

reviewers as UX .729

DomainNet. DomainNet [55] is a dataset of common objects in six different domains. All domains730

include 345 categories (classes) of objects such as Bracelet, plane, bird, and cello. We use five731

domains from DomainNet including: (1) Real: photos and real world images. The training set from732

the Real domain has 120,906 images while the test set has 52,041 images; (2) Clipart: a collection733

of clipart images. The training set from the Clipart domain has 33,525 images while the test set734

has 14,604 images; (3) Sketch: sketches of specific objects. The training set from the Sketch has735

48,212 images while the test set has 20,916 images; (4) Painting: artistic depictions of objects in736

the form of paintings. The training set from the Painting domain has 50,416 images while the test737

set has 21,850 images. (5) Infograph: infographic images with specific objects. The training set738

from the Infograph domain has 36,023 images while the test set has 15,582 images. We resize each739

image from all domains to be 96×96 resolution to save computational cost. We use the training740

set from the Real domain as Dtr and the test set from the Real domain as the source validation741

dataset. During training, we apply random horizontal flipping and random cropping with padding742

data augmentations to the training images. We use the test sets from three domains Clipart, Sketch,743
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and Painting as three different UX for evaluation. So we evaluate three shifts: Real→Clipart (R→C),744

Real→Sketch (R→S), and Real→Painting (R→P). We use the remaining shift Real→Infograph745

(R→I) as a validation dataset for tuning the hyper-parameters.746

Otto. The Otto Group Product Classification Challenge [4] is a tabular dataset hosted on Kaggle 2.747

The task is to classify each product with 93 features into 9 categories. Each target category represents748

one of the most important product categories (like fashion, electronics, etc). It contains 61, 878749

training data points. Since it only provides labels for the training data, we need to create the training,750

validation and test set. To create a test set that is from a different distribution than the training set,751

we apply the Local Outlier Factor (LOF) [5], which is an unsupervised outlier detection method, on752

the Otto training data to identify a certain fraction (e.g., 0.2) of outliers as the test set. Specifically,753

we apply the LocalOutlierFactor function provided by scikit-learn [54] on the training data with754

a contamination of 0.2 (contamination value determines the proportion of outliers in the data set)755

to identify the outliers. We identify 12, 376 outlier data points and use them as the test set UX .756

We then randomly split the remaining data into a training set Dtr with 43, 314 data points and a757

source validation set with 6, 188 data points. We show that the test set indeed has a distribution shift758

compared to the source validation set, which causes the model trained on the training set to have a759

drop in performance (see Table 5 in Appendix G.1).760

F.3 Details on Model Architectures and Training on Source Data761

On all datasets, we use the following supervised training objective for training models on the source762

training set Dtr:763

min
θ

E(x,y)∈Dtr `CE(x, y; θ) (33)

where `CE is the cross-entropy loss and θ is the model parameters.764

On MNIST→SVHN, we use the Convolutional Neural Network (CNN) [43] consisting of four765

convolutional layers followed by two fully connected layers with batch normalization and dropout766

layers. We train the model on the training set of MNIST for 20 epochs using the Adam optimizer [36]767

with a learning rate of 10−3 and a batch size of 128.768

On CIFAR-10→CINIC-10, we use the ResNet-20 network [27]. We train the model on the training769

set of CIFAR-10 for 200 epochs using the SGD optimizer with a learning rate of 0.1, a momentum of770

0.9, and a batch size of 128. The learning rate is multiplied by 0.1 at the 80, 120, and 160 epochs,771

respectively, and is multiplied by 0.5 at the 180 epoch.772

On the FMoW dataset, we use the DensetNet-121 network [32] pre-trained on ImageNet. We train773

the model further for 50 epochs using the Adam optimizer with a learning rate of 10−4 and a batch774

size of 128.775

On the Amazon Review dataset, we use the pre-trained RoBERTa base model [46] to extract the776

embedding of the input sentence for classification (i.e., RoBERTa’s output for the [CLS] token) and777

then build an eight-layer fully connected neural network (also known as a multi-layer perceptron)778

with batch normalization, dropout layers and L2 regularization on top of the embedding. Note that779

we only update the parameters of the fully connected neural network without updating the parameters780

of the pre-trained RoBERTa base model during training (i.e., freeze the parameters of the RoBERTa781

base model during training). We train the model for 200 epochs using the Adam optimizer with a782

learning rate of 10−3 and a batch size of 128.783

On the DomainNet dataset, we use the ResNet-50 network [26] pre-trained on ImageNet. We train784

the model further on the training set from the Real domain for 50 epochs using the Adam optimizer785

with a learning rate of 10−4 and a batch size of 128.786

On the Otto dataset, we use a six-layer fully connected neural network (also known as a multi-layer787

perceptron) with batch normalization, dropout layers and L2 regularization. We train the model on788

the created training set for 200 epochs using the Adam optimizer with a learning rate of 10−3 and a789

batch size of 128.790

2URL: https://kaggle.com/competitions/otto-group-product-classification-challenge
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F.4 Active learning hyper-parameters791

During the active learning process, we fine-tune the model on the selected labeled test data. During792

fine-tuning, we don’t apply any data augmentation to the test data. We use the same fine-tuning793

hyper-parameters for different methods to ensure a fair comparison. The optimizer used is the same as794

that in the source training stage (described in Appendix F.3). On MNIST→SVHN, we use a learning795

rate of 10−3; On CIFAR-10→CINIC-10, we use a learning rate of 5× 10−3; On FMoW, we use a796

learning rate of 10−4; On Amazon Review, we use a learning rate of 10−3; On DomainNet, we use797

a learning rate of 10−4; On Otto, we use a learning rate of 10−3. On all datasets, we fine-tune the798

model for at least 50 epochs and up to 200 epochs with a batch size of 128 and early stopping using799

10 patient epochs.800

G Additional Experimental Results801

G.1 Evaluate Source-Trained Models802

In this section, we evaluate the accuracy of the source-trained models on the source validation803

dataset and the target test dataset UX . The models are trained on the source training set Dtr (refer to804

Appendix F.3 for the details of source training). The source validation data are randomly sampled805

from the training data distribution while the target test data are sampled from a different distribution806

than the training data distribution. The results in Table 5 show that the models trained on Dtr always807

suffer a drop in accuracy when evaluating them on the target test dataset UX .808

Dataset Source Accuracy Target Accuracy
MNIST→SVHN 99.40 24.68
CIFAR-10→CINIC-10 90.46 71.05
FMoW 46.25 38.01
Amazon Review 65.39 61.40
DomainNet (R→C) 63.45 33.37
DomainNet (R→P) 63.45 26.29
DomainNet (R→S) 63.45 16.00
Otto 80.72 66.09

Table 5: Results of evaluating the accuracy of the source-trained models on the source validation dataset and
the target test dataset UX . All numbers are percentages.

G.2 Evaluate Softmax Response with Various Active Learning Methods809

To see whether combining existing selective prediction and active learning approaches could solve810

the active selective prediction problem, we evaluate the existing selective prediction method Softmax811

Response (SR) with active learning methods based on uncertainty or diversity. The results in812

Table 6 show that the methods based on uncertainty sampling (SR+Confidence, SR+Entropy and813

SR+Margin) achieve relatively high accuracy of f , but suffer from the overconfidence issue (i.e.,814

mis-classification with high confidence). The method based on diversity sampling (SR+kCG) doesn’t815

have the overconfidence issue, but suffers from low accuracy of f . Also, the hybrid methods based on816

uncertainty and diversity sampling (SR+CLUE and SR+BADGE) still suffer from the overconfidence817

issue. In contrast, the proposed method ASPEST achieves much higher accuracy of f , effectively818

alleviates the overconfidence issue, and significantly improves the selective prediction performance.819

G.3 Complete Evaluation Results820

We give complete experimental results for the baselines and the proposed method ASPEST on all821

datasets in this section. We repeat each experiment three times with different random seeds and report822

the mean and standard deviation (std) values. These results are shown in Table 7 (MNIST→SVHN),823

Table 8 (CIFAR-10→CINIC-10), Table 9 (FMoW), Table 10 (Amazon Review), Table 11 (DomainNet824

R→C), Table 12 (DomainNet R→P), Table 13 (DomainNet R→S) and Table 14 (Otto). Our results825

show that the proposed method ASPEST consistently outperforms the baselines across different826

image, text and structured datasets.827
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Method Accuracy of f ↑ Overconfidence ratio ↓ AUC↑
SR+Confidence 45.29±3.39 16.91±2.24 64.14±2.83
SR+Entropy 45.78±6.36 36.84±18.96 65.88±4.74
SR+Margin 58.10±0.55 13.18±1.85 76.79±0.45
SR+kCG 32.68±3.87 0.04±0.01 48.83±7.21
SR+CLUE 55.22±2.27 9.47±0.94 73.15±2.68
SR+BADGE 56.55±1.62 8.37±2.56 76.06±1.63
ASPEST (ours) 71.82±1.49 0.10±0.02 88.84±1.02

Table 6: Evaluating the Softmax Response (SR) method with various active learning methods and the proposed
ASPEST on MNIST→SVHN. The experimental setup is describe in Section 5.1. The labeling budget M is 100.
The overconfidence ratio is the ratio of mis-classified unlabeled test inputs that have confidence ≥ 1 (the highest
confidence). The mean and std of each metric over three random runs are reported (mean±std). All numbers are
percentages. Bold numbers are superior results.

Dataset MNIST→SVHN
Metric cov|acc ≥ 90% ↑ acc|cov ≥ 90% ↑ AUC ↑
Labeling Budget 100 500 1000 100 500 1000 100 500 1000
SR+Uniform 0.00±0.0 51.46±3.7 75.57±0.9 58.03±1.5 76.69±1.2 84.39±0.2 74.08±1.5 88.80±0.8 93.57±0.2
SR+Confidence 0.00±0.0 55.32±5.1 82.22±1.3 47.66±3.4 79.02±0.7 87.19±0.4 64.14±2.8 89.93±0.6 94.62±0.2
SR+Entropy 0.00±0.0 0.00±0.0 75.08±2.4 47.93±7.0 77.09±1.0 84.81±0.7 65.88±4.7 88.19±0.8 93.37±0.5
SR+Margin 0.00±0.0 63.60±2.7 82.19±0.3 61.39±0.5 80.96±0.9 86.97±0.2 76.79±0.5 91.24±0.5 94.82±0.1
SR+kCG 2.52±1.3 23.04±0.3 38.97±2.6 34.57±4.4 52.76±1.1 64.34±4.8 48.83±7.2 73.65±1.0 83.16±2.0
SR+CLUE 0.00±0.0 62.03±2.4 81.29±1.1 57.35±1.9 79.55±0.8 86.28±0.5 72.72±1.9 90.98±0.5 94.99±0.2
SR+BADGE 0.00±0.0 62.55±4.4 82.39±2.8 59.82±1.7 79.49±1.6 86.96±0.9 76.06±1.6 91.09±0.9 95.16±0.6
DE+Uniform 24.71±5.6 68.98±1.6 83.67±0.1 63.22±1.7 81.67±0.4 87.32±0.1 79.36±1.7 92.47±0.2 95.48±0.0
DE+Entropy 6.24±8.8 63.30±6.5 84.62±1.5 56.61±0.6 80.16±2.0 88.05±0.5 72.51±1.5 91.21±1.4 95.45±0.5
DE+Confidence 14.92±5.1 67.87±1.4 89.41±0.3 61.11±2.9 81.80±0.5 89.75±0.1 75.85±3.0 92.16±0.2 96.19±0.1
DE+Margin 21.59±3.8 77.84±2.8 92.75±0.3 62.88±1.2 85.11±1.1 91.17±0.1 78.59±1.4 94.31±0.6 97.00±0.0
DE+Avg-KLD 10.98±4.6 61.45±3.4 88.06±2.2 54.80±1.6 78.21±1.6 89.23±0.9 71.67±2.2 90.92±0.8 96.23±0.4
DE+CLUE 22.34±1.4 69.23±1.9 82.80±1.0 59.47±1.3 81.05±0.9 86.78±0.4 76.88±1.0 92.70±0.5 95.56±0.2
DE+BADGE 22.02±4.5 72.31±1.2 88.23±0.4 61.23±1.9 82.69±0.5 89.15±0.2 77.65±1.9 93.38±0.2 96.51±0.1
ASPEST (ours) 52.10±4.0 89.22±0.9 98.70±0.4 76.10±1.5 89.62±0.4 93.92±0.3 88.84±1.0 96.62±0.2 98.06±0.1

Table 7: Results of comparing ASPEST to the baselines on MNIST→SVHN. The mean and std of each metric
over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior
results.

G.4 Effect of combining selective prediction with active learning828

Selective prediction without active learning corresponds to the case where the labeling budget M = 0829

and the selected set B∗ = ∅. To make fair comparisons with selective prediction methods without830

active learning, we define a new coverage metric:831

cov∗(fs, τ) = Ex∼UX
I[g(x) ≥ τ ∧ x /∈ B∗] (34)

Dataset CIFAR-10→CINIC-10
Metric cov|acc ≥ 90% ↑ acc|cov ≥ 90% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 57.43±0.2 57.15±0.6 58.37±0.7 75.67±0.2 75.69±0.1 76.11±0.3 89.77±0.0 89.81±0.1 90.09±0.2
SR+Confidence 57.96±0.6 57.05±0.7 61.11±1.1 76.49±0.2 76.87±0.2 78.77±0.4 90.00±0.2 89.92±0.2 90.91±0.3
SR+Entropy 57.78±0.7 57.07±1.4 61.07±0.4 76.57±0.3 76.71±0.5 78.85±0.2 90.01±0.2 89.94±0.3 90.88±0.0
SR+Margin 57.72±0.8 57.98±0.7 61.71±0.2 76.24±0.2 76.90±0.2 78.42±0.2 89.95±0.2 90.14±0.1 91.02±0.0
SR+kCG 57.90±0.5 57.81±0.7 60.36±0.3 75.59±0.1 75.73±0.2 76.68±0.2 89.78±0.1 89.79±0.2 90.41±0.2
SR+CLUE 57.29±0.5 58.89±0.5 62.28±0.2 75.74±0.2 76.68±0.3 78.10±0.2 89.67±0.2 90.15±0.1 91.03±0.1
SR+BADGE 58.58±0.6 58.63±0.3 61.95±0.4 76.33±0.5 76.58±0.1 78.26±0.2 90.05±0.2 90.16±0.1 90.99±0.0
DE+Uniform 58.06±0.3 58.72±0.1 59.54±0.3 76.65±0.1 77.06±0.2 77.46±0.1 90.26±0.1 90.45±0.1 90.73±0.1
DE+Entropy 58.91±0.6 60.96±0.2 63.85±0.2 77.66±0.1 79.14±0.1 80.82±0.2 90.55±0.1 91.16±0.1 91.89±0.0
DE+Confidence 58.53±0.3 61.03±0.6 64.42±0.2 77.73±0.2 79.00±0.1 80.87±0.0 90.53±0.0 91.11±0.1 91.96±0.0
DE+Margin 58.76±0.5 61.60±0.5 64.92±0.5 77.61±0.2 78.91±0.1 80.59±0.1 90.56±0.1 91.11±0.1 91.98±0.1
DE+Avg-KLD 59.99±0.6 62.05±0.3 65.02±0.5 77.84±0.1 79.15±0.0 81.04±0.1 90.74±0.1 91.30±0.1 92.10±0.1
DE+CLUE 59.27±0.1 61.16±0.4 64.42±0.0 77.19±0.1 78.37±0.2 79.44±0.1 90.44±0.1 91.03±0.1 91.74±0.0
DE+BADGE 59.37±0.4 61.61±0.1 64.53±0.4 77.13±0.1 78.33±0.2 79.44±0.3 90.49±0.1 91.12±0.0 91.78±0.1
ASPEST (ours) 60.38±0.3 63.34±0.2 66.81±0.3 78.23±0.1 79.49±0.1 81.25±0.1 90.95±0.0 91.60±0.0 92.33±0.1

Table 8: Results of comparing ASPEST to the baselines on CIFAR-10→CINIC-10. The mean and std of
each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.
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Dataset FMoW
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 38.50±0.7 42.00±0.5 52.34±1.1 51.76±0.7 54.27±0.2 60.31±0.7 65.75±0.4 67.67±0.3 72.73±0.3
SR+Confidence 37.34±0.3 42.28±1.2 53.72±0.7 52.24±0.1 55.52±0.5 61.76±0.4 65.57±0.1 68.03±0.5 73.14±0.5
SR+Entropy 37.42±0.3 42.08±0.2 51.18±0.4 51.74±0.4 54.94±0.2 60.62±0.2 65.31±0.2 68.00±0.1 71.99±0.2
SR+Margin 38.40±1.4 44.67±0.7 55.68±1.5 52.88±0.3 56.66±0.4 62.98±0.7 66.11±0.6 69.12±0.4 73.86±0.5
SR+kCG 36.50±0.8 39.76±1.2 45.87±0.6 49.36±0.7 51.45±0.5 55.47±0.1 64.34±0.5 66.21±0.6 69.63±0.2
SR+CLUE 38.65±0.7 44.50±1.8 54.71±0.5 52.23±0.4 55.54±1.0 61.13±0.4 65.78±0.3 68.76±0.9 73.80±0.1
SR+BADGE 40.47±1.5 45.65±1.2 57.59±0.4 53.08±1.0 56.63±0.3 63.57±0.2 66.74±0.8 69.43±0.6 74.76±0.2
DE+Uniform 44.74±0.4 51.57±1.1 61.92±0.4 56.39±0.5 60.01±0.5 65.74±0.2 69.44±0.3 72.48±0.5 77.02±0.1
DE+Entropy 43.76±0.3 50.52±1.4 62.73±0.4 56.29±0.3 60.31±0.3 66.53±0.2 69.02±0.1 72.10±0.5 76.65±0.2
DE+Confidence 45.23±0.6 50.11±0.9 64.29±0.3 57.18±0.4 60.46±0.3 67.46±0.0 69.80±0.3 72.11±0.4 77.37±0.1
DE+Margin 46.35±0.6 54.79±1.3 69.70±0.8 57.84±0.3 62.43±0.5 69.87±0.4 70.18±0.3 73.62±0.3 78.88±0.4
DE+Avg-KLD 46.29±0.3 53.63±0.8 68.18±0.9 57.75±0.4 61.60±0.3 69.11±0.4 70.16±0.1 73.09±0.2 78.48±0.3
DE+CLUE 45.22±0.2 49.97±0.3 58.05±0.5 56.39±0.1 59.05±0.1 63.23±0.4 69.53±0.0 71.95±0.1 75.72±0.3
DE+BADGE 47.39±0.7 53.83±0.7 66.45±0.8 57.71±0.4 61.16±0.2 68.13±0.4 70.59±0.4 73.40±0.3 78.66±0.1
ASPEST (ours) 53.05±0.4 59.86±0.4 76.52±0.6 61.18±0.2 65.18±0.2 72.86±0.3 71.12±0.2 74.25±0.2 79.93±0.1

Table 9: Results of comparing ASPEST to the baselines on FMoW. The mean and std of each metric over three
random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior results.

Dataset Amazon Review
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 13.71±11.3 24.10±5.3 24.87±2.6 65.13±0.8 66.33±0.6 66.26±0.3 72.71±1.5 73.64±0.7 73.53±0.7
SR+Confidence 11.28±8.9 17.96±4.0 33.19±1.4 65.15±0.7 66.29±0.4 68.94±0.1 72.89±0.7 73.25±0.7 76.17±0.2
SR+Entropy 5.55±7.8 13.32±9.5 25.47±1.8 65.11±1.1 66.56±0.7 67.31±0.7 71.96±1.6 72.53±1.1 74.19±0.5
SR+Margin 14.48±10.9 22.61±4.2 28.35±6.1 65.75±0.5 66.31±0.4 68.15±0.4 73.25±1.0 73.65±0.5 75.17±0.8
SR+kCG 20.02±11.0 17.02±12.2 29.08±4.2 64.03±3.1 66.17±0.5 66.63±1.0 72.34±3.2 74.35±0.7 74.49±1.0
SR+CLUE 4.15±5.9 25.15±4.9 31.88±2.1 66.17±0.4 66.30±0.4 67.12±0.7 73.43±0.4 74.07±0.7 75.29±0.9
SR+BADGE 22.58±0.4 23.78±6.4 30.71±4.6 66.29±0.4 66.31±0.6 68.58±0.7 73.80±0.6 74.00±1.0 75.76±0.8
DE+Uniform 34.35±1.4 33.15±1.1 36.55±1.8 68.13±0.4 68.12±0.6 68.88±0.2 76.20±0.3 76.16±0.4 77.07±0.3
DE+Entropy 31.74±1.4 36.29±1.6 40.33±1.7 68.19±0.3 69.44±0.2 71.27±0.3 75.98±0.4 77.10±0.3 78.53±0.3
DE+Confidence 35.12±1.8 34.48±1.4 40.46±0.5 69.07±0.3 69.47±0.2 71.08±0.2 76.63±0.2 76.87±0.3 78.27±0.1
DE+Margin 33.42±1.3 35.03±1.3 41.20±0.4 68.45±0.3 69.30±0.2 70.88±0.1 76.18±0.2 76.91±0.3 78.31±0.1
DE+Avg-KLD 33.03±1.5 38.55±3.2 41.75±1.8 68.63±0.3 69.95±0.4 71.10±0.3 76.21±0.4 77.62±0.6 78.62±0.3
DE+CLUE 33.92±3.0 35.27±1.4 34.83±3.1 68.09±0.3 68.07±0.3 68.40±0.6 76.27±0.6 76.65±0.3 76.69±0.7
DE+BADGE 32.23±3.7 36.18±1.5 40.58±3.3 68.34±0.4 68.87±0.2 70.29±0.3 76.13±0.7 77.09±0.2 78.44±0.5
ASPEST (ours) 38.44±0.7 40.96±0.8 45.77±0.1 69.31±0.3 70.17±0.2 71.60±0.2 77.69±0.1 78.35±0.2 79.51±0.2

Table 10: Results of comparing ASPEST to the baselines on Amazon Review. The mean and std of each metric
over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior
results.

The range of cov∗(fs, τ) is [0, 1− M
n ], where M = |B∗| and n = |UX |. If we use a larger labeling832

budget M for active learning, then the upper bound of cov∗(fs, τ) will be smaller. Thus, in order to833

beat selective classification methods without active learning, active selective prediction methods need834

to use a small labeling budget to achieve significant accuracy and coverage improvement. We still835

use the accuracy metric defined in (4). We then define a new maximum accuracy at a target coverage836

tc as:837

max
τ

acc(fs, τ), s.t. cov∗(fs, τ) ≥ tc (35)

We denote this metric as acc|cov∗ ≥ tc.838

We define a new maximum coverage at a target accuracy ta metric as:839

max
τ

cov∗(fs, τ), s.t. acc(fs, τ) ≥ ta (36)

We denote this metric as cov∗|acc ≥ ta.840

The results under these new metrics are shown in Table 1 (MNIST→SVHN), Table 15 (CIFAR-841

10→CINIC-10 and Otto), Table 16 (FMoW and Amazon Review) and Table 17 (DomainNet). The842

results show that combining selective prediction with active learning can significantly improve the843

accuracy and coverage metrics, even with small labeling budgets.844

G.5 Effect of joint training845

In the problem setup, we assume that we have access to the training dataset Dtr and can use joint846

training to improve selective prediction performance. In this section, we perform experiments to847
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Dataset DomainNet R→C (easy)
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 25.56±0.6 27.68±0.8 29.86±0.0 43.63±0.4 45.57±0.3 47.27±0.4 63.31±0.4 65.11±0.5 66.70±0.2
SR+Confidence 25.96±0.2 27.80±1.2 32.51±1.3 44.90±0.8 47.26±0.4 52.04±0.8 64.20±0.6 65.88±0.6 69.70±0.7
SR+Entropy 25.44±1.0 27.79±0.4 33.51±1.1 44.46±0.7 46.96±0.3 52.25±0.5 63.52±0.6 65.72±0.2 70.03±0.5
SR+Margin 26.28±1.2 27.77±1.0 32.92±0.4 45.24±1.0 47.12±0.7 52.29±0.4 64.37±0.8 65.91±0.6 70.01±0.4
SR+kCG 21.12±0.3 21.79±0.4 23.43±0.5 39.19±0.1 40.59±0.4 41.11±0.3 58.88±0.0 60.11±0.4 60.89±0.1
SR+CLUE 27.17±0.8 29.78±0.8 34.82±0.6 44.57±0.7 46.79±0.1 49.70±0.3 64.38±0.6 66.47±0.3 69.59±0.1
SR+BADGE 27.78±0.8 30.78±0.6 36.00±0.6 45.36±0.6 48.43±0.6 53.00±0.4 64.90±0.5 67.56±0.4 71.39±0.4
DE+Uniform 30.82±0.8 33.05±0.4 36.80±0.2 48.19±0.3 50.09±0.3 52.98±0.5 67.60±0.4 69.31±0.3 71.64±0.4
DE+Entropy 29.13±0.9 34.07±0.3 40.82±0.3 48.67±0.4 51.66±0.2 57.81±0.2 67.48±0.3 70.05±0.2 74.64±0.2
DE+Confidence 29.90±0.8 33.73±0.2 40.80±0.2 48.60±0.3 52.03±0.3 58.43±0.1 67.45±0.3 70.19±0.2 74.80±0.1
DE+Margin 31.82±1.3 35.68±0.2 43.39±0.7 50.12±0.4 53.19±0.4 59.17±0.2 68.85±0.4 71.29±0.3 75.79±0.3
DE+Avg-KLD 32.23±0.2 36.09±0.6 44.00±0.5 49.81±0.3 53.38±0.3 58.93±0.1 68.73±0.2 71.40±0.2 75.73±0.2
DE+CLUE 30.80±0.3 33.04±0.4 35.52±0.2 48.56±0.3 49.91±0.3 51.40±0.2 67.82±0.2 69.10±0.2 70.62±0.2
DE+BADGE 30.16±1.3 36.18±0.3 43.34±0.3 49.78±0.3 53.26±0.1 58.65±0.4 68.46±0.3 71.35±0.2 75.37±0.3
ASPEST (ours) 37.38±0.1 39.98±0.3 48.29±1.0 54.56±0.3 56.95±0.1 62.69±0.2 71.61±0.2 73.27±0.2 77.40±0.4

Table 11: Results of comparing ASPEST to the baselines on DomainNet R→C. The mean and std of each
metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior
results.

Dataset DomainNet R→P (medium)
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 21.01±1.0 21.35±0.3 22.64±0.5 36.78±0.6 37.18±0.2 38.20±0.4 51.87±0.7 52.31±0.0 53.34±0.4
SR+Confidence 20.64±0.6 22.15±0.8 23.60±0.6 37.01±0.3 38.46±0.7 40.23±0.4 51.77±0.3 53.33±0.8 54.80±0.5
SR+Entropy 20.76±0.7 22.11±0.3 23.56±0.3 37.09±0.2 38.38±0.3 40.30±0.1 51.86±0.4 53.29±0.3 54.81±0.2
SR+Margin 21.43±0.4 23.29±0.3 24.70±1.0 37.21±0.2 39.15±0.4 40.81±0.4 52.33±0.1 54.09±0.3 55.70±0.4
SR+kCG 17.33±0.4 17.62±0.2 18.49±0.2 33.97±0.3 34.12±0.1 34.36±0.1 48.61±0.5 48.65±0.2 49.25±0.2
SR+CLUE 21.15±0.6 22.49±0.5 24.84±0.7 36.96±0.2 37.93±0.5 39.31±0.4 51.97±0.4 53.20±0.5 54.84±0.5
SR+BADGE 20.07±0.3 22.21±0.5 24.92±0.2 36.10±0.1 38.11±0.4 40.40±0.5 50.99±0.0 53.10±0.4 55.40±0.4
DE+Uniform 25.42±0.2 26.38±0.2 28.83±0.3 40.83±0.1 41.66±0.2 43.93±0.2 55.86±0.1 56.62±0.1 58.80±0.2
DE+Entropy 25.74±0.4 27.11±0.4 30.39±0.1 41.34±0.1 42.92±0.3 45.92±0.3 56.06±0.2 57.51±0.3 60.10±0.2
DE+Confidence 25.69±0.4 27.38±0.7 30.47±0.1 41.45±0.2 43.12±0.3 45.88±0.1 56.13±0.2 57.68±0.3 60.20±0.2
DE+Margin 25.78±0.3 27.88±0.5 31.03±0.4 41.26±0.2 43.13±0.3 46.23±0.4 56.23±0.2 57.90±0.3 60.49±0.3
DE+Avg-KLD 26.30±0.7 28.00±0.1 31.97±0.2 41.80±0.3 43.17±0.1 46.32±0.2 56.65±0.3 57.99±0.1 60.82±0.2
DE+CLUE 25.38±0.6 26.65±0.4 27.89±0.1 40.86±0.3 41.62±0.2 42.46±0.1 55.79±0.4 56.65±0.2 57.71±0.1
DE+BADGE 26.27±0.7 27.69±0.1 31.84±0.2 42.02±0.6 43.41±0.2 46.37±0.1 56.67±0.5 58.03±0.1 60.84±0.1
ASPEST (ours) 29.69±0.1 32.50±0.3 35.46±0.6 44.96±0.1 46.77±0.2 49.42±0.1 58.74±0.0 60.36±0.0 62.84±0.2

Table 12: Results of comparing ASPEST to the baselines on DomainNet R→P. The mean and std of each metric
over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior
results.

study the effect of joint training and the effect of the loss coefficient λ when performing joint848

training. We consider three active selective prediction methods: SR+margin (Algorithm 1 with849

margin sampling), DE+margin (Algorithm 2 with margin sampling), and ASPEST (Algorithm 3). We850

consider λ ∈ {0, 0.5, 1.0, 2.0}. When λ = 0, we don’t use joint training; when λ > 0, we use joint851

training. The results are shown in Table 18. From the results, we can see that using joint training (i.e.,852

when λ > 0) can improve performance, especially when the labeling budget is small. Also, setting a853

too large value for λ (e.g., λ = 2) will lead to worse performance. Setting λ = 0.5 or 1 usually leads854

to better performance. In our experiments, we simply set λ = 1 by default.855

G.6 Effect of the number of rounds T856

In this section, we study the effect of the number of rounds T in active learning. The results in857

Table 19 show that larger T usually leads to better performance, and the proposed method ASPEST858

has more improvement as we increase T compared to SR+Margin and DE+Margin. Also, when T is859

large enough, the improvement becomes minor (or can even be worse). Considering that in practice,860

we might not be able to set a large T due to resource constraints, we thus set T = 10 by default.861

G.7 Effect of the number of models N in the ensemble862

In this section, we study the effect of the number of models N in the ensemble for DE+Margin and863

ASPEST. The results in Table 20 show that larger N usually leads to better results. However, larger864

N also means a larger computational cost. In our experiments, we simply set N = 5 by default.865
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Dataset DomainNet R→S (hard)
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 12.12±0.7 12.42±0.4 15.88±0.2 27.01±0.6 27.74±0.3 31.29±0.3 41.12±0.8 41.89±0.2 46.17±0.3
SR+Confidence 11.06±1.1 11.48±0.5 14.49±1.5 26.53±1.4 27.98±0.2 31.31±0.7 40.26±1.6 41.65±0.2 45.46±1.1
SR+Entropy 10.91±0.3 12.45±0.6 14.65±0.6 26.84±0.5 28.72±0.5 31.07±0.6 40.47±0.6 42.61±0.8 45.31±0.4
SR+Margin 12.23±0.4 13.06±0.4 15.31±0.4 27.87±0.2 29.19±0.4 31.51±0.8 41.91±0.3 43.22±0.4 45.97±0.8
SR+kCG 9.03±0.2 9.76±0.2 11.41±0.2 23.32±0.4 24.06±0.4 25.68±0.4 36.63±0.3 37.57±0.4 39.80±0.3
SR+CLUE 12.39±0.3 14.17±1.0 15.80±0.8 27.82±0.4 29.68±0.4 30.62±0.8 42.00±0.4 44.19±0.7 45.58±0.9
SR+BADGE 12.18±0.9 13.13±1.0 15.83±0.7 27.68±1.0 28.96±0.7 32.00±0.4 41.72±1.1 43.28±0.9 46.60±0.6
DE+Uniform 15.91±0.5 17.55±0.4 21.33±0.3 31.37±0.5 32.57±0.4 36.12±0.2 46.28±0.5 47.79±0.4 51.64±0.2
DE+Entropy 13.70±0.3 16.31±0.5 19.58±0.4 30.38±0.4 32.45±0.2 36.18±0.2 44.79±0.5 47.15±0.2 50.87±0.3
DE+Confidence 13.73±0.2 16.21±0.2 19.22±0.4 30.55±0.3 33.02±0.1 36.29±0.5 45.05±0.3 47.59±0.0 50.84±0.4
DE+Margin 14.99±0.2 17.45±0.4 21.74±0.7 31.67±0.5 33.51±0.5 37.88±0.3 46.38±0.5 48.44±0.5 52.78±0.4
DE+Avg-KLD 15.75±0.5 18.14±0.7 22.15±0.3 31.36±0.2 33.79±0.2 37.96±0.2 46.29±0.1 48.77±0.3 53.02±0.3
DE+CLUE 14.76±0.5 17.38±0.1 19.75±0.4 31.05±0.4 32.58±0.2 34.61±0.4 45.80±0.3 47.74±0.1 50.09±0.2
DE+BADGE 14.97±0.1 17.49±0.3 21.71±0.3 31.35±0.2 33.46±0.1 37.35±0.3 46.03±0.1 48.31±0.1 52.33±0.2
ASPEST (ours) 17.86±0.4 20.42±0.4 25.87±0.4 35.17±0.1 37.28±0.3 41.46±0.2 49.62±0.1 51.61±0.4 55.90±0.2

Table 13: Results of comparing ASPEST to the baselines on DomainNet R→S. The mean and std of each metric
over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior
results.

Dataset Otto
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
SR+Uniform 63.58±0.7 64.06±0.4 67.49±0.9 73.56±0.3 73.57±0.6 75.21±0.2 84.46±0.2 84.61±0.3 85.72±0.2
SR+Confidence 69.63±1.7 73.41±0.6 84.19±0.5 75.96±0.5 77.57±0.2 81.39±0.2 85.91±0.3 86.86±0.1 88.93±0.1
SR+Entropy 67.79±0.8 73.83±1.0 83.12±0.7 75.43±0.4 77.91±0.3 81.07±0.2 85.41±0.3 86.94±0.2 88.86±0.1
SR+Margin 68.10±0.1 74.10±0.4 82.53±0.2 75.52±0.0 77.66±0.1 80.93±0.1 85.56±0.1 86.99±0.1 88.83±0.1
SR+kCG 64.84±0.7 62.90±1.1 59.85±1.0 73.75±0.3 73.03±0.2 71.90±0.3 85.08±0.2 84.67±0.2 83.79±0.3
SR+CLUE 68.21±1.2 70.85±0.6 78.26±0.9 75.26±0.5 76.32±0.2 79.30±0.3 85.82±0.3 86.69±0.2 88.53±0.2
SR+BADGE 67.23±1.0 73.52±0.2 83.17±0.4 74.74±0.3 77.43±0.2 81.20±0.2 85.41±0.3 87.10±0.2 89.25±0.1
DE+Uniform 70.74±0.5 72.20±0.6 75.58±0.5 76.40±0.1 77.06±0.2 78.35±0.2 86.78±0.1 87.26±0.1 88.11±0.1
DE+Entropy 75.71±0.3 80.91±0.2 92.62±0.2 78.44±0.1 80.29±0.1 84.05±0.1 87.87±0.1 88.77±0.1 90.99±0.1
DE+Confidence 75.52±0.2 81.69±0.7 92.15±0.9 78.28±0.1 80.49±0.2 83.83±0.1 87.84±0.1 89.05±0.1 90.98±0.1
DE+Margin 75.49±0.8 81.36±0.8 92.49±0.4 78.41±0.3 80.50±0.2 84.06±0.2 87.89±0.2 89.10±0.2 90.95±0.2
DE+Avg-KLD 75.91±0.2 80.97±0.5 91.94±0.8 78.50±0.1 80.33±0.2 83.80±0.2 87.89±0.0 89.06±0.1 90.98±0.1
DE+CLUE 69.66±0.5 70.52±0.1 70.17±0.4 76.09±0.3 76.32±0.1 76.31±0.2 86.67±0.1 87.11±0.0 87.06±0.1
DE+BADGE 73.23±0.2 77.89±0.6 86.32±0.5 77.33±0.1 79.21±0.3 82.32±0.2 87.55±0.1 88.75±0.1 90.58±0.0
ASPEST (ours) 77.85±0.2 84.20±0.6 94.26±0.6 79.28±0.1 81.40±0.1 84.62±0.1 88.28±0.1 89.61±0.1 91.49±0.0

Table 14: Results of comparing ASPEST to the baselines on Otto. The mean and std of each metric over three
random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior results.

G.8 Effect of the upper bound in pseudo-labeled set construction866

When constructing the pseudo-labeled set R using Eq. (10), we exclude those test data points with867

confidence equal to 1. In this section, we study whether setting such an upper bound can improve868

performance. The results in Table 21 show that when the labeling budget is small, setting such an869

upper bound can improve performance significantly. However, when the labeling budget is large,870

setting such an upper bound may not improve the performance. Since we focus on the low labeling871

budget region, we decide to set such an upper bound for the proposed ASPEST method.872

Dataset CIFAR-10→CINIC-10 Otto
Metric cov∗|acc ≥ 90% ↑ acc|cov∗ ≥ 90% ↑ cov∗|acc ≥ 80% ↑ acc|cov∗ ≥ 80% ↑
SR (w/o active learning) 57.43±0.0 75.62±0.0 62.90±0.0 73.13±0.0
SR+Margin (M=500) 56.76±0.8 75.61±0.2 65.34±0.1 74.25±0.1
SR+Margin (M=1000) 56.04±0.7 75.70±0.1 68.11±0.4 74.99±0.2
DE (w/o active learning) 56.64±0.2 75.83±0.1 67.69±0.4 75.41±0.2
DE+Margin (M=500) 57.78±0.5 76.96±0.2 72.44±0.7 77.18±0.3
DE+Margin (M=1000) 59.55±0.5 77.59±0.1 74.78±0.7 78.19±0.2
ASPEST (M=500) 59.37±0.3 77.60±0.1 74.71±0.2 77.99±0.2
ASPEST (M=1000) 61.23±0.2 78.16±0.1 77.40±0.5 79.05±0.2

Table 15: Results on CIFAR-10→CINIC-10 and Otto for studying the effect of combining selective prediction
with active learning. “w/o” means “without”. The mean and std of each metric over three random runs are
reported (mean±std). All numbers are percentages. Bold numbers are superior results.
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Dataset FMoW Amazon Review
Metric cov∗|acc ≥ 70% ↑ acc|cov∗ ≥ 70% ↑ cov∗|acc ≥ 80% ↑ acc|cov∗ ≥ 80% ↑
SR (w/o active learning) 32.39±0.0 48.15±0.0 26.79±0.0 65.64±0.0
SR+Margin (M=500) 37.54±1.3 52.19±0.3 14.16±10.6 65.38±0.4
SR+Margin (M=1000) 42.65±0.7 55.30±0.5 21.60±4.0 65.68±0.4
DE (w/o active learning) 37.58±0.3 52.01±0.1 35.81±1.9 68.41±0.2
DE+Margin (M=500) 45.30±0.6 57.09±0.3 32.68±1.2 68.10±0.3
DE+Margin (M=1000) 52.32±1.2 60.96±0.4 33.47±1.2 68.54±0.2
ASPEST (M=500) 51.85±0.4 60.43±0.2 37.59±0.6 68.91±0.2
ASPEST (M=1000) 57.15±0.4 63.71±0.2 39.14±0.8 69.31±0.2

Table 16: Results on FMoW and Amazon Review for studying the effect of combining selective prediction with
active learning. “w/o” means “without”. The mean and std of each metric over three random runs are reported
(mean±std). All numbers are percentages. Bold numbers are superior results.

Dataset DomainNet R→C (easy) DomainNet R→P (medium) DomainNet R→S (hard)
Metric cov∗|acc ≥ 80% ↑ acc|cov∗ ≥ 80% ↑ cov∗|acc ≥ 70% ↑ acc|cov∗ ≥ 70% ↑ cov∗|acc ≥ 70% ↑ acc|cov∗ ≥ 70% ↑
SR (w/o active learning) 21.50±0.0 40.16±0.0 18.16±0.0 34.74±0.0 7.16±0.0 21.24±0.0
SR+Margin (M=500) 25.38±1.1 44.09±0.9 20.94±0.4 36.65±0.1 11.94±0.4 27.35±0.2
SR+Margin (M=1000) 25.87±1.0 44.70±0.7 22.22±0.3 37.91±0.4 12.43±0.4 28.19±0.4
DE (w/o active learning) 26.15±0.2 44.51±0.1 22.44±0.2 39.06±0.1 9.90±0.4 25.37±0.0
DE+Margin (M=500) 30.73±1.2 48.85±0.4 25.19±0.3 40.59±0.1 14.63±0.2 31.11±0.5
DE+Margin (M=1000) 33.24±0.2 50.46±0.4 26.60±0.5 41.73±0.3 16.62±0.4 32.30±0.5
ASPEST (M=500) 36.10±0.1 53.22±0.3 29.01±0.1 44.26±0.1 17.43±0.4 34.55±0.1
ASPEST (M=1000) 37.24±0.3 54.03±0.1 31.01±0.3 45.31±0.1 19.45±0.3 35.96±0.3

Table 17: Results on DomainNet R→C, R→P and R→S for studying the effect of combining selective
prediction with active learning. “w/o” means “without”. The mean and std of each metric over three random
runs are reported (mean±std). All numbers are percentages. Bold numbers are superior results.

G.9 Ensemble accuracy after each round of active learning873

We evaluate the accuracy of the ensemble model ft in the ASPEST algorithm after the t-th round of ac-874

tive learning. Recall that ft containsN models f1t , . . . , f
N
t and ft(x) = argmaxk∈Y

1
N

∑N
j=1 f

j
t (x |875

k). The results in Table 22 show that after each round of active learning, the accuracy of the ensemble876

model will be improved significantly.877

Dataset MNIST→SVHN DomainNet R→C (easy)
Metric AUC ↑ AUC ↑
Labeling Budget 100 500 500 1000
SR+Margin (λ = 0) 71.90±3.1 90.56±0.8 60.05±0.9 60.34±1.2
SR+Margin (λ = 0.5) 75.54±1.7 91.43±0.5 64.99±0.7 66.81±0.5
SR+Margin (λ = 1) 76.79±0.5 91.24±0.5 64.37±0.8 65.91±0.6
SR+Margin (λ = 2) 72.71±2.5 90.80±0.3 64.17±0.3 66.21±0.2
DE+Margin (λ = 0) 77.12±0.5 94.26±0.5 66.86±0.5 69.29±0.6
DE+Margin (λ = 0.5) 79.35±1.4 94.22±0.2 69.28±0.3 71.60±0.2
DE+Margin (λ = 1) 78.59±1.4 94.31±0.6 68.85±0.4 71.29±0.3
DE+Margin (λ = 2) 77.64±2.3 93.81±0.4 68.54±0.1 71.28±0.2
ASPEST (λ = 0) 84.48±2.5 96.99±0.2 68.61±1.2 73.21±1.2
ASPEST (λ = 0.5) 86.46±3.1 97.01±0.0 71.53±0.1 73.69±0.1
ASPEST (λ = 1) 88.84±1.0 96.62±0.2 71.61±0.2 73.27±0.2
ASPEST (λ = 2) 85.46±1.7 96.43±0.1 70.54±0.3 73.02±0.1

Table 18: Ablation study results for the effect of using joint training and the effect of the loss coefficient λ. The
mean and std of each metric over three random runs are reported (mean±std). All numbers are percentages.
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Dataset MNIST→SVHN DomainNet R→C (easy)
Metric AUC ↑ AUC ↑
Labeling Budget 100 500 500 1000
SR+Margin (T=1) 63.10±2.7 75.42±3.6 65.16±0.4 66.76±0.3
SR+Margin (T=2) 68.09±3.1 87.45±1.6 64.64±0.8 66.91±0.1
SR+Margin (T=5) 74.87±1.7 91.32±0.5 64.35±0.2 66.76±0.3
SR+Margin (T=10) 76.79±0.5 91.24±0.5 64.37±0.8 65.91±0.6
SR+Margin (T=20) 72.81±1.5 90.34±1.3 63.65±0.6 66.08±0.4
DE+Margin (T=1) 69.85±0.5 82.74±2.1 68.39±0.2 70.55±0.0
DE+Margin (T=2) 75.25±1.0 90.90±1.0 68.79±0.2 70.95±0.5
DE+Margin (T=5) 78.41±0.2 93.26±0.3 68.80±0.2 71.21±0.2
DE+Margin (T=10) 78.59±1.4 94.31±0.6 68.85±0.4 71.29±0.3
DE+Margin (T=20) 76.84±0.4 94.67±0.2 68.50±0.5 71.39±0.2
ASPEST (T=1) 62.53±1.0 80.72±1.5 69.44±0.1 71.79±0.2
ASPEST (T=2) 75.08±1.4 89.70±0.7 70.68±0.2 72.56±0.3
ASPEST (T=5) 81.57±1.8 95.43±0.1 71.23±0.1 73.19±0.1
ASPEST (T=10) 88.84±1.0 96.62±0.2 71.61±0.2 73.27±0.2
ASPEST (T=20) 91.26±0.9 97.32±0.1 70.57±0.4 73.32±0.3

Table 19: Ablation study results for the effect of the number of rounds T . The mean and std of each metric over
three random runs are reported (mean±std). All numbers are percentages.

Dataset MNIST→SVHN DomainNet R→C (easy)
Metric AUC ↑ AUC ↑
Labeling Budget 100 500 500 1000
DE+Margin (N=2) 67.41±3.9 91.20±0.8 65.82±0.5 67.72±0.4
DE+Margin (N=3) 77.53±1.5 93.41±0.1 67.54±0.4 69.61±0.2
DE+Margin (N=4) 74.46±2.7 93.65±0.3 68.09±0.2 70.65±0.3
DE+Margin (N=5) 78.59±1.4 94.31±0.6 68.85±0.4 71.29±0.3
DE+Margin (N=6) 79.34±0.7 94.40±0.1 68.63±0.2 71.65±0.3
DE+Margin (N=7) 80.30±1.5 93.97±0.2 69.41±0.1 71.78±0.3
DE+Margin (N=8) 78.91±1.5 94.52±0.2 69.00±0.0 71.88±0.4
ASPEST (N=2) 80.38±1.2 96.26±0.0 69.14±0.3 71.36±0.3
ASPEST (N=3) 84.86±1.0 96.60±0.2 69.91±0.2 72.25±0.2
ASPEST (N=4) 84.94±0.3 96.76±0.1 70.68±0.2 73.09±0.2
ASPEST (N=5) 88.84±1.0 96.62±0.2 71.61±0.2 73.27±0.2
ASPEST (N=6) 84.51±0.5 96.66±0.2 71.20±0.2 73.42±0.3
ASPEST (N=7) 86.70±2.3 96.90±0.2 71.16±0.2 73.50±0.1
ASPEST (N=8) 88.59±0.9 97.01±0.1 71.62±0.3 73.76±0.2

Table 20: Ablation study results for the effect of the number of models N in the ensemble. The mean and std of
each metric over three random runs are reported (mean±std). All numbers are percentages.

G.10 Empirical analysis for checkpoint ensemble878

In this section, we analyze why the proposed checkpoint ensemble can improve selective prediction879

performance. We postulate the rationales: (1) the checkpoint ensemble can help with generalization;880

(2) the checkpoint ensemble can help with reducing overconfident wrong predictions.881

Regarding (1), when fine-tuning the model on the small set of selected labeled test data, we hope that882

the fine-tuned model could generalize to remaining unlabeled test data. However, since the selected883

test set is small, we might have an overfitting issue. So possibly some intermediate checkpoints884

along the training path achieve better generalization than the end checkpoint. By using checkpoint885

ensemble, we might get an ensemble that achieves better generalization to remaining unlabeled886

test data. Although standard techniques like cross-validation and early stopping can also reduce887
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Dataset MNIST→SVHN DomainNet R→C (easy)
Metric AUC ↑ AUC ↑
Labeling Budget 100 500 500 1000
ASPEST without upper bound 86.95±1.4 96.59±0.1 71.39±0.1 73.52±0.2
ASPEST 88.84±1.0 96.62±0.2 71.61±0.2 73.27±0.2

Table 21: Ablation study results for the effect of setting an upper bound when constructing the pseudo-labeled
set R in ASPEST. The mean and std of each metric over three random runs are reported (mean±std). All
numbers are percentages. Bold numbers are superior results.

Metric Ensemble Test Accuracy
Dataset MNIST→SVHN DomainNet R→C (easy)
Labeling Budget 100 500 500 1000
Round 0 24.67 24.87 37.33 37.46
Round 1 24.91 43.80 39.61 39.67
Round 2 37.75 54.91 41.15 41.55
Round 3 45.62 64.15 41.97 43.24
Round 4 50.94 71.65 42.57 45.09
Round 5 56.75 77.23 43.85 45.62
Round 6 59.82 79.97 44.20 46.60
Round 7 63.10 81.43 45.02 47.51
Round 8 67.49 82.78 45.17 48.59
Round 9 69.93 84.70 45.80 48.66
Round 10 71.14 85.48 46.36 49.70

Table 22: Ensemble test accuracy of ASPEST after each round of active learning. All numbers are percentages.

overfitting, they are not suitable in the active selective prediction setup since the amount of labeled888

test data is small.889

Regarding (2), when fine-tuning the model on the small set of selected labeled test data, the model890

can get increasingly confident on the test data. Since there exist high-confidence mis-classified test891

points, incorporating intermediate checkpoints along the training path into the ensemble can reduce892

the average confidence of the ensemble on those mis-classified test points. By using checkpoint893

ensemble, we might get an ensemble that has better confidence estimation for selective prediction on894

the test data.895

We perform experiments on the image dataset MNIST→SVHN and the text dataset Amazon Review896

to verify these two hypotheses. We employ one-round active learning with a labeling budget of 100897

samples. We use the margin sampling method for sample selection and fine-tune a single model on898

the selected labeled test data for 200 epochs. We first evaluate the median confidence of the model on899

the correctly classified and mis-classified test data respectively when fine-tuning the model on the900

selected labeled test data. In Figure 4, we show that during fine-tuning, the model gets increasingly901

confident not only on the correctly classified test data, but also on the mis-classified test data.902

We then evaluate the Accuracy, the area under the receiver operator characteristic curve (AUROC)903

and the area under the accuracy-coverage curve (AUC) metrics of the checkpoints during fine-tuning904

and the checkpoint ensemble constructed after fine-tuning on the target test dataset. The AUROC905

metric is equivalent to the probability that a randomly chosen correctly classified input has a higher906

confidence score than a randomly chosen mis-classified input. Thus, the AUROC metric can measure907

the quality of the confidence score for selective prediction. The results in Figure 5 show that in the908

fine-tuning path, different checkpoints have different target test accuracy and the end checkpoint909

may not have the optimal target test accuracy. The checkpoint ensemble can have better target test910

accuracy than the end checkpoint. Also, in the fine-tuning path, different checkpoints have different911

confidence estimation (the quality of confidence estimation is measured by the metric AUROC) on912

the target test data and the end checkpoint may not have the optimal confidence estimation. The913

checkpoint ensemble can have better confidence estimation than the end checkpoint. Furthermore, in914

the fine-tuning path, different checkpoints have different selective prediction performance (measured915

by the metric AUC) on the target test data and the end checkpoint may not have the optimal selective916
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Figure 4: Evaluating the median confidence of the model on the correctly classified and mis-classified test data
respectively when fine-tuning the model on the selected labeled test data.

prediction performance. The checkpoint ensemble can have better selective prediction performance917

than the end checkpoint.918
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Figure 5: Evaluating the checkpoints during fine-tuning and the checkpoint ensemble constructed after fine-
tuning on the target test dataset.

G.11 Empirical analysis for self-training919

In this section, we analyze why the proposed self-training can improve selective prediction perfor-920

mance. Our hypothesis is that after fine-tuning the models on the selected labeled test data, the921

checkpoint ensemble constructed is less confident on the test data UX compared to the deep ensemble922

(obtained by ensembling the end checkpoints). Thus, using the softmax outputs of the checkpoint923

ensemble as soft pseudo-labels for self-training can alleviate the overconfidence issue and improve924

selective prediction performance.925

We perform experiments on the image dataset MNIST→SVHN and the text dataset Amazon Review926

to verity this hypothesis. To see the effect of self-training better, we only employ one-round active927

learning (i.e., only apply one-round self-training) with a labeling budget of 100 samples. We visualize928

the histogram of the confidence scores on the test data UX for the deep ensemble and the checkpoint929

ensemble after fine-tuning. We also evaluate the receiver operator characteristic curve (AUROC) and930

the area under the accuracy-coverage curve (AUC) metrics of the checkpoint ensemble before and931

after the self-training. We use the AUROC metric to measure the quality of the confidence score for932

selective prediction. The results in Figure 6 show that the checkpoint ensemble is less confident on933
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the test data UX compared to the deep ensemble. On the high-confidence region (i.e., confidence≥ η.934

Recall that η is the confidence threshold used for constructing the pseudo-labeled set R. We set935

η = 0.9 in our experiments), the checkpoint ensemble is also less confident than the deep ensemble.936

Besides, the results in Table 23 show that after self-training, both AUROC and AUC metrics of937

the checkpoint ensemble are improved significantly. Therefore, the self-training can alleviate the938

overconfidence issue and improve selective prediction performance.939
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Figure 6: Plot the histogram of the confidence scores on the test data UX for the deep ensemble and the
checkpoint ensemble after fine-tuning.

Dataset MNIST→SVHN Amazon Review
Metric AUROC↑ AUC↑ AUROC↑ AUC↑
Before self-training 73.92 66.75 67.44 76.24
After self-training 74.31 67.37 67.92 76.80

Table 23: Evaluating the AUROC and AUC metrics of the checkpoint ensemble before and after self-training.
All numbers are percentages.

G.12 Training with unsupervised domain adaptation940

In this section, we study whether incorporating Unsupervised Domain Adaptation (UDA) techniques941

into training could improve the selective prediction performance. UDA techniques are mainly942

proposed to adapt the representation learned on the labeled source domain data to the target domain943

with unlabeled data from the target domain [45]. We can easily incorporate those UDA techniques944

into SR (Algorithm 1), DE (Algorithm 2), and the proposed ASPEST (Algorithm 3) by adding945

unsupervised training losses into the training objectives.946

We consider the method DE with UDA and the method ASPEST with UDA. The algorithm for DE947

with UDA is presented in Algorithm 4 and the algorithm for ASPEST with UDA is presented in948

Algorithm 5. We consider UDA techniques based on representation matching where the goal is949
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to minimize the distance between the distribution of the representation on Dtr and that on UX .950

Suppose the model f is a composition of a prediction function h and a representation function φ (i.e.,951

f(x) = h(φ(x))). Then LUDA(Dtr, UX ; θ) = d(pφDtr , p
φ
UX

), which is a representation matching loss.952

We consider the representation matching losses from the state-of-the-art UDA methods DANN [18]953

and CDAN [47].954

We evaluate two instantiations of Algorithm 4 – DE with DANN and DE with CDAN, and two955

instantiations of Algorithm 5 – ASPEST with DANN and ASPEST with CDAN. The values of the956

hyper-parameters are the same as those described in the paper except that we set ns = 20. For DANN957

and CDAN, we set the hyper-parameter between the source classifier and the domain discriminator958

to be 0.1. The results are shown in Table 24 (MNIST→SVHN), Table 25 (CIFAR-10→CINIC-10),959

Table 26 (FMoW), Table 27 (Amazon Review), Table 28 (DomainNet R→C), Table 29 (DomainNet960

R→P), Table 30 (DomainNet R→S) and Table 31 (Otto).961

From the results, we can see that ASPEST outperforms (or on par with) DE with DANN and DE962

with CDAN across different datasets, although ASPEST doesn’t use UDA techniques. We further963

show that by combining ASPEST with UDA, it might achieve even better performance. For example,964

on MNIST→SVHN, ASPEST with DANN improves the mean AUC from 96.62% to 97.03% when965

the labeling budget is 500. However, in some cases, combining ASPEST with DANN or CDAN966

leads to much worse results. For example, on MNIST→SVHN, when the labeling budget is 100,967

combining ASPEST with DANN or CDAN will reduce the mean AUC by over 4%. It might be968

because in those cases, DANN or CDAN fails to align the representations between the source and969

target domains. Existing work also show that UDA methods may not have stable performance across970

different kinds of distribution shifts and sometimes they can even yield accuracy degradation [34, 58].971

So our findings align with those of existing work.972

Algorithm 4 DE with Unsupervised Domain Adaptation

Input: A training dataset Dtr, An unlabeled test dataset UX , the number of rounds T , the total
labeling budget M , a source-trained model f̄ , an acquisition function a(B, f, g), the number of
models in the ensemble N , the number of initial training epochs ns, and a hyper-parameter λ.
Let f j0 = f̄ for j = 1, . . . , N .
Fine-tune each model f j0 in the ensemble via SGD for ns training epochs independently using the
following training objective with different randomness:

min
θj

E(x,y)∈Dtr `CE(x, y; θj) + LUDA(Dtr, UX ; θj) (37)

where LUDA is a loss function for unsupervised domain adaptation.
Let B0 = ∅.
Let gt(x) = maxk∈Y ft(x | k).
for t = 1, · · · , T do

Select a batch Bt with a size of m = [MT ] from UX for labeling via:

Bt = arg max
B⊂UX\(∪t−1

l=0Bl),|B|=m
a(B, ft−1, gt−1) (38)

Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Fine-tune each model f jt−1 in the ensemble via SGD independently using the following training
objective with different randomness:

min
θj

E(x,y)∈∪t
l=1B̃l

`CE(x, y; θj) + λ · E(x,y)∈Dtr `CE(x, y; θj) + LUDA(Dtr, UX ; θj)

(39)

where θj is the model parameters of f jt−1.
Let f jt = f jt−1.

end for
Output: The classifier f = fT and the selection scoring function g = maxk∈Y f(x | k).
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Algorithm 5 ASPEST with Unsupervised Domain Adaptation

Input: A training set Dtr, a unlabeled test set UX , the number of rounds T , the labeling budget
M , the number of models N , the number of initial training epochs ns, a checkpoint epoch ce, a
threshold η, a sub-sampling fraction p, and a hyper-parameter λ.
Let f j0 = f̄ for j = 1, . . . , N .
Set Ne = 0 and P = 0n×K .
Fine-tune each f j0 for ns training epochs using the following training objective:

min
θj

E(x,y)∈Dtr `CE(x, y; θj) + LUDA(Dtr, UX ; θj), (40)

where LUDA is a loss function for unsupervised domain adaptation. During fine-tuning, update P
and Ne using Eq. (6) every ce training epochs.
for t = 1, · · · , T do

Select a batch Bt from UX for labeling using the sample selection objective (8).
Use an oracle to assign ground-truth labels to the examples in Bt to get B̃t.
Set Ne = 0 and P = 0n×K .
Fine-tune each f jt−1 using the following training objective:

min
θj

E(x,y)∈∪t
l=1B̃l

`CE(x, y; θj) + λ · E(x,y)∈Dtr `CE(x, y; θj) + LUDA(Dtr, UX ; θj),

(41)

During fine-tuning, update P and Ne using Eq (6) every ce training epochs.
Let f jt = f jt−1.
Construct the pseudo-labeled set R via Eq (10) and create Rsub by randomly sampling up to
[p · n] data points from R.
Train each f jt further via SGD using the objective (11) and update P and Ne using Eq (6) every
ce training epochs.

end for
Output: The classifier f(xi) = argmaxk∈Y Pi,k and the selection scoring function g(xi) =

maxk∈Y Pi,k.

Dataset MNIST→SVHN
Metric cov|acc ≥ 90% ↑ acc|cov ≥ 90% ↑ AUC ↑
Labeling Budget 100 500 1000 100 500 1000 100 500 1000
DE with DANN + Uniform 27.27±1.8 72.78±2.0 87.05±0.5 63.95±1.4 82.99±0.8 88.64±0.2 80.37±0.7 93.25±0.4 96.05±0.1
DE with DANN + Entropy 11.33±8.2 74.04±2.2 91.06±1.4 58.28±2.1 83.64±0.9 90.41±0.5 74.62±1.6 93.45±0.5 96.47±0.2
DE with DANN + Confidence 15.68±6.3 76.34±3.1 93.96±1.2 61.32±3.0 85.02±0.9 91.64±0.4 76.43±3.0 93.85±0.6 96.97±0.3
DE with DANN + Margin 30.64±2.1 83.44±0.9 96.17±0.5 66.79±0.9 87.30±0.4 92.71±0.2 82.14±0.8 95.40±0.3 97.60±0.1
DE with DANN + Avg-KLD 22.30±3.0 78.13±2.1 93.42±1.0 63.22±2.0 85.40±0.8 91.47±0.5 78.88±1.6 94.25±0.5 97.02±0.2
DE with DANN + CLUE 16.42±13.6 72.27±2.8 86.71±0.4 61.79±2.7 82.72±1.1 88.46±0.2 77.47±3.4 93.33±0.5 96.21±0.0
DE with DANN + BADGE 25.41±10.9 78.83±1.2 90.94±1.1 63.93±4.4 85.27±0.5 90.45±0.5 79.82±4.1 94.58±0.3 96.89±0.1
DE with CDAN + Uniform 28.10±4.8 73.15±0.7 87.50±0.6 63.95±2.7 83.10±0.3 88.86±0.3 80.28±2.2 93.44±0.1 96.13±0.2
DE with CDAN + Entropy 6.94±9.8 74.38±1.5 90.77±1.3 59.90±2.3 84.14±0.4 90.32±0.6 76.04±2.0 93.48±0.3 96.38±0.2
DE with CDAN + Confidence 13.47±10.2 75.15±2.8 92.77±0.7 60.98±2.0 84.62±0.9 91.23±0.3 76.19±2.8 93.62±0.6 96.63±0.1
DE with CDAN + Margin 22.44±3.3 81.84±2.5 96.07±0.2 62.89±3.8 86.71±1.0 92.64±0.0 78.69±2.6 94.89±0.5 97.57±0.0
DE with CDAN + Avg-KLD 20.23±4.1 80.62±1.7 93.13±2.5 62.23±2.7 86.34±0.6 91.30±1.0 77.68±2.5 94.81±0.4 96.97±0.4
DE with CDAN + CLUE 7.47±6.4 72.61±2.9 87.22±0.2 57.82±2.9 82.50±1.3 88.62±0.1 73.33±2.3 93.38±0.7 96.31±0.0
DE with CDAN + BADGE 26.88±3.5 79.21±0.1 92.50±0.7 65.69±1.7 85.32±0.1 91.18±0.4 81.10±1.3 94.73±0.1 97.17±0.2
ASPEST (ours) 52.10±4.0 89.22±0.9 98.70±0.4 76.10±1.5 89.62±0.4 93.92±0.3 88.84±1.0 96.62±0.2 98.06±0.1
ASPEST with DANN (ours) 37.90±2.4 91.61±0.6 99.39±0.4 69.45±1.7 90.70±0.3 94.42±0.4 84.55±1.0 97.03±0.1 98.23±0.1
ASPEST with CDAN (ours) 30.97±11.7 91.39±0.6 99.50±0.3 67.58±3.2 90.60±0.3 94.46±0.2 82.20±3.3 96.95±0.1 98.26±0.1

Table 24: Results of evaluating DE with UDA and ASPEST with UDA on MNIST→SVHN. The mean and std
of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.
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Dataset CIFAR-10→CINIC-10
Metric cov|acc ≥ 90% ↑ acc|cov ≥ 90% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 58.85±0.3 59.39±0.2 60.04±0.1 77.06±0.2 77.33±0.2 77.84±0.1 90.40±0.1 90.60±0.1 90.73±0.1
DE with DANN + Entropy 59.42±0.4 60.86±0.3 64.52±0.3 78.14±0.2 79.20±0.1 81.31±0.1 90.72±0.0 91.06±0.1 92.02±0.0
DE with DANN + Confidence 59.44±0.6 61.08±0.3 65.12±0.2 78.19±0.1 79.38±0.0 81.29±0.1 90.73±0.1 91.26±0.1 92.06±0.0
DE with DANN + Margin 59.81±0.3 62.26±0.4 65.58±0.4 78.15±0.0 79.25±0.1 81.05±0.1 90.76±0.1 91.30±0.1 92.11±0.0
DE with DANN + Avg-KLD 60.50±0.5 62.04±0.1 65.08±0.2 78.32±0.1 79.31±0.1 81.07±0.0 90.89±0.1 91.34±0.0 92.11±0.0
DE with DANN + CLUE 60.20±0.5 61.69±0.2 64.08±0.2 77.84±0.2 78.35±0.2 79.38±0.1 90.73±0.2 91.07±0.1 91.63±0.0
DE with DANN + BADGE 60.18±0.4 62.15±0.2 65.31±0.6 77.70±0.1 78.54±0.1 79.81±0.2 90.72±0.1 91.19±0.1 91.86±0.1
DE with CDAN + Uniform 58.72±0.2 59.49±0.5 60.28±0.2 77.16±0.0 77.52±0.1 77.90±0.1 90.45±0.1 90.65±0.0 90.78±0.1
DE with CDAN + Entropy 58.73±0.4 60.82±0.5 64.45±0.2 77.95±0.1 79.20±0.1 81.04±0.1 90.57±0.1 91.10±0.1 91.86±0.1
DE with CDAN + Confidence 59.10±0.6 61.03±0.6 64.60±0.2 77.92±0.0 79.26±0.2 81.07±0.0 90.59±0.0 91.10±0.2 91.96±0.0
DE with CDAN + Margin 59.88±0.5 61.57±0.9 64.82±0.4 78.09±0.3 79.02±0.2 80.82±0.1 90.73±0.1 91.17±0.2 91.98±0.1
DE with CDAN + Avg-KLD 60.51±0.1 61.71±0.5 65.03±0.3 78.20±0.2 79.29±0.2 81.15±0.1 90.85±0.0 91.19±0.1 92.07±0.1
DE with CDAN + CLUE 60.12±0.5 61.77±0.3 64.06±0.2 77.88±0.1 78.38±0.2 79.42±0.2 90.73±0.1 91.08±0.1 91.64±0.0
DE with CDAN + BADGE 60.28±0.7 61.84±0.2 65.29±0.3 77.68±0.2 78.53±0.1 79.84±0.2 90.73±0.1 91.17±0.0 91.95±0.1
ASPEST (ours) 60.38±0.3 63.34±0.2 66.81±0.3 78.23±0.1 79.49±0.1 81.25±0.1 90.95±0.0 91.60±0.0 92.33±0.1
ASPEST with DANN (ours) 61.69±0.2 63.58±0.4 66.81±0.4 78.68±0.1 79.68±0.1 81.42±0.1 91.16±0.1 91.66±0.1 92.37±0.1
ASPEST with CDAN (ours) 61.00±0.2 62.80±0.4 66.78±0.1 78.56±0.1 79.54±0.1 81.49±0.0 91.13±0.0 91.57±0.1 92.41±0.0

Table 25: Results of evaluating DE with UDA and ASPEST with UDA on CIFAR-10→CINIC-10. The mean
and std of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold
numbers are superior results.

Dataset FMoW
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 46.11±0.6 51.77±0.3 62.76±0.5 57.62±0.3 60.67±0.4 66.21±0.2 70.17±0.3 72.46±0.3 76.83±0.2
DE with DANN + Entropy 44.36±0.7 48.19±0.3 59.52±0.8 56.78±0.1 59.51±0.0 65.75±0.3 69.09±0.2 71.02±0.2 75.15±0.3
DE with DANN + Confidence 44.46±0.5 49.32±0.1 61.47±0.3 57.04±0.3 60.51±0.3 66.61±0.1 69.14±0.1 71.50±0.1 75.70±0.1
DE with DANN + Margin 48.09±0.4 54.35±0.5 70.11±0.4 59.07±0.2 62.79±0.2 70.02±0.1 70.76±0.1 73.29±0.2 78.25±0.1
DE with DANN + Avg-KLD 48.42±0.1 55.95±0.2 68.73±1.1 59.06±0.2 63.44±0.2 69.41±0.5 70.84±0.1 73.83±0.1 77.91±0.4
DE with DANN + CLUE 44.14±0.6 46.15±0.2 49.02±0.5 56.01±0.3 56.89±0.2 58.66±0.3 69.11±0.2 70.16±0.2 71.46±0.2
DE with DANN + BADGE 48.57±0.5 54.47±0.5 67.69±0.9 58.61±0.2 61.67±0.0 68.71±0.5 71.17±0.2 73.64±0.1 78.65±0.3
DE with CDAN + Uniform 46.08±0.7 51.92±0.8 62.87±0.2 57.45±0.1 60.73±0.4 66.19±0.2 69.93±0.3 72.57±0.4 76.87±0.1
DE with CDAN + Entropy 44.42±0.3 49.32±0.1 60.11±0.3 56.83±0.1 60.04±0.2 65.95±0.2 69.18±0.2 71.34±0.3 75.44±0.3
DE with CDAN + Confidence 44.75±0.1 49.34±0.1 62.80±1.0 57.09±0.1 60.50±0.2 66.94±0.4 69.27±0.1 71.60±0.2 76.14±0.3
DE with CDAN + Margin 47.48±0.7 54.48±0.7 70.25±0.9 58.98±0.4 62.98±0.3 70.10±0.4 70.55±0.3 73.46±0.2 78.39±0.3
DE with CDAN + Avg-KLD 48.43±0.2 54.37±0.4 68.93±0.6 59.36±0.2 62.71±0.2 69.54±0.2 71.12±0.2 73.35±0.2 77.97±0.2
DE with CDAN + CLUE 44.09±0.3 46.11±0.5 48.90±0.1 55.78±0.3 56.98±0.2 58.46±0.2 69.03±0.1 70.02±0.2 71.31±0.1
DE with CDAN + BADGE 47.93±0.2 54.61±0.2 67.01±0.5 58.16±0.1 61.81±0.1 68.36±0.2 70.91±0.2 73.63±0.1 78.52±0.2
ASPEST (ours) 53.05±0.4 59.86±0.4 76.52±0.6 61.18±0.2 65.18±0.2 72.86±0.3 71.12±0.2 74.25±0.2 79.93±0.1
ASPEST with DANN (ours) 51.02±0.9 58.63±1.1 72.97±0.9 61.10±0.5 64.98±0.4 71.21±0.4 71.03±0.3 73.79±0.4 77.84±0.3
ASPEST with CDAN (ours) 51.40±0.6 58.21±0.6 73.94±0.6 61.38±0.2 65.04±0.2 71.63±0.2 71.17±0.1 73.59±0.1 78.04±0.2

Table 26: Results of evaluating DE with UDA and ASPEST with UDA on FMoW. The mean and std of each
metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior
results.

Dataset Amazon Review
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 38.55±3.3 37.25±1.8 39.21±1.9 69.06±0.6 68.94±0.1 69.41±0.2 77.52±0.7 77.03±0.4 77.70±0.2
DE with DANN + Entropy 38.22±2.3 41.85±0.8 41.57±1.3 69.48±0.3 70.71±0.3 71.55±0.2 77.49±0.5 78.39±0.2 78.58±0.1
DE with DANN + Confidence 38.01±1.0 38.36±2.5 38.89±1.3 69.45±0.1 70.16±0.3 71.44±0.2 77.54±0.2 77.58±0.5 78.48±0.3
DE with DANN + Margin 36.82±1.3 36.89±1.3 41.98±1.5 69.35±0.3 69.63±0.3 71.27±0.2 77.30±0.3 77.23±0.3 78.34±0.3
DE with DANN + Avg-KLD 37.15±2.9 38.21±1.3 42.46±1.4 69.38±0.4 69.79±0.2 71.21±0.2 77.25±0.6 77.72±0.3 78.68±0.3
DE with DANN + CLUE 40.23±4.0 34.71±1.8 31.38±0.9 68.95±0.7 68.07±0.2 67.44±0.3 77.62±1.0 76.27±0.6 75.60±0.2
DE with DANN + BADGE 37.51±1.8 37.00±0.9 41.62±2.3 68.98±0.4 69.27±0.1 70.20±0.4 77.20±0.4 77.21±0.1 78.31±0.5
DE with CDAN + Uniform 37.81±0.3 37.83±2.7 39.52±0.8 68.93±0.1 69.16±0.7 69.50±0.3 77.16±0.1 77.30±0.7 77.74±0.3
DE with CDAN + Entropy 37.99±0.8 37.68±1.1 42.55±0.9 69.54±0.3 70.01±0.2 71.52±0.2 77.52±0.2 77.61±0.1 78.63±0.1
DE with CDAN + Confidence 35.76±0.9 38.69±2.8 41.43±2.1 69.24±0.0 70.45±0.4 71.50±0.4 77.08±0.2 77.82±0.4 78.47±0.3
DE with CDAN + Margin 37.68±2.9 37.43±1.0 42.18±1.3 69.50±0.3 69.80±0.4 71.29±0.0 77.50±0.5 77.31±0.3 78.46±0.3
DE with CDAN + Avg-KLD 37.85±1.6 40.71±0.9 44.35±0.9 69.41±0.3 70.29±0.1 71.28±0.2 77.28±0.5 78.11±0.2 78.86±0.2
DE with CDAN + CLUE 34.85±2.7 34.03±1.3 30.70±0.4 68.70±0.3 67.84±0.1 67.12±0.3 76.95±0.7 76.23±0.4 75.36±0.4
DE with CDAN + BADGE 39.47±0.2 39.29±1.1 41.64±0.9 69.33±0.0 69.34±0.2 70.58±0.2 77.52±0.2 77.49±0.2 78.24±0.3
ASPEST (ours) 38.44±0.7 40.96±0.8 45.77±0.1 69.31±0.3 70.17±0.2 71.60±0.2 77.69±0.1 78.35±0.2 79.51±0.2
ASPEST with DANN (ours) 40.22±0.5 41.99±1.4 45.84±0.1 69.42±0.1 70.30±0.1 71.58±0.2 78.00±0.1 78.34±0.3 79.43±0.1
ASPEST with CDAN (ours) 40.02±0.5 42.46±0.6 44.95±0.4 69.50±0.1 70.37±0.2 71.42±0.0 77.80±0.1 78.57±0.1 79.25±0.0

Table 27: Results of evaluating DE with UDA and ASPEST with UDA on Amazon Review. The mean and std
of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.
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Dataset DomainNet R→C (easy)
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 33.53±0.5 36.28±0.3 40.13±1.0 50.57±0.5 52.19±0.1 55.15±0.1 69.34±0.3 70.98±0.2 73.50±0.3
DE with DANN + Entropy 28.66±1.0 34.47±0.1 42.77±0.7 48.13±0.6 52.70±0.3 59.01±0.2 66.60±0.5 70.64±0.1 75.45±0.2
DE with DANN + Confidence 29.92±0.4 35.29±1.0 43.33±0.4 48.61±0.1 53.36±0.5 59.72±0.3 67.23±0.2 70.92±0.5 75.89±0.3
DE with DANN + Margin 35.19±0.3 39.63±0.2 46.51±0.5 52.29±0.3 55.60±0.2 60.97±0.4 70.70±0.1 73.41±0.1 77.24±0.3
DE with DANN + Avg-KLD 36.02±0.6 39.67±0.5 47.20±0.8 53.00±0.3 55.75±0.3 61.22±0.3 71.19±0.3 73.51±0.2 77.46±0.2
DE with DANN + CLUE 32.26±1.5 35.09±0.4 35.66±0.3 50.21±0.0 50.90±0.1 51.50±0.1 69.17±0.2 70.20±0.2 70.82±0.1
DE with DANN + BADGE 35.27±0.5 38.88±0.3 45.97±0.7 52.15±0.3 54.89±0.1 60.03±0.3 70.65±0.1 72.95±0.1 76.87±0.1
DE with CDAN + Uniform 33.49±0.6 36.01±0.7 39.93±0.2 50.46±0.2 51.89±0.1 55.23±0.2 69.32±0.3 70.86±0.3 73.55±0.2
DE with CDAN + Entropy 29.50±0.5 33.86±0.3 42.24±0.5 48.01±0.1 52.52±0.3 58.96±0.2 66.82±0.2 70.28±0.1 75.33±0.1
DE with CDAN + Confidence 29.21±1.0 34.92±0.6 43.36±0.4 48.48±0.4 52.85±0.4 59.88±0.4 66.82±0.5 70.61±0.4 75.93±0.3
DE with CDAN + Margin 35.87±0.7 38.37±0.4 46.42±0.6 52.58±0.1 55.28±0.2 61.20±0.2 70.95±0.2 72.95±0.2 77.26±0.1
DE with CDAN + Avg-KLD 36.21±0.6 40.08±0.3 47.62±0.4 52.95±0.3 55.93±0.1 61.56±0.2 71.29±0.3 73.60±0.1 77.58±0.2
DE with CDAN + CLUE 31.74±2.1 35.11±0.2 35.87±0.5 49.99±0.2 51.39±0.2 51.43±0.2 69.04±0.3 70.35±0.0 70.82±0.3
DE with CDAN + BADGE 34.74±0.5 38.68±0.7 45.87±1.0 51.80±0.3 54.75±0.2 60.22±0.1 70.38±0.1 72.90±0.2 76.85±0.2
ASPEST (ours) 37.38±0.1 39.98±0.3 48.29±1.0 54.56±0.3 56.95±0.1 62.69±0.2 71.61±0.2 73.27±0.2 77.40±0.4
ASPEST with DANN (ours) 37.41±0.8 42.45±1.0 49.74±0.6 55.60±0.1 58.29±0.2 63.64±0.2 71.88±0.2 74.18±0.4 78.09±0.0
ASPEST with CDAN (ours) 36.60±1.2 42.96±0.6 50.86±0.2 55.55±0.2 58.71±0.2 63.85±0.2 71.99±0.2 74.60±0.2 78.45±0.3

Table 28: Results of evaluating DE with UDA and ASPEST with UDA on DomainNet R→C. The mean and
std of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers
are superior results.

Dataset DomainNet R→P (medium)
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 26.98±0.1 28.34±0.5 30.63±0.2 41.96±0.2 42.89±0.2 44.73±0.1 57.04±0.1 58.10±0.2 59.87±0.1
DE with DANN + Entropy 24.75±0.4 27.02±0.5 30.10±0.2 40.29±0.4 42.34±0.2 45.78±0.2 55.19±0.3 57.12±0.3 60.21±0.1
DE with DANN + Confidence 22.41±0.9 27.03±0.6 31.70±0.6 39.05±0.5 42.61±0.2 46.60±0.2 53.66±0.6 57.35±0.3 60.93±0.4
DE with DANN + Margin 29.16±0.1 30.58±0.3 33.64±0.6 43.78±0.2 45.17±0.2 47.69±0.4 58.76±0.1 59.94±0.0 62.19±0.4
DE with DANN + Avg-KLD 29.52±0.1 31.17±0.4 34.09±0.3 43.84±0.3 45.33±0.2 48.18±0.2 58.89±0.2 60.25±0.2 62.54±0.2
DE with DANN + CLUE 27.48±0.5 27.83±0.2 28.39±0.5 42.05±0.3 42.34±0.2 42.65±0.1 57.32±0.3 57.64±0.2 57.99±0.2
DE with DANN + BADGE 28.92±0.1 30.36±0.2 33.86±0.3 43.38±0.1 44.85±0.1 47.64±0.3 58.38±0.0 59.82±0.1 62.26±0.2
DE with CDAN + Uniform 26.96±0.4 28.33±0.2 29.98±0.4 41.77±0.3 42.85±0.2 44.23±0.4 56.86±0.4 58.01±0.0 59.42±0.4
DE with CDAN + Entropy 24.91±0.4 26.30±0.9 30.33±0.4 40.34±0.3 42.07±0.6 45.79±0.2 55.38±0.4 56.70±0.8 60.23±0.2
DE with CDAN + Confidence 24.58±0.7 27.11±0.5 31.07±0.5 40.32±0.2 42.64±0.3 46.25±0.3 55.14±0.3 57.40±0.3 60.63±0.3
DE with CDAN + Margin 28.33±0.1 30.17±0.3 33.54±0.4 43.44±0.4 44.77±0.1 47.56±0.2 58.31±0.2 59.65±0.1 62.17±0.2
DE with CDAN + Avg-KLD 28.69±0.2 30.99±0.9 34.30±0.2 43.64±0.2 45.34±0.2 48.22±0.1 58.60±0.1 60.15±0.4 62.67±0.1
DE with CDAN + CLUE 27.52±0.6 27.96±0.2 28.18±0.5 42.02±0.2 42.44±0.1 42.67±0.2 57.21±0.3 57.70±0.1 58.04±0.3
DE with CDAN + BADGE 28.79±0.1 30.28±0.1 33.77±0.4 43.45±0.0 44.73±0.3 47.84±0.2 58.47±0.1 59.64±0.2 62.37±0.2
ASPEST (ours) 29.69±0.1 32.50±0.3 35.46±0.6 44.96±0.1 46.77±0.2 49.42±0.1 58.74±0.0 60.36±0.0 62.84±0.2
ASPEST with DANN (ours) 31.75±0.4 33.58±0.3 36.96±0.2 46.16±0.1 47.64±0.2 50.37±0.3 59.63±0.2 61.06±0.1 63.75±0.1
ASPEST with CDAN (ours) 30.39±0.4 33.57±0.3 37.53±0.7 45.90±0.1 47.71±0.2 50.31±0.2 59.13±0.3 61.17±0.2 63.69±0.3

Table 29: Results of evaluating DE with UDA and ASPEST with UDA on DomainNet R→P. The mean and std
of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.

Dataset DomainNet R→S (hard)
Metric cov|acc ≥ 70% ↑ acc|cov ≥ 70% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 17.55±0.4 19.82±0.3 23.57±0.4 32.61±0.5 34.56±0.3 37.73±0.2 47.60±0.5 49.92±0.4 53.52±0.1
DE with DANN + Entropy 10.77±0.8 15.38±0.5 20.11±0.5 27.78±0.7 31.09±0.2 36.39±0.3 41.69±0.7 45.62±0.3 51.05±0.4
DE with DANN + Confidence 10.64±1.2 15.22±0.4 20.25±0.5 28.09±1.0 31.76±0.3 36.86±0.8 41.94±1.3 46.19±0.3 51.48±0.7
DE with DANN + Margin 17.90±0.7 20.44±0.6 25.52±0.4 33.61±0.1 35.79±0.5 40.29±0.3 48.67±0.1 51.03±0.6 55.64±0.4
DE with DANN + Avg-KLD 18.02±1.0 21.22±0.2 25.46±0.2 34.00±0.2 36.51±0.2 40.72±0.2 49.05±0.2 51.79±0.2 55.95±0.2
DE with DANN + CLUE 15.77±0.3 18.14±0.7 19.49±0.4 32.10±0.1 33.42±0.3 34.50±0.3 47.18±0.2 48.63±0.3 50.03±0.3
DE with DANN + BADGE 16.84±0.9 20.88±0.3 25.11±0.3 33.97±0.1 36.20±0.2 40.01±0.3 48.87±0.2 51.46±0.2 55.33±0.2
DE with CDAN + Uniform 17.33±0.5 19.79±0.1 22.99±0.5 32.47±0.5 34.59±0.3 37.88±0.2 47.49±0.5 50.02±0.2 53.51±0.3
DE with CDAN + Entropy 12.48±0.8 15.19±0.8 20.23±0.0 28.83±0.1 32.41±0.4 36.57±0.1 42.93±0.5 47.00±0.3 51.24±0.2
DE with CDAN + Confidence 11.23±0.6 13.93±0.1 18.45±1.3 28.67±0.3 31.35±0.4 35.56±0.8 42.87±0.5 45.40±0.7 49.80±1.0
DE with CDAN + Margin 18.06±0.7 20.39±0.3 25.05±0.3 33.98±0.2 35.76±0.2 40.11±0.1 49.15±0.1 50.92±0.1 55.27±0.1
DE with CDAN + Avg-KLD 18.63±1.0 20.80±0.3 25.49±0.9 34.19±0.4 36.41±0.2 40.53±0.5 49.45±0.5 51.58±0.1 55.74±0.5
DE with CDAN + CLUE 16.51±0.3 18.82±0.1 19.47±0.1 32.23±0.2 33.83±0.4 34.72±0.3 47.40±0.2 49.11±0.2 49.98±0.3
DE with CDAN + BADGE 17.52±0.8 21.48±0.5 25.35±0.4 33.53±0.5 36.19±0.4 40.31±0.3 48.67±0.5 51.65±0.3 55.62±0.3
ASPEST (ours) 17.86±0.4 20.42±0.4 25.87±0.4 35.17±0.1 37.28±0.3 41.46±0.2 49.62±0.1 51.61±0.4 55.90±0.2
ASPEST with DANN (ours) 16.35±1.2 23.18±0.4 28.00±0.1 36.56±0.2 39.40±0.4 42.94±0.1 50.58±0.4 53.73±0.3 57.25±0.1
ASPEST with CDAN (ours) 18.81±1.1 22.95±0.8 28.17±0.2 36.85±0.3 39.10±0.2 43.25±0.3 51.14±0.3 53.47±0.2 57.26±0.2

Table 30: Results of evaluating DE with UDA and ASPEST with UDA on DomainNet R→S. The mean and std
of each metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are
superior results.

35



Dataset Otto
Metric cov|acc ≥ 80% ↑ acc|cov ≥ 80% ↑ AUC ↑
Labeling Budget 500 1000 2000 500 1000 2000 500 1000 2000
DE with DANN + Uniform 70.35±0.5 72.42±0.4 75.63±0.7 76.12±0.3 77.04±0.1 78.25±0.1 86.67±0.1 87.16±0.1 88.09±0.1
DE with DANN + Entropy 75.27±0.3 81.25±0.1 92.23±0.3 78.14±0.1 80.45±0.0 83.73±0.1 87.73±0.1 88.91±0.0 90.90±0.1
DE with DANN + Confidence 74.66±0.3 81.62±0.1 92.57±0.6 78.05±0.2 80.50±0.0 83.67±0.2 87.51±0.1 89.06±0.1 90.94±0.1
DE with DANN + Margin 75.47±0.4 82.56±0.7 91.86±0.9 78.26±0.1 80.79±0.2 83.61±0.3 87.87±0.1 89.08±0.0 90.88±0.1
DE with DANN + Avg-KLD 76.02±0.6 81.78±0.4 91.82±0.3 78.53±0.0 80.70±0.1 83.88±0.0 87.99±0.0 89.17±0.0 90.90±0.1
DE with DANN + CLUE 69.68±0.4 68.07±0.3 62.70±0.6 75.81±0.3 75.44±0.0 73.49±0.3 86.68±0.2 86.31±0.1 84.89±0.2
DE with DANN + BADGE 74.69±0.5 79.04±0.6 87.63±0.4 77.97±0.1 79.57±0.3 82.99±0.1 87.82±0.1 88.92±0.1 90.67±0.1
DE with CDAN + Uniform 70.25±0.9 72.43±0.4 75.21±0.7 76.09±0.3 76.94±0.1 78.13±0.1 86.56±0.3 87.14±0.2 87.90±0.1
DE with CDAN + Entropy 74.73±0.6 81.60±0.8 92.58±0.2 77.97±0.2 80.59±0.3 83.81±0.2 87.47±0.1 88.93±0.1 90.84±0.1
DE with CDAN + Confidence 74.88±0.6 81.30±0.8 92.53±0.9 78.06±0.2 80.51±0.3 83.85±0.3 87.43±0.2 88.99±0.1 90.95±0.1
DE with CDAN + Margin 76.68±1.0 81.57±0.4 92.20±0.5 78.74±0.5 80.62±0.2 84.01±0.2 88.08±0.2 88.85±0.2 91.09±0.0
DE with CDAN + Avg-KLD 75.88±0.4 81.82±0.8 91.43±1.1 78.45±0.1 80.72±0.3 83.72±0.3 87.92±0.2 89.12±0.2 90.91±0.2
DE with CDAN + CLUE 69.86±0.5 67.79±0.2 63.46±0.9 76.09±0.2 75.42±0.3 73.66±0.3 86.81±0.1 86.25±0.1 85.00±0.1
DE with CDAN + BADGE 74.68±0.4 79.46±0.3 87.57±0.4 77.89±0.1 79.78±0.1 82.85±0.1 87.78±0.1 88.90±0.1 90.72±0.1
ASPEST (ours) 77.85±0.2 84.20±0.6 94.26±0.6 79.28±0.1 81.40±0.1 84.62±0.1 88.28±0.1 89.61±0.1 91.49±0.0
ASPEST with DANN (ours) 78.14±0.4 83.33±0.5 93.61±0.0 79.33±0.1 81.23±0.1 84.21±0.1 88.36±0.2 89.32±0.1 91.26±0.0
ASPEST with CDAN (ours) 77.75±0.3 83.68±0.5 94.44±0.3 79.27±0.0 81.30±0.2 84.76±0.1 88.35±0.1 89.59±0.0 91.41±0.0

Table 31: Results of evaluating DE with UDA and ASPEST with UDA on Otto. The mean and std of each
metric over three random runs are reported (mean±std). All numbers are percentages. Bold numbers are superior
results.
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