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ABSTRACT
Point cloud completion aims to recover accurate global geometry

and preserve fine-grained local details from partial point clouds.

Conventional methods typically predict unseen points directly from

3D point cloud coordinates or use self-projected multi-view depth

maps to ease this task. However, these gray-scale depthmaps cannot

reach multi-view consistency, consequently restricting the perfor-

mance. In this paper, we introduce a GeoFormer that simultaneously

enhances the global geometric structure of the points and improves

the local details. Specifically, we design a CCM Feature Enhanced

Point Generator to integrate image features from multi-view con-

sistent canonical coordinate maps (CCMs) and align them with

pure point features, thereby enhancing the global geometry feature.

Additionally, we employ the Multi-scale Geometry-aware Upsam-

pler module to progressively enhance local details. This is achieved

through cross attention between the multi-scale features extracted

from the partial input and the features derived from previously esti-

mated points. Extensive experiments on the PCN, ShapeNet-55/34,

and KITTI benchmarks demonstrate that our GeoFormer outper-

forms recent methods, achieving the state-of-the-art performance.

The code is ready and will be released soon.

CCS CONCEPTS
• Computing methodologies → Shape inference; Point-based
models; Neural networks.

KEYWORDS
Point cloud completion, Canonical coordinate map, Multi-view

consistent, Multi-scale Geometry-aware

1 INTRODUCTION
Point clouds, arguably the most readily accessible form of data for

human perception, understanding, and learning about the 3Dworld,

are typically acquired through ToF cameras, stereo images, and

Lidar systems. However, challenges such as self-occlusion, limited

depth range of depth camera devices, and sparse output of stereo-

matching often result in partial and incomplete point clouds. This

presents a significant obstacle for downstream tasks that require a

comprehensive understanding of holistic shape. While some object-

level point clouds can be obtained through meticulous scanning

and fusion techniques, a more efficient approach utilizing deep
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learning has emerged – point cloud completion. This technique is

particularly crucial in more challenging scenarios such as robotic

simulation and autonomous driving [15, 22, 56].

In recent years, a plethora of deep learning-based methods have

emerged [4, 13, 16, 28, 42, 44, 48, 50, 55, 57]. These approaches

operate on incomplete 3D point clouds, aiming to predict com-

prehensive representations. They commonly rely on architectures

such as the permutation-invariant PointNet [23] or more advanced

transformers [54]. While proficient in global understanding, these

permutation-invariant architectures may overly focus on global

information and overlook the intrinsic local geometries. Given that

point clouds are often sparse and noisy, they struggle to capture

geometric semantics accurately, inevitably sacrificing fine-grained

details in holistic predictions.

On the contrary, the multi-view projection of point clouds tends

to exhibit less noise, as points are aggregated into 2D planes, and se-

mantic information is effectively conveyed through the silhouettes,

even incomplete in certain viewpoints. Inspired by the remarkable

success of convolutional neural networks (CNN) in the 2D image do-

main, particularly in tasks super-resolution [6] and inpainting [1],

integrating 2D multi-view representations with CNN would hold

great promise for 3D point cloud completion. Zhang et al.[53] pi-

oneered the integration of incomplete points with color images

as input. However, such an approach necessitates well-calibrated

intrinsic parameters, potentially constraining its efficiency and in-

creasing data acquisition costs. In contrast, Zhu et al. [57] utilize

multi-view depth maps to enhance data representation and ag-

gregate original input information for high-resolution predictions.

Nevertheless, grayscale depth maps offer limited geometric infor-

mation, thereby constraining the performance of holistic shape

prediction, particularly concerning fine-grained details.

To cope with above issues, we propose to incorporate tri-planed

projection-based image features with the transformer network

structure for point cloud completion, where the three orthogonal

planes sufficiently depict the holistic shape. Further, we propose to

inject canonical coordinate map (CCM) instead of gray-scale depth

map, taking inspiration from recent 3D generation methods [14].

Specifically, we transform point clouds into the canonical coordi-

nate space [30] and treat the coordinates as colors to render image

under three orthogonal planes, as shown in Figure 1. CCMs are

superior to depth maps for representing point cloud structures and

relationships, as multi-view correspondence can be easily reasoning

through the color information encoded by CCMs.

However, applying CCMs to point clouds poses a new challenge:

objects mapped to canonical space may lose their original scaling.

To overcome this, we devise a multi-scale feature augmentation

strategy for the partial input point cloud for holistic shape predic-

tion inspired by point upsampling methods [25, 47]. Specifically,

we adopt an inception-based 3D feature extraction network from

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Scaling Imaging
(0, 0, 0)

Multi-view consistent

Figure 1: Illustration of the geometry-consistent tri-plane
projection in our GeoFormer. We visualize the details of
canonical coordinate maps (CCM) obtained from three or-
thogonal camera angles and the color of the point repre-
sents its normalized coordinate. The highlighted area clearly
shows that the three-channel CCM itself contains rich geo-
metric information and ensures multi-view geometric con-
sistency.

EdgeConv [36] to extract partial input point features. These fea-

tures, combined with global features using a transformer, predict

point offsets. Finally, we integrate these point offsets to obtain the

final results, as in previous approaches [55, 57].

In summary, our contributions can be summarized as following:

(1) We introduce multi-view consistent CCMs into point cloud

completion, enhancing global features by aligning 3D and

2D features. This is the first work of its kind.

(2) We create an efficientmulti-scale geometry-aware upsampler

that accurately reconstructs missing parts by incorporating

partial geometric features.

(3) We extensively test our method on popular datasets like PCN,

ShapeNet-55/34, and KITTI. Results demonstrate our ap-

proach has superior performance compared to existing meth-

ods, achieving state-of-the-art results across all datasets.

2 RELATEDWORK
2.1 2D Representation Learning of Point Clouds
Point cloud-based representations [23, 24, 36, 54] typically cannot

represent topological relations. To address this, [21] introduced a

method to establish rich input features, incorporating inductive bi-

ases and integrating local as well as global information by projecting

3D point cloud features onto one or multiple 2D planes. However,

the point feature is obtained from task-specific neural networks and

may lose significant information. In contrast, [53, 57, 58] proposed

projecting point clouds into 2D images and utilized a convolution

neural network to encode image features directly. However, these

2D features are inconsistent andmay destroy the geometric informa-

tion. Inspired by SweetDreamer [14], which successfully extracted

general knowledge from various 3D objects using a diffusion model

by learning geometry from the CCM, we attempt to project the par-

tial input point cloud into the canonical coordinate space [30] and

obtain multi-view consistent CCMs from three orthogonal views,

and design an effective alignment strategy to guide sparse global

shape generation and refinement.

2.2 Point-based 3D Shape Completion
The point-based completion algorithm is a vital research direction

in point cloud completion tasks. These methods [3, 7, 11, 19, 20, 31,

33, 34, 37, 39, 43, 45, 51, 52, 56] usually utilize Multi-layer Percep-

tions (MLPs) to model each point independently and then obtain

global feature through a symmetric function (such as Max-Pooling).

Furthermore, voxel-based and transformer-based methods are two

important categories of point-based completion approaches.

2.2.1 Voxel-based Shape Completion. Early 3D shape completion

methods [5, 9, 26] usually rely on voxel grids as 3D object repre-

sentation. This representation is often applied in a variety of 3D

applications [12, 32] because it can be directly and easily processed

by 3D convolutional neural network (CNN) architectures. However,

to improve performance, these methods inevitably need to increase

the voxel resolution which will greatly increase the computational

cost. To balance the completion effect and computational overhead,

GRNet [44] and VE-PCN [34] choose to utilize voxel grids as inter-

mediate representations and use CNN to predict rough shapes, and

then use some refinement strategies to reconstruct detailed results.

2.2.2 Transformer-based Point CloudCompletion. Transformer [29]

was first proposed for natural language processing tasks and has re-

cently become popular in computer vision areas due to its excellent

representation learning capabilities. Recently, this structure was in-

troduced into point cloud completion to extract correlated features

between points [4, 13, 16, 17, 31, 41, 42, 48, 49, 54, 55, 57]. These

methods can be categorized into two groups according to the up-

sampling strategy, i.e., point morphing-based methods and coarse-

to-fine-based methods. Morphing-based methods [4, 13, 48, 49] first

predict point proxies and shape prior features, and then use fold-

ing operations proposed by Folding-Net [46] to generate complete

point clouds, which usually have a large number of parameters. In

contrast, Coarse-to-fine-based methods [16, 17, 41, 42, 50, 55, 57]

usually first predict a coarse global structure of point clouds and

then utilize some multiple upsampling refinement steps to consider

high-quality detail generation. Nevertheless, these methods only

exploit limited geometric features and still suffer from robustness

and quality issues in accurate completion. Our approach is similar

to the coarse-to-fine approaches using the transformer architec-

ture. However, We introduce enhanced global features based on the

canonical coordinate map, which can be used for the subsequent

coarse prediction and upsampling steps. At the same time, we fur-

ther design an upsampler that is aware of multi-scale point cloud

features to directly predict point coordinates.

3 METHOD
3.1 Overview
In this section, we will detail our GeoFormer pipeline. Our method

mainly consists of one point generator module and two identical

upsampler modules, as shown in Figure 2. The point generator mod-

ule aims to produce sparse yet structurally complete point clouds,

and the upsampler module aims to generate complete and dense

results from coarse to fine. Specifically, our approach extracts CCM

features and aligns them with point cloud features to obtain global

geometric representation for coarse point prediction (Section 3.2)

and subsequent fine point generation (Section 3.3). Inspired by [16],
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Enhanced

Point Generator
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aware
Upsampler

Multi-scale
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Upsampler

Incomplete
Point Cloud

Coarse2Fine Generation Complete
Point CloudCoarse Prediction
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Figure 2: An overview of our pipeline. Given the incomplete point cloud P, we obtain the coarse complete prediction P0 and
extract the global geometric feature F by utilizing the CCM feature enhanced point generator. In the coarse to fine generation
stage, we utilize the multi-scale geometry-aware upsampler to learn coordinate offsets based on P,F and previous estimated
points P𝑖 , and further scatter them into specific 3D coordinates to reconstruct the accurate and detailed complete result P2.

CCM Feature Enhanced
Point Generator

(1, 0, 1)

(0, 1, 0)(0, 1, 1)

(1, 1, 1)

CCM Maps

Concat.

FFN
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Point
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Point
Encoder

Image
Encoder

Coarse Prediction

Incomplete Point Cloud
Canonical 

Coordinate Space

(1, 1, 0)

(1, 0, 0)

Global Feature

Scaling

Figure 3: The detailed structure of the CCM feature enhanced
point generator. We first convert partial point cloud input
P into the canonical coordinate space and extract the corre-
sponding projectionmaps according to the viewsV. Then, we
align the 3D point features and the 2D map features through
attention mechanism, and obtain the global features F after
some processing. Finally, we use a 3D coordinate decoder to
predict the coarse sparse but complete point cloud P0.

we use the chamfer distance loss function in hyperbolic space for

constraints (Section 3.4).

3.2 CCM Feature Enhanced Point Generator
We propose a novel point generator that aims to produce a sparse

yet structurally complete point cloud P0, and its detailed structure

is shown in Figure 3. Analogous to [14, 30], we define the canonical

object space as a 3D space contained within a unit cube {𝑥,𝑦, 𝑧} ∈

[0, 1]. Specifically, given the partial point cloud P ∈ R𝑁×3
, we first

normalize its size by uniformly scaling it so that the maximum

extent of its tight bounding box has a length of 1 and starts from

the origin. Then, we render coordinate maps C𝑖 ∈ R3×𝐻×𝑊
from

three deterministic viewsV𝑖 ∈ R3×3 for training.
Furthermore, to align the above cross-modalities and predict

coarse point clouds effectively, we first use PointNet++[24] to en-

code P hierarchically to get F𝑝 ∈ R1×2𝐶 , and ResNet18[10] as the

image encoding backbone network to extract corresponding CCM

features F𝑐 ∈ R3×𝐶 from C. To bridge the gap between 2D and 3D

features, we propose a novel effective feature alignment strategy.

Specifically, we first combine F𝑝 and F𝑐 in feature channel-wise to

get F ′
𝑎 and then use a self-attention architecture with camera pose

V as positional embedding to get fused features F𝑎 ∈ R1×2𝐶 . Then
we can obtain the global geometric semantic feature F ∈ R1×4𝐶 by

F ′
𝑎 = Concat(F𝑝 , F𝑐 ) (1)

F𝑎 = MLP(MH-SA(F ′
𝑎 ,V)) (2)

F = Concat(F𝑝 , F𝑎) (3)

where Concat(·) and MLP(·) denote channel-wise concatenation
operation and multi-layer perception, respectively. MH-SA(·) de-
notes the multi-head self-attention transformer,V is the camera

pose embedding. F aggregates the partial point cloud features and

geometric semantic patterns and is employed for subsequent point

generation steps.

Point Decoder

Embedding (opt.)

M
LP LN

M
H

 A
ttn

.

A
dd

 &
 L

N

M
LP

s

A
dd

N×

Main Feature

Additional 
Feature (opt.)

N×
Same architecture as the Main Feature Pipeline

Shared MLP

Coordinates / 
Offsets

Figure 4: The detailed structure of the Decoder. We input the
main features F𝑖 into the N networks of attention architec-
ture to get enhanced features, and then we use the shared
MLP network to predict 3D coordinates.
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To predict 3D coordinates of coarse complete point clouds P0 ∈
R𝑁𝑐×3

, we take transformed F as input and utilize a decoder to

regress the 3D point coordinates directly. What’s more, we adopt an

operation similar to previous studies [42, 55, 57], where we merge

P and P0 and resample the merged output for next coarse-to-fine

generation steps. The structure of the coordinate decoder is shown

in Figure 4, given the previous extracted main feature F , we first

transform it to a set of point-wise features using a standard self-

attention transformer [29] and then regresses 3D coordinates (point

clouds or offsets) with the shared MLPs.

3.3 Multi-scale Geometry-aware Upsampler
In the upsampling refinement stage, to reconstruct high-quality

details and improve the generalization in real-world point cloud

completion, we propose to enhance multi-scale geometric features

from partial inputs to guide the upsampling process. Specifically,

as shown in Figure 5, we design an inception architecture based

EdgeConv [36] to extract multi-scale point features from the partial

input P. We use parameters (𝑖, 𝑜, 𝑛) to define the EdgeConv block,

where 𝑖 is the input channels, 𝑜 is the output channels, and 𝑛 is the

number of neighbors. We use parameters (𝑘, 𝑜, 𝑝) to define the 1D

Conv block, where 𝑘 is the kernel size, 𝑜 is the output channels

and 𝑝 is the padding size. Based on these definitions, we take P as

input and obtain F𝑒1 ∈ R𝑁𝑝×𝐶𝑝
and F𝑒2 ∈ R

𝑁𝑝×𝐶′
𝑝
from EdgeConv

blocks, which can be defined as:

F𝑒1 = EdgeConv-1(P), F𝑒2 = EdgeConv-2(F𝑒1 ) (4)

where EdgeConv(·) presents the EdgeConv-based networks with

parameters (𝑖, 𝑜, 𝑛). We further extract multi-scale features F ′
𝑒1

∈
R𝑁𝑝×96

and F ′
𝑒2

∈ R𝑁𝑝×96
from previous partial graph-based fea-

tures with two sets of 1D convolution inception blocks. Then, the

final partial input geometry guided features F ′
𝑝 can be obtained by:

F ′
𝑝 = MLP(Concat(F ′

𝑒1
, F ′

𝑒2
)) (5)

where

F ′
𝑒1

= Convs-1(F𝑒1 ), F ′
𝑒2

= Convs-2(F𝑒2 ) (6)

where Convs(·) defines the inception architecture of multi-scale fea-

ture extractor with parameters (𝑘, 𝑜, 𝑝), F ′
𝑝 is transformed through

MLPs from Concat(F ′
𝑒1
, F ′

𝑒2
) and used to fine points prediction.

To predict fine point clouds, we concatenate features of previous

point clouds and F obtained in previous Section 3.2 to get F ′
𝑎𝑖

and

use self-attention mechanism to further aggregate these features

with additional chamfer distance embedding between partial input

P and previous prediction result P𝑖 to obtain F𝑎𝑖 by:
F ′
𝑎𝑖

= Concat(MLP(F ),MLP(P𝑖 )) (7)

F𝑎𝑖 = MH-SA(F ′
𝑎𝑖
,CD-𝐸𝑚𝑏.) (8)

Inspired by [57], we take these self-attention features F𝑎𝑖 as query
and F ′

𝑝 as key and value to obtain final fused feature F𝑝𝑖 through
cross attention mechanism. Finally, we employ the decoder to pre-

dict coordinate offsets 𝛥 with given ratios to get final refined point

clouds P𝑖+1, which can be defined as:

F𝑝𝑖 = MH-CA(F𝑎𝑖 , F ′
𝑝 ) (9)

𝛥 = Decoder(F𝑝𝑖 , F𝑎𝑖 ) (10)

P𝑖+1 = P𝑖 + 𝛥 (11)
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Figure 5: The detailed structure of the Multi-scale Geometry-
aware Upsampler. We design a multi-scale point feature ex-
tractor with inception architecture to get local point features
F ′
𝑝 from partial input P. Then, it is fused with the previous

global feature F and prediction result P𝑖 to obtain F𝑝𝑖 . Fi-
nally, we utilize the decoder to predict the point offset 𝛥 and
obtain the point cloud P𝑖+1. (∗CD Emb. is calculated between
P and P𝑖 )

where MH-CA(·) denotes the multi-head cross-attention trans-

former, 𝛥 is the predicted point offset from Decoder, which is added

to the previous result P𝑖 to get the final result P𝑖+1.

3.4 Sensitive-aware Loss Function
To optimize the neural networks, we combine a CD distance loss

with a sensitive-aware regularization [16, 18], which helps reduce

the negative effects of outliers and improves the generalization

ability. Chamfer Distance(CD) measures the differences between

the generated point cloud and the ground truth. Given two sets of

point clouds P and Q, its general definition is as follows:

CD(P,Q) = 1

𝑁

∑︁
𝑝∈P

min

𝑞∈Q
∥𝑝 − 𝑞∥2

2
+ 1

𝑀

∑︁
𝑞∈Q

min

𝑝∈P
∥𝑝 − 𝑞∥2

2
(12)

where N and M represent the number of points in the two sets

of point clouds respectively, and ∥ · ∥2
2
represents the Euclidean

distance between the points.

However, the classical CD loss function is sensitive to outlier

points, limiting point cloud completion performance. Therefore,

a recent study [16] proposes to compute CD in hyperbolic space.

We further examine the core differences between these CD loss

function types, including the general linear function, popular 𝑠𝑞𝑟𝑡

function, and the 𝑎𝑟𝑐𝑜𝑠ℎ type loss function proposed by [16]. As

shown in Figure 6, the 𝑎𝑟𝑐𝑜𝑠ℎ(1 + 𝑥) function grows faster near 0,

which means it can better distinguish small values and its derivative

is always greater than the 𝑠𝑞𝑟𝑡 derivative between [0, 1], which
means it can better capture changes in input values. Therefore,

𝑎𝑟𝑐𝑜𝑠ℎ(1+𝑥) is more effective as it can avoid local optimal solutions

and is anti-overfitting. To summarize, we regularize the training

process by computing loss as:
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L = Larc-CD (P0,P𝑔𝑡 ) +
∑︁
𝑖=1,2

Larc-CD (P𝑖 ,P𝑔𝑡 ) (13)

where

Larc-CD (𝑥,𝑦) = 𝑎𝑟𝑐𝑜𝑠ℎ(1 + LCD (𝑥,𝑦)) (14)

4 EXPERIMENT
4.1 Datasets and Metrics
4.1.1 Datasets. We validate and analyze the point cloud comple-

tion performance of our proposed GeoFormer on three popular

benchmarks, i.e. PCN [50], ShapeNet-55/34 [48] and KITTI [8] Cars

dataset, while following the same experimental settings as previous

methods [48, 55] (Detailed dataset and implementation details can

be found in the supplementary file. Here we only give a brief intro-

duction). PCN dataset is one of the most popular benchmarks in

point cloud completion, it is a subset of ShapeNet containing shapes

from 8 categories. For each shape, this dataset provides 2,048 points

as partial inputs and 16,384 points sampled from mesh surfaces as

completed ground truth. ShapeNet-55/34 dataset is proposed by

PoinTr [48], which is also generated from the ShapeNet dataset.

However, the ShapeNet-55/34 dataset contains all 55 categories in

ShapeNet compared with the PCN dataset, which can test the effect

and generalization of the model on a wider variety of objects and

unseen categories. At the same time, this dataset provides 8,192

points as ground truth and 3 different difficulty levels test with

2,048, 4,096, and 6,144 points (25%, 50%, and 75% of complete point

cloud) which corresponds to simple, moderate, and hard levels. To

test our proposed method on real-world scanned objects, we addi-

tionally evaluate our method using theKITTI Cars dataset, which
has 2,401 sparse point cloud objects that are extracted from frames

based on the 3D bounding boxes.

4.1.2 Metrics. Following [55, 57], we use CD, Density-aware CD
(DCD) [40], and F1-Score [27] as evaluation metrics. We report the

ℓ1 version of CD for the PCN dataset and the ℓ2 version of CD for

the Shapenet-55/34 dataset. On KITTI Cars benchmark, following

the experimental settings of [44, 48, 55], we report two metrics:

the Fidelity Distance and Minimal Matching Distance (MMD) per-

formances, which are also developed based on chamfer distance.

Detailed definitions can be found in the supplementary.

4.2 Comparison with State-of-the-Art Methods
We compare our GeoFormer with many classical methods [28, 35,

44, 46, 50, 52] and several recent state-of-the-art techniques [4, 16,

38, 41, 42, 45, 48, 49, 55, 57]. We conduct extensive experiments

on various datasets such as PCN [50], ShapeNet-55/34 [48], and

KITTI [8] to demonstrate the effectiveness and generalization of

our method.

4.2.1 Results on the PCN Dataset. We provide detailed results for

each category in Table 1 and compare themwith the existingmodels.

We use the best result in their paper for fair comparisons. As shown

in the table, our approach outperforms recent methods across all

categories, largely improves the quantitative indicators and estab-

lishes the new state-of-the-art on this dataset. In Figure 7, we show

visual results from three categories (Lamp, Boat, Chair), compared
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Figure 6: Illustration of the different chamfer distance post-
processing loss functions and their corresponding derivatives

with PCN [50], GRNet [44], SnowflakeNet [42], PoinTr [48], Seed-

Former [55] and SVDFormer [57]. Results show that our method

clearly produces superior results with accurate geometry structure

and high-quality details. We also provide more visualization results

in the supplementary material.

4.2.2 Results on the ShapeNet-55/34 Dataset. We further evaluate

our method on the ShapeNet-55 benchmark (as shown in Figure 8),

which can validate the ability of the model to handle more diverse

objects and multiple difficult incompleteness levels. Table 2 reports

the overall average ℓ2 Chamfer Distance, Density-aware CD and

F1-Score results on 55 categories for three different difficulty levels

(We show the results for 5 categories with more than 2500 samples

in table Table 2. Complete results for all 55 categories are available

in the supplementary material). We use CD-S, CD-M and CD-H to

represent the CD-ℓ2 results under Simple, Moderate, and Hard Set-

tings. Compared with previous methods, our method consistently

outperforms, achieving the best scores across all categories and

evaluation metrics.

On the ShapeNet-34 benchmark, the networks are challenged

to handle novel objects from unseen categories that do not appear

in the training phase. We present results on the two test sets at

three different difficulty levels in Table 4 (Complete results for all

categories are available in the supplementary material). Once again,

our proposed approach outperforms others and achieves the best

scores, which demonstrates that our method has better performance

and generalization ability.

4.2.3 Results on the KITTI Dataset. To show the generalization

performance of our method in real-world scenarios, we conduct

experiments on the KITTI dataset. Following previous methods

[33, 44, 55], we finetune our model which pre-trained on the PCN

dataset on ShapeNetCars (the cars sub-dataset from ShapeNet [2])

and then evaluate its performance on the KITTI Car dataset for a

fair comparison. As shown in Table 3, we report the Fidelity and

MMD metrics. Our method obtains better metric scores compared

with previous methods.



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Quantitative results on the PCN dataset. (ℓ1 CD ×103 and F-Score@1%)

Methods Plane Cabinet Car Chair Lamp Couch Table Boat CD-Avg↓ DCD-Avg↓ F1↑

FoldingNet [46] 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31 - -

TopNet [28] 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15 - -

PCN [50] 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59 9.64 - 0.695

GRNet [44] 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83 0.622 0.708

CRN [35] 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51 - 0.652

NSFA [52] 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48 8.06 - 0.734

PoinTr [48] 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29 8.38 0.611 0.745

SnowflakeNet [42] 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40 7.21 0.585 0.801

PMP-Net++ [38] 4.39 9.96 8.53 8.09 6.06 9.82 7.17 6.52 7.56 0.611 0.781

FBNet [45] 3.99 9.05 7.90 7.38 5.82 8.85 6.35 6.18 6.94 - -

SeedFormer [55] 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85 6.74 0.583 0.818

AdaPoinTr [49] 3.68 8.82 7.47 6.85 5.47 8.35 5.80 5.76 6.53 - 0.845

AnchorFormer [4] 3.70 8.94 7.57 7.05 5.21 8.40 6.03 5.81 6.59 - -

HyperCD [16] 3.72 8.71 7.79 6.83 5.11 8.61 5.82 5.76 6.54 - -

SVDFormer [57] 3.62 8.79 7.46 6.91 5.33 8.49 5.90 5.83 6.54 0.536 0.841

FSC [41] 4.07 9.12 8.1 7.21 5.88 9.30 6.26 6.25 7.02 - -

Ours 3.60 8.69 7.46 6.71 5.15 8.28 5.84 5.63 6.42 0.526 0.854

Input PCN GRNet SnowflakeNet PoinTr SeedFormer SVDFormer Ours G.T.

La
m

p
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t
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Figure 7: Visual comparison with recent methods [42, 44, 48, 50, 55, 57] on PCN dataset. Results clearly show that our method
can preserve better global structure and reconstruct better local details.
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Figure 8: Visual comparison with recent methods [42, 48, 55, 57] on ShapeNet55 dataset. Results show that our method can
produce more accurate detailed structures in completing missing parts.

Table 2: Quantitative results on ShapeNet-55 dataset. (ℓ2 CD
×103 and F-Score@1%)

Methods Table Chair Plane Car Sofa CD-S CD-M CD-H CD-Avg↓ DCD-Avg↓ F1↑

FoldingNet [46] 2.53 2.81 1.43 1.98 2.48 2.67 2.66 4.05 3.12 0.082

PCN [50] 2.13 2.29 1.02 1.85 2.06 1.94 1.96 4.08 2.66 0.618 0.133

TopNet [28] 2.21 2.53 1.14 2.18 2.36 2.26 2.16 4.3 2.91 0.126

GRNet [44] 1.63 1.88 1.02 1.64 1.72 1.35 1.71 2.85 1.97 0.592 0.238

PoinTr [48] 0.81 0.95 0.44 0.91 0.79 0.58 0.88 1.79 1.09 0.575 0.464

SeedFormer [55] 0.72 0.81 0.40 0.89 0.71 0.50 0.77 1.49 0.92 0.558 0.472

SVDFormer [57] - - - - - 0.48 0.70 1.30 0.83 0.541 0.451

HyperCD [16] 0.66 0.74 0.35 0.83 0.64 0.47 0.72 1.40 0.86 - 0.482

Ours 0.58 0.65 0.34 0.69 0.57 0.41 0.64 1.25 0.77 0.540 0.514

Table 3: Quantative results on KITTI Cars dataset evaluated
as Fidelity Distance and Minimal Matching Distance (MMD)
metrics. We follow the previous work to finetune our model
on PCNCars.

PCN [50] FoldingNet [46] TopNet [28] GRNet [44] SeedFormer [55] Ours

Fidelity↓ 2.235 7.467 5.354 0.816 0.151 0.089
MMD↓ 1.366 0.537 0.636 0.568 0.516 0.510

4.3 Ablation Studies
In this section, we will demonstrate the effectiveness of the im-

proved design components proposed in our approach. All ablation

model variants in the ablation experiments are trained on the PCN

dataset with the same settings.

4.3.1 Loss Function. The 𝑎𝑟𝑐𝑜𝑠ℎ type chamfer distance loss func-

tion can effectively reduce over-fitting problems during model train-

ing. In the Figure 9 and Table 5, we show the effect of using this loss

function alone (variant B, w/o Designs) and the results of adding

our proposed improvements (Ours). Results indicate that our de-

signed components can produce more accurate shapes and result in

lower CD and DCD scores and higher F1-Score compared to using

only the 𝑎𝑟𝑐𝑜𝑠ℎ type loss function.

Table 4: Quantitative results on ShapeNet-34 dataset. (ℓ2 CD
×103 and F-Score@1%)

Methods

34 seen categories 21 unseen categories

CD-S CD-M CD-H CD-Avg↓ DCD-Avg↓ F1↑ CD-S CD-M CD-H CD-Avg↓ DCD-Avg↓ F1↑

FoldingNet [46] 1.86 1.81 3.38 2.35 - 0.139 2.76 2.74 5.36 3.62 - 0.095

PCN [50] 1.87 1.81 2.97 2.22 0.624 0.150 3.17 3.08 5.29 3.85 0.644 0.101

TopNet [50] 1.77 1.61 3.54 2.31 - 0.171 2.62 2.43 5.44 3.50 - 0.121

GRNet [44] 1.26 1.39 2.57 1.74 0.600 0.251 1.85 2.25 4.87 2.99 0.625 0.216

PoinTr [48] 0.76 1.05 1.88 1.23 0.575 0.421 1.04 1.67 3.44 2.05 0.604 0.384

SeedFormer [55] 0.48 0.70 1.30 0.83 0.561 0.452 0.61 1.07 2.35 1.34 0.586 0.402

HyperCD [16] 0.46 0.67 1.24 0.79 - 0.459 0.58 1.03 2.24 1.31 - 0.428

SVDFormer [57] 0.46 0.65 1.13 0.75 0.538 0.457 0.61 1.05 2.19 1.28 0.554 0.427

Ours 0.39 0.57 1.05 0.67 0.537 0.515 0.55 0.99 2.15 1.23 0.551 0.483

4.3.2 Our Core Designed Components. As shown in Figure 10 and

Table 6, we compare different ablation variants of our model. Re-

sults show that only utilizing the CCM feature as an enhanced

semantic pattern (variant C) performs better than the baseline (vari-

ant A in Table 5). Furthermore, using only the improved upsampler

with a multi-scale inception structure (variant E) introduces geo-

metric priors and shows similar metric improvements as variant

C. At the same time, we further add an alignment strategy based

on variant C to build the variant D model. The results show that

variant D can obtain a lower CD and higher F1-Score. Finally, we

combine all designed improved components (Ours) to achieve the

best performance across all three metrics.

4.4 Complexity analysis
Our method achieves the best performance on almost all metrics on

the PCN, ShapeNet-55/34, and KITTI benchmarks. To demonstrate

our approach comprehensively and provide a detailed reference

for subsequent research, we list the number of model parameters

(Params), FLOPs, and inference time (Time) on the PCN dataset

of each method in Table 7. All methods are inferred on a single

NVIDIA A100 GPU. It can be seen that our method can well balance

the computational cost and completion performance.
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Table 5: Effect of loss function and our designs. Results show
that arc-CD loss function can improve performance to a cer-
tain extent, but our designs are more effective.

Variants arc-CD Our Designs CD-Avg↓ DCD-Avg↓ F1↑

A 6.54 0.536 0.841

B ✓ 6.50 0.535 0.846

Ours ✓ ✓ 6.42 0.526 0.854

Table 6: Effect of each parts in our core design components.
Results show that both CCM Feature Enhanced Point Gener-
ator (Enhance) and Multi-scale Geometry-aware Upsampler
(Geometry) can improve the performance individually, and
these designs can be combined to get better results.

Variants

Enhance Geometry

CD-Avg↓ DCD-Avg↓ F1↑
CCM Alignment Inception

C ✓ 6.46 0.532 0.850

D ✓ ✓ 6.43 0.530 0.849

E ✓ 6.45 0.533 0.847

Ours ✓ ✓ ✓ 6.42 0.526 0.854

Input w/o Designs Ours G.T.

Figure 9: Visual comparison of variant B (w/o Designs) and
Ours (complete approach) on PCN dataset. Results show that
using only arc-CD loss without our improved designs may
destroy the recovery of fine structures, but our method can
reconstruct more accurate details.

5 CONCLUSION
In this paper, we introduce GeoFormer, a novel point cloud com-

pletion method aimed at improving completion performance. We

propose to extract efficient and multi-view consistent semantic pat-

terns from CCM and then align them with pure point cloud features

to enrich the global geometric representation in coarse point predic-

tion stage. Furthermore, we introduce a novel multi-scale feature

extractor based on the inception architecture, fostering the gener-

ation of high-quality local structure details in point clouds. Our

Table 7: Complexity analysis. We show the the number of
parameter (Params) and FLOPs and inference time (ms) of
our method and eight existing methods. We also provide the
distance metrics CD-Avg and DCD-Avg on PCN dataset.

Methods Params FLOPs Time CD-Avg↓ DCD-Avg↓
FoldingNet [46] 2.41M 27.65G - 14.31 0.688

PCN [50] 6.84M 14.69G - 9.64 0.651

GRNet [44] 76.71M 25.88G 10.91ms 8.83 0.622

PoinTr [48] 31.28M 10.60G 15.35ms 8.38 0.611

SnowflakeNet [42] 19.32M 10.32G 16.65ms 7.21 0.585

SeedFormer [55] 3.31M 53.76G 44.32ms 6.74 0.583

AnchorFormer [4] 30.46M 7.27G - 6.59 -

SVDFormer [57] 32.63M 39.26G 18.24ms 6.54 0.536

Ours 32.76M 39.37G 17.41ms 6.42 0.526

Input

w/o Alignment w/o Inception

G.T.Ours

w/o Enhancew/o Geometry

Figure 10: Visualization comparisons of different design vari-
ants. Results show that variant C (w/o Alignment), which
only utilizes CCM features, may destroy the global structure.
After adding alignment strategy, variant D (w/o Inception)
can preserve a better global structure. Variant E (w/o En-
hance) only uses the inception structure in upsampling stage
and reconstructs dense areas but incomplete shape. In com-
parison, Ours (complete approach) combines the advantages
of these designs and achieves the best results.

experiments on various benchmark datasets demonstrate the supe-

riority of GeoFormer, as it adeptly captures fine-grained geometry

and precisely reconstructs missing parts.
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