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Anonymous ACL submission

We have summarized and addressed the con-001

cerns from previous reviews in the following. We002

have also made improvements in writing. We003

color-code some modified parts.004

1. Application Beyond AR/VR005

Previous reviewer misunderstood that this work is006

only used for AR/VR applications. We had clari-007

fied that our work applies broadly to on-device sys-008

tems beyond AR/VR, like smartphones and wear-009

ables, where privacy is a critical concern. We had010

noted that instruction rewriting mirrors task spe-011

cific NLU modules in systems like Siri and Alexa,012

validating its real-world utility. We had pointed out013

that, unlike generic VLMs, ReVision may run fully014

on-device with a sub-500MB footprint, enabling015

practical deployment. Check Section 1.016

2. Privacy Motivation017

Previous reviewer misunderstood our data creation018

illustration as model pipeline. We had stated that019

our core goal is to avoid transmitting visual data,020

which often contains sensitive cues (e.g., identity,021

environment), by rewriting queries into safe, text-022

only commands on-device.023

In the situation a user might ask (pointed out024

by previous reviewer) "is the private content on a025

business card just the phone number?", imagine026

the picture is a person holding a business card in027

an office, our method can prevent the image from028

being transmitted to the server, thereby avoiding029

the leakage of the office staff’s facial information030

and office environment details. The rewritten query031

also does not have to be sent to the server later.032

This aligns with privacy practices in assistants like033

Apple Siri, where tasks like messaging, alarms,034

or calling are handled entirely on-device—phone035

numbers are never sent to servers (Apple, 2025).036

Our method makes such privacy guarantees extend-037

able to multimodal inputs by eliminating the image038

modality altogether. Check Section 1.039

3. Model Novelty 040

We have clarified our goal is to introduce the first 041

dataset and strong privacy-preserving baseline for 042

this task, prioritizing clarity and reproducibility 043

over architectural complexity. We had noted that, 044

technically, ReVision leverages the Perceiver Re- 045

sampler for efficient vision encoding, which is non- 046

trivial and grounded in recent work (Laurençon et 047

al., 2024). Check Section 4. 048

4. Comparison by fine-tuning baselines on 049

it/evaluating pre-trained ReVision 050

directly/existing 256M VLM (e.g., 051

SmolVLM) instead of pre-training/a simple 052

captioning + text fusion approach 053

Note that no small pretrained VLMs existed at the 054

time that could be fine-tuned on our dataset. Base- 055

lines like LLaVA (7B–13B) are not used in any 056

real-world on-device production setting, especially 057

for instruction rewriting (While LLaVA can tech- 058

nically be run locally with frameworks like vLLM, 059

its 7B–13B scale still requires significant memory, 060

compute, and power, making it impractical for de- 061

ployment on typical edge devices like smartphones 062

or wearables.) We have reported their as-is perfor- 063

mance to show ReVision’s relative standing, noting 064

that fine-tuning such models leads to task-specific 065

forgetting and is impractical for deployment. 066

It is worth noting that the requested version 067

SmolVLM-256M is contemporary to our previous 068

February submission (released Jan 2025). Now, we 069

have included it as a comparison in this version. 070

We have conducted experiments to compare 071

against the caption + text fusion approach. They are 072

reported as TextOnly models in the result section. 073

Check Section 4, 6 and Table 3. 074
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Abstract

Efficient and privacy-preserving multimodal in-075
teraction is essential as AR, VR, and modern076
smartphones with powerful cameras become077
primary interfaces for human-computer com-078
munication. Existing powerful large vision-079
language models (VLMs) enabling multimodal080
interaction often rely on cloud-based process-081
ing, raising significant concerns about (1) vi-082
sual privacy by transmitting sensitive vision083
data to servers, and (2) their limited real-time,084
on-device usability. This paper explores Visual085
Instruction Rewriting, a novel approach that086
transforms multimodal instructions into text-087
only commands, allowing seamless integration088
of lightweight on-device instruction rewriter089
VLMs (250M parameters) with existing con-090
versational AI systems, enhancing vision data091
privacy. To achieve this, we present a dataset092
of over 39,000 examples across 14 domains093
and develop a compact VLM, pretrained on094
image captioning datasets and fine-tuned for in-095
struction rewriting. Experimental results, evalu-096
ated through NLG metrics such as BLEU, ME-097
TEOR, and ROUGE, along with semantic pars-098
ing analysis, demonstrate that even a quantized099
version of the model (<500MB storage foot-100
print) can achieve effective instruction rewrit-101
ing, thus enabling privacy-focused, multimodal102
AI applications.103

1 Introduction104

The rapid integration of conversational AI into AR,105

VR, smartphones, and wearables has heightened106

the demand for multimodal systems that can inter-107

pret text, images, speech, and gestures seamlessly.108

Devices like the Meta Ray-Ban Smart Glasses, Ap-109

ple Vision Pro, and tools like Google Lens enable110

users to ask specific questions about their visual111

surroundings—yet entire images, often containing112

sensitive background data unrelated to the query,113

are transmitted to cloud-based large or semi-large114

vision-language models (VLMs) (Chen et al., 2023;115

Liu et al., 2023; Team, 2023), posing serious pri-116

vacy risks. This highlights a key challenge: exe-117

cuting task-oriented multimodal commands while118

preserving user privacy. On-device processing is119

increasingly favored to avoid exposing private con-120

tent such as faces, locations, or documents. How-121

ever, while large VLMs like PaLI-X, LLaVA, and122

Qwen-VL excel at complex tasks, they are too123

resource-intensive for local use, and smaller, more124

private models often lack the broad world knowl-125

edge needed for robust multimodal understanding.126

To address this, we propose ReVision, an ap- 127

proach based on Visual Instruction Rewriting that 128

converts multimodal instructions into text-only 129

commands. By transforming complex visual in- 130

teractions into structured text, existing lightweight 131

on-device conversational AI models can efficiently 132

process user instructions without sending either 133

sensitive visual or textual data to external servers. 134

We introduce a curated dataset consisting of ⟨ 135

image, original instruction, rewritten 136

instruction ⟩ triplets, covering diverse real- 137

world tasks. A freshly built compact 250 Million 138

parameters vision-language model (Liu et al., 2023) 139

is fine-tuned on this dataset and evaluated using 140

NLG metrics (such as BLEU, METEOR, ROUGE) 141

and semantic parsing accuracy. 142

Our findings demonstrate that our compact 143

model achieves an acceptable level of rewriting 144

capabilities, and performs better compared to popu- 145

lar baselines such as PaliGemma-v2 (Steiner et al., 146

2024) and Qwen2VL (Wang et al., 2024) in zero- 147

shot settings and a fully fine-tuned version of 148

a 250M parameter VLM (SmolVLM) (Marafioti 149

et al., 2025). Additionally, even an 8-bit quan- 150

tized version of our model (<500MB on storage 151

disk) achieves effective instruction rewrites while 152

maintaining a small computational footprint. We 153

strongly believe this approach bridges the gap 154

between large-scale multimodal AI and privacy- 155

centric, on-device execution, ensuring secure, real- 156

time interaction with AR/VR and smartphone inter- 157

faces. 158

The contributions of this paper are as follows: 159

• A novel dataset for Visual Instruction Rewrit- 160

ing, covering 15+ intent domains, 1,700+ per- 161

sonal images, and 39,000+ examples. 162

• A 250M-parameter baseline VLM using the 163

Perceiver Resampler (Laurençon et al., 2024), 164

pretrained on captioning datasets and fine- 165

tuned on our rewriting dataset. 166

• Empirical validation with NLG and semantic 167

parsing metrics, demonstrating effectiveness 168

using GPT-4o as an on-device parser proxy. 169

The Code1, Dataset2 and Models3 have been 170

released for academic use. 171

1https://anonymous.4open.science/r/
ReVision-8F0F/

2https://huggingface.co/datasets/
anonymoususerrevision/multimodal_query_rewrites

3https://huggingface.co/anonymoususerrevision
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2 Related Work172

Instruction or query rewriting and semantic pars-173

ing have been widely explored in conversational174

AI to improve query understanding and response175

generation. Early methods relied on rule-based176

transformations and supervised learning (Kamath177

et al., 2020), while recent advances leverage LLMs178

for dynamic query refinement (Ye et al., 2023; Mo179

et al., 2023). Generative query rewriting frame-180

works such as LLM-R2 (Zhang et al., 2024b) en-181

hance text ranking, and personalized query rewrit-182

ing methods (Cho et al., 2021) refine queries based183

on user preferences. However, these techniques184

focus primarily on textual query transformations185

and do not extend to multimodal task-oriented in-186

struction processing. Visual instruction tuning has187

emerged as a key development in multimodal AI,188

with models like LLaVA (Liu et al., 2023) and189

PaLI-X (Chen et al., 2023) demonstrating strong190

vision-language capabilities. While these models191

excel in multimodal question answering, they are192

not optimized for rewriting task-oriented instruc-193

tions. Similarly, Patel et al. (Patel et al., 2020)194

explore generating natural questions from images195

for multimodal assistants, but their work focuses on196

question generation rather than instruction rewrit-197

ing. Unlike these approaches, our work introduces198

a dedicated dataset and a compact model for Visual199

Instruction Rewriting, specifically designed to con-200

vert multimodal user instructions into structured201

text for privacy-preserving, on-device execution.202

The closest work to ours is MARRS (Ates et al.,203

2023), which integrates multimodal reference res-204

olution with query rewriting to improve conver-205

sational grounding. However, MARRS relies on206

rule-based replacements after reference resolution207

in a non-VLM setting, whereas our approach fo-208

cuses on learning-based instruction rewriting to209

enable structured task execution from multimodal210

inputs. Other highly relevant studies are by Zhang211

et al. (2022) and Wei et al. (2021), which investi-212

gate whether open-domain text-based QA systems213

can handle visual knowledge questions by refor-214

mulating them into purely textual queries. Their215

work highlights the effectiveness of query rewrit-216

ing in bridging the gap between vision and lan-217

guage using a modular approach different from218

ours but aligns closely with our goal of rewriting219

multimodal instructions into structured text. How-220

ever, while their approach focuses on adapting vi-221

sual questions for open-domain QA, our work is222

specifically designed for task-oriented instruction 223

execution, making it applicable to a broader set of 224

real-world multimodal interactions. 225

3 Constructing a Dataset for Visual 226

Instruction Rewriting 227

Task-oriented conversational AI systems rely on a 228

semantic parser to interpret user intent and extract 229

structured arguments (Louvan and Magnini, 2020; 230

Aghajanyan et al., 2020). For example, when a 231

user says, "Add the team meeting to my calendar 232

for Friday at 3 PM", the system must parse the in- 233

tent (CreateCalendarEvent) and extract arguments 234

such as the EventTitle (“team meeting”), EventDate 235

(“Friday”), and EventTime (“3 PM”) to schedule 236

the event correctly. Unlike purely text-based inter- 237

actions, multimodal instructions, particularly those 238

directed at conversational AI assistants on AR/VR 239

devices (e.g., Apple’s Siri for Apple Vision Pro), 240

introduce additional challenges such as ellipsis and 241

coreference resolution. For instance, a user may 242

look at a book cover and ask, “Who wrote this?” 243

or point at a product in an AR interface and say, 244

“How much does this cost?” Traditional text-based 245

semantic parsers struggle with such instructions 246

since critical visual context is missing. Thus, to 247

bridge the gap between multimodal input and exist- 248

ing conversational AI stacks, we introduce a dataset 249

specifically designed for rewriting multimodal in- 250

structions into structured text that can be processed 251

by standard text-based semantic parsers. Figure 252

1 illustrates a representation of the dataset collec- 253

tion requirement, highlighting the transformation 254

of multimodal inputs into text-based rewrites. 255

To construct our dataset, we first define an on- 256

tology of intents and arguments, as existing on- 257

tologies in conversational AI and semantic parsing 258

are often proprietary and unavailable for research 259

use. We take inspiration from Goel et al. (2023) 260

for ontology and extend it to accommodate multi- 261

modal task-oriented interactions. Figure 5 presents 262

an overview of the intents and arguments in our 263

ontology. Next, we curate a diverse set of images 264

covering various real-world multimodal interaction 265

scenarios, including book covers, product pack- 266

aging, paintings, mobile screenshots, flyers, sign- 267

boards, and landmarks. These images are sourced 268

from publicly available academic datasets, such as 269

OCR-VQA4, CD and book cover datasets, Stanford 270

4https://ocr-vqa.github.io/
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Image and Query
Domains

Works of Art
(eg., paintings,

CD covers)

O: Do you have any
knowledge about this

piece of art?

Books and
Texts (eg.,

book covers,
flyers)

O: Do you
have any

knowledge
related to
this book?

R1: Who wrote this
"Fantasy Football: The Next

Level"?

R2: What is "Fantasy
Football: The Next Level"

about?

R3: Give me more
information about "Fantasy

Football: The Next Level".

Products
(eg,.

geoceries)

O: What brand is
this item?

R: What brand is "Organic
Macaroni & Cheese" from?

O: Where can I
find this item?

R: Where can I find "Organic
Macaroni & Cheese"?

O: What is this
item used for?

R: What is "Organic Macaroni &
Cheese" used For?

O: Who made
this piece of art?

R: Who made "Peace through
Chemistry"?

R1: What is "Peace
through Chemistry"

inspired by?

R2: Give me more information
about "Peace through

Chemistry"

Business Cards

O: Call this number on
the business card. R: Call "916-221-0411".

O: Send an email to
the address on the

business card.

R: Send an email to "vijayc
@stanford.edu"

O: Give me
directions

to this
address.

R: Give me directions to "Stanford
Electrical Engineering 17 Cornstock
Circle Apt 101. Stanford, CA, 94305"

Figure 1: Mindmap showing Data Collection and Rewrite Desiderata. O = Original Query. R = Rewritten Query.

Category Total Train Test

Book 485 / 500 386 / 399 101 / 101
Business Card 26 / 960 26 / 772 26 / 188
CD 27 / 1,020 27 / 835 27 / 185
Flyer 159 / 5,940 159 / 4,742 159 / 1,198
Landmark 511 / 19,274 511 / 15,420 511 / 3,854
Painting 27 / 980 27 / 774 27 / 206
Product 499 / 10,349 499 / 8,276 492 / 2,073

Total 1,734 / 39,023 1,635 / 31,218 1,343 / 7,805

Table 1: Number of Images/Instructions per Category

Annotator Percentage of Correct Captions

Annotator 1 90.62%
Annotator 2 87.23%
Annotator 3 86.35%

At least two 92.18%

All three 74.63%

Table 2: GPT-4 Instruction Rewriting Validation Re-
sults from Amazon Mechanical Turk

mobile image datasets5, flyer OCR datasets6, sign-271

board classification datasets7, Google Landmarks8,272

and Products-10K9.273

Upon identifying and verifying the images, we274

employ the GPT-4 model from OpenAI (Achiam275

et al., 2023) to systematically generate and refine276

5http://web.cs.wpi.edu/~claypool/
mmsys-dataset/2011/stanford/

6github.com/Skeletonboi/ocr-nlp-flyer.git
7github.com/madrugado/

signboard-classification-dataset
8github.com/cvdfoundation/google-landmark
9https://products-10k.github.io/
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Figure 2: Dataset Distributions By Intent

multimodal instructions into rewritten text-based 277

instructions. The process begins with a bootstrap 278

phase, where GPT-4 is prompted to generate 20 di- 279

rect questions per image by explicitly referencing 280

visible objects or textual elements while adhering 281

to the intent list defined in Figure 5. A second 282

prompting phase then validates the generated ques- 283

tions against the corresponding image, filtering out 284

ambiguous or irrelevant instructions to ensure align- 285

ment with the visual context. 286

In the rewriting phase, GPT-4 is tasked with para- 287

phrasing the validated instructions, ensuring that 288

the transformed questions are fully self-contained 289

and interpretable without requiring the image. This 290

transformation is crucial for enabling multimodal 291

conversational AI systems to process instructions 292

using purely text-based stacks. Finally, a verifica- 293

tion phase prompts the model to assess the rewritten 294

4
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questions in relation to both the original instruction295

and the image, ensuring semantic fidelity and elimi-296

nating inconsistencies. This multi-stage prompting297

strategy resulted in a dataset of 39,023 original-298

rewritten instruction pairs, derived from 1,734 im-299

ages, with an 80%-20% train-test split. Table 1300

provides a breakdown of image sources.301

While automated validation ensures consistency302

across different stages, human evaluation remains303

critical for verifying the dataset’s reliability. To304

this end, we conducted an annotation task via Ama-305

zon Mechanical Turk (AMT) to validate rewritten306

instructions within the test set for indirect image-307

based instructions. Each annotation task followed308

a structured validation guideline, where annota-309

tors reviewed an image, its original multimodal310

instruction, and the rewritten text-only instruction,311

determining whether the reformulation preserved312

the intent and meaning of the original instruction.313

Annotators were instructed to select "Accept" if314

the rewritten instruction was correct or "Reject" if315

it failed to capture the original meaning. Annota-316

tors are incentivized appropriately for this binary317

grading task. Agreement analysis, as shown in318

Table 2, indicates that in 92.2% of cases, at least319

two annotators agreed on "Accept," while 74.6%320

of instructions achieved full consensus across all321

three annotators. Despite a Fleiss’ Kappa score322

of 0.278—suggesting fair inter-annotator agree-323

ment—the high rate of majority consensus supports324

the dataset’s reliability for real-world use. Given325

these results, we publicly release the full dataset326

along with raw AMT responses, enabling further327

analysis, filtering, and refinements by the research328

community.329

Figure 2 presents the distribution of intents in330

our dataset, categorized into training and test splits.331

The distribution reflects practical usage patterns in332

real-world multimodal conversational AI systems,333

with a higher occurrence of general QA and web334

search, alongside diverse task-oriented intents such335

as reminders, messaging, and navigation, ensuring336

coverage of frequent user interactions.337

4 Developing Small-Scale VLM for Visual338

Instruction Rewriting339

We develop a lightweight vision-language model340

(shown in Figure 3) tailored for instruction-341

following tasks by integrating a pretrained vision342

encoder with an instruction-tuned language model,343

following the popular multimodal fusion approach344

Mistral-Lite (150M)

SigLIP-Encoder

Perceiver Sampler

Linear Projection

Rewritten Instruction 

Instruction 

Image 

Figure 3: Revision Model Architecture

(Zhang et al., 2024a). Since vision encoders and 345

instruction-tuned language models operate in dif- 346

ferent embedding spaces, a multimodal projector 347

(Liu et al., 2023) is used to align the encoded 348

image features with the token embedding space 349

of the language model. Our approach is similar 350

to PaLI-Gemma (Beyer et al., 2024), where an 351

image encoder based on the SigLIP architecture 352

(Zhai et al., 2023) extracts D-dimensional image 353

encodings for N patches from a single input im- 354

age, say V1, V2, ..., VN ). Building on Laurençon 355

et al. (2024), who demonstrated that using a sam- 356

pling technique to extract the most relevant M 357

patch encodings from a larger set of N samples 358

improves efficiency, we employ Perceiver Sampler 359

(Jaegle et al., 2021) to downsample the N patch 360

embeddings into M D-dimensional encodings. 361

These image encodings are then mapped into a 362

shared embedding space via a linear multimodal 363

projector, ensuring compatibility with the language 364

model’s H-dimensional token embeddings. We 365

fix K at 64. The projected image embeddings 366

(H1, H2, ...,HM ) are concatenated with the token 367

embeddings extracted from the tokenized textual 368

input (H1, H2, ...,HK), where K represents the 369

number of input tokens. The combined embed- 370

dings are then processed by the language model to 371

generate responses. To ensure consistency in in- 372

put representation, we apply image preprocessing, 373

tokenization, and chat template formatting, mak- 374

ing the model familiar with structured multimodal 375

input formats. 376

Although large-scale vision-language models 377

typically involve hundreds of millions of param- 378

eters, our focus is on designing a compact and 379

efficient model capable of running on-device. 380
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To maintain a parameter budget under 250M,381

we select a small SigLIP encoder (Zhai et al.,382

2023) (google/siglip-base-patch16-256),383

which processes images of size 256 × 256 by384

dividing them into 16 × 16 patches, with 768385

dimensions in hidden layers. The language model386

is a 150M-parameter instruction-tuned model387

from OuteAI10 (OuteAI/Lite-Mistral-150M-388

v2-Instruct) based on the Mistral architecture389

(Jiang et al., 2023), featuring a vocabulary size390

of 32,768 and a hidden dimension of 768. Since391

the hidden dimensions of both the vision encoder392

and the language model are identical, the projector393

acts purely as a dimensional transformer without394

altering the shape of the embeddings. While the395

model’s limited size may impact its ability to396

handle multi-turn conversations, it is well-suited397

for single-turn multimodal instruction rewriting398

tasks. Additionally, since the model is designed399

for multimodal deixis resolution, it may not be400

effective for resolving text-only references in401

extended conversations(Ates et al., 2023).402

4.1 Model Pretraining403

To pretrain the model, we adopt an end-to-end train-404

ing strategy, leveraging datasets from three key405

sources: (a) LLaVA-ReCap-CC3M, (b) LLaVA-406

Pretrain, and (c) LLaVA-CC3M-Pretrain-595K.407

These datasets are curated from large-scale image-408

text corpora, including LAION (Schuhmann et al.,409

2021), Conceptual Captions (CC) (Sharma et al.,410

2018), and SBU (Ordonez et al., 2011), which411

are filtered for balanced concept distribution and412

enhanced with synthetic captions generated via413

BLIP to improve vision-language alignment (Lab,414

2023; Liu, 2023b,a). Specifically, LLaVA-ReCap-415

CC3M focuses on re-captioning images to im-416

prove concept coverage, while LLaVA-Pretrain417

consists of 558K image-caption pairs, forming a418

strong foundational dataset for multimodal align-419

ment. The LLaVA-CC3M-Pretrain-595K dataset,420

derived from Conceptual Captions 3M, provides a421

rich set of image-text pairs to enhance model ro-422

bustness. The total number of examples is thus a423

little more than 4M. Despite some redundancy in424

images across datasets, we ensure sufficient data425

diversity and scale to instill basic image-text align-426

ment capabilities in our pretrained model.427

For pretraining, we use the following configu-428

rations: a batch size of 16, trained for 2 epochs,429

10https://www.outeai.com

using the AdamW optimizer with a learning rate of 430

2× 10−5 and a linear learning rate schedule. The 431

training was conducted on consumer-grade GPUs 432

(NVIDIA RTX 3090) over 3 days, using PyTorch 433

and Hugging Face’s Transformers library for im- 434

plementation. We refer to our pretrained model as 435

ReVision-250M-64-16. 436

4.2 Model Fine-Tuning 437

For the instruction rewriting task, we conduct fine- 438

tuning under multiple configurations, trained on our 439

dataset (3). We will refer to the rewritten prompts 440

from this dataset as the “reference” prompts. Be- 441

low, we describe the fine-tuning setups and the 442

rationale behind integrating metadata-driven en- 443

hancements to improve performance on text-dense 444

images. 445

• ReVision-BL: This is the baseline fine-tuned 446

model. The input consists of an image, a 447

rewrite prompt, and an instruction, while the 448

model generates a rewritten version of the in- 449

struction in response. 450

• ReVision-Metadata: In this, we augment the 451

input with “metadata”, namely the image cap- 452

tion and an external OCR-extracted text. To 453

differentiate the rewrite prompt and instruc- 454

tion from the auxiliary metadata, we prefix 455

the prompt and metadata sections with <task> 456

and <data>, respectively. Collectively, the in- 457

put consists of an image, a prefixed rewrite 458

prompt and instruction, and a prefixed caption 459

and OCR text and the output is a rewritten 460

instruction. 461

The motivation for integrating metadata arises 462

from the limitations of small-scale vision-language 463

models (VLMs). Despite being optimized for 464

rewriting tasks, small VLMs struggle with extract- 465

ing embedded text from images. OCR is a spe- 466

cialized capability distinct from traditional vision- 467

language alignment (Lamm and Keuper, 2024; Na- 468

gaonkar et al., 2025). However, most modern de- 469

vices are equipped with built-in OCR and image 470

description capabilities, making it practical to sup- 471

plement the model with external text recognition 472

systems. To systematically evaluate this approach, 473

we present two different metadata extraction: 474

• GPT-4o_Caption+OCR: We use GPT-4o to 475

generate both captions and OCR-extracted 476

text, simulating a practical situation where 477

6
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a device is usually equipped with an advanced478

OCR and captioning system.479

• Self_Caption+EasyOCR: We use rewriter480

models to generate captions themselves us-481

ing the simple prompt: “Caption this:”. For482

OCR, we employ EasyOCR11, a lightweight483

text extraction model based on the CRAFT484

algorithm (Baek et al., 2019), simulating a485

low-resource on-device setting.486

The fine-tuning procedure follows a similar487

framework as pretraining but with optimized hy-488

perparameters for smaller-scale adaptation. The489

vision encoder is frozen during fine tuning and the490

number of training epochs is increased from 2 to491

5 to compensate for the smaller dataset size. The492

batch size remains at 16, but gradient accumula-493

tion steps are reduced from 4 to 1, allowing for494

more frequent model updates. The learning rate495

remains stable at 2 × 10−5 with the same linear496

rate schedule, maintaining a conservative optimiza-497

tion approach. Additionally, the number of warm-498

up steps is lowered from 100 to 10, reflecting the499

shorter training duration. To simulate a realistic500

fine-tuning environment where such models could501

be updated on-device, we conduct fine-tuning on a502

consumer-grade desktop equipped with an NVIDIA503

GeForce RTX 2070 SUPER (8GB VRAM). Each504

fine-tuning run took approximately 5.5 to 6 hours.505

For baseline comparisons, we evaluate our506

model against state-of-the-art small-scale VLMs:507

PaliGemma-v2 (10B) and QwenVL-v2 (7B),508

known for strong performance in OCR, captioning,509

and multimodal reasoning. However, deploying510

these models on-device is impractical without high-511

end GPUs. To ensure a fair comparison, we as-512

sess them as-is with optimized prompting but with-513

out fine-tuning, reflecting real-world constraints.514

While fine-tuning could improve accuracy, their515

size and hardware demands make them unsuitable516

for mobile applications, thus highlighting the need517

for lightweight models like ours.518

For deployable small VLM baselines, we include519

Smol-VLM (256M) (Marafioti et al., 2025) - the520

smallest publicly available off-the-shelf VLM12 to521

date. We fine-tuned it on our dataset using the522

same configuration as our primary model, observ-523

ing steady loss reduction and convergence.524

11https://github.com/JaidedAI/EasyOCR
12https://huggingface.co/HuggingFaceTB/

SmolVLM-Instruct

To clarify the distinction between ReVision and 525

a simple captioning + text fusion approach, and to 526

assess the impact of our dataset, we also compare 527

against two TextOnly baselines: (a) Qwen2.5-0.5B 528

(Team, 2024), and (b) Mistral-Lite (our custom text 529

backbone), both fine-tuned in a pure text-to-text 530

setting with instructions, EasyOCR outputs, and 531

GPT-4-generated image captions. These compar- 532

isons help isolate the benefits of our dataset and 533

design beyond naïve fusion strategies. 534

To further assess on-device deployment feasibil- 535

ity, we evaluated the 8-bit quantized version of our 536

fine-tuned models. This approach reduces mem- 537

ory by up to fourfold, lowering computational de- 538

mands while maintaining competitive performance. 539

Though quantization may slightly reduce accuracy, 540

the simplicity of the rewriting task makes this trade- 541

off worthwhile. We examine whether an 8-bit 542

model can efficiently handle multimodal instruc- 543

tion rewriting while staying lightweight for real- 544

world use. 545

5 Evaluation Metrics 546

To evaluate our models in Visual Instruction Rewrit- 547

ing, we use standard NLG metrics (BLEU, ME- 548

TEOR, ROUGE) (Sharma et al., 2017) alongside 549

task-specific semantic parsing evaluations. While 550

NLG metrics assess linguistic similarity, they do 551

not capture functional quality in downstream AI 552

systems. Effective rewriting must also ensure 553

instructions remain interpretable by semantic 554

parsers extracting intent and arguments (Lou- 555

van and Magnini, 2020). In the absence of an exist- 556

ing parser tailored to our ontology (Figure 5), we 557

employ GPT-4 as a proxy to simulate an on-device 558

parser for intent classification and argument extrac- 559

tion. To evaluate intent and structure preservation, 560

we compare GPT-4-generated parses for both refer- 561

ence and model-generated rewrites. For clarity, we 562

present a collapsed view of intents and arguments. 563

The following metrics are used for evaluation 564

• Intent Accuracy: Exact match of intent la- 565

bels between reference and model-generated 566

rewrites, assessing task-specific intent preser- 567

vation. 568

• Argument Similarity: Mean Jaccard Simi- 569

larity (MJS) between argument labels from 570

reference and model rewrites, ensuring reten- 571

tion of key task-related arguments. 572
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Model ROUGE-N ROUGE-L BLEU MET- Intent Arg
N=1 N=2 EOR Acc MJS

TextOnly1a: Qwen2.5-0.5BEasyOCR+Meta 19.6 7.3 18.2 1.8 24.5 45.0 47.8
TextOnly1b: MistralLite-150MEasyOCR+Meta 7.1 0.9 6.2 0.2 12.1 24.9 45.1

BL1a: PaliGemma2-10Bvanilla 3.4 0.5 3.3 0.03 2.3 16.2 42.7
BL1b: Qwen2-VL-7Bvanilla 43.7 24.7 40.8 12.3 39.5 50.3 65.2
BL2a: PaliGemma2-10BSelf_Caption+EasyOCR 11.1 2.5 11.1 0.03 4.5 19.3 30.0
BL2b: Qwen2-VL-7BSelf_Caption+EasyOCR 41.3 24.0 38.7 8.4 39.1 61.2 67.0

BL3a: SmolVLMFT 35.8 19.6 33.5 7.9 40.1 49.7 59.5
BL3b: SmolVLMMetadata+EasyOCR 23.3 10.2 21.2 3.2 26.2 21.5 49.2
BL3c: SmolVLMSelf_Caption+EasyOCR 17.2 6.4 15.8 2.2 17.1 24.1 47.2

ReVision-BL 56.9 41.4 55.4 27.7 61.4 56.5 68.8
ReVision-MetadataGPT-4o_Caption+OCR 72.4 60.6 71.5 49.9 74.4 62.4 73.7
ReVision-MetadataSelf_Caption+EasyOCR 79.3 70.0 78.4 61.5 80.2 71.5 74.5
ReVision-MetadataSelf_Caption+EasyOCR(8bit) 79.2 69.9 78.3 61.3 80.1 67.6 79.5

Table 3: Evaluation Results for Baseline and RV Models as a Percentage. BL = Baseline; ROUGE-N = N-grams
between the system and reference summaries; ROUGE-L = Longest common subsequence-based statistics; BLEU
= BiLingual Evaluation Understudy; METEOR = Metric for Evaluating Translation with Explicit Ordering; Intent
Acc = Intent Accuracy; Arg MJS = Argument Mean Jaccard Similarity.

0.00

0.25

0.50

0.75

1.00

Answer
General

Question

Search
Web

Find
Nearby
Place

Get
Directions

Set
Reminder

Send
Message

Send
Email

Send
Text

Message

Open
App

Create
Calendar

Event

Find
Person

Info

Set
Alarm

Start
Navigation

Make
Phone

Call

Others

BL1b: Qwen2−VL−7B (vanilla) ReVision−BL ReVision−Metadata (Self_Caption+EasyOCR)

Figure 4: Class-wise F1 Scores for Intent Classification

6 Results and Discussion573

Table 3 presents the evaluation results for both base-574

line models (BL) and our proposed ReVision mod-575

els across Language Generation (NLG) metrics576

(ROUGE, BLEU, METEOR) and semantic parsing577

performance (Intent Accuracy and Argument Mean578

Jaccard Similarity). We also provide anecdotal ex-579

amples in Figure 7 to illustrate the strengths and580

limitations of various models.581

Both TextOnly baseline variants performed sig-582

nificantly worse than ReVision, highlighting the583

value of multimodal inputs. These models strug-584

gled with proper nouns and named entities from585

captions and OCR, showing high sensitivity to586

metadata quality. Midsize baseline VLMs under-587

performed not due to weak modeling but due to588

lack of tuning for rewriting. Though PaliGemma2-589

10B and QwenVL-7B perform well on vision-590

language tasks, they are not optimized for meta-591

instruction following, as seen in their vanilla ver-592

sions (BL1a, BL1b) with low ROUGE-1 (3.4%,593

43.7%), negligible BLEU (0.03%, 12.3%), and 594

poor Intent Accuracy (16.2%, 50.3%). They of- 595

ten misinterpret rewriting as direct response or au- 596

tocompletion, especially with imperative inputs, 597

leading to refusal (“I can’t help with that”) or 598

incorrect completions—hurting NLG and pars- 599

ing metrics. Their small size (<10B parame- 600

ters) limits instruction-following and world knowl- 601

edge needed for structured rewriting. Adding 602

Self_Caption+EasyOCR metadata (BL2a, BL2b) 603

slightly helps, notably for QwenVL-7B (Intent Ac- 604

curacy: 50.3% → 61.2%), but ROUGE and BLEU 605

remain low, showing the need for instruction tun- 606

ing. The fine-tuned SmolVLM-256M baseline also 607

underperforms with default tuning, often over- 608

explaining by adding unnecessary descriptions and 609

artifacts, likely due to pretraining on detailed tasks 610

(e.g., video narration). While suboptimal here, 611

SmolVLM remains a promising candidate with tar- 612

geted tuning and prompting. 613

In contrast, our proposed REVISION models, 614
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explicitly trained for rewriting, substantially out-615

perform all baselines, demonstrating the impor-616

tance of task-specific tuning. Even without meta-617

data, REVISION-BL exceeds input-augmented618

baselines with ROUGE-1 of 56.9%, BLEU of619

27.7%, and Intent Accuracy of 56.5%, highlight-620

ing that a compact, instruction-tuned VLM can621

surpass larger, non-specialized models—an obser-622

vation further supported by the intent category-wise623

F1 scores in Figure 4. Incorporating metadata624

yields additional gains: REVISION-METADATA,625

enhanced with GPT-4-derived captions and OCR626

text, achieves 72.4% ROUGE-1, 49.9% BLEU, and627

62.4% Intent Accuracy, confirming that extracted628

text aids in resolving multimodal ambiguities. The629

top-performing model, REVISION-METADATA-630

SELF_CAPTION+EASYOCR, achieves the high-631

est scores across all metrics, showing that even632

lightweight captioning and OCR tools can enhance633

rewriting quality. Furthermore, the 8-bit quantized634

version of this model delivers nearly equivalent per-635

formance to its full-precision counterpart—67.6%636

vs. 71.5% Intent Accuracy—while slightly improv-637

ing Argument Similarity (79.5%), indicating its638

suitability for deployment on resource-constrained639

devices.640

Despite the strong performance of our ReVision641

variants, certain limitations hinder further accuracy642

gains. A primary issue is the loss of fine-grained643

text details caused by downsampling images to644

256 × 256 resolution, which impairs recognition645

of critical elements such as ingredient lists or nu-646

tritional facts on product packaging. Additionally,647

the dataset’s lack of explicit reference localization648

limits the model’s ability to align user intent with649

specific image regions, resulting in object disam-650

biguation and instruction alignment errors. Future651

work could address these challenges by incorpo-652

rating bounding box annotations to provide spa-653

tial grounding cues and by processing localized654

image regions rather than entire downsampled im-655

ages, reducing information loss in text-heavy visual656

inputs. This approach aligns with Pali-Gemma’s657

short-resolution increase technique (Beyer et al.,658

2024), which improves fine-grained visual under-659

standing. Nonetheless, our findings reaffirm that660

task-specific instruction tuning and metadata aug-661

mentation markedly enhance multimodal rewriting,662

supporting scalable and efficient on-device deploy-663

ment.664

7 Conclusion and Future Work 665

In this work, we explored Visual Instruction Rewrit- 666

ing as a lightweight, privacy-preserving approach 667

to multimodal interaction on AR, VR, and smart- 668

phone devices. With a strong emphasis on dataset 669

development, we present a diverse collection of 670

39,000+ examples covering 14 domains, enabling 671

robust training for on-device instruction rewriting. 672

Our approach ensures that text-only inference is 673

more secure in privacy-sensitive settings by elimi- 674

nating the need to send personal vision-related 675

images to the server, reducing data exposure risks. 676

Additionally, rewriting removes the necessity of 677

storing images, making multimodal AI systems 678

more efficient and privacy-focused. Our experi- 679

mental results show that even an 8-bit quantized 680

model maintains strong performance while signif- 681

icantly reducing memory requirements. For fu- 682

ture work, we aim to expand data coverage by in- 683

corporating more diverse real-world multimodal 684

instructions and introducing multilingual support 685

to enhance accessibility. Furthermore, improving 686

deixis resolution with bounding box annotations 687

and localized image region training will enhance 688

reference grounding while integrating gaze track- 689

ing and tactile input can further refine contextual 690

understanding in on-device AI assistants. 691

Limitations 692

While our approach demonstrates strong perfor- 693

mance in Visual Instruction Rewriting, several lim- 694

itations remain. First, image downsampling to 695

256 × 256 resolution can lead to the loss of fine- 696

grained text details, affecting instructions that rely 697

on small-font information, such as nutritional la- 698

bels or product specifications. Second, deictic ref- 699

erence resolution remains challenging, especially 700

in images with multiple similar objects where the 701

model lacks explicit localization cues. The absence 702

of bounding box annotations in our dataset lim- 703

its the model’s ability to disambiguate references, 704

leading to errors in object-grounded instructions. 705

Additionally, while our model is lightweight and 706

optimized for on-device execution, it still lags be- 707

hind larger VLMs in handling complex multimodal 708

instructions requiring deep reasoning and external 709

world knowledge. Lastly, our dataset, while di- 710

verse across 14 domains, is monolingual, limiting 711

applicability to multilingual and culturally varied 712

settings. Future work can address these challenges 713

by increasing dataset coverage, incorporating local- 714
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ized image region processing, and adding bounding715

box annotations to improve reference resolution716

and multimodal grounding.717

Ethical Considerations718

This work prioritizes privacy and ethical consid-719

erations by designing a lightweight, on-device Vi-720

sual Instruction Rewriting system that eliminates721

the need to transmit personal vision-related data722

to external servers. By converting multimodal in-723

structions into text-only commands, our approach724

reduces data exposure risks and ensures secure,725

user-controlled inference. Our dataset is sourced726

from publicly available and academic-use image727

collections, ensuring compliance with fair use and728

licensing policies. However, we acknowledge po-729

tential biases in data distribution and the need for730

greater multilingual and cultural inclusivity. Future731

efforts will focus on expanding dataset diversity,732

improving fairness in multimodal understanding,733

and ensuring responsible AI deployment in real-734

world applications.735

Additionally, we acknowledge the use of Ope-736

nAI’s ChatGPT-4 system solely for enhancing writ-737

ing efficiency, generating LaTeX code, and aiding738

in error debugging. No content related to the sur-739

vey’s research findings, citations, or factual discus-740

sions was autogenerated or retrieved using Gen-741

erative AI-based search mechanisms. Our work742

remains grounded in peer-reviewed literature and743

ethical academic standards.744
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Intent and Argument Labels

Intent Labels: AdjustBrightness, AdjustTemperature, AdjustVolume, AnswerGeneralQuestion,
CheckSecurityCamera, CheckStockPrice, CheckTraffic, CheckVoicemail, CheckWeather, Con-
vertUnits, CreateCalendarEvent, DefineWord, EstimateArrivalTime, FindNearbyPlace, Find-
PersonInfo, GetDirections, GetFact, GetNewsUpdate, GetSportsScores, LockDoor, MakeCall,
MakePhoneCall, MathCalculation, OpenApp, PauseMusic, PlayMusic, PlayPodcast, PlayVideo,
ReadMessage, ReplyToMessage, SearchMovie, SearchWeb, SendEmail, SendGroupMessage,
SendMessage, SendTextMessage, SetAlarm, SetPlaybackSpeed, SetReminder, SetScene, SetTimer,
ShowTVGuide, SkipTrack, StartNavigation, StartVacuum, StartVideoCall, StopNavigation, Stop-
Vacuum, TranslateText, TurnOffDevice, TurnOnDevice, UnlockDoor

Argument Labels: AlarmTime, AppName, ArtistName, BrightnessLevel, CameraLocation, Con-
tactName, CurrentLocation, DateTime, Destination, DeviceName, ETA, EmailBody, EmailSubject,
EpisodeTitle, EventDateTime, EventLocation, EventTitle, LanguagePair, LockState, MathExpres-
sion, MessageBody, MessageContent, MovieName, NewsTopic, PersonName, PlaceCategory, Play-
backSpeed, PodcastTitle, QueryText, QuestionText, Recipient, RecipientName, ReminderContent,
RouteType, SceneName, SongName, SportEvent, StockSymbol, TVChannel, TemperatureValue,
TimerDuration, UnitToConvert, VoicemailSender, VolumeLevel, WeatherDate, WeatherLocation,
WordToDefine

Figure 5: Intent and Argument Labels Considered for Data Bootstrapping

Intent and Argument Labels

Intent Labels: AnswerGeneralQuestion, CreateCalendarEvent, FindNearbyPlace, FindPersonInfo,
GetDirections, MakePhoneCall, OpenApp, SearchWeb, SendEmail, SendMessage, SendTextMes-
sage, SetAlarm, SetReminder, StartNavigation, Others

Argument Labels: AlarmTime, AppName, ArtistName, BrightnessLevel, CameraLocation, Con-
tactName, CurrentLocation, DateTime, DeviceName, ETA, EmailBody, EpisodeTitle, EventTi-
tle, LanguagePair, LockState, MathExpression, MovieName, NewsTopic, PlaceCategory, Play-
backSpeed, PodcastTitle, QueryText, ReminderContent, RouteType, SceneName, SongName,
SportEvent, StockSymbol, TVChannel, TemperatureValue, UnitToConvert, VoicemailSender, Vol-
umeLevel

Figure 6: Collapsed Intent and Argument Labels for Metric Computation
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Figure 7: Anecdotal examples illustrating images, queries, and rewrites across different domains. Abbreviations:
GT → Ground Truth, QBL → Qwen Baseline, QM → Qwen with Self-Caption and EasyOCR Metadata, RBL
→ ReVision (ours) Baseline, RM → ReVision (ours) with Self-Caption and EasyOCR Metadata. Incorrect and
hallucinatory output phrases are highlighted in red.
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