
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

APPENDIX

A EXPERIMENTAL RESULTS

A.1 MARKOV PROBES

We design a toy Markov transition task to test whether attention can recover structured dynamics. A
sparse block-graph is converted into a row-stochastic matrix P ⋆. Each training sample is a sequence
[0..V-1, i] where the last token i is the query, and the target distribution is P ⋆

i,:. We compare
a parameter-matched vanilla Transformer and an S-Former layer, training with KL divergence be-
tween the query’s attention row and P ⋆

i,:. Evaluation reports the mean ℓ1 distance between learned
P̂ and P ⋆.

Algorithm 1 Markov Attention Matching

1: Generate sparse graph→ P ⋆

2: for epoch do
3: for query i do
4: Input [0..V-1, i]→ model
5: Extract attention row at last position
6: Minimize KL(P ⋆

i,: ∥ p̂i,:)
7: Eval: average rows→ P̂ , compute L1(P̂ , P ⋆)

A.2 DYCK PROBES

We evaluate S-Former on Dyck language completion tasks as a canonical probe for hierarchical
generalization. Data generation. Sequences are sampled with three bracket types ()[]{} using

Algorithm 2 Dyck Completion Training & Evaluation

1: Input: Generator G, model M , config C
2: Generate train/val/test via G
3: for epoch = 1..50 do
4: for batch in train do
5: X ← sequence[:-1], Y ← sequence[1:]
6: mask ← 1 on target positions
7: logits←M(X)
8: L← CE(logits, Y , ignore=<pad>)
9: loss←

∑
(L ·mask)/

∑
(mask)

10: Update M with AdamW, gradient clip, scheduler
11: Evaluation (greedy): given <sos>+input, generate until <eos> or max length; filter to ()[].
12: Compute Exact-Match, Structural Acc, Valid-but-not-Exact, Syntax Error.
13: Extrapolation: repeat for lengths {64, 80, 100} and depths {3, ..., 8}.

a stack-based generator. Each completion sample is split into (input, target), where the model sees
<sos>+input and must generate the target. Depth-controlled sets (d = 3–8) are also constructed.
Invalid samples are produced by deleting, replacing, or inserting random brackets.

Training. Models are trained with AdamW (lr = 1e−4), batch size 32, 50 epochs, and 3 warmup
epochs followed by cosine decay. The loss is masked to only target tokens.

Evaluation metrics.

• Exact-Match Accuracy
• Structural Accuracy (valid Dyck sequence check)
• Valid-but-not-Exact rate
• Syntax Error rate = 1− Structural Accuracy

Extrapolation. We evaluate on extended lengths (L ∈ {64, 80, 100}) and depths (d = 3–8). For
S-Former, we additionally test sensitivity by corrupting the structural stream (permutation or noise).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

A.3 JSON PROBES

We evaluate S-Former on JSON serialization and completion to test hierarchical and schema-aware
generalization.

Data generation. We synthesize JSON objects/arrays with controlled nest-
ing depth and width. Keys are sampled from a fixed vocabulary (e.g.,
{"name","id","value","items","meta","ts"}), values are strings, integers,
booleans, nulls, or recursively nested structures. Each example is converted to a compact,
whitespace-free string; we then split it into (input, target) such that the model sees <sos>+input
and must generate the remaining target. Negative (invalid) samples are created by bracket/quote
corruption, missing commas/colons, or reordering that breaks JSON syntax. A validator based on
json.loads defines structural validity.

Controls. We construct depth-controlled sets (d = 2–6), width-controlled sets (avg keys per object
w = 2–8), and length buckets (token length L ∈ {128, 256, 512}). Key-set splits ensure that some
keys only appear at test time to probe schema extrapolation.

Training. AdamW (lr = 1e−4), batch size 32, 50 epochs, 3 warmup epochs then cosine decay.
Loss is masked to target tokens only.

Evaluation metrics.

• Structural Validity: passes json.loads (valid JSON).
• Field F1: compare parsed objects on a normalized key set (micro-F1 over present/absent

key paths).
• Syntax Error rate = 1− Structural Validity.

Model Struct (loose) Depth (loose)

Standard Transformer 0.845 0.095
RoPE Transformer 0.857 0.125
S-Former (pure) 0.903 0.035
S-Former (fused) 0.806 0.100
S-Former (dynamic) 0.953 0.055

Algorithm 3 JSON Completion Training & Evaluation

1: Input: JSON generator G, model M , config C
2: Sample JSON trees with depth/width controls; stringify without spaces
3: Split each string into (input, target); build sequences with <sos>
4: for epoch = 1..50 do
5: for batch in train do
6: X ← sequence[:-1], Y ← sequence[1:]
7: mask ← 1 on target positions; 0 elsewhere
8: logits←M(X)
9: L← CE(logits, Y , ignore=<pad>)

10: loss←
∑

(L ·mask)/
∑

(mask)
11: Update M (AdamW, grad clip, scheduler)
12: Evaluation (greedy): given <sos>+input, generate until <eos> or max length
13: Structural Validity: try: json.loads(generated)⇒ valid/invalid
14: Field F1: parse gold/pred JSON; flatten to key-path sets; compute micro-F1
15: Report Exact-Match, Structural Validity, Field F1, Syntax Error
16: Extrapolation: repeat across depths {2..6}, lengths {128, 256, 512}, and unseen key-sets
17: (S-Former only) optionally corrupt structural stream (permute/noise) at eval to measure sensi-

tivity

A.4 WIKITEXT-103 SETUP (ATTENTION FUSION)

Architecture. Baseline: a Pre-LN Transformer with RoPE positional encoding (base = 50k) ap-
plied to Q,K; dmodel = 256, nlayers = 4, nheads = 8, dff = 1024, dropout=0.1. S-Former (attention

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

fusion): replace selected layers (default: all four) with structural-fusion blocks; the fused represen-
tation feeds Q,K while V is taken from the content path. All other components remain identical.

Training. Models are trained only on 256-token windows with a sliding window (stride 64; 75%
overlap). We use AdamW (1e−4), 2k warmup followed by cosine decay, batch size 64, label
smoothing 0.03, and gradient clipping at 1.0.

Evaluation. We evaluate on the standard WikiText-103 test split and extrapolate to long contexts up
to L = 40,960, reporting PPL/BPB and degradation relative to L = 256.

Note. This subsection reports the attention fusion integration. The bias injection variant uses the
same data, model size, and schedule; only the integration mechanism differs (see the next subsec-
tion).

A.5 WIKITEXT-103 SETUP (BIAS INJECTION)

Architecture. The baseline is a 4-layer Pre-LN Transformer (256 hidden size, 8 heads, 1024 FFN,
dropout 0.1) with RoPE on queries and keys. Bias-injection S-Former augments each layer with
a lightweight structural stream implemented as a GRU pathway. The structural state is added as a
gated bias into hidden activations before both attention and feedforward blocks. Gating values are
regularized to remain within a stable range, with a simple warm-up schedule applied during training.

Training. Both baseline and S-Former are trained on 256-token windows with stride 64, using
AdamW (lr 1×10−4, 2k warmup, cosine decay), batch size 64, label smoothing 0.03, and gradient
clipping at 1.0.

Evaluation. PPL/BPB are reported on the WikiText-103 test split for L = 256 up to 40k tokens,
with smaller batch sizes at long contexts. We also report gate statistics (mean α and near-saturation
ratios).

Contrast. Unlike attention fusion, which mixes content and structure into Q,K, bias injection
preserves the content stream and injects gt as an additive memory bias at attention and FFN inputs.

B IMPLEMENTATION DETAILS FOR LAMBADA AND PG-19

Common Training Framework. Both LAMBADA and PG-19 experiments share the same im-
plementation backbone. We use a 4-layer Pre-LN Transformer baseline (dmodel = 256, nheads = 8,
dff = 1024, dropout = 0.1) with RoPE (base = 105) applied to queries and keys. For S-Former, we
replace designated layers with structural blocks (GRU-based structural stream, bias injection, and
α-gating with warmup scheduling). Training uses AdamW with cosine decay and 2k warmup steps,
batch size 16–32, stride ≈ L/4, label smoothing 0.03–0.05, gradient clipping 1.0, and gate warmup
4k steps with τ annealed from 4 → 2. All runs are trained for 5–10 epochs on consumer GPUs
(A100), and we report mean values across multiple seeds when available.

Evaluation Metrics. Perplexity (PPL) is computed from negative log-likelihood; Bits-per-byte
(BPB) is also reported for extrapolation experiments. Accuracy (ACC) differs slightly:

• LAMBADA: last-token accuracy, i.e., whether the model predicts the final word correctly.
• PG-19: token-level accuracy, i.e., the fraction of all next-token predictions that are correct.

Dataset Handling. Both datasets are loaded locally when possible, falling back to HuggingFace
repositories. Sliding-window segmentation is applied during training. For evaluation:

• LAMBADA: Only samples whose target is a single token are retained (standard preprocessing).
Evaluation is performed at sequence lengths 512–4096.

• PG-19: Trained and evaluated at length 4096 tokens, without overlap (fixed blocks). This
reflects the book-level nature of PG-19.

Reproducibility. We release both scripts as lambada bias.py and pg19 bias.py. The
codebases are identical up to ∼95%, differing only in dataset loader and accuracy metric. For
transparency, we provide both scripts in the repository, but summarize them here in unified form.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

B.1 SUPPLEMENTARY PROBE ANALYSES (BIAS INJECTION)

We provide definitions of the probes used to analyze the bias stream mt = αtgt in the bias injection
variant.

• Relative strength. Ratio of bias to content norm:

rt =
∥mt∥
∥xt∥+ ε

.

• Orthogonality. Cosine-based independence measure:

Orth(t) = 1−
∣∣⟨m̂t, x̂t⟩

∣∣.
• Effective rank. From SVD of bias vectors across tokens, the smallest k explaining 95%

variance.
• Temporal consistency. Cosine similarity between consecutive bias vectors:

TempCons =
1

T − 1

T−1∑
t=1

⟨m̂t, m̂t+1⟩.

• Representation shift. Change of hidden states with and without bias:

∆ht =
∥hbiased

t − horig
t ∥

∥horig
t ∥+ ε

.

• Spectral analysis. Given eigenvalues {λi} of the attention matrix:

EffDim =

(∑
i λi

)2∑
i λ

2
i

, H = −
∑
i

pi log(pi + ε), pi =
λi∑
j λj

.

Here EffDim is effective dimensionality, and H is spectral entropy.

Across layers, these probes show that the bias stream remains nearly orthogonal (0.92–0.95), high-
rank (∼200/256), and temporally smooth (0.34→0.60), supporting its interpretation as a structural
anchor rather than a compressed memory cache.

4


	Experimental Results
	Markov Probes
	Dyck Probes
	JSON Probes
	WikiText-103 Setup (Attention Fusion)
	WikiText-103 Setup (Bias Injection)

	Implementation Details for LAMBADA and PG-19
	Supplementary Probe Analyses (Bias Injection)


