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APPENDIX

A DATASETS

gRefCOCO. This dataset comprises 278,232 expressions, including 80,022 referring to multiple
targets and 32,202 to empty targets. It features 60,287 distinct instances across 19,994 images, which
are divided into four subsets: training, validation, testA, and testB, following the UNC partition of
RefCOCO (Yu et al., 2016).

Ref-ZOM. Ref-ZOM is derived from the COCO dataset (Lin et al., 2014), consisting of 55,078
images and 74,942 annotated objects. Of these, 43,749 images and 58,356 objects are used for
training, while 11,329 images and 16,586 objects are designated for testing. Annotations cover three
scenarios: one-to-zero, one-to-one, and one-to-many, corresponding to empty-target, single-target,
and multiple-target cases in GRES, respectively.

R-RefCOCO. This dataset includes three variants: R-RefCOCO, R-RefCOCO+, and R-
RefCOCOg, all based on the classic RES benchmark, RefCOCO+/g (Yu et al., 2016). Only the
validation set adheres to the UNC partition principle, which is officially recognized for evaluation.
The dataset formulation incorporates negative sentences into the training set at a 1:1 ratio with pos-
itive sentences.

B METRICS

For GRES, we evaluate our model’s performance using Pr@0.7, gIoU, cIoU, and N-acc metrics for
gRefCOCO (Liu et al., 2023a). For Ref-ZOM, we adopt oIoU and mIoU metrics as defined in (Hu
et al., 2023). R-RefCOCO (Wu et al., 2024) metrics include mIoU, mRR, and rIoU, all of which
are specified in their respective benchmarks. The Generalized IoU (gIoU) calculates the average
IoU for each image across all instances. In cases of empty targets, true positive IoU values are con-
sidered as 1, while false negatives are assigned 0. The cIoU metric evaluates the total intersection
pixels relative to the total union pixels. In Ref-ZOM, mIoU represents the average IoU for all im-
ages containing referred objects, and oIoU is equivalent to cIoU. For R-RefCOCO, rIoU quantifies
robust segmentation quality by factoring in negative sentences, assigning equal weight to positive
instances in the mIoU calculation. N-acc. in gRefCOCO and Acc. in Ref-ZOM are defined simi-
larly, representing the ratio of correctly classified empty-target expressions to the total empty-target
expressions in the dataset. Additionally, mRR in R-RefCOCO computes the recognition rate for
empty-target expressions per image and averages these across the dataset.

For GREC, we assess the percentage of samples achieving an F1score of 1 with an IoU threshold
of 0.5. A predicted bounding box is classified as a true positive (TP) if it matches a ground-truth
bounding box with an IoU of at least 0.5; if multiple predictions match, only the one with the
highest IoU counts as TP. Ground-truth boxes without matches are false negatives (FN), while
unmatched predicted boxes are false positives (FP). The F1score for a sample is computed as
F1score = 2TP

2TP+FN+FP , with samples deemed successfully predicted if their F1score is 1. For
samples lacking targets, the F1score is 1 if no predictions exist, otherwise it is 0.

C ADDITIONAL IMPLEMENTATION DETAILS

The maximum sentence length is limited to 50 words, and the images are resized to 320 × 320.
We train our models for 10 epochs with a batch size of 16, utilizing the Adam optimizer (Kingma
& Ba, 2014). All experiments are conducted on a system with dual NVIDIA 4090 GPUs, without
employing the Exponential Moving Average (EMA) technique. The initial learning rate for the
Multi-Modality Encoder (MME) is set to 5 × 10−5, while other parameters are set at 5 × 10−4.
The learning rate decays by a factor of 0.1 at the 7th epoch to ensure comprehensive results. All
ablation studies are performed at a resolution of 224 × 224, with training spanning 10 epochs and
the same learning rate decay occurring at the 7th epoch. Metrics are based on the validation split
of the gRefCOCO dataset. By default, the hyperparameters in Eq. 4 are set as follows: λcls = 1.0,
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λbox = 5.0, λgiou = 2.0, and λpoint = 2.0. The weight parameters in Eq. 6 are set as: λgrec = 0.1,
λglobal = 1.0, λinstance = 1.0, λexist = 0.2, and λneg = 0.2.

D ADDITIONAL METHODS

D.1 SCORE TEXT SELECTOR

Algorithm 2 Score Text Selector
Require: Feature set F ∈ RL×C , mask m ∈ {0, 1}L, selection number N
Ensure: Selected feature set Fselected ∈ RN×C , selected mask mselected ∈ {0, 1}N
1: Mask and extract valid features: Fvalid = F⊙m
2: Compute L2 norm scores for valid features: s = ∥Fvalid∥2
3: Count valid features: V =

∑
m

4: if V ≥ N then
5: Select top-N features based on scores: Fselected = TopK(Fvalid, N)
6: Set selected mask: mselected = 1N

7: else
8: Select all valid features: Fselected = Fvalid
9: Pad to N features: Fselected ← Pad(Fselected, N)

10: Set selected mask for valid features: mselected = Pad(m, N)
11: end if
12: return Fselected, mselected

The primary function of the Score Text Selector algorithm is to select a specified number of high-
response features from a feature set based on a given mask. First, the algorithm filters the valid
features using the mask and calculates their L2 norm scores. Then, it compares the number of valid
features with the predefined selection number N . If the number of valid features is greater than or
equal to N , the top N features with the highest scores are selected, and the corresponding mask is
set to all ones. Otherwise, all valid features are selected, and padding is applied to reach N features,
with the mask being filled accordingly. Finally, the algorithm returns the selected feature set and the
corresponding mask.

D.2 POST-PROCESS

Global Mask

Instance Masks

Objects Boxes

Non-Target Score

Query Scores

Predicted 
BoxesSelect

Select

index

Predicted 
Mask

⊗ >thrq

AC

nms (optional)

>thrm

>thrm

⊗ Dot Product
C Concatenate
A Any (Logistical Or)

Figure 7: Illustration of Post-processing.

Due to the introduction of instance-level seg-
mentation masks, the post-processing of the
GRES task differs significantly from previous
GRES approaches. The pipeline is illustrated in
Fig. 7. First, we weight the query scores and the
non-target score to reduce false positives from
single instances in scenes without targets. A
threshold thrq is used to obtain the indices of
valid queries, denoted as index. The detection
branch directly filters and outputs the corresponding targets based on these indices. The segmenta-
tion branch involves combining the global mask with instance masks. A threshold thrm is applied
to select the pixel-level foreground mask. Then, the global mask is concatenated with the instance
masks filtered by index, followed by a logical OR operation to address incomplete instances.

E ADDITIONAL ABLATION STUDIES

λpoint F1score gIoU cIoU
1.0 70.37 71.53 66.95
2.0 71.43 72.41 67.39
5.0 69.90 71.47 66.85

10.0 69.28 97.31 66.82

Table 9: Impact of different ratios of point cost.

Nq F1score N-acc. gIoU cIoU
3 70.26 72.74 71.32 66.74
5 71.60 73.85 71.55 66.87

10 71.43 75.87 72.41 67.39
20 69.16 73.29 71.57 66.95
30 68.55 71.90 71.22 66.63

Table 10: Impact of number of queries.
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Mask Output gIoU cIoU
Only Global 72.61 65.66

Only Instance 74.19 67.18
Merge 74.65 67.66

Table 11: Impact of mask output in
post-processing.

Non-Tar. Weighted NMS F1score gIoU cIoU
73.18 73.94 67.20

✓ 74.38 74.59 67.58
✓ ✓ 74.71 74.55 67.48

Table 12: Impact of non-target weighting and
NMS in post-processing.

E.1 THE EFFECT OF POINT COST WEIGHT

In the Point-guided Target Matcher, we introduce an additional point cost to the original DETR cost
function. We conducted ablation studies to assess the impact of the point cost weight λpoint, as
shown in Tab. 9. From the experimental results, we select λpoint = 2.

E.2 THE IMPACT OF THE NUMBER OF POINTS

Since IGVG establishes a one-to-one correspondence between queries and reference points, their
quantities must match. We conducted experiments to explore the effect of the number of reference
points on performance. As shown in Tab. 10, increasing Nq generally requires longer training times
to achieve convergence. After balancing these considerations, we select Nq = 10.

E.3 THE IMPACT OF POST-PROCESS

The impact of mask merge. IGVG generates both global and instance-level segmentations. We
analyzed the performance of these predictions both individually and when combined, as shown in
Tab. 11. The instance-level predictions, which benefit from finer-grained supervision, achieve better
performance compared to global predictions, improving gIoU by +1.6%. Furthermore, merging the
global and instance-level predictions yields an additional 0.5% improvement in gIoU.

The impact of NT score and NMS. As demonstrated in Tab. 12, we evaluated the effects of inte-
grating the Non-Target (NT) branch’s score into the query score and the influence of Non-Maximum
Suppression (NMS). The introduction of the NT score effectively incorporates global confidence into
each instance, resulting in a +1.2% F1score and +0.7% gIoU.

F ADDITIONAL VISUALIZATION

In Fig. 8, we provide additional visualizations of IGVG’s intermediate processes, including the
points corresponding to the queries, the predicted boxes, and masks. It can be observed that IGVG
achieves consistency across points, boxes, and masks for individual instances. Additionally, we visu-
alize the attention maps from the Attention-based Query Generation Module and the corresponding
selected points. In Fig. 9, we present examples of multi-object scenarios from the Ref-ZOM dataset.
While IGVG can perceive object locations, we find that its detection accuracy for small objects re-
mains insufficient, mainly due to the limitations imposed by the model’s input size. In Fig. 10, we
visualize the results of the three subsets of the R-RefCOCO dataset: R-RefCOCO, R-RefCOCO+,
and R-RefCOCOg.
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Figure 8: Visualization of IGVG Details. The ”Point-guided Query” illustrates the points corre-
sponding to each query, along with the predicted bounding boxes and masks. ”AttnMap” represents
the Attention Map from the Attention-based Query Generation module, while ”Selected Points” in-
dicates the reference points output by the Dist-Score Point Selector.
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Figure 9: Visualization of multi-object situations in the Ref-ZOM dataset.
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Figure 10: Visualization of R-RefCOCO dataset.
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