
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Not

applicable. It is mainly a theoretical work.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] In appendices.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] In appendices.
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] In appendices.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] We use confidence interval from Student’s t test.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] In appendices.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] In appendix.
(b) Did you mention the license of the assets? [Yes] In appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

In supplementary.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] We did not use this type of data.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

Notation Definition
[N] For any natural number N ∈ N, denotes the set {1, 2, · · · , N}.
|U| Cardinality of a set U . E.g., |[N]| = N .
∆(U) For any countable set U , denotes the set of all probability distribution over U
unf(U) Denotes the uniform distribution over a set U .
S A finite but potentially very large state space.
A Agent’s finite action space.
H Horizon denoting the number of actions the agent can take in an episode.
T For a given h ∈ [H], a ∈ A and states s, s′ ∈ S, Th(s′ | s, a) denotes the

probability of transitioning to s′ when taking action a in state s at time step h.
R For a given h ∈ [H], a ∈ A and state s ∈ S, Rh(s, a) denotes

the reward for taking action a in state s at time step h.
sinit A deterministic initial state
M Markov Decision Process (MDP) defined by a tuple (S,A, sinit, H, T,R).
X Agent’s observation space. Can be potentially infinitely large.
q : S → ∆(X) Emission function where for a given x ∈ X and s ∈ S, q(x | s) denotes

the probability of observing x when the agent is in latent state s
M A block MDP defined by the tuple (M,X , q) where M is referred to

as the latent MDP since the agent receives observation instead of state
which remains latent.

M◦ Abstract simulator which is a Markov Decision Process (MDP) given by
(S,A, sinit, H, T

◦, R◦) and satisfies Assumption 1.
M? Target block MDP defined by (M?,X , q) where the target environment’s

latent MDP is given by (S,A, sinit, H, T
?, R?).

The latent MDP M? satisfies Assumption 2.
φ? : X → S Perfect decoder of the latent state for M?. Agent does not have access to this.
π : X≤H → A Non-Markovian practicable policy. Given an observation sequence x1:h,

the policy takes action πh(x1:h).
V πM Value of a practicable policy π in a block MDP M.
ψ : [H]× S → A A non-stationary Markovian abstract policy. Given state s at time step h,

the policy takes action ψh(s).
Ψ Set of all latent policies, i.e., all mappings of the type [H]× S → A.
V ψM Value of abstract policy ψ in MDP M .
η Perturbation parameter controlling the amount of stochasticity in the target

environment. η = 0 implies deterministic dynamics.
C(M,η) Set of all MDPs which are η-perturbations of M .
ρ Robust policy defined Equation 1,
ε Allowed error in learning the robust practicable policy.
δ Allowed failure probability in learning the robust practicable policy.
Ṽh(s) Robust value function. See Section 4.1.
F A function class containing functions of type X 2 → ∆(X), used by TASID

to learn inverse dynamics model.
αh : X 2 → A Learned “shadow action" decoder in TASID for time step h.
φh : X h → S Learned state decoder in TASID for time step h.
Dh Dataset of transitions collected by TASID at time step h.

Table 1: A list of notations.

In the appendices, we include proofs, extended theoretical results as well as experimental details for
all claims in the main paper, under the following structure.

• We provide a list of notations in Table 1.
• Appendix A includes the proof for the analysis of Algorithm 1.
• Appendix B includes the proof for the analysis of Algorithm 2.
• Appendix C includes the algorithm and analysis for the case of stochastic initial states, based

on the main algorithm.
• Appendix D includes more details of the experiments.

14

A Proofs for Algorithm 1

We introduce the definition of the (single-step) perturbed transition and reward set, following the
definition of C(M◦, η).
Definition 2 (η-perturbation). We say that a transition and reward function pair (T ′, R′) at step h is
an η-perturbation of the pair (Th, Rh) if there exists a function ξ : S ×A → ∆(A) that for all s, s′
and a satisfies ξ(a | s, a) ≥ 1− η and

T ′(s′ | s, a) =
∑
a′∈A Th(s′ | s, a′)ξ(a′ | s, a)

R′(s, a) =
∑
a′∈ARh(s, a′)ξ(a′ | s, a).

With slight abusing of the notation, the set of all η-perturbations of Th, Rh is denoted C((Rh, Th), η).

It is straightforward to see that (R′, T ′) ∈ C((Rh, Th), η) if and only if there exists an MDP
M ′ ∈ C(M,η) such that (R′, T ′) is the h-th step reward and transition functions in M ′ and (Rh, Th)
is the h-th step reward and transition functions in M .

Now we prove a lemma about the function Q̃h used in Algorithm 1.

Lemma 1. For any h ∈ [H], and s ∈ Sh, the learned function Q̃h in Algorithm 1 satisfies:

(1− η) max
a∈A

Q̃h(s, a) + ηmin
a∈A

Q̃h(s, a) = max
a∈A

min
(R,T)∈C((R◦h,T◦h),η)

Es′∼T (·|s,a)[R(s, a) + Ṽh+1(s′)]

Proof. By the definition of C((R◦h, T ◦h), η), we know that

min
(R,T)∈C((R◦h,T◦h),η)

Es′∼T (·|s,a)[R(s, a) + Ṽh+1(s′)] (2)

= min
(R,T)∈C((R◦h,T◦h),η)

R(s, a) +
∑
s′∈S

T (s′|s, a)Ṽh+1(s′) (3)

= min
ξ(·|s,a)

∑
a′∈A

(
ξ(a′|s, a)R◦h(s, a′) +

∑
s′∈S

ξ(a′|s, a)T ◦h (s′|s, a)Ṽh+1(s′)

)
(4)

= min
ξ(·|s,a)

∑
a′∈A

ξ(a′|s, a)

(
R◦h(s, a′) +

∑
s′∈S

T ◦h (s′|s, a)Ṽh+1(s′)

)
(5)

= min
ξ(·|s,a)

∑
a′

ξ(a′|s, a)Q̃h(s, a′) (6)

=(1− η)Q̃h(s, a) + η min
a′∈A

Q̃h(s, a′), (7)

where min over ξ(·|s, a) is taken so that it still satisfies the requirement of ξ(a | s, a) ≥ 1− η. This
is then used in the last equality, where the minimum is achieved by placing the maximum allowed
mass, which is η, on the action with smallest value of Q̃h(s, a′) and remaining on Q̃h(s, a). Thus we
proved that

(1− η)Q̃h(s, a) + ηmin
a′

Q̃h(s, a′) = min
(R,T)∈C((R◦h,T◦h),η)

Es′∼T (·|s,a)[R(s, a) + Ṽh+1(s′)]

The proof is completed by taking maximum over actions on both side.

Completing the Proof of Theorem 1

Now we prove the Theorem 1 as the main result for Algorithm 1.

Proof. By Theorem 2.2 in Iyengar [2005], since Qh and Vh satisfy Lemma 1, we have that Ṽ1(s) =

supψ∈Ψ minM∈C(M◦,η) V
ψ
M,1(s). The perturbation we defined consists of independent perturbation

at different time step h, therefore it satisfy the “rectangularity” condition defined in Iyengar [2005].2

2Rectangularity condition requires the choice of perturbation in one time step cannot limit the choice of
perturbation in other time steps. We refer to Iyengar [2005] for the formal definition.

15

From Iyengar [2005], the robust policy is given by

ρh(s) = argmax
a

min
(R,T)∈C((R◦h,T◦h),η)

Es′∼T (·|s,a)[R(s, a) + Ṽh+1(s′)] (8)

= argmax
a

(
(1− η)Q̃h(s, a) + η min

a′∈A
Q̃h(s, a′)

)
(9)

= argmax
a∈A

Q̃h(s, a) (10)

This is how Algorithm 1 computes the policy it returns. Therefore, Algorithm 1 returns the robust
policy ρ.

A.1 An alternative Proof for Algorithm 1 from the First Principles

The previous proof relies on a more general results from Iyengar [2005] in a more complicated form.
However the proof can be simplified since our perturbation set takes a particular linear structure.
So for completeness and readability, we also include another complete proof derived from the first
principle. We acknowledge that the proof is heavily inspired by previous work in robust dynamics
programming [Bagnell et al., 2001, Iyengar, 2005].

Let Ψ be the set of all mappings from [H]× S to ∆(A). The following proposition follows directly
from application of max-min inequality.
Proposition 1. ∀h ∈ [H], s ∈ S

max
ψ∈Ψ

min
M∈C(M◦,η)

V ψM,h(s) ≤ min
M∈C(M◦,η)

max
ψ∈Ψ

V πM,h(s) := min
M∈C(M◦,η)

V ?M,h(s)

Given this, we are going to explain the high level structure of the proof. For Ṽh, we are going to show
that

Ṽh(s) ≥ min
M∈C(M◦,η)

V ?M,h(s) (11)

Ṽh(s) ≤ min
M∈C(M◦,η)

V ψ̃M,h(s), (12)

for some ψ̃.

Then from Proposition 1, we will have that

Ṽh(s) ≤ min
M∈C(M◦,η)

V ψ̃M,h(s) ≤ max
ψ∈Ψ

min
M∈C(M◦,η)

V ψM,h(s) ≤ min
M∈C(M◦,η)

V ?M,h(s) ≤ Ṽh(s) (13)

Then we will have that all the inequalities must be equality and the ψ̃ must be the robust policy ρ.

Now we will show that Equation 11 and Equation 12 holds for the ψ̃ which is the output from
Algorithm 1, in the following two lemmas.

Lemma 2. For any s ∈ S and h ∈ [H], Ṽh(s) ≥ minM∈C(M◦,η) V
?
M,h(s)

Proof. For any h ∈ [H], we will construct a M ∈ C(M◦, η) such that ∀s, Ṽh(s) = V ?M,h(s). Then
for any s ∈ S, Ṽh(s) = V ?M,h(s) ≥ minM∈C(M◦,η) V

?
M,h(s) and we prove this lemma. Now we

prove the following statement by induction on h. For any h ∈ [H + 1], ∃M ∈ C(M◦, η) such that
∀s ∈ S, Ṽh(s) = V ?M,h(s).

For the basement of induction, ṼH+1(s) = V ?M,h+1(s) = 0 for any M . Thus the induction statement
holds for h = H + 1.

Second, let us assume that the induction statement holds for h+ 1, where h ∈ [H]: ∀s, Ṽh+1(s) =
V ?Mh+1,h+1(s) for some Mh+1 ∈ C(M◦, η). Notice that this statement is for the value function at
h + 1 step and holds for Mh+1, thus for any M ∈ C(M◦, η) that shares the reward and transition
functions on and after step h+1, the statement also holds. This is because in our definition of episodic
MDP the perturbation class the reward and transition functions at different steps are independent.

16

Now we are going to construct Mh such that Ṽh(s) = V ?Mh,h
(s). More specifically, we will only

construct the reward and transition functions at h-th step: Rh and Th, and concatenate it with other
component in Mh+1.

For any s, let a be argmina∈A Q̃h(s, a). Given the s and a, construct Th(s′|s, a) and Rh(s, a) for
any s, a, s′ as the following.

Th(s′|s, a) = (1− η)T ◦h (s′|s, a) + ηT ◦h (s′|s, a) (14)
Rh(s, a) = (1− η)R◦h(s, a) + ηR◦h(s, a) (15)

Then we finish the proof of statement for h by

Ṽh(s) =(1− η) max
a

Q̃h(s, a) + ηmin
a
Q̃h(s, a) (16)

=(1− η) max
a

(
R◦h(s, a) +

∑
s′

T ◦h (s′|s, a)Ṽh+1(s′)

)
(17)

+ η

(
R◦h(s, a) +

∑
s′

T ◦h (s′|s, a)Ṽh+1(s′)

)

= max
a

(
Rh(s, a) + (1− η)

∑
s′

T ◦h (s′|s, a)Ṽh+1(s′) + η
∑
s′

T ◦h (s′|s, a)Ṽh+1(s′)

)
(18)

= max
a

(
Rh(s, a) +

∑
s′

((1− η)T ◦h (s′|s, a) + ηT ◦h (s′|s, a)) Ṽh+1(s′)

)
(19)

= max
a

(
Rh(s, a) +

∑
s′

Th(s′|s, a)Ṽh+1(s′)

)
(20)

= max
a

(
Rh(s, a) +

∑
s′

Th(s′|s, a)V ?Mh+1,h+1(s)

)
(21)

=V ?Mh,h
(s) (22)

By induction, we proved that there exist a M ∈ C(M◦, η) such that Ṽh(s) = V ?M,h(s) for any
s ∈ S, h ∈ [H + 1]. Thus we finish the proof of Ṽh(s) ≥ minM∈C(M◦,η) V

?
M,h(s).

Lemma 3. For the policy ψ̃ computed from Algorithm 1, ∀h ∈ [H], s ∈
S,minM∈C(M◦,η) V

ψ̃
M,h(s) ≥ Ṽh(s)

Proof. We prove it by induction on h from H + 1 to 1. In the base case (h = H + 1) we
have, ṼH+1(s) = 0 = V ψ̃M,H+1(s) for all s ∈ S and any M . This implies: ∀s, ṼH+1(s) ≤
minM∈C(M◦,η) V

ψ̃
M,H+1(s).

We now consider the general case. We assume that ∀s ∈ S, Ṽh+1(s) ≤ minM∈C(M◦,η) V
ψ̃
M,h+1(s).

Fix any s ∈ S and any M ∈ C(M◦, η), we are going to show that Ṽh(s) ≤ V ψ̃M,h(s). Let Rh and
Th be its reward and transition function at h-th step, and ξh be the perturbation variables. We have
1− ξh(a | s, a) ≤ η by the definition of M ∈ C(M◦, η). So 1− ξh(ψ̃(s) | s, ψ̃(s)) ≤ η.

Ṽh(s) =(1− η) max
a

Q̃h(s, a) + ηmin
a
Q̃h(s, a) (23)

= (1− η)

(
R◦h(s, ψ̃(s)) +

∑
s′

T ◦h (s′|s, ψ̃(s))Ṽh+1(s′)

)
(24)

+ η

(
R◦h(s, a) +

∑
s′

T ◦h (s′|s, a)Ṽh+1(s′)

)
(25)

17

≤ ξh(ψ̃(s) | s, ψ̃(s))

(
R◦h(s, ψ̃(s)) +

∑
s′

T ◦h (s′|s, ψ̃(s))Ṽh+1(s′)

)

+

 ∑
a6=ψ̃(s)

ξh(a | s, ψ̃(s))

(R◦h(s, a) +
∑
s′

T ◦h (s′|s, a)Ṽh+1(s′)

)
(26)

≤ ξh(ψ̃(s) | s, ψ̃(s))

(
R◦h(s, ψ̃(s)) +

∑
s′

T ◦h (s′|s, ψ̃(s))Ṽh+1(s′)

)

+
∑

a6=ψ̃(s)

ξh(a | s, ψ̃(s))

(
R◦h(s, a) +

∑
s′

T ◦h (s′|s, a)Ṽh+1(s′)

)
(27)

=
∑
a

ξh(a | s, ψ̃(s))

(
R◦h(s, a) +

∑
s′

T ◦h (s′|s, a)Ṽh+1(s′)

)
(28)

= Rh(s, ψ̃(s)) +
∑
s′

Th(s′|s, ψ̃(s))Ṽh+1(s′) (29)

≤ Rh(s, ψ̃(s)) +
∑
s′

Th(s′|s, ψ̃(s)) min
M ′∈C(M◦,η)

V ψ̃M ′,h+1(s′) (30)

≤ Rh(s, ψ̃(s)) +
∑
s′

Th(s′|s, ψ̃(s))V ψ̃M,h+1(s′) = V ψ̃M,h(s) (31)

Since this is for any M ∈ C(M◦, η), we proved that Ṽh(s) ≤ minM∈C(M◦,η) V
π
M,h(s).

Now we prove the Theorem 1 as the main result for Algorithm 1.

Proof. We have proved Equation 11 and Equation 12 holds for the ψ̃ which is the output from
Algorithm 1, in previous two lemmas. Now combine this with the inequality of min max values, we
have that

Ṽh(s) ≤ min
M∈C(M◦,η)

V ψ̃M,h(s) ≤ max
ψ∈Ψ

min
M∈C(M◦,η)

V ψM,h(s) ≤ min
M∈C(M◦,η)

V ?M,h(s) ≤ Ṽh(s) (32)

So we will have that all the inequalities must be equality and the ψ̃ output by Algorithm 1 must be
the robust policy ρ defined in Equation 1.

B Proofs for Algorithm 2

In this section, we are going to prove a less restrictive and more general version of Theorem 2 stated
below. We allow the εF to take any values and the initial state in the true environment has a small
probability ε0 when it is not equals to the sinit. We show the how the error bounds scales with these
approximation errors.
Theorem 3. Let M◦ be a deterministic abstract simulator. Let M? be a target environment for
which M? is an η-perturbation of M◦ for some η < 0.5. Let ε0 be the probability that s0 6= sinit in
M . Let F be a class of functions realizable with respect to M?. Then for any ε > 0 and δ ∈ (0, 1),
Algorithm 2 with oracle access to M?, optimization-oracle access to F , and inputs M◦, η, ε, and δ,
executes n = O

(H4|A|3 ln(|F|/δ)
ε(1−2η)2

)
3 episodes and returns a practicable policy π that with probability

at least 1− δ satisfies

V πM? ≥ V ρ◦φ
?

M? − ε− 4H4|A|3εF
(1− 2η)2

−Hε0.

The proof to Theorem 3 has three steps. First we show the accuracy of learned ERM classifier of
the classification problem in line 10. Second we show the accuracy of the learned action decoder

3Notice that here the dependency on horizon is H4 instead of H3 in the main paper. We made a mistake in
the statement of this theorem in the main paper.

18

αh+1(xh, xh+1) under the roll-in distribution of xh. Last the error bound in the theorem can be
proved by bounding the union probability of failing to predict the action in each steps. Now we give
some lemmas and proofs in these three steps in the following three subsections, followed by the proof
of the final sample complexity results.

To prove Theorem 2 in the main paper, we set the ε in Algorithm 2 to be ε/2, let εF satisfy the
assumptions in Theorem 2, and let ε0 = 0. Thus the right hand side in Theorem 3 can be becomes ε
and we proved Theorem 2.

B.1 Accuracy of action classification

First we define some notation that will be used in the proofs for TASID (Algorithm 2). Let the
uniform distribution over action space be denoted Unf(A). We will use Unf(a) = 1/|A| to denote
the probability over action a given by uniform distribution. We define Ph(x) to be the distribution
from which xh is sampled from in Line 9 in the hth iteration of Algorithm 2. Formally, Ph(xh)
is the probability of receiving observation xh at time step h when sampling the first h− 1 actions
according to the learned practicable policy π1:h−1 in the target environment (when h = 1, then x1 is
directly emitted from the start state, i.e., x1 ∼ q(· | sinit)). Finally, we denote the joint distribution
Ph(x, a, x′) := Ph(x) × Unf(A) × T ?h (x′|x, a) from which (xh, ah, xh+1) are sampled from in
Line 9.

Now we show the form of conditional distribution of action given two observations, f?h(a | x, x′),
under the joint distribution Ph(x, a, x′). Moreover, we prove the form of f?h(a | x, x′) for any roll-in
distribution of the first observation x is the same.
Lemma 4. Given any joint distribution P (x, a, x′) = P (x)Unf(a)T ?h (x′ | x, a), where P (x) is any
prior distribution over x and Unf(a) denotes the uniform distribution over actions, the posterior
distribution over action a given pair of observation x, x′ is:

f?h(a | x, x′) =
T ?h (x′|x, a)∑
a′ T

?
h (x′|x, a′) =

T ?h (φ?(x′)|φ?(x), a)∑
a′ T

?
h (φ?(x′)|φ?(x), a′)

(33)

Proof. We start by applying the Bayes’ rule.

f?h(a | x, x′) =
P (x, a, x′)∑

a′∈A P (x, a′, x′)
=

P (x)Unf(a)T ?h (x′|x, a)∑
a′∈A P (x)Unf(a′)T ?h (x′|x, a′) (34)

=
P (x)/|A|T ?h (x′|x, a)

P (x)/|A|
∑
a′∈A T

?
h (x′|x, a′) (35)

=
T ?h (x′|x, a)∑

a′∈A T
?
h (x′|x, a′) (36)

=
T ?h (φ?(x′) | φ?(x), a)∑

a′∈A T
?
h (φ?(x′) | φ?(x), a′)

, (37)

where the last equality uses T ?h (x′ | x, a′) = q(x′ | φ?(x′))T ?h (φ?(x′) | φ?(x), a′) for all a′ ∈ A,
which follows from the block MDP structure of M?.

Note that, in particular, Lemma 4 holds for the joint distribution Ph(x, a, x′) that we described earlier.

Now we can show the error bound of empirical log-likelihood maximizer. Before that, we introduce
some useful lemmas from Agarwal et al. [2020] for the completeness of this paper.
Lemma 5 (Lemma 24 in Agarwal et al. [2020]). Let D be a dataset of n (x, a, x′) samples, and let
D′ be another independent dataset from the same distribution. Let L(f,D) =

∑n
i=1 `(f, (xi, yi)) be

any function that decomposes additively across examples where ` is any function, and let f̂(D) be
any estimator taking as input random variable D and with range F . Then, with probability 1- δ,

− log ED′ exp(L(f̂(D),D′)) ≤ −L(f̂(D),D) + log |F|+ log(1/δ)

Lemma 6 (Lemma 25 in Agarwal et al. [2020]). For any two conditional probability densities f1, f2

and any distribution D ∈ ∆(X × X) we have

Ex,x′∼D ‖f1(·|x, x′)− f2(·|x, x′)‖2TV ≤ −2 log Ex,x′∼D,a∼f2(·|x,x′) exp

(
−1

2
log

f2(a|x, x′)
f1(a|x, x′)

)

19

The proof of the empirical log-likelihood maximizer’s error bound follows the proof in Agarwal et al.
[2020] as well. However we modified the proof to only assume approximate realizability assumption
instead of perfect realizaibility.
Theorem 4. Let Dh be a data set with nD transitions (x,a,x’) sampled i.i.d. from Ph(x, a, x′).
Let fh(a | x, x′) and f̃h(a | x, x′) denote the maximizers of empirical log-likelihood and expected
log-likelihood respectively:

f̃h(a | x, x′) := argmax
f∈F

Ex,a,x′∼Ph [ln f(a|x, x′)] (38)

fh(a | x, x′) := argmax
f∈F

∑
(xh,ah,xh+1)∈Dh

ln f(ah | xh, xh+1) (39)

Then for any δ ∈ (0, 1), with probability at least 1− δ we have that:

Ex,x′∼Ph
[
‖fh(·|x, x′)− f?h(·|x, x′)‖2TV

]
≤ 2 log(|F|/δ)

nD
+ εF (40)

Proof. We set L(f,D) in Lemma 5 to be
∑

(x,a,x′)∈D − 1
2 log f̃h(a|x,x′)

fh(a|x,x′) where D is Dh and D′ to be
another I.I.D. dataset with nD samples drawn independently with D. With this choice, the right hand
side is ∑

(x,a,x′)∈D

1

2
log

f̃h(a|x, x′)
fh(a|x, x′) + log |F|+ log(1/δ) ≤ log |F|+ log(1/δ) (41)

since fh is the empirical maximum likelihood estimator and f?h ∈ F . The left hand side is

− log ED′

exp

 ∑
(x,a,x′)∈D′

−1

2
log

f̃h(a|x, x′)
fh(a|x, x′)

 | D
 (42)

=− nD log Ex,a,x′∼Ph exp

(
−1

2
log

f̃h(a|x, x′)
fh(a|x, x′)

)
(43)

=− nD log EPh exp

(
−1

2
log

f?h(a|x, x′)
fh(a|x, x′) −

1

2
log

f̃h(a|x, x′)
f?h(a|x, x′)

)
(44)

=− nD log EPh

[
exp

(
−1

2
log

f?h(a|x, x′)
fh(a|x, x′)

)
·
√
f?h(a|x, x′)
f̃h(a|x, x′)

]
(45)

By Assumption 3, we have that
√

f?h(a|x,x′)
f̃h(a|x,x′) is upper bounded by

√
1 + εF uniformly overall x, a, x′.

So we have that

− log ED′

exp

 ∑
(x,a,x′)∈D′

−1

2
log

f̃h(a|x, x′)
fh(a|x, x′)

 | D
 (46)

≥− nD log EPh

[
exp

(
−1

2
log

f?h(a|x, x′)
fh(a|x, x′)

)]
− nD log

√
1 + εF (47)

≥nD
2

Ex,x′∼Ph
[
‖fh(·|x, x′)− f?h(·|x, x′)‖2TV

]
− nD log

√
1 + εF (48)

The last steps follows from Lemma 6. After combine this with the right hand side and rearrange the
terms, we have

Ex,x′∼Ph
[
‖fh(·|x, x′)− f?h(·|x, x′)‖2TV

]
≤ 2 log(|F|/δ)

nD
+ log(1 + εF) (49)

≤ 2 log(|F|/δ)
nD

+ εF (50)

20

B.2 One-step accuracy of action decoder

In the last subsection, we have showed the learned function fh approaches the posterior distribution
of action at a rate of 1/nD. In Algorithm 2, the learned function fh is used to build the state decoder
αh. This state decoding process relies on identified the correct “shadow” actions.

In this section we first show that there is a separation between the correct shadow action’s probability
and random actions’ probabilities, in the posterior distribution of action. This relies on the transition
dynamics in target environment lies in C(T ◦, η). Then we show the action decoding accuracy. The
idea to bound the 1-step action decoding accuracy is to apply the Markov’s inequality on the event
that the argmax action of fh is wrong.

First, we define the set of shadow actions given two successive states.

Definition 3 (Shadow action set). For any states pair (s, s′), we define a set of actions Ah(s, s′) =
{a ∈ A : T ◦h (s′|s, a) = 1} and Ach(s, s′) = A\Ah(s, s′).

Since the observation emission function q? maps different s to disjoint observation subspace, the
shadow action sets can also be defined on the corresponding observation pairs x, x′. We define
Ah(x, x′) = {a ∈ A : T ◦h (φ?(x′)|φ?(x), a) = 1}, and similarly for Ach(x, x′)

By definition, we have that Ah(x, x′) = Ah(s, s′) if x ∼ q?(·|s) and x′ ∼ q?(·|s′). So later we may
use these two notations interchangeably for convenience.

Next we prove the accuracy result of decoder α under the joint distribution with any practicable policy,
but learned from the dataset from uniform action distribution. We use 1I as an indicator function of
random events.

Lemma 7 (Accuracy of decoder). For any practicable policy π, let Ph,π(x, a, x′) :=
Ph(x)π(a|x)T ?(x′|x, a) be the joint distribution of Ph(x), policy π and transition function T ?.

Let Dh be a data set with nD transitions (x,a,x’) sampled i.i.d. from Ph(x, a, x′). For any h ∈ [H]
and δ ∈ (0, 1), and any practicable policy π, with probability at least 1− δ, we have that

EPh,π [1I(αh(x, x′) ∈ Ah(x, x′))] ≥ 1− 8h|A|3 ln(|F|/δ)
nD(1− 2η)2

(51)

Proof. For any a1 ∈ Ah(x, x′), and a2 ∈ Ach(x, x′),

f?h(a1 | x, x′)− f?h(a2 | x, x′) =
T ?h (φ?(x′) | φ?(x), a1)− T ?h (φ?(x′) | φ?(x), a2)∑

a′∈A T
?
h (φ?(x′) | φ?(x), a′)

(52)

≥ (1− η)− η∑
a′∈A T

?
h (φ?(x′) | φ?(x), a′)

≥ (1− 2η)

|A| (53)

Given that the gap is (1−2η)/|A|, we have that for any fixed x, x′, if ‖fh(·, x, x′)− f?h(·, x, x′)‖TV <
(1−2η)/2|A|, then argmax fh(·, x, x′) ∈ Ah(x, x′).

Recall that αh(x, x′) = argmaxa∈A fh(a | x, x′). We have

EPh [1I(αh(x, x′) /∈ Ah(x, x′))] = Pr (αh(x, x′) /∈ Ah(x, x′)) (54)

≤Pr

(
‖f?h(· | x, x′)− fh(· | x, x′)‖TV ≥

(1− 2η)

2|A|

)
(55)

= Pr

(
‖f?h(· | x, x′)− fh(· | x, x′)‖2TV ≥

(1− 2η)2

4|A|2
)

(56)

≤E
[
‖f?h(· | x, x′)− fh(·, |x, x′)‖2TV

]
(1−2η)2/4|A|2

(57)

≤8|A|2 ln(|F|/δ)
nD(1− 2η)2

+
4|A|2εF

(1− 2η)2
(58)

The second to last step follows from Markov’s inequality, and the last step follows from Theorem 4.

21

Notice that this is the error under distribution of uniform action Ph(x, a, x′) := P (x) ◦ Unf ◦ T ?h .
For any practicable policy π, since Ph,π(x,a,x′)

Ph(x,a,x′) = π(a|x)
1/|A| ≤ |A|,

EPh,π [1I(αh(x, x′) /∈ Ah(x, x′))] ≤ 8|A|3 ln(|F|/δ)
nD(1− 2η)2

+
4|A|3εF

(1− 2η)2
(59)

Then taking the complement of the event in the indicator function finished the proof.

B.3 Analysis of the sample complexity

Now we are going prove that the learned policy recover the input latent policy with high probability.

Lemma 8. For any h ∈ [H], let x1:h+1 := x1, x2, . . . , xh+1 and a1:h := a1, a2, . . . , ah be the state
and action sequence generated from (π1, . . . , πh) output by Algorithm 2. Given the high probability
event in Theorem 4, we have that for any h ∈ [H]

Eπ1:h

[
h∑
k=1

1I{ak 6= ρ(φ(xk))}
]
≤ 8h2|A|3 ln(|F|/δ)

nD(1− 2η)2
+

4h2|A|3εF
(1− 2η)2

+ ε0 (60)

Proof. If the action decoder αk is correct, i.e. αk(xk, xk+1) ∈ Ak(xk, xk+1) for any k ∈ [h]. Then
if the initial state is sinit, we have that for any k ∈ [h], φk(x1:k) = φ?(xk+1) due to the determinism
of the abstract simulator. Then for any k ∈ [h],

ak = πk(x1:k) = ρ(φk(x1:k)) = ρ(φ?(xk)) (61)

That means if we have ak 6= ρ(φ?(xk)), we must have αk(xk, xk+1) /∈ Ak(xk, xk+1) for some
j ≤ k, or the initial state is not sinit. So under the condition that the initial state is sinit,

1I{ak 6= ρ(φ?(xk))} ≤
k∑
j=1

1I{αj(xj , xj+1) /∈ Aj(xj , xj+1)} (62)

Thus we have

Eπ1:h

[
h∑
k=1

1I{ak 6= ρ(φ?(xk))}
]

(63)

=Eπ1:h

 h∑
k=1

k∑
j=1

1I{αj(xj , xj+1) /∈ Aj(xj , xj+1)}

+ ε0 (64)

≤Eπ1:h

h h∑
j=1

1I{αj(xj , xj+1) /∈ Aj(xj , xj+1)}

+ ε0 (65)

≤8h2|A|3 ln(|F|/δ)
nD(1− 2η)2

+
4h2|A|3εF
(1− 2η)2

+ ε0 (Lemma 7)

This immediately gives the following theorem by letting h = H and bounding the value gap for
non-optimal actions by H . The proof of Theorem 2 follows from this.

22

Proof. We first bound the value gap using preivous lemma and the Performance Difference Lemma
[Kakade, 2003].

V πM? − vρ◦φ
?

M? ≤Exh,ah∼π

[
H∑
h=1

Qρ◦φ
?

M?,h(xh, ah)− V ρ◦φ
?

M?,h(xh)

]
(Performance Difference)

=Esh,ah∼π

[
H∑
h=1

QρM?,h(sh, ah)− V ρM?,h(sh)

]
(Block MDP)

≤Esh,ah∼π

[
H∑
h=1

H 1I{ah 6= ρ(φ(xh))}
]

(Any sh, ah, Qρh(sh, ah) ∈ [0, H])

≤8H3|A|3 ln(|F|/δ)
nD(1− 2η)2

+Hε0 (Lemma 8 for h = H)

=
8H4|A|3 ln(|F|/δ)

n(1− 2η)2
+

4H4|A|3εF
(1− 2η)2

+Hε0 (n = HnD)

Finally, we can solve the sample complexity by denote the value gap ε, and finish the proof.

C Analysis with Stochastic Initial State

We can extend TASID to a more general setting where initial state can be stochastically chosen,
instead of being deterministic. This setting captures problems such as navigation in a set of house
simulators, where dynamics of each house simulator can be deterministic but the choice of initial
state, i.e., choice of current house and position of the agent inside the house, can be stochastically
chosen.

As Algorithm 1 does not rely on the deterministic initial state, therefore, we only need to show that
we can extend Algorithm 2 to the stochastic initial state setting, and find the robust policy learned
by Algorithm 1.

First, we introduce the difference in problem settings and our main results under this setting formally.
We assume that in both abstract simulator M◦ and the target environment M?, the initial states are
sampled from the same distribution µ over a finite set of initial states S1 of size |S1| = N .

We make an assumption that each initial state occurs with a reasonable probability and has a different
transition dynamics.

Assumption 4. (Conditions on initial state) For all initial states s ∈ S1, we assume µ(s) ≥ µmin for
some µmin ∈ (0, 1]. Further, there exists a margin Γ > 0 such that for any two initial states s, s̃ ∈ S1

we have:

‖T (· | s, a)− T (· | s̃, a)‖TV ≥ Γ.

Informally, this assumption is required so that we can visit each initial state sufficiently, and use
the margin assumption to learn an accurate decoder to cluster initial states. However, note that we
cannot directly cluster in the observation space since we do not want to make any additional structural
assumptions on it. In contrast, we will use a function-approximation approach where we interact with
the observation via a function class.

We present a variation of TASID in Algorithm 3 that can address stochastic initial state. The algorithm
assumes access to an approximate decoder φ̂ : X → N that can cluster observations from the
same initial state together. This decoder can be thought of partitioning the observation space into
decoder states which recover the true initial states upto relabeling. In Section C.1 we discuss how
to learn this decoder using the Homer algorithm Misra et al. [2020]. Algorithm 3 learns a mapping
from these decoder states to initial states in S1 by performing a hypothesis testing algorithm that
uses Algorithm 2 in the main paper as a sub-routine. In Section C.2 we discuss this hypothesis test.

We will prove that under a realizability assumption (stated later), this algorithm has the following
guarantee.

23

Algorithm 3 TASID with multiple initial states

1: Input: An approximate clustering function of initial states φ̂, number of initial state N , error
bound ε, failure probability δ.

2: Initialize counter step(i)← 0 for i ∈ [N]
3: Initialize state map map(i)← −1 for i ∈ [N]
4: for episode e = 1, . . . do
5: For the initial observation x, decode the state by φ̂(x).
6: if map(φ̂(x)) < 0 then
7: map(φ̂(x))← InitialStateTest(φ̂(x), step(φ̂(x)), N, ε, δ)

8: step(φ̂(x))← step(φ̂(x)) + 1
9: else

10: Run TASID on map(φ̂(x))

Algorithm 4 InitialStateTest

1: Input: state cluster i, global episode counter t, number of initial state N , error bound ε, failure
probability δ.

2: if t = 0 then
3: Hypothetic state s← 0
4: Initialize counter cnt(i)← 0 for i ∈ [N]
5: Initialize value estimates v(i)← 0 for i ∈ [N]

6: nl ← 8H4|A|3 ln(N2|F|/δ)
ε(1−2η)2

7: nt ← H2 ln(N/δ)
2ε2

8: The algorithm instance will maintain the hypothesis state s, an episodes counter cnt(·) and a
value logger v(·) for the same state cluster i across calls.

9: if cnt(s) < nl then
10: Run TASID for one episode on initial state s
11: cnt(s)← cnt(s) + 1
12: return -1
13: else if nl ≥ cnt(s) < nl + nt then
14: Rollout learned policy π for one episode and update value average v(s)
15: cnt(s)← cnt(s) + 1
16: return -1
17: else
18: s← s+ 1
19: if s = N + 1 then
20: Run TASID for one episode on initial state argmaxs v(s)
21: return argmaxs v(s)
22: else
23: return -1

Theorem 5. With the assumption about εF in Theorem 2, Algorithm 3 will execute a policy that is
close to robust policy by ε in all but poly

{
N,H,A, 1

ε ,
1

(1−2η) ,
1
µmin

ln{ 1
δ }
}

episodes with probability
at least 1− δ.

Note that when there is a deterministic initial state, i.e., N = 1 and µmin = 1, we recover dependence
on the same set of parameters as our main result. For some problems, N maybe significantly smaller
than the set of all states. For example, a robot may start an episode from its charging station and there
maybe a small number of charging stations in the environment. For these problems, the dependence
on N may be acceptable.

In the second part, we propose a hypothesis testing based algorithm, that use Algorithm 2 in the main
paper as a sub-routine, and prove the new sample complexity.

24

C.1 Learning decoder initial states

We use the Homer algorithm [Misra et al., 2020] to learn the decoder φ̂. We briefly describe the appli-
cation of this algorithm for time step h = 1. Homer collects a datasetD of n quads as follows: we sam-
ple y uniformly in {0, 1} and collect two independent transitions (x(1), a(1), x′(1)), (x(2), a(2), x′(2))
at the first time step by taking actions a(1) and (2) uniformly. If y = 1 then we add (x(1), a(1), x′(1), y)
to D, otherwise, we add (x(1), a(1), x′(2), y). Note that (x(1), a(1), x′(2)) is an unobserved transition,
therefore, we call it an imposter transition, whereas, (x(1), a(1), x′(1)) is a real transition. We know
that there are exactly N initial states since we have access to the simulator. Given a bottleneck
function class Φ : {φ : X → [N]} and another regressor class G : {f : [N]×A×X → [0, 1]}, we
train a model to differentiate between real and imposter transition as follows:

ĝ, φ̂ = arg min
g∈G,φ∈Φ

∑
(x,a,x′,y)∈D

(g(φ(x), a, x′)− y)
2
.

Difference from Misra et al. [2020]. While our approach and analysis in this subsection closely
follows Misra et al. [2020], we differ from them in two crucial ways. Firstly, we apply bottleneck on
x instead of x′, since we want to recover a decoder for initial states. Secondly, Misra et al. [2020] do
not assume a margin assumption Γ since their approach does not concern with recovering an exact
decoder, but only in learning a good set of policies for exploration.

We will denote the function class G ◦ Φ = {g ◦ φ : (x, a, x′) 7→ g(φ(x), a, x′) | g ∈ G, φ ∈ Φ}.
Let D(x, a, x′) be the marginal distribution over real and imposter transitions, and let ρ(x′) =
Ex∼µ,a∼unf(A) [T (x′ | x, a)] be the marginal probability over x′ for real transitions where µ is the
initial state distribution. It can be shown that:

D(x, a, x′) =
µ(x)

2|A| {T (x′ | x, a) + ρ(x′)} , (66)

where T (x′|x,a)µ(x)/|A| is the probability of observing a real transition (x, a, x′) and ρ(x′)µ(x)/|A|
is the probability of observing an imposter transition (x, a, x′) and the factor of 1/2 comes due to
uniform selection over real and imposter transition.

Misra et al. [2020] showed that the Bayes optimal classifier of the prediction problem is given by:
Lemma 9 (Bayes Optimal Classifier). For any (x, a, x′) in support of D, we have:

g?(x, a, x′) =
T (x′ | x, a)

T (x′ | x, a) + ρ(x′)
=

T (φ?(x′) | φ?(x), a)

T (φ?(x′) | φ?(x), a) + ρ(φ?(x′))

Proof. See Lemma 9 of Misra et al. [2020].

Similar to Misra et al. [2020], we make a realizability assumption stated below that allows us to solve
the classification problem well.
Assumption 5 (Realizability). We assume that g? ∈ G ◦ Φ.

We can use the realizability assumption to get the following generalization bound guarantee: for any
δ ∈ (0, 1) we have:

Ex,a,x′∼D
[∣∣∣ĝ(φ̂(x), a, x′)− g?(x, a, x′)

∣∣∣] ≤ ∆ :=

√
C(G ◦ Φ)

n
ln

(
1

δ

)
, (67)

with probability at least 1 − δ, where C(G ◦ Φ) is a complexity measure for class G ◦ Φ such as
ln(|G||Φ|) or Rademacher complexity. For proof see Proposition 11 and Corollary 6 in Misra et al.
[2020]. Note that even though their proof uses a bottleneck model φ on x′ instead of x, essentially
the same argument holds by symmetry.

Coupling Distribution. We define a coupling distribution as

Dc(x1, x2, a, x
′) = D(x1 | a, x′)D(x2 | a, x′)

1

|A|ρ(x′), (68)

25

where D(x1 | a, x′) is the conditional distribution derived from the joint distribution D(x1, a, x
′)

defined earlier. We also define the marginal distribution D(a, x′) which gives us D(x1 | a, x′) =
D(x1,a,x

′)/D(a,x′).

We present some result related to the distributions defined above that will be useful later for proving
important results later.

D(a, x′) =
∑
x

D(x, a, x′) =
∑
x

µ(x)

2|A| {T (x′ | x, a) + ρ(x′)} ≥ ρ(x′)
2|A| , (69)∑

a

D(a, x′) = ρ(x′). (70)

Using Equation 69 we can prove:∑
x1

Dc(x1, x2, a, x
′) =

∑
x1

D(x1 | a, x′)
D(x2, a, x

′)
D(a, x′)

ρ(x′)
|A| (71)

≤ 2
∑
x1

D(x1 | a, x′)D(x2, a, x
′) = 2D(x2, a, x

′). (72)

Similarly, we can prove: ∑
x2

Dc(x1, x2, a, x
′) ≤ 2D(x1, a, x

′). (73)

Further, we have:

D(x | a, x′) =
µ(x){T (x′ | x, a) + ρ(x′)}

2|A|D(a, x′)
≥ µ(x)ρ(x′)

2|A|D(a, x′)
≥ µ(x)ρ(x′)

2|A|∑a∈AD(a, x′)
=
µ(x)

2|A| ,

which gives us:
D(x | a, x′)ρ(x′)
T (x′ | x, a) + ρ(x′)

=
µ(x)ρ(x′)

2|A|D(a, x′)
≥ µ(x)

2|A| . (74)

We now state a useful lemma.
Lemma 10. Fix δ ∈ (0, 1). Then with probability at least 1− δ we have

Ex1,x2,a,x′∼Dc
[
1{φ̂(x1) = φ̂(x2)}|g?(x1, a, x

′)− g?(x2, a, x
′)|
]
≤ 4∆.

Proof. We use triangle inequality to decompose the left hand side as:

E(x1,x2,a,x′)∼Dc

[
1{φ̂(x1) = φ̂(x2)}|g?(x1, a, x

′)− g?(x2, a, x
′)|
]

≤ E(x1,x2,a,x′)∼Dc

[
1{φ̂(x1) = φ̂(x2)}|g?(x1, a, x

′)− ĝ(φ̂(x1), a, x′)|
]

+

E(x1,x2,a,x′)∼Dc

[
1{φ̂(x1) = φ̂(x2)}|ĝ(φ̂(x1), a, x′)− g?(x2, a, x

′)|
]

The first term is bounded as shown below:

E(x1,x2,a,x′)∼Dc

[
1{φ̂(x1) = φ̂(x2)}|g?(x1, a, x

′)− ĝ(φ̂(x1), a, x′)|
]

≤ E(x1,x2,a,x′)∼Dc

[
|g?(x1, a, x

′)− ĝ(φ̂(x1), a, x′)|
]

≤ 2E(x,a,x′)∼D
[
|g?(x, a, x′)− ĝ(φ̂(x), a, x′)|

]
= 2∆,

where the second inequality uses Equation 73 and Equation 67. The second term is bounded as:

E(x1,x2,a,x′)∼Dc

[
1{φ̂(x1) = φ̂(x2)}|ĝ(φ̂(x1), a, x′)− g?(x2, a, x

′)|
]

= E(x1,x2,a,x′)∼Dc

[
1{φ̂(x1) = φ̂(x2)}|ĝ(φ̂(x2), a, x′)− g?(x2, a, x

′)|
]
≤ 2∆,

where the inequality results from following similar steps used for bounding the first term. Adding the
two upper bounds we get 4∆.

26

Using Lemma 9, we have for every x1, x2, x
′ ∈ X , a ∈ A:

|g?(x1, a, x
′)− g?(x2, a, x

′)| = ρ(x′)|T (x′ | x1, a)− T (x′ | x2, a)|
(T (x′ | x1, a) + ρ(x′))(T (x′ | x2, a) + ρ(x′))

. (75)

We use this to prove the following result:
Lemma 11. With probability at least 1− δ we have:

Pr
x1,x2∼µ

(
φ?(x1) 6= φ?(x2) ∧ φ̂(x1) = φ̂(x2)

)
≤ 8|A2|∆

Γ
.

Proof. Let’s define a shorthand E = 1{φ̂(x1) = φ̂(x2)}. Starting with left hand side of Lemma 10
we get:

E(x1,x2,a,x′)∼Dc [E|g?(x1, a, x
′)− g?(x2, a, x

′)|]

= E(x1,x2,a,x′)∼Dc

[
E ρ(x′)|T (x′ | x1, a)− T (x′ | x2, a)|

(T (x′ | x1, a) + ρ(x′))(T (x′ | x2, a) + ρ(x′))

]
=

∑
x1,x2,a,x′

E
|A|

D(x1 | x′, a)ρ(x′)
(T (x′ | x1, a) + ρ(x′))

D(x2 | a, x′)ρ(x′)
(T (x′ | x2, a) + ρ(x′))

|T (x′ | x1, a)− T (x′ | x2, a)|

≥
∑

x1,x2,a,x′

E µ(x1)µ(x2)

4|A|3 |T (x′ | x1, a)− T (x′ | x2, a)|, using Equation 74

≥
∑

x1,x2,a

1{φ?(x1) 6= φ?(x2)}E µ(x1)µ(x2)

2|A|3 Γ

=
Γ

2|A|2 Pr
x1,x2∼µ

(
φ?(x1) 6= φ?(x2) ∧ φ̂(x1) = φ̂(x2)

)
where the last inequality uses 1

2

∑
x′ |T (x′ | x1, a)−T (x′ | x2, a)| = ‖T (· | x1, a)−T (· | x2, a)‖TV

which is either zero when φ?(x1) = φ?(x2) or at least Γ. Combining these two conditions we get a
lower bound of 1{φ?(x1) 6= φ?(x2)}Γ on TV distance. The proof is then completed with application
of Lemma 10.

Theorem 6. (Initial State Clustering Result). Let N > 1 and let ∆ <
µ2

minΓ
32N2|A|2

(
1−

(
1− 2µmin

N

)2)
.

Then there exists a bijection mapping σ : S1 → [N] such that with probability at least 1− δ:

∀s ∈ S1, Pr
x∼µ

(
φ?(x) = s | φ̂(x) = σ(s)

)
> 1− 16N2|A|2∆

Γµ2
min

= 1− 16N2|A|2
Γµ2

min

√
C(F ◦ Φ) ln(1/δ)

n
. (76)

Proof. We will use i ∈ [N] to denote a decoder state defined by {x | φ̂(x) = i, x ∈ X1} and s ∈ S1

to denote a real state defined by {x | φ?(x) = s, x ∈ X1}. For any i, s we can bound the left hand
side of Lemma 11 as:

Pr(φ?(x1) 6= φ?(x2) ∧ φ̂(x1) = φ̂(x2)) (77)

= Pr(∪j∈[N],s̃∈S1φ
?(x1) = s̃, φ?(x2) 6= s̃, φ̂(x1) = j, φ̂(x2) = j) (78)

≥ Pr(φ?(x1) = s, φ?(x2) 6= s, φ̂(x1) = i, φ̂(x2) = i) (79)

= Pr(φ?(x1) = s, φ̂(x1) = i) Pr(φ?(x2) 6= s, φ̂(x2) = i) (80)

= Pr(φ?(x) = s, φ̂(x) = i)
{

Pr(φ̂(x) = i)− Pr(φ?(x) = s, φ̂(x) = i)
}

(81)

where the second last step follows from observing that x1 and x2 are sampled independently. We
define a few shorthands: Pr(i) = Pr(φ̂(x) = i), Pr(s) = Pr(φ?(x) = s) = µ(s) and Pr(i, s) =

Pr(φ?(x) = s, φ̂(x) = i). This combined with above and Lemma 11 gives us:

∀i ∈ [N], s ∈ S1, Pr(i, s) (Pr(i)− Pr(i, s)) ≤ ∆′ :=
8|A|2∆

Γ
(82)

27

We define a mapping σ : S1 → [N] as follows:

σ(s) = arg max
i∈[N]

Pr(i, s) (83)

This gives us:
Pr(σ(s), s) (Pr(σ(s))− Pr(σ(s), s)) ≤ ∆′ (84)

Since ∆′ can be brought arbitrarily small, we will assume ∆′ < Pr(σ(s))2/4 which allows us to write:

Pr(σ(s), s) >
Pr(σ(s)) +

√
Pr(σ(s))2 − 4∆′

2
, or (85)

Pr(σ(s), s) <
Pr(σ(s))−

√
Pr(σ(s))2 − 4∆′

2
(86)

By definition of σ(s) we have:

Pr(σ(s), s) ≥ 1

N

N∑
i=1

Pr(i, s) =
Pr(s)

N
≥ µmin

N
, (87)

where the first inequality uses the fact that maximum of a set of values is greater than its average, and
the last inequality uses Assumption 4. We now place another condition on ∆′, namely,

∆′ <
Pr(σ(s))2

4

(
1−

(
1− 2µmin

Pr(σ(s))N

)2
)
, (88)

which implies that:

Pr(σ(s), s) <
Pr(σ(s))−

√
Pr(σ(s))2 − 4∆′

2
<
µmin

N
. (89)

This eliminates Equation 86. Hence the Pr(σ(s), s) must satisfy Equation 85 which can be simplified
as:

Pr(σ(s), s) >
Pr(σ(s)) +

√
Pr(σ(s))2 − 4∆′

2
(90)

=
Pr(σ(s))

2

(
1 +

(
1− 4∆′

Pr(σ(s))2

) 1
2

)
(91)

≥ Pr(σ(s))

(
1− 2∆′

Pr(σ(s))2

)
(92)

≥ Pr(σ(s))

(
1− 2N2∆′

µ2
min

)
(93)

where the third step uses
√

1− y ≥ 1− y for y ∈ [0, 1] and that 4∆′/Pr(σ(s))2 < 1 from constraints
on ∆′, and the last step uses Pr(σ(s)) ≥ Pr(σ(s), s) ≥ µmin/N (Equation 87). We can finally prove
our main result as:

Pr(s | σ(s)) =
Pr(s, σ(s))

Pr(σ(s))
≥ 1− 2N2∆′

µ2
min

= 1− 16N2|A|2∆

Γµ2
min

.

What is left is to show that σ(s) is a bijection mapping and collect all constraints on ∆′. Let s and s′
be two initial states such that σ(s) = σ(s′) = k. We then get:

Pr(k, s) Pr(k, s′) ≤ Pr(k, s) (Pr(k)− Pr(k, s)) ≤ ∆′ (94)

where the last equality follows from Equation 84. Further, we have Pr(k, s) ≥ µmin/N and Pr(k, s′) ≥
µmin/N from Equation 87. This gives us µ2

min
N2 ≤ ∆′. Hence, if ∆′ < µ2

min
N2 , then, we cannot have two

different initial states mapping to the same decoder state. Further, as |S1| = N , hence the map
σ : S1 → [N] is a bijection.

28

Finally, we made three constraints on ∆′. The first is ∆′ < Pr(σ(s))2/4, second is Equation 88, and
third is ∆′ < µ2

min
N2 . Note that Equation 88 already implies that ∆′ < Pr(σ(s))2/4. Hence, the overall

constraint on ∆′ is:

∆′ < min

{
µ2

min

N2
,

Pr(σ(s))2

4

(
1−

(
1− 2µmin

Pr(σ(s))N

)2
)}

(95)

We can simplify this constraint by making it tighter using Pr(σ(s)) ∈
[
µmin
N , 1

]
:

∆′ < min

{
µ2

min

N2
,
µ2

min

4N2

(
1−

(
1− 2µmin

N

)2
)}

=
µ2

min

4N2

(
1−

(
1− 2µmin

N

)2
)
. (96)

Note that we are assuming here that N ≥ 2 and, therefore, µmin < 1, which implies 2µmin/N ≤ µmin <
1. When N = 1, we can trivially align the single initial state. This completes the proof.

This allows us to separate all initial states at time step h = 1 with high probability.

C.2 Aligning the learned decoder states

The only thing left is aligning learned decoder states in the target domain with simulator initial states,
which we do as follows.

At a high level Algorithm 3 first clusters the initial observation into clusters, then each time it start
with a cluster, it run a subroutine, InitialStateTest, to test the latent state index of that cluster. The
testing algorithm Algorithm 4, run our main algorithm TASID the hypothesis of the state index from
0 to N . By the analysis of TASID, we know that if the hypothesis is correct, it will learn a policy with
nearly robust value. Thus for each cluster, with in Nn episodes the algorithm will find the nearly
robust policy.

Theorem 7. If εF ≤ (1−2η)2ε
4H4|A|3 we learn the initial state decoder φ̂ with n0 samples such that

n0 ≥ max

{
256H2N4|A|4C(F ◦ Φ) ln(1/δ)

ε2Γ2η4
,

1024N4|A|4C(F ◦ Φ) ln(1/δ)

Γ2η6

}
,

Algorithm 3 will execute a policy that is close to robust policy by 5ε in all but

O
(
N2H4|A|3 ln(N2|F|/δ)

ε(1− 2η)2
+
N2H2 ln(N2/δ)

ε2
+
N4|A|4C(F ◦ Φ) ln(1/δ)

Γ2η2
max

{
H

ε2
,

1

η2

})
episodes with probability at least 1− 3δ.

Proof. We prove this theorem by two steps. First, we show that for each cluster φ̂(x), after we run
Algorithm 4 with N(nl + nt) steps we can find the correct state of that cluster. Second, we show
that once we find the correct state, we run TASID and learn a policy at most 4ε worse than the robust
policy.

First, by the definition of n0, we have that ∆ :=
√

C(F◦Φ)
n0

ln
(

1
δ

)
≤ η2Γ

32N2|A|2
2η
N <

η2Γ
32N2|A|2

(
1−

(
1− 2η

N

)2)
for N ≥ 2 and η < 1. By Theorem 6, we have for each i ∈ [N],

there must exist a state σ(i) ∈ [N] such that with probability at least 1− δ,

Pr(φ(x) = s|φ̂(x) = i) ≥ 1− 16N2|A|2∆

Γη2
(97)

≥ 1− ε

H
(98)

Thus if we run Algorithm 4 InitialStateTest for s = σ(i). Then by Theorem 3, we have that the value
of learned policy π is at least

V ρ◦φ
?

M − 8H4|A|3 ln(N2|F|/δ)
nl(1− 2η)2

− 4H4|A|3εF
(1− 2η)2

−Hε0 = V ρ◦φ
?

M − 3ε,

29

with probability at least 1 − δ/N2. By Hoeffding’s inequality, we know that the Monte-Carlo
estimates v(s) of the learned policy value with Nt samples is at least

V ρ◦φ
?

M − 3ε−
√
H2 ln(N2/δ)

2nt
= V ρ◦φ

?

M − 4ε,

with probability at least 1− δ/N2. Thus let ŝ = argmaxs v(s) and π be the corresponding learned
policy from TASID given hypothetical initial state ŝ. The policy value vπ is at least

v(ŝ)− ε ≥ V ρ◦φ
?

M − 5ε (99)

with probability 1− 2δ/N by taking the union bound on all N possible hypothetical initial states.
Thus, for a given state cluster, after run Algorithm 4 InitialStateTest for N(nl + nt) episodes, the
policy value is at least V ρ◦φ

?

M − 5ε. That means for each state cluster, we make at most N(nl + nt)
mistakes. Thus we make at most N2(nl + nt) mistakes in total during running Algorithm 4. Notice
that we also need n0 samples to learn the decoder φ̂. The total number of episodes we may make
mistake on is therefore

N2(nl + nt) + n0

Taking the union bound over all initial state clusters φ̂(x) and the high probability statement in
Theorem 6, we have that with probability 1− 3δ the statement holds. We finish the proof by plugging
in nl, nt, n0.

D Experiment Details

D.1 Experiment Details in Combination Lock

Domain details We describe the details of the combination lock domain here. The deterministic
MDP is described in section 5. The transition dynamics and reward functions in the target domain
is defined by the the coefficients ξ(a′|s, a) and Definition 1. For each s, a, we set ξ(a′|s, a) :=
ηp(a′|s) + (1 − η) 1I(a′ = a) where p(·|s) is a random probability mass distribution and each
probability is drawn uniformly from [0, 1] and then normalized. We set η = 0.1 in the experiment.
The only exception is that all transitions from state (H, 2) are not perturbed in the true target domain.
This settings makes the robust policy without this knowledge not optimal in this specific instance, but
our goal is still learning the robust policy here.

The observation mapping is defined as below. Let vs be a 2-sparse encoding in RH+4 of the state
(h, i) where the first 3 bits is a 1-sparse encoding of i and last H + 1 bits is a 1-sparse encoding of h.
The the observation o is computed by

o = H× perm(vs +N (0, 0.01)), (100)

where perm is an arbitrary permutation of [H + 4], and H is the 2dlog2(H+4)e by 2dlog2(H+4)e

Hadamard matrix, consists of 2dlog2(H+4)e mutually orthogonal columns. The permutation perm(v)
operator shuffles the dimensions of the vector v. E.g., if perm denotes the permutation (3, 1, 2), then
perm(v) = (v3, v1, v2). We create a Hadamard matrix Hn of size n×n for n = 2l for some l ∈ N∪
{0} using Sylvester’s construction.4 If H+4 < 2dlog2(H+4)e, then the vector perm(vs+N (0, 0.01))
will be padded with zeros to ensure it is of size 2dlog2(H+4)e. Our constructions are significantly
based on previous hard combination locks studied in Du et al. [2019], Misra et al. [2020].

Implementation details of TASID We describe the details of TASID and hyper-parameters below.
We model the action predictor class F by a two-layer MultiLayer Perceptron (MLP) with Leaky
ReLU activations in this domain. The input to the MLP is the concatenation of observations x and
x′. This is processed through two non-linear layers, and finally a softmax operation is performed to
generate probabilities over actions. We implement the model in PyTorch and train it using Adam
optimization.

4Sylvester’s construction defines H1 = [1] and H2k =

[
Hk Hk

Hk −Hk

]
for all k ∈ N.

30

The h+ 1-th action predictor, i.e., f̂h+1 is initialized with the parameter from h-th action predictor
(fh). We initialize the first action predictor (f1) using PyTorch’s default initialization. For action
predictor we remove 20% of the nD datapoints for use as a held-out validation set and use the
remaining for training parameters of the MLP. We perform 100 epochs of training and evaluate the
current model on the validation set after each epoch. We stop training if the validation loss does not
increase for 10 consecutive epochs. We save the model after each epoch, and use the model with
the smallest validation loss. The only hyperparameter we search for TASID is nD whose values we
search over the grid {1000, 2500, 10000}.
For all algorithms we report results with best hyperparameter for every value of H . For every value
of H and hyperparameter setting, we run the experiment 5 times with different seeds. We select
the best hyperparameter as one that takes the least median number of episodes to achieve a moving
average return of 0.95vρ, where ρ is the latent robust policy and vρ is its value in the target domain.
We compute median across 5 seeds. In case of a tie, we look at the average return over the entire
course of training and across all seeds.

The hyper-parameters of training neural networks is the same across our methods and all baseline
methods, and are specified in Table 2 on page 31.

parameter name values

hidden dimension 56
learning rate 0.0003

optimizer Adam
batch size 32

gradient clipping 0.25

Table 2: Hyperparameters in training NNs for all algorithms in the combination lock domain

Implementation details of PPO, PPO+RND, and domain randomization We train PPO and
PPO+RND, with a maximum of 5 × 105 number of episodes in the target domain. The policy
network is implemented by a two-layer MLP with ReLU activations in this domain, and the training
hyperparameters are the same as Table 2. When training RND, the observation is normalized to
mean 0 and standard deviation 1. Hyperparameters that are specific to the PPO and RND are listed in
Table 3.

We perform a grid search over the entropy coefficient in PPO and the coefficient of RND bonus. The
grid search we use for PPO+RND experiments contains 15 different hyperparameter choices (5 for
RND bonus and 3 for entropy coefficient). This results in 15× 5 = 75 experiments for every value
of H . In contrast, the grid search for TASID only contains 3 different hyperparameter choices. To
avoid further increasing the search space, we only use the best PPO+RND hyperparameters for every
value of H when running the domain randomization experiments. The best hyperparameter values
are chosen using the procedure described earlier with sole exception we use compute episodes needed
to achieve a moving average return of 0.5vρ instead of 0.95vρ. This weaker metric is more helpful
since the latter often gives infinities.

For domain randomization pretraining, we first train in the source domain with 5 × 105 episodes.
During this training, every 100 episodes, we randomize the domain uniformly by regenerating a
permutation function and the perturbation in transitions ξ(·|·, ·), in the same way as how the target
domain is generated. We assume that the domain randomization algorithm knows η (same as TASID),
and everything about the observation mapping except the specific permutation function and transition
perturbation (not known by TASID).

Rather than uniform domain randomization, EPOpt [Rajeswaran et al., 2017] uses only episodes
with a return smaller than lower ε-quantile in the batch (100 episodes) during domain randomization
pretraining. We searched for values of ε in {0.1, 0.2, 0.5, 1.0} where 1.0 gives uniform domain
randomization. Therefore, the hyperparameter grid search for domain randomization has 4 different
choices.

Details of the experiment results We report the details of experiments we used to generate Figure
2b in the paper. We run each algorithm with 5 random seeds for a maximum of 5 × 105 number

31

parameter name values

clip epsilon 0.1
discounting factor 0.999

number of updates per batch 4
number of episodes per batch 100

entropy loss coefficient 0, 0.01, 0.001
RND bonus coefficient 0, 100, 500, 1000, 10000

ε in EPOpt 0.1, 0.2, 0.5, 1.0

Table 3: Hyperparameters for PPO, PPO+RND, PPO(+RND) with domain randomization in the
combination lock domain. Multiple values stand for the values we run grid-search over, and we report
the best performance among them for each environment specification (each H).

of episodes in the target domain, saving checkpoints every 1000 episodes. We decide whether the
combination lock is solved or not if the algorithm can achieve a moving average return of 0.95vρ. In
Figure 2b we report the median of the number of episodes needed to solve the combination lock with
horizon H . The results of each random seeds is list in the following table.

Algorithm Horizon Number of episodes needed

TASID 5 17000, 241000, 9000, 175000, 9000
10 29000, 32000, 33000, 41000, 30000
15 42000, 43000, 41000, 55000, 42000
20 53000, 56000, 54000, 52000, 63000
25 341000, 142000, 67000, 198000, 69000
40 123000, 217000, 303000, 156000, 138000

PPO 5 69000, 128000, 58000, 31000, 81000
≥ 10 ∞,∞,∞,∞,∞

PPO+RND 5 41000, 18000, 12000, 17000, 27000
10 141000, 152000, 103000, 245000, 106000
15 102000, 318000, 167000, 147000, 111000
20 459000, 384000,∞,∞, 349000
25 ∞, 383000,∞, 458000,∞
40 ∞,∞,∞,∞,∞

PPO+DR 5 91000, 77000, 53000, 186000, 66000
≥ 10 ∞,∞,∞,∞,∞

PPO+RND+DR 5 53000, 40000, 50000, 66000, 143000
10 170000, 364000, 194000, 252000, 214000
15 ∞,∞,∞,∞,∞
20 265000,∞,∞,∞,∞
25 409000,∞,∞, 352000,∞
40 ∞,∞,∞,∞,∞

Table 4: Results for all random seeds to generate Figure 2b. A value of∞ denotes a timeout indicating
that the algorithm was not able to achieve a moving average return of 0.95vρ in the maximum allowed
number of episodes of 5× 105.

In the main paper, Figure 2c shows the reward curves for different algorithms with horizon equals 40
in the target environment. Here we include the reward curves for all values of horizon in Figure 4.
It shows our algorithm stably learned a robust policy with number of samples that is smaller than
baseline algorithms. Though baseline algorithms aim to learn the near optimal policy, they did not
converge to a policy that is significantly better than the robust policy.

Amount of compute We run our experiments on a cluster containing mixture of P40, P100, and
V100 GPUs. Each experiment runs on a single GPU in a docker container. We use Python3 and

32

0 100000 200000 300000 400000 500000
Number of episodes

0

2

4

6

8

10

M
ov

in
g

A
ve

ra
ge

 o
f R

et
ur

n

PPO
PPO + RND
TASID
PPO + DR
PPO + RND + DR
Robust value

(a) H = 5

0 100000 200000 300000 400000 500000
Number of episodes

2

0

2

4

6

8

10

M
ov

in
g

A
ve

ra
ge

 o
f R

et
ur

n

(b) H = 10

0 100000 200000 300000 400000 500000
Number of episodes

0

2

4

6

8

10

M
ov

in
g

A
ve

ra
ge

 o
f R

et
ur

n

(c) H = 15

0 100000 200000 300000 400000 500000
Number of episodes

0

2

4

6

8

M
ov

in
g

A
ve

ra
ge

 o
f R

et
ur

n

(d) H = 20

0 100000 200000 300000 400000 500000
Number of episodes

0

2

4

6

8

10

M
ov

in
g

A
ve

ra
ge

 o
f R

et
ur

n

(e) H = 25

0 100000 200000 300000 400000 500000
Number of episodes

0

2

4

6

8

M
ov

in
g

A
ve

ra
ge

 o
f R

et
ur

n

(f) H = 40

Figure 4: Reward curves in target environments with different horizons. The legend is shown in the
plot for H = 5, and is shared with all other plots.

Pytorch 1.4. We found that for H=40 and V100 GPUs, on average, POTAS took 2.5 hours, PPO + DR
took 14 hours, and PPO + RND + DR took 31 hours. Performing domain randomization increased
the computational time by a factor of 2.

D.2 Experiment Details in MiniGrid

Domain details We use the code of the MiniGrid environment [Chevalier-Boisvert et al., 2018]
under the Apache License 2.0. In MiniGrid, the agent is placed in a discrete grid world and needs
to solve different types of tasks. We customized the lava crossing environment in several ways. We
first create a shorter but more narrow crossing path, as the optimal path in deterministic environment.
Then we construct a longer but more safe path under perturbation. The map of the mini-grid is shown
in Figure 3a. The height of the map can be changed without changing the problem structure and
the optimal and robust policy. The state consists of the x-y coordinate of the position, a direction
that takes four values, and the time step. The agent only observe a 7 × 7 area in front of it. (see
Chevalier-Boisvert et al. [2018] for details.) We set the observation to be the visual map (RGB image)
with a random noise between (50, 50, 50) and (150, 150, 150) for all background pixels. The action
space is changed to having five actions: moving forward, turning left, turning right, turning right and
moving forward, turning left and moving forward. We set the horizon to three times the number of
steps the robust policy needs to reach the goal in the deterministic environment.

Implementation details of TASID We describe details of TASID and hyper-parameters below. We
implement the action predictor model class by a convolutional neural network (CNN). We take the
two images x and x′ and concatenate them along the channel dimension. This concatenated image is
passed through CNN which applies two convolutional layers with ReLu activations followed by a
flattening the feature and applying a linear layer to reduce it to a vector of size the number of actions.
Finally, we apply a softmax layer to generate probabilities over actions. We train the algorithm with
5 × 105 episodes, for all values of η and gridworld height. We run each experiment 5 times and
report averaged results in Figure 3. Shaded bands in the Figure correspond to the 95% Student’s t
confidence intervals. Other hyperparameters for minigridworld experiments are shown in Table 5.

Amount of compute We run our experiments on a cluster containing P100 GPUs. Each experiment
runs on a single GPU in a docker container. We use Python3 and Pytorch 1.4. We found that on P100
GPUs, POTAS took 2 to 6 hours (2 hours for η = 0.1 and 6 hours for η = 0.5).

33

parameter name values

CNN kernel 1 8× 8× 16, stride 4
CNN kernel 2 4× 4× 32, stride 2
learning rate 0.0003

optimizer Adam
batch size 256

gradient clipping 100

Table 5: Hyperparameters for TASID in the MiniGrid domain

34

	Introduction
	Related Work
	Problem Setting
	Target environment
	Abstract simulator
	The learning setting

	Main Algorithm
	Robust dynamic programming for abstract simulator
	Learning a decoder in the target environment
	Sample Complexity of TASID
	Extensions

	Experiments
	Conclusion and Future Work
	Proofs for Algorithm 1
	An alternative Proof for Algorithm 1 from the First Principles

	Proofs for Algorithm 2
	Accuracy of action classification
	One-step accuracy of action decoder
	Analysis of the sample complexity

	Analysis with Stochastic Initial State
	Learning decoder initial states
	Aligning the learned decoder states

	Experiment Details
	Experiment Details in Combination Lock
	Experiment Details in MiniGrid

