Under review as a conference paper at ICLR 2021

A AVERAGE IMPROVEMENTS OF VPERLS, GIRIL AND OTHER BASELINES.

60~ B VPERL-Large-Max
B vPERL-Large-Mean
50 - —1 | vPERL-Small-Max
§ B VPERL-Small-Mean
d© B GIRIL
£ 40- . VAIL
< mm GAIL
in = = = Expert
o] == = Demonstration
I
IS
S
—
o
Z
B e opame “LEN N
S N & <
2P @{8&0 @6 4@&&
Q)’Q Q;%@ QJ\Q
A2 ©
R

Figure 6: Performance improvement of vVPERL and baselines on eight Atari games. The results are
averages over 5 random seeds and reported by normalizing the one-life demonstration performance
to 1.

We have provided four variants of vPERL for learning efficient reward function for imitation learning
on limited demonstration data. The effectiveness of vVPERL has been empirically demonstrated with
diverse experiments. Figure[6]illustrates the normalized performance comparison between the four
variants of VPERL and state-of-the-art imitation learning methods. The four variants of vVPERL are
achieved by using two network architectures (Large and Small) and two reward types (Rprax and
Rfean). For example, ‘vVPERL-Large-Max’ means that the variant of vPERL is build on the ‘Large’
network architecture, and calculate the reward function as Ryay.

Generally, the four variants of vVPERL perform consistently better than other baselines in most
of the Atari games. The vPERL-Small-Mean variant achieves the highest average performance
improvements against the demonstration. The vVPERL-Small-Max variant performs best in Battle
Zone and Space Invaders games. The vPERL-Large-Mean variant performs the best in Q*bert and
Beam Rider games.

B VISUALIZATION OF REWARD AND VALUE IMAGES OF VPERL-LARGE AND
VIN/BC.

In this section, we visualize the reward maps and value maps learned by vVPERL-Large and VIN/BC
on several Atari games. Here, both vPERL and VIN/BC are based on large-size VIN architecture.
The size of reward map is 84 x 84. The figures show that the reward and value maps learned by
vPERL are much meaningful than that by VIN/BC.

11

Under review as a conference paper at ICLR 2021

80
20 W 0 50

(a) State. (b) vPERL Reward and Value.

20 W) 0 0 %

(c) VIN/BC Reward and Value.

Figure 7: Visualization of state, reward map and value map on Battle Zone game. (a) The state, (b)
the reward map and value map of vPERL, and (c) the reward map and value map of VIN/BC.

P o)

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

B

Figure 8: Visualization of state, reward map and value map on Centipede game. (a) The state, (b) the
reward map and value map of vPERL, and (c) the reward map and value map of VIN/BC.

@

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

Figure 9: Visualization of state, reward map and value map on Qbert game. (a) The state, (b) the
reward map and value map of vVPERL, and (c) the reward map and value map of VIN/BC.

20 W) 0 “

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

Figure 10: Visualization of state, reward map and value map on Breakout game. (a) The state, (b) the
reward map and value map of vPERL, and (c) the reward map and value map of VIN/BC.

12

Under review as a conference paper at ICLR 2021

C VISUALIZATION OF REWARD AND VALUE IMAGES OF VPERL-SMALL AND
VIN/BC.

In this section, we visualize the reward maps and value maps learned by vVPERL and VIN/BC on
several Atari games. To enable faster training, here both VPERL and VIN/BC are based on small-size
VIN architecture. The size of reward map is 18 x 18. The figures show that the reward and value
maps learned by VPERL are much meaningful than that by VIN/BC.

3 o o
s
10 2 2 2
» 4 4 4 e
0 6
r s s
0 1 10 1
2
2
" 2 2
1 1 1
o 1
6 16 6
80
o 20 W0)) 00 25 50 75 00 125 150 175

00 25 50 75 100 15 150 1.5

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

Figure 11: Visualization of state, reward map and value map on Kung-Fu Master game. (a) The state,
(b) the reward map and value map of vVPERL, and (c) the reward map and value map of VIN/BC.

o o
10 N
2 . 4
% . 6
o s
% 1 10
” 2

1 1
o

16
&

o 20)) 0 00 25 50 75 100 15 150 175

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

Figure 12: Visualization of state, reward map and value map on Battle Zone game. (a) The state, (b)
the reward map and value map of vPERL, and (c) the reward map and value map of VIN/BC.

00 25 50 75 100 125 150 175

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

Figure 13: Visualization of state, reward map and value map on Centipede game. (a) The state, (b)
the reward map and value map of vPERL, and (c) the reward map and value map of VIN/BC.

° o o ° o
250
K 2 2 3 2 2
2 4 A 300 4 o] 20
Y s 6 6
25 5 0
s s
W s 20 °
20
w0 10 10 10 1
15
o © 2 © 121 210
10
1 1 1 1
w0 200
05
16 1 1 1
@
190
o 20 a0 £ &0 00 25 50 o 15 00 00 25 50 75 100 125 150 1.5

75 100 125 150 175 25 50 75 100 125 150 175

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

00 25 50 15

Figure 14: Visualization of state, reward map and value map on Seaquest game. (a) The state, (b) the
reward map and value map of vPERL, and (c) the reward map and value map of VIN/BC.

13

Under review as a conference paper at ICLR 2021

2
o o 250
2
10 2
N . 200
8 R
150
s
o °
10
o 100
fn 121
1
A 1 5
1 1
o
s 00 25 50 75 00 25 50 75 100 125 150 15

75 00 25 150 15

5 50 75 00 25 150 15

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

Figure 15: Visualization of state, reward map and value map on Qbert game. (a) The state, (b) the
reward map and value map of vVPERL, and (c) the reward map and value map of VIN/BC.

o o 250
1
2 2
200
w4 4
6 3
8 150
s °
B
10
o 100
PR 2
1 1 B
2
1 1
o o
00 25 50 00 25 50 75 100 125 150 15

5 50 75 100 125 150 175 00 25 50 75 100 125 150 115 75 100 125 150 15

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

Figure 16: Visualization of state, reward map and value map on Breakout game. (a) The state, (b) the
reward map and value map of vVPERL, and (c) the reward map and value map of VIN/BC.

o o
10 N
2 . 4
% 6 6
o s
% 1 10
” 2

1 1
o

16 16
&

o 20 B3) 80 00 25 50 75 100 125 130 15

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

Figure 17: Visualization of state, reward map and value map on Space Invaders game. (a) The state,
(b) the reward map and value map of vPERL, and (c) the reward map and value map of VIN/BC.

00 25 50 75 100 125 150 175

(a) State. (b) vPERL Reward and Value. (c) VIN/BC Reward and Value.

00 25 50 75 100 15 150 175

Figure 18: Visualization of state, reward map and value map on Beam Rider game. (a) The state, (b)
the reward map and value map of vVPERL, and (c) the reward map and value map of VIN/BC.

D ADDITIONAL DETAILS OF EXPERIMENTAL SETUP ON ATARI

D.1 NETWORK ARCHITECTURE
For a fair comparison, we used an identical policy network for all methods. We used the implementa-

tion of policy network in the code base (Kostrikov,|2018)). The architecture of the policy network is
outlined in Table 4]

14

Under review as a conference paper at ICLR 2021

Table 4: Architectures of discriminator and policy network for Atari games.

discriminator \ policy network
4 x 84 x 84 States and Next States \ 4 x 84 x 84 States
concatenate States and Next States
3 x 3 conv, 32 LeakyReLU 8 x 8 conv, 32, stride 4, ReLU
3 x 3 conv, 32 LeakyReLU 4 x 4 conv, 64, stride 2, ReLU
3 x 3 conv, 64 LeakyReLU 3 x 3 conv, 32, stride 1, ReLU
3 x 3 conv, 64 LeakyReLU dense 32 X 7 x 7 — 512
dense 1024 — 1 dense 1024 — # Actions
0/1 | Actions

D.2 EXPERIMENTAL SETUP OF CONTINUOUS CONTROL TASKS

Our first step was also to train a reward learning module for each continuous control task on one
demonstration. To build our reward learning module for continuous tasks, we used a simple VIN
and inverse VIN as the model bases of action back-tracing and transition modeling submodules,
respectively. In the simple VIN model, we used 1D convolutional layer with a kernel size of 2 and
stride of 1 to implement the function fg, reward map R and @ value). To accomplish the action
back-tracing, the final value map of VIN was fully connected with a hidden layer with a size of 32.
Reversely, we used 1D deconvolutional layer to implement the inverse VIN model. We kept the size
of feature maps in both VIN and inverse VIN unchanged across all the layers. We set K = 10 for both
the VIN and inverse VIN in all tasks. The dimension of latent variable z is set to the action dimension
for each task. Additionally, we used a two-layer feed forward neural network with tanh activation
function as policy architecture. The number of hidden unit is set to 100 for all tasks. To extend our
method on continuous control tasks, we made minor modification on the training objective. In Atari
games, we used the KL divergence to measure the distance between the expert policy distribution and
the action distribution in Eq. @) In continuous control tasks, we instead directly treated the latent
variable z as the back-traced action and used mean squared error (MSE) to measure the distance
between the back-traced action and the true action in the demonstration. We set the scaling weight o
in Eq. (I) to 1.0 for all tasks. Training was conducted with the Adam optimizer (Kingma & Ba, [2015)
at a learning rate of 3e-5 and a mini-batch size of 32 for 50, 000 epochs. In each training epoch, we
sampled a mini-batch of data every 20 states.

To evaluate the quality of our learned reward, we used the trained reward learning module to produce
rewards, and trained a policy to maximize the inferred reward function via PPO. We trained the PPO
on the learned reward function for 5 million simulation steps to obtain our final policy. The PPO is
trained with a learning rate of 3e-4, a clipping threshold of 0.1, a entropy coefficient of 0.0, a value
function coefficient of 0.5, and a GAE parameter of 0.95 (Schulman et al.,|2016).

For a fair comparison, we used the same VIN as the model base for all the baselines. The reward
function of GAIL and VAIL was chosen according to the original papers (Ho & Ermonl| 2016} Peng
et al.,[2019). The information constraint I, in VAIL was set to 0.5 for all tasks. To enable fast training,
we trained all the imitation methods with 16 parallel processes.

D.3 ADDITIONAL DETAILS OF GAIL AND VAIL

The discriminator for both GAIL and VAIL takes in a state (a stack of four frames) and an action
(represented as a 2d one-hot vector with a shape of (|.A| x 84 x 84), where |A| is the number of
valid discrete actions in each environment) (Brown et al., 2019b). As shown in Table[d] the network
architecture of GAIL’s discriminator D is a standard 4-layer CNN that has a comparable number of
parameters as the VI module in our vVPERL model. The discriminator outputs a binary classification
value, and — log(D(s, a)) is the reward. VAIL was implemented according to the repository of
Karnewar| (2018). The discriminator network architecture has an additional convolutional layer
(with a kernel size of 4) as the final convolutional layer to encode the latent variable in VAIL. We
used the default setting of 0.2 for the information constraint (Karnewar, [2018)). PPO with the same
hyper-parameters was used to optimize the policy network for all the methods. For both GAIL and

15

Under review as a conference paper at ICLR 2021

VAIL, we trained the discriminator using the Adam optimizer with a learning rate of 0.001. The
discriminator was updated at each policy step.

16

	Average improvements of vPERLs, GIRIL and other baselines.
	Visualization of reward and value images of VPERL-Large and VIN/BC.
	Visualization of reward and value images of VPERL-Small and VIN/BC.
	Additional Details of Experimental Setup on Atari
	Network Architecture
	Experimental setup of continuous control tasks
	Additional details of GAIL and VAIL

