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A Proofs

A.1 Proof of Theorem 1

We first introduce three lemmas whose proofs can be found in the referred literature.

Lemma 2 (Hoeffding’s Inequality for Bounded Random Variables [15]). Suppose X1, X2, . . . , Xn

are independent random variables with ai ≤ Xi ≤ bi,∀i = 1, 2 . . . , n. Let X̄ = 1
n

∑n
i=1Xi. Then,

for any t > 0,

Pr
(
|X̄ − EX̄| > t

)
≤ 2e

− n2t2∑n
i=1

(bi−ai)2 .

Lemma 3 (Sub-Gaussianity). If X is a centered random variable, i.e., EX = 0, and if ∃ν > 0, for
any t > 0,

Pr(|X| > t) ≤ 2e−νt
2

.

Then, for any λ > 0,

EeλX ≤ eλ
2

2ν .

See Rivasplata [33] (Theorem 3.1) for the proof of Lemma 3.

Lemma 4 (Change-of-Measure Inequality, Lemma 17 in Germain et al. [12]). For any two distribu-
tions P and Q defined onH, and any function ψ : H → R,

Eh∼Q[ψ(h)] ≤ DKL(Q‖P ) + lnEh∼P [eψ(h)].

Then we can prove Theorem 1. For convenience, we re-state it as Theorem 4 below.

Theorem 4 (Subgroup Generalization of Stochastic Classifiers). For any 0 < m ≤M , for any λ > 0
and γ ≥ 0, for any “prior” distribution P onH that is independent of the training data on V0, with
probability at least 1− δ over the sample of y0, for any Q onH, we have11

Lγ/2m (Q) ≤ L̂γ0(Q) +
1

λ

(
DKL(Q‖P ) + ln

1

δ
+

λ2

4N0
+Dγ

m,0(P ;λ)

)
. (7)

Proof. We prove the result by upper-bounding the quantity λ(Lγ/2m (Q)− L̂γ0(Q)). First, we have

λ(Lγ/2m (Q)− L̂γ0(Q))

≤Eh∼Qλ(Lγ/2m (h)− L̂γ0(h))

≤DKL(Q‖P ) + lnEh∼P eλ(L
γ/2
m (h)−L̂γ0 (h)), (8)

where the first inequality is due to Jensen’s inequality, and the last inequality is due to Lemma 4.

Next we would like to upper-bound the second term in the RHS of (8). Note that the quantity
U := Eh∼P eλ(L

γ/2
m (h)−L̂γ0 (h)) is a random variable with the randomness coming from the sample of

node labels y0 for V0. Also note that P is independent of y0. Applying Markov’s inequality to U , we
have for any δ > 0, with probability at least 1− δ over the sample of y0,

U ≤ 1

δ
Ey0U,

and hence,

lnU ≤ ln
1

δ
Ey0U = ln

1

δ
+ lnEy0U.

Then we need to upper-bound the quantity lnEy0U . We can re-write it as

lnEy0U = lnEy0Eh∼P eλ(L
γ/2
m (h)−L̂γ0 (h)) = lnEh∼PEy0eλ(L

γ/2
m (h)−L̂γ0 (h)). (9)

11Theorem 4 also holds when we substitute Lγ/2m (h) and Lγ/2m (Q) as Lγm(h) and Lγm(Q) respectively. But
we state the theorem in this form to ease the development of the later analysis.
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For a fixed model h,

Ey0eλ(L
γ/2
m (h)−L̂γ0 (h))

=Ey0eλ(L
γ/2
m (h)−Lγ0 (h)+L

γ
0 (h)−L̂

γ
0 (h))

=Ey0eλ(L
γ/2
m (h)−Lγ0 (h))eλ(L

γ
0 (h)−L̂

γ
0 (h))

=eλ(L
γ/2
m (h)−Lγ0 (h))Ey0eλ(L

γ
0 (h)−L̂

γ
0 (h)). (10)

In the following we will give an upper bound on Ey0eλ(L
γ
0 (h)−L̂

γ
0 (h)) that is independent of h. Recall

that

L̂γ0(h) =
1

N0

∑
i∈V0

1

[
hi(X,G)[yi] ≤ γ + max

k 6=yi
hi(X,G)[k]

]
,

where the node labels are independently sampled (though not from the identical distribution), so L̂γ0(h)
is the empirical mean of N0 independent Bernoulli random variables and Lγ0(h) is the expectation of
L̂γ0(h). By Lemma 2, for any t > 0,

Pr
(
|Lγ0(h)− L̂γ0(h)| ≥ t

)
≤ 2e−2N0t

2

,

and hence Lγ0(h)− L̂γ0(h) is sub-Gaussian. Further by Lemma 3, we have

Ey0eλ(L
γ
0 (h)−L̂

γ
0 (h)) ≤ e

λ2

4N0 ,

which implies that

Ey0eλ(L
γ
0 (h)−L̂

γ
0 (h)) ≤ e

λ2

4N0 , (11)
Therefore, plugging (10) and (11) back into (9), we have

lnEy0U

≤ lnEh∼P eλ(L
γ/2
m (h)−Lγ0 (h))e

λ2

4N0

=Dγ
m,0(P ;λ) +

λ2

4N0
.

Finally, plugging everything back into (8), we get

λ(Lγ/2m (Q)− L̂γ0(Q))

≤DKL(Q‖P ) + lnEh∼P eλ(L
γ/2
m (h)−L̂γ0 (h))

≤DKL(Q‖P ) + ln
1

δ
+

λ2

4N0
+Dγ

m,0(P ;λ).

Rearranging the terms gives us the final result

Lγ/2m (Q) ≤ L̂γ0(Q) +
1

λ

(
DKL(Q‖P ) + ln

1

δ
+

λ2

4N0
+Dγ

m,0(P ;λ)

)
.

A.2 Proof of Theorem 2

We re-state Theorem 2 as Theorem 5 below.
Theorem 5 (Subgroup Generalization of Deterministic Classifiers). Let h̃ be any classifier inH. For
any 0 < m ≤M , for any λ > 0 and γ ≥ 0, for any “prior” distribution P onH that is independent
of the training data on V0, with probability at least 1− δ over the sample of y0, for any Q onH such
that Prh∼Q

(
maxi∈V0∪Vm ‖hi(X,G)− h̃i(X,G)‖∞ < γ

8

)
> 1

2 , we have

L0
m(h̃) ≤ L̂γ0(h̃) +

1

λ

(
2(DKL(Q‖P ) + 1) + ln

1

δ
+

λ2

4N0
+D

γ/2
m,0(P ;λ)

)
. (12)
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Proof. For simplicity, we write hi(X,G) and h̃i(X,G) as hi and h̃i in this proof. We first construct
a distribution Q′ by restricting Q onHh̃ ⊆ H, where

Hh̃ := {h ∈ H | max
i∈V0∪Vm

‖hi − h̃i‖∞ <
γ

8
}.

And Q′ is defined as

Q′(h) =

{
1
ZQ′

Q(h), if h ∈ Hh̃
0, otherwise

,

where ZQ′ = Prh∼Q(h ∈ Hh̃) ≥ 1
2 by the condition of the theorem.

For any h ∈ Hh̃ and any sample i ∈ V0 ∪ Vm, by definition ofHh̃, we have

max
k,k′∈{1,...,K}

|(h̃i[k]− h̃i[k′])− (hi[k]− hi[k′])| <
γ

4
,

which implies the following relationships:

L0
m(h̃) ≤ Lγ/4m (h), L̂γ/20 (h) ≤ L̂γ0(h̃).

Therefore, with probability at least 1− δ over the sample of ym,

L0
m(h̃)

≤Eh∼Q′Lγ/4m (h)

≤Eh∼Q′L̂γ/20 (h) +
1

λ

(
DKL(Q′‖P ) + ln

1

δ
+

λ2

4N0
+D

γ/2
m,0(P ;λ)

)
≤L̂γ0(h̃) +

1

λ

(
DKL(Q′‖P ) + ln

1

δ
+

λ2

4N0
+D

γ/2
m,0(P ;λ)

)
,

where the second inequality is due to the application of Theorem 1 by substituting γ as γ/2 and Q as
Q′.

Finally, to complete the proof, we only need to show

DKL(Q′‖P ) ≤ 2(DKL(Q‖P ) + 1).

DenoteHc
h̃

as the complement ofHh̃ and define Q′c as the distribution restricted toHc
h̃

similarly as
Q′. Define H(x) := −x lnx− (1− x) ln(1− x), which is the binary entropy function and we know
H(Z) ≤ 1. Then

DKL(Q‖P ) =

∫
Hh̃

ln
dQ

dP
dQ+

∫
Hc
h̃

ln
dQ

dP
dQ

= ZQ′

∫
H

ln
dQ′

dP
dQ′ + (1− Z ′Q)

∫
H

ln
dQ′c

dP
dQ′c −H(ZQ′)

= ZQ′DKL(Q′‖P ) + (1− Z ′Q)DKL(Q′c‖P )−H(ZQ′).

So

DKL(Q′‖P ) =
1

ZQ′

(
DKL(Q‖P ) +H(ZQ′)− (1− Z ′Q)DKL(Q′c‖P )

)
≤ 2(DKL(Q‖P ) + 1),

since DKL(Q′c‖P ) ≥ 0.

A.3 Proof of Lemma 1

We first present the following Lemma 5 that bounds the difference between the margin loss on Vm
and that on V0 for a fixed GNN.
Lemma 5. Suppose an L-layer GNN classifier h is associated with model parameters W1, . . . ,WL.
Define Th := maxl=1,...,L ‖Wl‖2. Under Assumption 1 and 2, for any 0 < m ≤ M and γ ≥ 0, if
εmT

L
h ≤

γ
4 , then

Lγ/2m (h)− Lγ0(h) ≤ cKεm.
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Proof. For simplicity in this proof, for any i ∈ V0 ∪ Vm and k = 1, . . . ,K, we use hi to
denote hi(X,G) and use ηk(i) to denote Pr(yi = k | gi(X,G)). And define Lγ(hi, yi) :=
1 [hi[yi] ≤ γ + maxk 6=yi hi[k]]. Then we can write

Lγ/2m (h)− Lγ0(h)

=Eym

 1

Nm

∑
j∈Vm

Lγ/2(hj , yj)

− Ey0

[
1

N0

∑
i∈V0

Lγ(hi, yi)

]

=
1

N0
Ey0,ym

∑
i∈V0

1

sm

 ∑
j∈V (i)

m

Lγ/2(hj , yj)

− Lγ(hi, yi)

where in the last step we have used Assumption 2. Therefore,

Lγ/2m (h)− Lγ0(h)

=
1

N0

∑
i∈V0

1

sm

 ∑
j∈V (i)

m

EyjLγ/2(hj , yj)

− EyiLγ(hi, yi)

=
1

N0

∑
i∈V0

1

sm

 ∑
j∈V (i)

m

K∑
k=1

ηk(j)Lγ/2(hj , k)

− K∑
k=1

Pr(yi = k)Lγ(hi, k)

=
1

N0

∑
i∈V0

1

sm

∑
j∈V (i)

m

K∑
k=1

(
ηk(j)Lγ/2(hj , k)− ηk(i)Lγ(hi, k)

)

=
1

N0

∑
i∈V0

1

sm

∑
j∈V (i)

m

K∑
k=1

(
ηk(j)

(
Lγ/2(hj , k)− Lγ(hi, k)

)
+ (ηk(j)− ηk(i))Lγ(hi, k)

)
(13)

≤ 1

N0

∑
i∈V0

1

sm

∑
j∈V (i)

m

K∑
k=1

(
1 ·
(
Lγ/2(hj , k)− Lγ(hi, k)

)
+ (ηk(j)− ηk(i)) · 1

)
, (14)

where the last inequality utilizes the facts that both ηk(j) and Lγ(hi, k) are upper-bounded by 1.
According to Assumption 1 and 2,

ηk(j)− ηk(i) ≤ c‖gj(X,G)− gi(X,G)‖2 ≤ cεm.

Further, as hi = f(gi(X,G);W1, . . . ,WL) where f is a ReLU-activated MLP, so

‖hi − hj‖∞ ≤ ‖gi(X,G)− gj(X,G)‖2
L∏
l=1

‖Wl‖2 ≤ εmTLh ≤
γ

4
.

This implies that, for any k = 1, . . . ,K,

Lγ/2(hj , k) ≤ Lγ(hi, k).

So we have

Lγ/2m (h)− Lγ0(h)

≤ 1

N0

∑
i∈V0

1

sm

∑
j∈V (i)

m

K∑
k=1

0 + cεm

=cKεm.

Then we can prove Lemma 1, which we re-state as Lemma 6 below.
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Lemma 6 (Bound for Dγ
m,0(P ;λ)). Under Assumption 1, 2 and 3, for any 0 < m ≤ M , any

0 < λ ≤ N2α
0 and γ ≥ 0, assume the “prior” P on H is defined by sampling the vectorized MLP

parameters from N (0, σ2I) for some σ2 ≤ (γ/8εm)2/L

2b(λN−α0 +ln 2bL)
. We have

D
γ/2
m,0(P ;λ) ≤ ln 3 + λcKεm. (15)

Proof. Recall that Dγ/2
m,0(P ;λ) = lnEh∼P e

λ
(
Lγ/4m (h)−Lγ/20 (h)

)
. We prove the upper bound of

D
γ/2
m,0(P ;λ) by decomposing the space H into the two regimes: a regime with bounded spectral

norms of the model parameters required by Lemma 5, and its complement. Following Lemma 5, for
any classifier h with parameters W1, . . . ,WL, we define Th := maxl=1,...,L ‖Wl‖2.

We first prove an upper bound on the probability Pr
(
TLh εm > γ

8

)
over the drawing of h ∼ P . For

any h, as its vectorized MLP parameters vec(Wl), for each l = 1, . . . , L, is sampled fromN (0, σ2I),
we have the following spectral norm bound [40], for any t > 0,

Pr(‖Wl‖2 > t) ≤ 2be−
t2

2bσ2 ,

where b is the maximum width of all hidden layers of the MLP. Setting t =
(

γ
8εm

)1/L
and applying

a union bound, we have that

Pr
(
TLh εm >

γ

8

)
= Pr

(
Th >

(
γ

8εm

)1/L
)
≤ 2bLe−

(γ/8εm)2/L

2bσ2 ≤ e−λN
−α
0 ,

where the last inequality utilizes the condition σ2 ≤ (γ/8εm)2/L

2b(λN−α0 +ln 2bL)
.

For any h satisfying TLh εm ≤
γ
8 , by Lemma 5, we know that eλ

(
Lγ/4m (h)−Lγ/20 (h)

)
≤ eλcKεm . For all

h such that TLh εm > γ
8 , by Assumption 3, with probability at least 1− e−N2α

0 ,

e
λ
(
Lγ/4m (h)−Lγ/20 (h)

)
≤ eλN

−α
0 +λcKεm .

Also note that Lγ/4m (h)− Lγ/20 (h) ≤ 1 trivially holds for any h. Therefore we have

D
γ/2
m,0(P ;λ)

= lnEh∼P e
λ
(
Lγ/4m (h)−Lγ/20 (h)

)
≤ ln

(
Pr
(
TLh εm >

γ

8

)(
e−N

2α
0 · eλ + (1− e−N

2α
0 ) · eλN

−α
0 +λcKεm

)
+ Pr

(
TLh εm ≤

γ

8

)
eλcKεm

)
≤ ln

(
eλ−N

2α
0 + Pr

(
TLh εm >

γ

8

)
eλN

−α
0 eλcKεm + eλcKεm

)
≤ ln

(
1 + e−λN

−α
0 eλN

−α
0 eλcKεm + eλcKεm

)
= ln

(
1 + 2eλcKεm

)
≤ ln 3 + λcKεm,

since 1 + 2eλcKεm ≤ 3eλcKεm .

A.4 Proof of Theorem 3

The proof of Theorem 3 relies on the combination of Theorem 2, Lemma 1, and an intermediate
result of the Theorem 1 in Neyshabur et al. [30] (which we state as Lemma 7 below).

Lemma 7 (Neyshabur et al. [30]). Let h̃ be any classifier in H with parameters {W̃l}Ll=1. Define

β̃ =
(∏L

l=1 ‖W̃l‖2
)1/L

. Let {Ul}Ll=1 be the random perturbation to be added to {W̃l}Ll=1 and

vec({Ul}Ll=1) ∼ N (0, σ2I). Define Bm := maxi∈V0∪Vm ‖gi(X,G)‖2. If

σ ≤ γ

84LBmβL−1
√
b ln(4bL)

,
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and β is any constant satisfying |β̃ − β| ≤ β̃
L , then with respect to the random draw of {Ul}Ll=1,

Pr

(
max

i∈V0∪Vm
‖f(gi(X,G); {W̃l}Ll=1)− f(gi(X,G); {W̃l + Ul}Ll=1)‖∞ <

γ

8

)
>

1

2
.

Then we prove Theorem 3 (re-stated as Theorem 6 below).
Theorem 6 (Subgroup Generalization Bound for GNNs). Let h̃ be any classifier inH with parameters
{W̃l}Ll=1. Under Assumptions 1, 2, 3, and 4, for any 0 < m ≤M , γ ≥ 0, and large enough N0, with
probability at least 1− δ over the sample of y0, we have

L0
m(h̃) ≤ L̂γ0(h̃) +O

(
cKεm +

b
∑L
l=1 ‖W̃l‖2F

(γ/8)2/LNα
0

(εm)2/L +
1

N1−2α
0

+
1

N2α
0

ln
LC(2Bm)1/L

γ1/Lδ

)
.

(16)

Proof. There are two main steps in the proof. In the first step, for a given constant β > 0, we first
define the “prior” P and the “posterior” Q on H in a way complying the conditions in Lemma 1
and Lemma 7. Then for all classifiers with parameters satisfying |β̃ − β| ≤ β̃

L , where β̃ =(∏L
l=1 ‖W̃l‖2

)1/L
, we can derive a generalization bound by applying Theorem 2 and Lemma 1.

In the second step, we investigate the number of β we need to cover all possible relevant classifier
parameters and apply a union bound to get the final bound. The second step is essentially the same
as Neyshabur et al. [30] while the first step differs by the need of incorporating Lemma 1.

We first show the first step. Given a choice of β independent of the training data, let

σ = min

 (γ/8εm)
1/L√

2b(λN−α0 + ln 2bL)
,

γ

84LBmβL−1
√
b ln(4bL)

 .

Assume the “prior” P onH is defined by sampling the vectorized MLP parameters from N (0, σ2I);
and the “posterior” Q onH is defined by first sampling a set of random perturbations {Ul}Ll=1 with
vec({Ul}Ll=1) ∼ N (0, σ2I) and then adding them to {W̃l}Ll=1, the parameters of h̃. Then for any h̃
with {W̃l}Ll=1 satisfying |β̃ − β| ≤ β̃

L , by Lemma 7, we have

Pr
h∼Q

(
max

i∈V0∪Vm
|hi(X,G)− h̃i(X,G)|∞ <

γ

8

)
>

1

2
.

Therefore, by applying Theorem 2, we know the bound (4) holds for h̃, i.e., with probability at least
1− δ,

L0
m(h̃)− L̂γ0(h̃)

≤ 1

λ

(
2(DKL(Q‖P ) + 1) + ln

1

δ
+

λ2

4N0
+D

γ/2
m,0(P ;λ)

)
≤ 1

λ

(
2(DKL(Q‖P ) + 1) + ln

1

δ
+

λ2

4N0
+ ln 3 + λcKεm

)
(17)

≤ 2

N2α
0

DKL(Q‖P ) +
1

N2α
0

(
ln

3

δ
+ 2

)
+

1

4N1−2α
0

+ cKεm, (18)

where in (17) we have applied Lemma 1 to bound Dγ/2
m,0(P ;λ) under Assumptions 1, 2, and 3; and

in (18) we have set λ = N2α
0 .

Moreover, since both P and Q are normal distributions, we know that

DKL(Q‖P ) ≤
∑L
l=1 ‖W̃l‖2F

2σ2
.

By Assumption 4, both Bm and C are constant with respect to N0. Later we will show that we only
need β ≤ C. Therefore, for large enough N0, we can have

(γ/8εm)
1/L√

2b(Nα
0 + ln 2bL)

<
γ

84LBmβL−1
√
b ln(4bL)

,
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which implies,

σ =
(γ/8εm)

1/L√
2b(Nα

0 + ln 2bL)
,

and hence,

DKL(Q‖P ) ≤
b(Nα

0 + ln 2bL)
∑L
l=1 ‖W̃l‖2F

(γ/8)2/L
(εm)2/L. (19)

Therefore, with probability at least 1− δ,

L0
m(h̃)− L̂γ0(h̃)

≤cKεm +
2

N2α
0

DKL(Q‖P ) +
1

N2α
0

(
ln

3

δ
+ 2

)
+

1

4N1−2α
0

≤O

(
cKεm +

b
∑L
l=1 ‖W̃l‖2F

(γ/8)2/LNα
0

(εm)2/L +
1

N1−2α
0

+
1

N2α
0

ln
1

δ

)
. (20)

Then we show the second step, i.e., finding out the number of β we need to cover all possible relevant
classifier parameters. Similarly as Neyshabur et al. [30], we will show that we only need to consider
( γ
2Bm

)1/L ≤ β̃ ≤ C (recall that ‖W̃l‖F ≤ C, l = 1, . . . , L). For any β̃ outside this range, the
bound (16) automatically holds. If β̃ < ( γ

2Bm
)1/L, then for any node i ∈ V0, ‖h̃i(X,G)‖∞ < γ

2 ,

which implies L̂γ0(h̃) = 1 as the difference between any two output logits for any training node is
smaller than γ. Also noticing that L0

m(h̃) ≤ 1 by definition, so the bound (16) trivially holds. And
for β̃ in this range, |β − β̃| ≤ 1

L ( γ
2Bm

)1/L is a sufficient condition for β to satisfy |β̃ − β| ≤ β̃
L , and

we need at most LC(2Bm)1/L

γ1/L of β to cover all β̃ in the above range. Taking a union bound on all
such β, which is equivalent to replace δ with δ

LC(2Bm)1/L

γ1/L

in (20), it gives us the final result: with

probability at least 1− δ,

L0
m(h̃)− L̂γ0(h̃) ≤ O

(
cKεm +

b
∑L
l=1 ‖W̃l‖2F

(γ/8)2/LNα
0

(εm)2/L +
1

N1−2α
0

+
1

N2α
0

ln
LC(2Bm)1/L

γ1/Lδ

)
.

A.5 Discussion on Assumption 3

To better understand Assumption 3, we show a simplified scenario where this assumption holds.

We discuss in the context where the classification problem has binary labels and the MLP of the
classifier h only consists of a linear layer with parameters W ∈ RD′×2. In this case, the distribution
P onH in Assumption 3 is defined by sampling the vectorized parameters vec(W ) ∼ N (0, σ2I2D′).
Under Assumption 2, each training sample in V0 has a near set in Vm with the same size sm. For
simplicity, we consider the case where sm = 1. Let Z(0), Z(m) ∈ RN0×D′ be the aggregated node
features of V0 and Vm respectively. Without loss of generality, assume for each i = 1, . . . , N0,
the closest point in Z(0) for Z(m)

i is Z(0)
i . To simplify the notations, we define Z := Z(0) and

ε := Z(m) − Z(0). We always treat Mi for any matrix M as the transpose of the i-th row of M and
define M(i) as the i-th column vector of M .
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Figure 6: An illustrative example of areas in the space of ∆W where the loss difference term for an
index i could be positive. For visual simplicity in the figure, we have used Z and ε to represent Zi
and εi.

Following the proof of Lemma 5, and in particular, Eq. (13), it is easy to show that, for any h ∈ H
with parameters W ,

Lγ/4m (h)− Lγ/20 (h)

≤ 1

N0

N0∑
i=1

2∑
k=1

ηk(Z
(m)
i )

(
Lγ/4((Z(m) ·W )i, k)− Lγ/2((Z(0) ·W )i, k)

)
+ cεm

=2cεm +
1

N0

N0∑
i=1

2∑
k=1

ηk(Z
(m)
i )

(
1

[
WT

(k)(Zi + εi) <
γ

4
+WT

(3−k)(Zi + εi)
]
− 1

[
WT

(k)Zi <
γ

2
+WT

(3−k)Zi

])
.

(21)

For Assumption 3 to hold, a sufficient condition is to have the second term in Eq. (21) smaller than
Nα for any h. Below we will investigate when this sufficient condition holds.

To further simplify the notations, we define ∆W := W(1) −W(2), ∆Z := Z∆W , ∆ε := ε∆W , and
ηik := ηk(Z

(m)
i ). Then

Lγ/4m (h)− Lγ/20 (h)

≤2cεm +
1

N0

N0∑
i=1

2∑
k=1

ηik

(
1

[
(−1)k+1(∆Z + ∆ε)i <

γ

4

]
− 1

[
(−1)k+1∆Zi <

γ

2

])
. (22)

Note that since vec(W ) ∼ N (0, σ2I2D′), we have ∆W ∼ N (0, 2σ2ID′). And the second term
in (22) depends on W only through ∆W .

Table 1: Possible values of the loss difference term for each index i = 1, . . . , N0.
∆Zi >

γ
2 ∆Zi < −γ2 −γ2 ≤ ∆Zi ≤ γ

2
(∆Z + ∆ε)i >

γ
4 0 ηi2 − ηi1 −ηi1

(∆Z + ∆ε)i < −γ4 ηi1 − ηi2 0 −ηi2
−γ4 ≤ (∆Z + ∆ε)i ≤ γ

4 ηi1 ηi2 0

For each i = 1, . . . , N0, the term
∑2
k=1 η

i
k

(
1
[
(−1)k+1(∆Z + ∆ε)i <

γ
4

]
− 1

[
(−1)k+1∆Zi <

γ
2

])
in (22) has only a few possible values, which can be summarized in the following 9 cases in
Table 1. As can be seen, this loss difference term could be positive only when (1) ∆Zi >

γ
2 and

(∆Z + ∆ε)i ≤ γ
4 or (2) ∆Zi < −γ2 and (∆Z + ∆ε)i ≥ −γ4 . This implies that, for fixed Zi and

εi, there are two linear subspaces in the space of ∆W where the loss difference for index i could
be positive. In Figure 6, we provide an illustrative example of such linear subspaces in the case
∆W ∈ R2, such that we can visualize it. Qualitatively, when ‖εi‖2 is much smaller than ‖Zi‖2
(which is often the case by their constructions), the areas that the loss difference term being positive
will be very small.
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Figure 7: An illustrative example of data points with no intersected positive areas. Only the positive
areas as shown in Figure 6 are visualized. Each color corresponds to a unique index i. As shown in
the figure, there are no intersections among the areas of different data points when the Zi’s are nicely
scattered and εi’s are small.

For a classifier h to have Lγ/4m (h) − Lγ/20 (h) > cKεm + N−α0 , a necessary condition is that its
corresponding ∆W lies in the intersection of positive areas of at least N1−α

0 samples. Conversely,
if εi’s are small and Zi’s are nicely scattered such that the N0 samples can be divided into Nα

0
groups where the positive areas of any two points from different groups do not intersect, then we
know Lγ/4m (h)− Lγ/20 (h) ≤ cKεm + N−α0 for any h. And hence this is a sufficient condition for
Assumption 3 to hold. Figure 7 provides an illustrative example of data points with no intersected
positive areas on a 2-dimensional surface. When D′ > 2, it might be difficult to completely avoid
intersections of the positive areas. However, what Assumption 3 requires is that the areas where a
large number of data points intersect are small.

B More Details of Experiment Setup

In this section, we describe more details of our experiment setup that are omitted in the main paper
due to space limit.

B.1 Detailed Training Setup

We use the default setting in Deep Graph Library [43]12 for model hyper-parameters. We use the
Adam optimizer with initial learning rate of 0.01 and weight decay of 5e-4 to train all models for 400
epoch by minimizing the cross entropy loss, with early stopping on the validation set.

B.2 Detailed Setup of the Noisy Feature Experiment

In this experiment (corresponding to Figure 4), we make the node features less homophilious
by adding random noises to each node independently. Specifically, we use noisy features X̃ =

X +α ‖X‖F‖U‖F U , where X ∈ RN×D is the original feature matrix, and U ∈ RN×D is a random matrix
with each element independently and uniformly sampled from [0, 1]. And we set α = 5. In this
way, the magnitude of the noise is slightly larger than the original feature to significantly reduce the
homophily property. All other experiment settings are the same as those corresponding to Figure 1.

12Apache License 2.0.
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(b) Amazon Photo.

Figure 8: Test accuracy disparity across subgroups by aggregated-feature distance. Extra experiments
on Amazon-Computers and Amazon-Photo datasets. The experiment and plot settings are the same
as Figure 1.
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Figure 9: Test accuracy disparity across subgroups by geodesic distance. Extra experiments on
Amazon-Computers and Amazon-Photo datasets. The experiment and plot settings are the same as
Figure 2.

B.3 Detailed Setup of the Biased Training Node Selection Experiment

In this experiment (corresponding to Section 5.2), we investigate the impact of biased training
node selection. As briefly described in Section 5.2, we choose a “dominant class” and construct
a manipulated training set. For each class, we still sample 20 training nodes but in a biased way.
Specifically, given one choice of the four node centrality metrics (degree, closeness, betweeness, and
PageRank), the training set is sampled as follows.

1. For the dominant class, uniformly sample 15 nodes from the 10% of the nodes with highest
node centrality, and uniformly sample 5 nodes from the remaining.

2. For each of the other classes, uniformly sample 15 nodes from the 10% of the nodes with
lowest node centrality, and uniformly sample 5 nodes from the remaining.

In this way, the training nodes of the dominant class are biased towards high-centrality nodes while
the training nodes of the other classes are biased towards low-centrality nodes.

After the biased training set is constructed, we randomly sample 500 validation nodes and 1000 test
nodes from the remaining nodes and perform the model training following the standard setup as the
previous experiments.

26



1 2 3 4 5 6 7 8 9 1011121314151617181920

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AC
C

(a) GCN.
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(b) GraphSAGE.
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(c) MLP.

Figure 10: Results on OGBN-Arxiv. Test accuracy disparity across subgroups by aggregated-feature
distance. Each figure corresponds to a model. Bars labeled 1 to 20 represent subgroups with
increasing distance to training set.
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(b) GraphSAGE.
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(c) MLP.

Figure 11: Results on OGBN-Products. Test accuracy disparity across subgroups by aggregated-
feature distance. The experiment and plot settings are the same as Figure 10.

C Extra Experiment Results

C.1 Accuracy Disparity on Amazon Datasets

In addition to the commonly used citation network benchmarks, Cora, Citeseer, and Pubmed [37, 47],
we also provide results of the test accuracy disparity experiments of subgroups by aggregated-feature
distance and geodesic distance on Amazon-Computers and Amazon-Photo datasets [38], which have
a similar scale but a different network type compared to the three citation networks.

For Amazon-Computers and Amazon-Photo, we follow exact the same experiment procedure as for
Cora, Citeseer, and Pubmed. The results of subgroups by aggregated-feature distance are shown in
Figure 8 and the results of subgroups by geodesic distance are shown in Figure 9. The results are
respectively similar as those in Figure 1 and Figure 2.

C.2 Accuracy Disparity on Open Graph Benchmarks

We further provide experiment results on two large-scale datasets from Open Graph Benchmark [17],
OGBN-Arxiv and OGBN-Products.

For OGBN-Arxiv and OGBN-Products, we first follow the standard training procedure suggested by
Open Graph Benchmark [17] to train a GCN, a GraphSAGE, and an MLP. And we split the test groups
into 20 groups in terms of the aggregated feature distance. As there are more test nodes available,
we can afford the split of more groups better resolution. The results on OGBN-Arxiv and OGBN-
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(b) GraphSAGE.
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(c) MLP.

Figure 12: Results on OGBN-Arxiv. Test accuracy disparity across subgroups by aggregated-feature
distance, experimented with noisy features. The experiment and plot settings are the same as
Figure 10, except for the node features are perturbed by independent noises to reduce homophily.

Products are respectively shown in Figure 10 and Figure 11, where we observe a similar decreasing
pattern of test accuracy as in Figure 1 (on the citation networks). Since there is also a decreasing
pattern for MLP, following the experiments shown in Figure 4, we further inject independent noises
to node features to reduce the homophily of the OGBN-Arxiv dataset and repeat the experiments in
Figure 10. The results are shown in Figure 12, where, similar as Figure 4, the decreasing pattern
largely remains for GNNs but disapears for the MLP.

We also experiment on subgroups split in terms of geodesic distance and node centrality metrics. The
results of these experiments are slightly different on the large-scale datasets compared to those on the
smaller benchmark datasets.

For geodesic distance (Figure 13 for OGBN-Arxiv and Figure 14 for OGBN-Products), there is not
a descending trend of test accuracy until the last few groups. This is because the size of training
set is large such that most test nodes are 1-hop neighbors of some training nodes. Therefore most
groups are random split of such 1-hop neighbors and there will not be a descending accuracy among
these subgroups. This problem is especially obvious for OGBN-Arxiv, where 60% of the nodes are
in the training set. So we only see accuracy drop on the last two subgroups. The size of training set is
relatively smaller on OGBN-Products but still more than 60% of the test nodes are 1-hop neighbors of
some training nodes. It is worth-noting that the plots in Figure 14 have stair patterns, showing a clear
descending trend with respect to the geodesic distance. The fluctuation of early subgroups is larger on
OGBN-Arxiv because there are fewer test nodes in OGBN-Arxiv than in OGBN-Products. Overall,
there is still a clear descending trend with respect to increasing geodesic distance. But the nodes are
less distinguishable in terms of geodesic distance than aggregated-feature distance, especially when
the size of training set is large (more discussions in Appendix D.1).

For node centrality metrics, we report experiments on degree and PageRank, and omit the betweenness
and closeness metrics due to their high computation cost on large-scale graphs. The results on OGBN-
Arxiv are shown in Figure 15. It is intriguing that there is a descending trend with respect to the
degree and PageRank metrics on this particular experiment setting, though the descending trend is
not as sharp as the one in Figure 10 (experiments on aggregated-feature distance). It is possible
that, when there is a very large training set (60% in this case), the node centrality metrics become
related to the aggregated-feature distance. However, node centrality metrics again fail to capture
the descending trend on OGBN-Products, as shown in Figure 16. In future work, we plan to further
explore the relationship between the theoretically derived aggregated-feature distance and various
more intuitive graph metrics on different graph data.

C.3 More Results of Biased Training Node Selection

In Figure 5 of Section 5.2, we have shown that the learned GNN models will be biased towards
the labels of training nodes of higher centrality (while the learned MLP models do not show a
similar trend). Due to space limit, we are only able to report the experiment results on Cora with a
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(b) GraphSAGE.

Figure 13: Results on OGBN-Arxiv. Test accuracy disparity across subgroups by geodesic distance.
The experiment and plot settings are the same as Figure 10, except for the aggregated-feature distance
is replaced by the geodesic distance.
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(b) GraphSAGE.

Figure 14: Results on OGBN-Products. Test accuracy disparity across subgroups by geodesic
distance. The experiment and plot settings are the same as Figure 13.

particular class selected as the “dominant” class. Here we report the full experiment results on three
datasets, with each class selected as the “dominant” class. The results on Cora, Citeseer, and Pubmed
are respectively shown in Figures 17, 18, and 19. As can be seen from the figures, the observed
phenomenon is consistent over almost all settings.

D Discussions

D.1 Relationship Between Aggregated-Feature Distance and Geodesic Distance

We discuss two scenarios where the aggregated-feature distance and the geodesic distance are likely
to be related.

Smoothing effect of feature aggregation in GNNs. Many existing GNN models are known to have a
smoothing effect on the aggregated node features [24]. As a result, nodes with a shorter geodesic
distance are likely to have more similar aggregated features.

29



1 2 3 4 5 6 7 8 9 1011121314151617181920

0.55

0.60

0.65

0.70

0.75

0.80

0.85

AC
C

(a) GCN. Subgroup by degree.
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(b) GraphSAGE. Subgroup by degree.
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(c) GCN. Subgroup by PageRank.
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(d) GraphSAGE. Subgroup by PageRank.

Figure 15: Results on OGBN-Arxiv. Test accuracy disparity across subgroups by node centrality
metrics. The experiment and plot settings are the same as Figure 10.

Homophily. Many real-world graph-structured data exhibit a homophily property [28], i.e., connected
nodes tend to share similar attributes. In this case, again, nodes with a shorter geodesic distance on
the graph tend to have more similar aggregated features.

However, the geodesic distance is usually coarser-grained than the aggregated-feature distance due
to its discrete nature. When the graph is a “small world” [44] and the number of training nodes is
large, the geodesic distance from most test nodes to the set of training nodes will concentrate on 1 or
2 hops, making the test nodes indistinguishable with respect to this metric.

It is an interesting future direction to explore interpretable graph metrics that may better relate to the
aggregated-feature distance.

D.2 Implications for GNN Generalization under Non-Homophily

A number of recent studies suggest that classical GNNs (e.g., GCN [20]) can only work well when the
labels of connected nodes are similar [31, 16, 52], which is now commonly referred as homophily [28].
However, homophily is not a necessary condition to have small generalization errors in our analysis.
Instead, good generalization can be achieved when the aggregated features of test nodes are close to
those of some training nodes. Interestingly, a concurrent work [26] of this paper observes a similar
phenomenon with empirical evidence.

The new results by Ma et al. [26] and our work suggest that the space of non-homophilious data can
be further dissected into more fine-grained categories, which may motivate designs of new GNN
models tailored for each category.
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(a) GCN. Subgroup by degree.
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(b) GraphSAGE. Subgroup by degree.
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(c) GCN. Subgroup by PageRank.
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(d) GraphSAGE. Subgroup by PageRank.

Figure 16: Results on OGBN-Products. Test accuracy disparity across subgroups by node centrality
metrics. The experiment and plot settings are the same as Figure 11.

D.3 Limitations of the Analysis

To our best knowledge, this work is one of the first attempts13 to theoretically analyze the generaliza-
tion ability of GNNs under non-IID node-level semi-supervised learning tasks. While we believe
this work presents non-trivial contributions towards the theoretical understanding of generalization
and fairness of GNNs with supportive empirical evidences, there are a few limitations of the current
analysis which we hope to improve in future work.

The first limitation is that the derived generalization bounds do not yet match the practical perfor-
mances of GNNs. This limitation is partly inherited from the mismatch between the theories and the
practices of deep learning in general, as we utilize the results by Neyshabur et al. [30] to illustrate
the characteristics of the neural-network part of GNNs. In future work, we hope to adapt stronger
PAC-Bayesian bounds for neural networks under IID setup [51, 10] to the non-IID setup for GNNs.

Another limitation is that we have assumed a particular form of GNNs similar as SGC [45] or
APPNP [21]. This form of GNNs simplifies the analysis but does not include some common GNNs
such as GCN [20] and GAT [41]. We notice that the key characteristics of GNNs we need for the
analysis is that the change of outputs of GNNs under certain perturbations needs to be bounded.
A recent work [25] has shown that some more general forms of GNNs (including GCN) indeed
have bounded output changes under perturbations. So the analysis in this work can be potentially
adapted to more general forms of GNNs by utilizing such perturbation bounds. Empirically, we have

13The only other work we are aware of is by Baranwal et al. [3], where strong assumptions (CSBM) on the
data generating mechanisms are made.
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demonstrated that the accuracy disparity phenomenon predicted by our theoretical analysis indeed
appears in experiments on GCN, GAT, and GraphSAGE.

Finally, our analysis requires some assumptions on the relationship between the training set and
the target test subgroup. While, not surprisingly, we have to make some assumptions about this
relationship to expect good generalization to the target subgroup, it is an interesting future direction
to explore more relaxed assumptions than the ones used in this work.

D.4 Societal Impacts

As GNNs have been deployed in human-related real-world applications such as recommender
systems [48], understanding the fairness issues of GNNs may have direct societal impacts. On the
positive side, understanding the systematic biases embedded in the GNN models and the graph-
structured data helps researchers and practitioners come up with solutions that mitigate the potential
harms resulted by such biases. On the negative side, however, such understanding may also be used
for malicious purposes: e.g., performing adversarial attacks on GNNs that utilizes systematic biases.
Nevertheless, we believe the theoretical understandings resulted from this work contributes to a
small step towards making the GNN models more transparent to the research community, which may
motivate the design of better and fairer models.
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(a) Model: GCN. Class: 1.
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(b) Model: GAT. Class: 1.
degree closenessbetweennesspagerank0.0

0.5
1.0
1.5
2.0
2.5
3.0

Re
la

tiv
e 

Ra
tio

 o
f F

PR

(c) Model: MLP. Class: 1.
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(d) Model: GCN. Class: 2.
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(e) Model: GAT. Class: 2.
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(f) Model: MLP. Class: 2.
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(g) Model: GCN. Class: 3.
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(h) Model: GAT. Class: 3.
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(i) Model: MLP. Class: 3.
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(j) Model: GCN. Class: 4.
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(k) Model: GAT. Class: 4.
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(l) Model: MLP. Class: 4.
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(m) Model: GCN. Class: 5.
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(n) Model: GAT. Class: 5.
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(o) Model: MLP. Class: 5.
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(p) Model: GCN. Class: 6.
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(q) Model: GAT. Class: 6.
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(r) Model: MLP. Class: 6.

Figure 17: Relative ratio of FPR in the biased training node selection experiment. Remaining results
on Cora besides Figure 5. Each row corresponds to a different dominant class of choice. See Figure 5
for the plot settings.
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(a) Model: GCN. Class: 0.
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(b) Model: GAT. Class: 0.
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(c) Model: MLP. Class: 0.
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(d) Model: GCN. Class: 1.
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(e) Model: GAT. Class: 1.
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(f) Model: MLP. Class: 1.
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(g) Model: GCN. Class: 2.
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(h) Model: GAT. Class: 2.
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(i) Model: MLP. Class: 2.
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(j) Model: GCN. Class: 3.
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(k) Model: GAT. Class: 3.
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(l) Model: MLP. Class: 3.
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(m) Model: GCN. Class: 4.
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(n) Model: GAT. Class: 4.
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(o) Model: MLP. Class: 4.
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(p) Model: GCN. Class: 5.
degree closeness betweenness pagerank0

1

2

3

4

5

Re
la

tiv
e 

Ra
tio

 o
f F

PR

(q) Model: GAT. Class: 5.
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(r) Model: MLP. Class: 5.

Figure 18: Relative ratio of FPR in the biased training node selection experiment. Full results on
Citeseer. Each row corresponds to a different dominant class of choice. See Figure 5 for the plot
settings.
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(a) Model: GCN. Class: 0.
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(b) Model: GAT. Class: 0.
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(c) Model: MLP. Class: 0.
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(d) Model: GCN. Class: 1.
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(e) Model: GAT. Class: 1.
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(f) Model: MLP. Class: 1.
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(g) Model: GCN. Class: 2.
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(h) Model: GAT. Class: 2.
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(i) Model: MLP. Class: 2.

Figure 19: Relative ratio of FPR in the biased training node selection experiment. Full results on
Pubmed. Each row corresponds to a different dominant class of choice. See Figure 5 for the plot
settings.
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