
Table 9: Hyper-parameters for all MNLI Experiments.
Model Initialization Teacher Training Epochs LR NM

BERTBASE - - Finetune 50 0.0001 0.7811
1
2 -BERT Random - Finetune 75 0.0001 0.841
1
2 -BERT Random BERTBASE DPKD 25+50 0.0001 0.841
1
2 -BERT Zero-shot (PT) - Finetune 75 0.0001 0.841
1
2 -BERT Zero-shot (PT) BERTBASE DPKD 25+50 0.0001 0.841
1
2 -BERT Zero-shot (FT) - Finetune 25+50 0.0001 0.841
1
2 -BERT Zero-shot (FT) BERTBASE DPKD 25+50 0.0001 0.841

DistilBERT Pretrained - Finetune 75 0.0001 0.841
DistilBERT Pretrained BERTBASE DPKD 25+50 0.0001 0.841
1
2 -BERT Zero-shot (PT) BERTLARGE DPKD 25+50 0.0001 0.841
1
2 -BERT Zero-shot (PT) BERTBASE without DP DPKD 10+50 0.0001 0.803
1
2 -BERT - - Structured DPIMP 25+25 0.00008 0.781

SparseBERT - - Unstructured DPIMP 15+50 0.0001 0.815

A Appendix

A.1 Software and Hardware Specifications

We use Opacus 0.15.0, Huggingface Transformers 4.10.3, PyTorch 1.9.1 with Cuda 10.2, and Python
3.8.8. We run our experiments using PyTorch’s distributed training on an Azure ML Nvidia DGX-2
system, which has 16 Tesla V100 GPUs with 512GB memory in total.

A.2 Hyper-parameters

In this section we present all the hyper-parameters used for training our models. Tables 9, 10, 11
and 12 show hyper-parameters used to produce the results in Tables 3, 5, 7, and 8. As a general note,
our experimental framework entails a large combinatorial search space for the hyper-parameters,
therefore, we take into account of the findings of prior work to be more efficient in this regard.

We fix the gradient norm to be 1 and set the batch size as 1024 in all experiments based on [75, 34].

In distillation experiments, we observed that longer training (especially for distillation part) helps
improving the performance. Therefore, we set the total number of epochs to 75 (and 40 for SST-2 due
to its smaller size in comparison). We compute the corresponding noise multiplier (NM) so that the
privacy budget gives ✏ = 4 with � = 1

N where N is the number of samples in the given dataset. We
state the epochs in the distillation experiments as x+ y format, where x corresponds to the training
epochs for the teacher and y corresponds to distillation into the student. We simply set x to be one
third of the total number of epochs. We did not spend any hyper-parameter search on this part as the
performance with this setting provided close performance to the case when the teacher is trained
without DP (hence all privacy budget is spent on distillation), which is an upper bound to private
distillation framework.

For pruning experiments, the x + y epoch format shows the epochs spent on pruning, x and on
fine-tuning, y. x epochs are divided equally in the for loop of Algorithm 2 and 3. y epochs correspond
to M iterations in Algorithm 2 and 3. We set x = 15 and ↵ = 10 based on [11].

Finally, learning rate is an important parameter to be tuned [75]. Hence, we ran a grid search over the
rates 0.0005, 0.0008, 0.001, 0.002 and picked the best one.

B Extended Related Work

Model Compression. Work on model compression can be roughly divided into three main cate-
gories: distillation, pruning, and quantization, where quantization is orthogonal to the first two and
can be applied on top of them as well [21]. Closely related to compression but outside the scope of

17



Table 10: Hyper-parameters for QQP
Model Initialization Teacher Training Epochs LR NM

BERTBASE - - Finetune 75 0.0001 0.856
1
2 -BERT Random - Finetune 75 0.0001 0.856
1
2 -BERT Random BERTBASE DPKD 25+50 0.0001 0.856
1
2 -BERT Zero-shot (PT) - Finetune 75 0.0001 0.856
1
2 -BERT Zero-shot (PT) BERTBASE DPKD 25+50 0.0001 0.856
1
2 -BERT Zero-shot (FT) - Finetune 25+50 0.0001 0.856
1
2 -BERT Zero-shot (FT) BERTBASE DPKD 25+50 0.0001 0.856

DistilBERT Pretrained - Finetune 75 0.0001 0.856
DistilBERT Pretrained BERTBASE DPKD 25+50 0.0001 0.856
1
2 -BERT Zero-shot (PT) BERTLARGE DPKD 25+50 0.0001 0.856
1
2 -BERT Zero-shot (PT) BERTBASE without DP DPKD 10+50 0.0001 0.815
1
2 -BERT - - Structured DPIMP 25+25 0.00008 0.790

SparseBERT - - Unstructured DPIMP 15+50 0.0001 0.829

Table 11: Hyper-parameters for QNLI
Model Initialization Teacher Training Epochs LR NM

BERTBASE - - Finetune 75 0.0001 1.2
1
2 -BERT Random - Finetune 75 0.0001 1.2
1
2 -BERT Random BERTBASE DPKD 25+50 0.0001 1.2
1
2 -BERT Zero-shot (PT) - Finetune 75 0.0001 1.2
1
2 -BERT Zero-shot (PT) BERTBASE DPKD 25+50 0.0001 1.2
1
2 -BERT Zero-shot (FT) - Finetune 25+50 0.0001 1.2
1
2 -BERT Zero-shot (FT) BERTBASE DPKD 25+50 0.0001 1.2

DistilBERT Pretrained - Finetune 75 0.0001 1.2
DistilBERT Pretrained BERTBASE DPKD 25+50 0.0001 1.2
1
2 -BERT Zero-shot (PT) BERTLARGE DPKD 25+50 0.0001 1.2
1
2 -BERT Zero-shot (PT) BERTBASE without DP DPKD 10+50 0.0001 1.074
1
2 -BERT - - Structured DPIMP 25+25 0.00008 1.074

SparseBERT - - Unstructured DPIMP 15+50 0.0001 1.162

this paper is neural architecture search [72, 19, 74, 61], which attempts to automate the process of
designing new neural architectures, with high performance and low computation/memory costs.

Distillation: knowledge distillation is most commonly used on output logits to train smaller BERT
models using the logits of a larger, higher accuracy teacher [58, 52, 31, 65, 7, 73, 54, 40, 71, 15,
47]. Knowledge distillation is also used for training BiLSTM models, as a faster alternative to
Transformers [70]. Compressing knowledge to a BiLSTM is typically done directly for a specific
NLP task [46]. Since BiLSTMS are usually trained from scratch on different tasks, several different
techniques are proposed to generate additional synthetic training data. [62, 45] use rule-based data
augmentation while [36] user data collected from multiple tasks to train a single model.

Pruning: Pruning [29, 11] is a technique that discovers, and then eliminates, redundant or unimportant
weights, layers, or other components. Pruning not only improves the prediction time of the model,
but it also sometimes makes the model more robust and more performant [21]. Prior work that
study pruning in the context of BERT [11] can be categorized into unstructured or structured pruning
methods. Those that prune individual weights are unstructured while structured methods prune
structured blocks of weights [33] or even complete layers in the BERT model. Structured pruning
can be done by pruning attention heads, pruning encoder units, or pruning the embedding layer.

18



Table 12: Hyper-parameters for SST-2
Model Initialization Teacher Training Epochs LR NM

BERTBASE - - Finetune 40 0.0001 1.13
1
2 -BERT Random - Finetune 40 0.0001 1.13
1
2 -BERT Random BERTBASE DPKD 15+25 0.0001 1.13
1
2 -BERT Zero-shot (PT) - Finetune 40 0.0001 1.13
1
2 -BERT Zero-shot (PT) BERTBASE DPKD 15+25 0.0001 1.13
1
2 -BERT Zero-shot (FT) - Finetune 15+25 0.0001 1.13
1
2 -BERT Zero-shot (FT) BERTBASE DPKD 15+25 0.0001 1.13

DistilBERT Pretrained - Finetune 40 0.0001 1.13
DistilBERT Pretrained BERTBASE DPKD 15+25 0.0001 1.13
1
2 -BERT Zero-shot (PT) BERTLARGE DPKD 15+25 0.0001 1.13
1
2 -BERT Zero-shot (PT) BERTBASE without DP DPKD 10+25 0.0001 1
1
2 -BERT - - Structured DPIMP 16+24 0.0001 1.13

SparseBERT - - Unstructured DPIMP 15+25 0.0001 1.13

Unstructured pruning methods include magnitude pruning [11], which simply removes weights
close to zero, movement-based pruning [59], which removes weights moving towards zero during
fine-tuning, and reweighted proximal pruning (RPP) [25], which uses iteratively reweighted l1
minimization followed by the proximal algorithm for decoupling pruning and error back-propagation.

Quantization: Quantization involves reducing the number of unique values required to represent
model weights and activations enabling their representation with only few bits, reducing the memory
footprint, and lowering the precision of the numerical calculations. A naive approach to quantization
is to simply truncate each weight to the target bitwidth, which often results in a significant drop in
accuracy of the model [56]. To mitigate this Quantization-Aware Training (QAT) is used, which
involves additional training steps to adjust the quantized weights [78, 60].

Differentially Private Model Traning. Prior related work studies differentially private training [1]
of language models from scratch on LSTMs [41, 8], or transformer-based large language models,
i.e. LLMs [2, 30]. A more recent line of work studies private fine-tuning of pre-trained LLMs using
DPSGD [75, 34]. These works demonstrate that larger pre-trained models have better performance
when fine-tuned privately, than smaller models with fewer parameters, which is contrary to what
was observed before when training models from scratch [4, 10, 64]. Different from our problem
setting is an interesting problem of protecting privacy during prediction time, which is studied in
recent work [22, 39]. [69] study model compression with privacy using KD algorithm for image
classification problems. However, their setting is different from ours as they assume the availability of
public datasets that have similar distribution as the private datasets. Thus, their framework for doing
KD is quite different from ours. [57] study model compression in the federated learning framework.
Finally, besides privacy, differential privacy algorithms DPSGD and PATE have also been investigated
from the fairness perspective by recent work [3, 66].

19


	Introduction
	Our Contributions

	Preliminaries
	Training via DPSGD

	Problem Statement
	Compressed Models via Knowledge Distillation
	Non-Private Knowledge Distillation
	Differentially Private Knowledge Distillation (DPKD)
	Empirical Evaluation of DPKD Algorithm
	Better Student Models via Zero-shot Initializations
	Better Models are Better Teachers?

	Evolving Teacher to Student Models via Pruning
	Model Compression via Pruning
	Iterative Magnitude Pruning (IMP)
	Structured DPIMP
	Unstructured DPIMP

	Conclusions and Future Directions
	Appendix
	Software and Hardware Specifications
	Hyper-parameters

	Extended Related Work

