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A Related Domain Adaptation Scenarios

Continuous domain adaptation assumes the target data change continually, as opposed to a static target
distribution. Furthermore, it is important to avoid catastrophic forgetting (previous knowledge). In this
work, we make no assumption about the relationship between the distribution of subsequent samples, each
sample could come from a di�erent distribution. For this reason, our models are initialized to the pretrained
weights before adapting to a new image and catastrophic forgetting is not a concern. While single-image
adaptation methods can be extended to continual learning, it is not clear that methods performing better
in the single-image setup will also perform better in batch or stream of data mode.

Domain generalization aims for a strong model that would generalize to unseen domains without any
adaptation. Common approaches are domain-invariant representation learning, data augmentation or data
generation. In contrast, this work focuses on adapting a pre-trained model to become a specialist in the
current domain. It was shown in Volpi et al. (2022) that a stronger, more general model can lead to
better adaptation results, making these directions complementary. However, without adaptation, training
a very general model on a large set of distributions may harm the model’s performance on the individual
distributions when compared to specialized models with carefully optimized data augmentation Aquino et al.
(2017); Steiner et al. (2021).

Online domain adaptation expects a stream of data as input, possibly a single one, as opposed to a whole
dataset. Test-time adaptation methods can be sued for online adaptation but generally, online adaptation
techniques do not assume the source data are not available.

Zero-shot segmentation requires the model to directly perform predictions for previously unseen classes
without any adaptation to these classes.

B Baseline methods

In this section, the self-supervised loss functions optimized in the baseline methods are described, as well as
the adaptations from the original implementation to the single-image setup when necessary.

B.1 Entropy Minimization (Ent)

The Ent method minimizes the entropy of the segmentation predictions. In the context of learning with
limited supervision, it was proposed in Grandvalet & Bengio (2004) for semi-supervised learning. In TTA,
there is no labelled set that could be leveraged as regularization like in semi-supervised learning but the
methods were shown to work for TTA as well Wang et al. (2020b). It was also shown that larger batch
size and updating the parameters of the normalization-layers only improve stability of the method. But
on segmentation, a dense-prediction task, adapting to a single image can lead to positive results, especially
when not updating the batch normalization statistics but only the learnable parameters like in Volpi et al.
(2022).

The method is simple, computationally e�cient and widely adopted as a baseline. More formally, the method
minimizes the entropy of the segmentation model predictions s = f◊

S (x) for an image x:

LEnt =
Nÿ

i=1

Cÿ

i=1
sic · log(sic) (7)

where C is the total number of classes, sic corresponds to the i-th pixel of the segmentation prediction s for
class c and N is the total number of pixels in the image.

In this work, the batch normalization Io�e & Szegedy (2015b) statistics are not updated since it relies on
the presence of batch normalization layers while many recent architectures use other normalization layers
such as layer normalization Ba et al. (2016).
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B.2 Pseudolabelling (PL)

Pseudolabelling also comes from semi-supervised learning Lee et al. (2013) and is based on the idea of using
the segmentation prediction of an image (prediction for each class binarized through argmax) as ground
truth to optimize the model. In e�ect, it is the same as pseudo-labelling since both methods reduce class
overlap. However, pseudolabelling has the advantage of allowing for di�erent loss function. While the CE
loss is typically optimized, our experiments show that in the single image setup, IoU leads to superior results.

B.3 Adversarial Transformation Invariance (Adv)

This method is an extension of TIPI (Test-Time Adaptation with Transformation Invariance) by Nguyen et al.
(b) to image segmentation. The main idea is to make the network invariant to adversarial transformation of
the input image as a representative of domain shifts.

The optimization loss is computed as the reverse KL divergence loss between the model prediction sÕ = f◊
S (xÕ)

where xÕ is an adversarially transformed image and the prediction on the original input s = f◊
S (x).

LAdv = LKL(si, sÕ
i) (8)

where sÕ
i is the adversarially transformed prediction and KL is the Kullback-Leibler divergence loss defined

as

LKL(p, q) = 1
N

Nÿ

i=1
qi · log(qi

pi

) (9)

In forward KL, p corresponds to the model prediction while q to the ground truth. Please note that, as
suggested in Nguyen et al. (b), the reverse KL is used in the proposed method where the input arguments
to the function are switched, compared to forward KL. Another important implementation detail is that the
gradients should not flow through sÕ

i - the tensor needs to be detached before the loss computation.

The same adversarial attacks in terms of the ground truth as for the IoU estimation and mask refinement
methods are used to generate xÕ but the computational complexity is reduced by using the Fast Gradient
Sign Attack (FGSM) proposed in Goodfellow et al. (2014).

Importantly, two sets of batch normalization statistics are kept in Nguyen et al. (b), which is not done in our
work due to the aim for general methods that do nto assuem the presence of specific network layers. This
may be the reason why the methods perform poorly in our experiments. Another thing we ntoed is the high
variance of the KL loss.

B.4 Augmentation Consistency (AugCo)

The method of Prabhu et al. (2021) is adapted to the single image setup. The idea is to create two seg-
mentation views based on the input image, both based on a random bounding box with parameters –.
The bounding box should take 25-50 % of the original image area and preserve its aspect ratio. View 1 is
created by cropping and resizing the segmentation of the original image, V1 = resize(crop–(s), H, W) where
s = f◊

S (x) is the segmentation prediction for an image x of spatial dimensions H, W. View 2 is created
as the segmentation prediction on a cropped, resized and randomly augmented image, V2 = f◊

S (xÕ) where
xÕ = resize(crop–(jitter(x)), H, W).

Finally, two masks are created to identify reliable predictions: Consistency mask based on consistency
between the predictions of the two views, and confidence mask based on the confidence in the prediction
in V2, binarized with a confidence threshold ◊. These are then combined with the OR operation. We set
◊ = 0.8.

The network parameters are then updated via pseudo-labelling based on predictions of V2 and using reliable
pixels only.

22



Published in Transactions on Machine Learning Research (05/2024)

Figure 11: Visualization of the predicted views, confidence, consistency and reliablity (confident | reliable)
masks used by the AugCo TTA method. Confident/consistent/reliable predictions are shown in yellow.

In Prabhu et al. (2021), an auxiliary information entropy loss preventing trivial solutions is also optimized.
This loss requires running class-frequency statistics and is not applicable to the single-image setup. Further,
an adaptive threshold based on per-class confidence distirbution in a batch of images is computed iinstead
of a fixed threshold, which is also not applicable in our setup.

An example of the two views and the consistency and confidence masks, as well as the resulting reliability
masks, are shown in Figure 11. For more details please see the original work.

C Adversarial refinement training

A visulaisation of mask evolution as the adversarial attack progresses is shown in Figure 12. It can be
observed that the first iterations typically result in very small changes in easily confused areas, turning into
more and more distorted masks.

Figure 12: Evolution of masks over iterations of a projected gradient descent adversarial attack on the input
image, the target being mask inversion for all of the classes. These masks serve as training data for the
refinement module.

Instead of the iterative Projected Gradient Descent (PGD). However, since the projection only consists in
restricting the output to a valid range for an image, typically implemented by simply clipping the output, it
is also often referred to as iterative FGSM.
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corruption description

brightness is an additive intensity transformation, xc = clip(x+b) where b controls the level.

contrast is a multiplicative intensity transformation, xc = b(x ≠ x) + x where b controls
the level and x is a per-channel mean of the image intensities.

frost first crops a portion of one of the frost image templates at a random location of
the same size as the input image, xf. Then we compute xc = b1x + b2xf where
the weights b1, b2 control the level.

fog first generates a heightmap xh using the diamond-square algorithm Fournier et al.
(1982), where the wibble is controlled by a parameter b1. It is then combined with
the input image as xc = (x+b1·xh)·max(x)

max(x)+b1
.

gaussian noise is generated as xc = x + n where n ≥ N (0, b) and b controls the level.

shot noise is generated as xc ≥ Pois(x·b,⁄=1)
b where Pois denotes the Poisson distribution and

b controls the level.

spatter simulates mud or water spoiling. The main idea of the algorithm is a combination
of thresholding and blurring random noise.

defocus blur first generates a disk kernel K with radius b1 and alias blur b2. The kernel is then
used to filter each of the channels xc = K(x).

gaussian blur corrupts the image by gaussian blurring xc = N (x, b) where b controls the level.

jpeg is computed as xc = jpeg(x, b) where jpeg performs the JPEG compression with
quality b.

Table 5: Corruptions and their implementation details, a subset from Hendrycks & Dietterich (2019). The
input of the transformation is an image x normalized to the (0, 1) range, the output is a corrupted image xc.
The clip function limits the values to the [0, 1] range. This function is always applied to the output image
after the transformation to obtain the final output xf = clip(xc). For more details on the transformations
and the values defining the level, please refer to the codebase.

D Synthetic corruptions

The corruptions used in our experiments are a subset of the corruptions from Hendrycks & Dietterich (2019).
An overview of the corruptions, as well as implementation details, can be found in Table 5

E Additional experimental results

SITTA training results

The evolution of mIoUi over TTA iterations depending on the hyper-parameters on the GTA5-C validation
set can be found in Figure 14. The same results for the COCO-C validation dataset can be found in Figure
15.

Test results The mIoUc comparison for all classes on the ACDC and Cityscapes test datasets can be found
in Figure 13.

Additional experiments The refinement module is trained to predict a clean mask based on a corrupted
mask simulating masks processed by the model under domain shift. The clean mask can be the segmentation
prediction on clean, non-corrupted images or, when available, ground truth masks can be used instead.
Comparison of these two choices is shown in Table 6. The results are somewhat inconclusive - for the COCO
model it can be seen that the model trained on predictions is substantially better than the one trained on
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Figure 13: GTA5-C: IoUc per-class comparison of di�erent TTA methods.

mIoUi

dataset trained on non-adapted TTA

COCO-C predictions 55.01 57.31
gts 55.01 55.88

GTA5-C predictions 35.18 38.63
gts 35.18 38.69

Table 6: Comparison of training the refinement module with ground truth masks and with segmentation
model predictions. The mIoUi aggregated across all corruption types and levels is reported with overall
optimal hyper-parameters for each dataset.

ground truth. The GTA5 model performs similarly in both cases. One could argue that learning with GT
can compensate for some of the mistakes even source distribution images, since prediction from output space
back to output space is di�erent then prediction from image to output space. On the other hand, when
predictions di�er significantly from ground truth even on source distirbution images, it can result in noiser
data and more di�cult training. The choice should be validated experimentally for each model and dataset.

Visualization on test datasets This part presents the visualizations of the Ref TTA method on the test
datasets. The Ref method was selected because among the best performing methods, it is the most novel
in the image segmentation setup and has shown particularly strong performance on images most severely
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Figure 14: GTA5: miIoU evolution over 10 TTA iterations as a function of the learning rate. The results
are reported as ‘method - loss - optimized parameters’. The y-axes scale di�ers for each subplot to better
visualize learning-rate di�erences for each method.

Figure 15: COCO-C: miIoU evolution over 10 TTA iterations as a function of the learning rate. The results
are reported as ‘method - loss - optimized parameters’. The y-axes scale di�ers for each subplot to better
visualize learning-rate di�erences for each method.

impacted by domain shift. The visualizations can be found in Figure 16 (VOC), Figure 17 (ACDC-fog),
Figure 18 (ACDC-night), Figure 19 (ACDC-snow), Figure 20 (ACDC-rain) and Figure 21 (Cityscapes).
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Figure 16: Segmentation evolution during TTA with Ref on VOC test set. First row shows the evolution of
masks, second row shows the input image and segmentation improvement w.r.t. to the non-adapted mask.
Improved and deteriorated pixels are highlighted.
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Figure 17: Segmentation evolution during TTA with Ref on ACDC-fog test set. First row shows the evolution
of masks, second row shows the input image and segmentation improvement w.r.t. to the non-adapted mask.
Improved and deteriorated pixels are highlighted.
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Figure 18: Segmentation evolution during TTA with Ref on ACDC-night test set. First row shows the
evolution of masks, second row shows the input image and segmentation improvement w.r.t. to the non-
adapted mask. Improved and deteriorated pixels are highlighted.
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Figure 19: Segmentation evolution during TTA with Ref on ACDC-snow test set. First row shows the
evolution of masks, second row shows the input image and segmentation improvement w.r.t. to the non-
adapted mask. Improved and deteriorated pixels are highlighted.
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Figure 20: Segmentation evolution during TTA with Ref on ACDC-rain test set. First row shows the
evolution of masks, second row shows the input image and segmentation improvement w.r.t. to the non-
adapted mask. Improved and deteriorated pixels are highlighted.
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Figure 21: Segmentation evolution during TTA with Ref on cityscapes test set. First row shows the evolution
of masks, second row shows the input image and segmentation improvement w.r.t. to the non-adapted mask.
Improved and deteriorated pixels are highlighted.
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