
A Environments

In the following sections we describe the environments used in our experiments.

A.1 Diabolical lock

The diabolical lock problem [36] consists of states organised in 3 rows {a, b, c} and H columns from
{1, 2, . . . H} (see Figure 6). In each episode, the agent is initialised in one of two possible starting
states, either at a1 or b1 with equal probability. Each episode lasts for H time steps.

Transition dynamics In each state the agent has L available actions, only one of which is ‘good’
and transitions to a ‘good’ state (green) in the next column with equal probability. For instance, the
good action in state at leads to at+1 or bt+1 with equal probability. Taking the good action gives
a negative (anti-shaped) reward of �1/H , except at the end of the lock (states aH or bH ), where
the sparse optimal reward of 10 is received. The remaining L � 1 actions in any state are ‘bad,’
causing a deterministic transition to the ‘dead’ row c (red) at the next column (with zero reward).
The agent remains in the ‘dead’ row c till the end of the episode, i.e., all actions from ct transition
to ct+1 with zero reward. The good action in each state is assigned uniformly at random from the
L available actions upon initialising the environment. The good action in every state remains fixed
across episodes.

Noisy observations The diabolical lock environment provides a high-dimensional noisy observation
based on the environmental state. The observation is obtained by concatenating one-hot vectors
encoding the row and column, adding independent Gaussian noise with variance �2

o
to each component

of the vector, padding this vector with zeroes to the nearest higher power of two and then applying a
Hadamard rotation matrix.

In our experiments, we select H = 100, L = 10, and �o = 0.1, which is similar to the configuration
used by Misra et al. [36]. We were unable to find a publicly available implementation of the
environment introduced by Misra et al. [36] and therefore used our own (no license).

A.2 MiniGrid

The MiniGrid [13] (Apache License 2.0) set of environments are partially observable, procedurally
generated, and provide a sparse reward upon successful completion of the task.

The agent receives a 7⇥ 7 egocentric view of its surroundings, which is a 7⇥ 7⇥ 3 integer encoding
that describes the contents of the visible grid cells. The agent cannot see behind walls or closed doors.

For the study with panoramic observations, we follow the implementation of Parisi et al. [42] where
a rotation invariant view is created by concatenating the four observations from when the agent faces
north, east, south and west to create a 7⇥ 7⇥ 12 panoramic observation.

At every step, the agent has seven available actions: turn left, turn right, move forward, pick up, drop,
toggle (used to open doors), and done.

A new configuration of the environment is generated for each episode. Episodes finish when the
agent has interacted with the environment for the maximum number of steps permitted, or if the agent
successfully completes the task, in which case it also receives a non-zero reward depending on the
number of steps taken to complete the task.

KeyCorridor The agent has to pick up a ball behind a locked door. To unlock the door, the agent
must first find the key, which is also hidden behind closed (but unlocked) doors. We consider two
levels of difficulty in this class of environments. The KeyCorridor-S5R3 environment poses a harder
exploratory challenge due to larger rooms and hallways in comparison to KeyCorridor-S4R3.

ObstructedMaze Like with the KeyCorridor environments, the goal of the agent is to pick up
a ball behind one of the locked doors. We again consider two levels of difficulty in this class of
environments. In the ObstructedMaze-2Dlh environment the keys are hidden inside chests. In
ObstructedMaze-2Dlhb the keys are hidden inside chests and the doors are blocked by obstacles that
need to be displaced.
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Figure 6: Based on Figure 5 from Misra et al. [36]. The diabolical lock environment is organised in
3 rows {a, b, c} and H columns. The green states of rows a and b correspond to the ‘good’ states.
The red states of row c correspond to the ‘dead’ states. The grey square denotes the terminal state.
The black arrows represent deterministic transitions to the ‘dead’ row of the next column. The green
dotted arrows denote the equally likely transitions to one of two good states by taking the ‘good’
action. The yellow arrows mark the final transitions which provide the optimal sparse reward upon
termination.

MultiRoom The goal of the agent is to reach the goal state in the farthest room. The notation
N12-S10 signifies that the environment consists of 12 rooms with a maximum size of 10. These
environments (MultiRoom-N7-S8 and MultiRoom-N12-S10) are not available in the default set
of MiniGrid environments. We borrow the implementation of these environments from previous
work [46](Creative Commons Attribution-NonCommercial 4.0 International Public License).

B Implementation details for diabolical lock experiments

This section presents the implementation details for our experiments with the diabolical lock envi-
ronment. In the following, we describe the architectures and hyperparameters of our actor, critic,
pseudo-reward generator, and ensemble of predictors used in these experiments.

B.1 Neural network architectures

Base agent We use the PPO [57] implementation from the rl-starter-files repository [74].
The actor and critic share a multi-layer perceptron (MLP) of three layers with 256 units and ReLU
non-linearities. Separate linear heads for the actor and critic operate on the representation provided
by the shared architecture.

Pseudo-reward generator The randomly initialised fixed network for generating pseudo-rewards
is a two layer MLP with ReLU non-linearities in the hidden layer of 128 units. The linear output
layer provides a vector of 128 pseudo-rewards.

Predictor networks The predictor network for RND has the same architecture as the pseudo-reward
generator.

The predictor network for RC-GVF is an MLP (no recurrence here) with wider layers and one extra
layer compared to the pseudo-reward generating network. Specifically, a predictor consists of a
network of three layers with 256 units each with ReLU non-linearities in the two hidden layers. We
use an ensemble of K = 2 predictors in the case of RC-GVF. In these experiments with the diabolical
lock, the individual predictors in the ensemble are completely separate neural networks which do not
share parameters.

B.2 Grid search and hyperparameters

Hyperparameters of the base PPO agent are provided in Table 2. These were selected based on
previous work [36] and apply to our method and RND.

Utilising an intrinsic reward introduces additional hyperparameters. We conducted a grid-search to
select the values for hyperparameters introduced by RND and RC-GVF. The best hyperparameter
configuration was selected by evaluating average lock completion for each candidate in the grid
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Table 2: PPO hyperparameters for diabolical lock experiments.

Hyperparameter Value

Discount factor 0.99
GAE lambda 0.95
Optimization epochs 5
Learning rate (⌘) 0.0005
Clipping epsilon 0.2
Rollout length (frames per process) H = 100
Batch size 256
Parallel processes 16
Entropy coefficient 0.01
Value loss coefficient 0.5

across 5 seeds. In Table 1, we report the final results with 10 independent runs of the selected
hyperparameters.

For RND, the hyperparameters include the intrinsic coefficient � and the learning rate of the predictor
⌘p. The search candidates and the final selected values are described in Table 3.

Table 3: RND specific hyperparameters for diabolical lock experiments.

Hyperparameter Candidates Selected

Predictor learning rate ⌘p {⌘, 0.75⌘, 0.5⌘, 0.25⌘, 0.1⌘} 0.25⌘ (⌘ = 0.0005)
Intrinsic reward coefficient � {4.0, 2.0, 1.0, 0.5, 0.25} 0.5

In comparison to RND, RC-GVF introduces additional hyperparameters such as the GVF discount
factor �z , the associated bias-variance tradeoff parameter for the TD-targets �z , and the number
of predictors in the ensemble. We observed good results with our default values of �z = 0.6 and
an ensemble of 2 predictors. The search candidates and the final selected values for RC-GVF are
described in Table 4.

Table 4: RC-GVF specific hyperparameters for diabolical lock experiments.

Hyperparameter Candidates Selected

Number of predictors {2} 2
Predictor learning rate ⌘p {⌘, 0.5⌘, 0.25⌘} 0.5⌘ (⌘ = 0.0005)
Intrinsic reward coefficient � {4.0, 2.0, 1.0, 0.5} 2.0
GVF discount factor �z {0.6} 0.6

The learning rates of the base agent and predictor are linearly annealed to zero over 100 million
frames. We used the Adam optimiser [29] for the PPO agent and the predictor in all experiments.

C Implementation details for Minigrid experiments

This section presents the implementation details for our experiments with the MiniGrid environments.

C.1 Neural network architectures

Base agent We use the PPO implementation from the rl-starter-files [74] repository. We
retain the same architecture for the actor and critic as provided in their implementation.

The actor and the critic share three convolution layers with 16, 32 and 64 output channels, with
2 ⇥ 2 kernels and a stride of 1. Each convolution layer is followed by a ReLU non-linearity. A
2⇥ 2 max-pooling is applied after the first convolution layer. The output from the convolution layers
is flattened and provided to an LSTM [21] with a hidden dimension of 64. Separate multi-layer
perceptron (MLP) heads for the actor and critic operate on the output of the LSTM to output the

19



action logits and the value. Each MLP has 64 hidden units with a hyperbolic tangent (tanh) activation
function.

Pseudo-reward generator The pseudo-reward generator is implemented as a convolutional neural
network whose output is flattened to provide a vector of pseudo-rewards zt+1 2 Rd. It has a similar
architecture to the convolutional layers used in the base agent.

Concretely, this network consists of three convolution layers, with 32, 64, and d output channels
respectively, with 2⇥ 2 kernels and a stride of 1. Here, d is the number of pseudo-rewards, which
we set as d = 128 for our experiments. ReLU non-linearity is applied after the first two convolution
layers. Additionally, a 2⇥ 2 max-pooling is applied after the first convolution layer.

Predictor networks In the case of RND, the predictor network has the same architecture as the
pseudo-reward generator.

For RC-GVF, we have an ensemble of predictors with K members. An ensemble of K two layer
MLP heads (with 256 units and ReLU non-linearity) operate on a common representation of 128
dimensions generated by a shared recurrent (LSTM) core. The LSTM operates on histories of
observations, actions, and pseudo-rewards.

The observation at time step ot is fed through three convolution layers with 32, 64 and 128 output
channels, with 2 ⇥ 2 kernels and a stride of 1. Each convolution layer is followed by a ReLU
non-linearity. A 2 ⇥ 2 max-pooling is applied after the first convolution layer. The output from
the convolution layers is flattened and provided to a fully connected layer which provides a 64
dimensional representation of the input observation.

The action at the previous time step at�1 (as a one-hot input) is transformed into a 32 dimensional
vector by a fully connected layer. A fully connected layer is also applied to the previous pseudo-
reward vector zt to obtain a 32 dimensional vector. The observation, action and pseudo-reward
representations are concatenated into a 128 dimensional vector which is fed as input to the LSTM
(with hidden dimension of 128).

C.2 Details about baseline implementations

We employed the same base PPO agent (see Appendix C.1) for all approaches to maintain consistency.
This means that our implementation of baselines deviate slightly from the original implementations.
Nevertheless, we obtain comparable or better results than the reported ones on the considered
environments. We describe the key details of our AGAC [18] and NovelD [77] implementations
below.

AGAC The PPO implementation of AGAC utilised independent convolutional neural networks for
the actor and critic with frame stacking rather than a shared recurrent neural network (for actor and
critic) as used by us.

In our implementation, the policy predictor (or adversary) has the same architecture as the recurrent
actor-critic (see Appendix C.1), but without the MLP head for the critic.

NovelD NovelD derives intrinsic rewards using RND as a novelty measure. The neural network
architecture details for NovelD therefore follow those described for RND (see Appendix C.1).

A major difference is that the original implementation of NovelD used IMPALA [16] as the base
agent instead of PPO.

Another deviation in our version of NovelD is that we do not use the Episodic Restriction on Intrinsic

Reward (ERIR) multiplier for using episodic counts. The ERIR multiplier uses episodic counts from
the simulator to ensure that intrinsic rewards are provided only when the agent visits a state for the
first time in an episode. For consistency, we use episodic counts in a similar manner to RIDE [46]
and AGAC [18], where the square root of episodic count divides the main intrinsic reward term. Our
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NovelD intrinsic reward is given by4

Ri(ot; st, ot+1) =
max [novelty(ot+1)� ↵ · novelty(ot), 0]p

Ne(st)
, (9)

where novelty(.) is measured as the RND prediction error (see Equation 2), ↵ is a hyperparameter
called the scaling factor, and Ne(st) is the number of times the agent has been in that state in that
episode.

On the use of episodic counts Note that in our experiments the episodic counts refer to agent
positions alone, following AGAC [18]. Other approaches have used different strategies to obtain
episodic counts from the simulator. For example, RIDE [46] and NovelD [77] derive counts from
fully observable views which provide count information based on agent position, direction or whether
an object has been picked up etc.

C.3 Grid search and selected hyperparameters

In this section we describe our hyperparameter selection strategy for the MiniGrid experiments.

Our implementation utilises the PPO implementation from the rl-starter-files [74] repository.
The hyperparameters for the common PPO base agent were selected via preliminary experiments and
are similar to the ones provided in the rl-starter-files repository. These are detailed in Table 5.

Table 5: PPO hyperparameters for MiniGrid experiments.

Hyperparameter Value

Discount factor 0.99
GAE lambda 0.95
Optimization epochs 4
Learning rate (⌘) 0.0002
Clipping epsilon 0.2
Rollout length (frames per process) 128
Batch size 256
Parallel processes 16
Value loss coefficient 0.5
Recurrence (for truncated BPTT [75]) 4

We choose the hyperparameters introduced by each intrinsic reward approach via a grid search.
We select separate hyperparameters for each environment type: MultiRoom, KeyCorridor and
ObstructedMaze. To select hyperparameters, we evalaute each candidate configuration with 5 seeds
on the simpler versions of the considered environments (MultiRoom-N7S8, KeyCorridor-S4R3 and
ObstructedMaze-2Dlh) and select the configuration with the highest average return.

Final results are reported with separate independent runs on these environments (usually with 10 seeds)
and also the harder versions of the considered environments (MultiRoom-N12S10, KeyCorridor-S5R3
and ObstructedMaze-2Dlhb).

All experiments used the Adam optimiser [29] for the PPO agent and the respective predictors.

Similar to previous approaches [46, 18], the learning rates are linearly annealed to zero while
interacting with the environment during 10 million frames for the MultiRoom environments, 30
million frames for the KeyCorridor and ObstructedMaze-2Dlh environments, and 90 million frames
for the ObstructedMaze-2Dlhb environment.

C.3.1 RC-GVF

We selected the GVF discount factor �z = 0.6 and the associated �-return parameter �z = 0.9
as default values for all experiments. We found that K = 2 predictors in the ensemble worked

4We note that the authors of NovelD mention that replacing the ERIR term with scaling based on the
square root of episodic counts still outperforms previous baselines (https://openreview.net/forum?id=
CYUzpnOkFJp).
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sufficiently well in preliminary experiments. We identified the entropy coefficient, intrinsic reward
coefficient and learning rate of the predictor through a grid search. The candidate and selected
values are described in Tables 6 and 7 for the setting with egocentric and panoramic observations
respectively.

Table 6: RC-GVF specific hyperparameters for MiniGrid experiments with egocentric observations.

Egocentric observations

Hyperparameter Candidates MultiRoom KeyCorridor ObstructedMaze

Number of predictors {2} 2 2 2
GVF discount factor �z {0.6} 0.6 0.6 0.6
GVF �z (for TD-� targets) {0.9} 0.9 0.9 0.9
Predictor learning rate ⌘p {0.5⌘, 0.75⌘, ⌘} 0.75⌘ 0.75⌘ 0.75⌘
Intrinsic reward coefficient � {0.1, 0.5, 1.0} 1.0 0.1 0.1
Entropy coefficient {0, 1e� 5, 1e� 4, 1e� 3} 1e-5 1e-5 1e-4

Table 7: RC-GVF specific hyperparameters for MiniGrid experiments with panoramic observations.

Panoramic observations

Hyperparameter Candidates MultiRoom KeyCorridor ObstructedMaze

Number of predictors {2} 2 2 2
GVF discount factor �z {0.6} 0.6 0.6 0.6
GVF �z (for TD-� targets) {0.9} 0.9 0.9 0.9
Predictor learning rate ⌘p {0.5⌘, 0.75⌘, ⌘} 0.5⌘ 0.75⌘ 0.5⌘
Intrinsic reward coefficient � {0.1, 0.5, 1.0} 0.1 1.0 0.1
Entropy coefficient {0, 1e� 5, 1e� 4, 1e� 3} 1e-5 1e-5 1e-4

C.3.2 RND

Tables 8 and 9 describe the search grid and selected hyperparameters for RND with egocentric and
panoramic observations respectively.

Table 8: RND specific hyperparameters for MiniGrid experiments with egocentric observations.

Egocentric observations

Hyperparameter Candidates MultiRoom KeyCorridor ObstructedMaze

Predictor learning rate ⌘p {0.5⌘, 0.75⌘, ⌘} 0.75⌘ 0.75⌘ 0.75⌘
Intrinsic reward coefficient � {0.0001, 0.0005, 0.001, 0.005} 0.0005 0.0005 0.0005
Entropy coefficient {0, 1e� 5, 1e� 4, 1e� 3} 0 1e-5 1e-4

Table 9: RND specific hyperparameters for MiniGrid experiments with panoramic observations.

Panoramic observations

Hyperparameter Candidates MultiRoom KeyCorridor ObstructedMaze

Predictor learning rate ⌘p {0.5⌘, 0.75⌘, ⌘} 0.75⌘ 0.75⌘ 0.75⌘
Intrinsic reward coefficient � {0.0001, 0.0005, 0.001, 0.005} 0.0005 0.001 0.0001
Entropy coefficient {0, 1e� 5, 1e� 4, 1e� 3} 1e-5 1e-5 1e-4

C.3.3 NovelD

NovelD relies on RND as a novelty measure and therefore has similar hyperparameters. We identified
the entropy coefficient, intrinsic coefficient and learning rate of the RND predictor through a grid
search.
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A new hyperparameter introduced by NovelD is the scaling factor (↵ in Equation 9) which was
selected as 0.5 in previous work [77]. We also found the value of 0.5 to work well in our preliminary
experiments and did not search over other values for this hyperparameter.

Tables 10 and 11 describe the search grid and selected hyperparameters for NovelD.

Table 10: NovelD specific hyperparameters for MiniGrid experiments with egocentric observations
(without counts).

Without episodic counts

Hyperparameter Candidates MultiRoom KeyCorridor ObstructedMaze

Scaling factor ↵ {0.5} 0.5 0.5 0.5
Predictor learning rate ⌘p {0.5⌘, 0.75⌘, ⌘} 0.5⌘ 0.75⌘ 0.75⌘
Intrinsic reward coefficient {0.0005, 0.001, 0.005, 0.01} 0.01 0.005 0.001
Entropy coefficient {0, 1e� 5, 1e� 4, 1e� 3} 0 1e-5 1e-4

Table 11: NovelD specific hyperparameters for MiniGrid experiments with episodic counts.

With episodic counts

Hyperparameter Candidates MultiRoom KeyCorridor ObstructedMaze

Scaling factor ↵ {0.5} 0.5 0.5 0.5
Predictor learning rate ⌘p {0.5⌘, 0.75⌘, ⌘} 0.75⌘ 0.75⌘ 0.75⌘
Intrinsic reward coefficient � {0.005, 0.01, 0.05, 0.1} 0.05 0.01 0.01
Entropy coefficient {0, 1e� 5, 1e� 4, 1e� 3} 1e-5 1e-5 1e-4

C.3.4 AGAC

We identified the entropy coefficient, intrinsic coefficient and learning rate of the predictor (‘adversary’
in the original terminology) through a grid search.

AGAC also introduces a hyperparameter called the ‘episodic count coefficient’ to scale the bonus
from the episodic counts term.

Our main results in Figure 2 are obtained without the use of episodic counts (this coefficient is set to
zero). To report results with episodic counts in Figure 3 we search over values of this hyperparameter.

Tables 12 and 13 describe the search grid and selected hyperparameters for AGAC.

Note that in the experiments without episodic counts, AGAC did not succeed (with any search
configuration) on any environment other than ObstructedMaze-2Dlh.

Table 12: AGAC specific hyperparameters for MiniGrid experiments with egocentric observations
(without counts).

Without episodic counts

Hyperparameter Candidates MultiRoom KeyCorridor ObstructedMaze

Predictor learning rate ⌘p {0.25⌘, 0.5⌘} 0.25⌘ 0.25⌘ 0.25⌘
Intrinsic coefficient {0.00001, 0.00005, 0.0001, 0.0005} 0.00005 0.00005 0.00005
Episodic count coefficient {0} 0 0 0
Entropy coefficient {0, 1e� 5, 1e� 4, 1e� 3} 1e-5 1e-4 1e-4

C.4 Grid search and selected hyperparameters for analysis and ablation

For the analysis of discount factors presented in Figures 4a and 4b we conducted a search over
best intrinsic reward coefficients (�) for each GVF discount factor �z . This was necessary as the
magnitudes of the TD-error are sensitive to the choice of �z . The candidates and selected intrinsic
reward coefficients (�) are reported in Table 14. The remaining hyperparameters are the same as the
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Table 13: AGAC specific hyperparameters for MiniGrid experiments with episodic counts

With episodic counts

Hyperparameter Candidates MultiRoom KeyCorridor ObstructedMaze

Predictor learning rate ⌘p {0.25⌘, 0.5⌘} 0.25⌘ 0.25⌘ 0.25⌘
Intrinsic coefficient {0.00001, 0.00005, 0.0001, 0.0005} 0.00005 0.00005 0.00005
Episodic count coefficient {0.0005, 0.001, 0.005, 0.01} 0.005, 0.001 0.001
Entropy coefficient {0, 1e� 5, 1e� 4, 1e� 3} 1e-5 1e-4 1e-4

ones selected for RC-GVF with panoramic views (see Table 7). Final results are reported with 10
independent runs of the selected hyperparameters.

Table 14: Search over intrinsic coefficients for different GVF discount factors. KCS5R3 refers to the
KeyCorridor-S5R3 environment and MRN12S10 refers to the MultiRoom-N12-S10 environment.

GVF �z Intrinsic coefficients (�) considered Selected � (KCS5R3) Selected � (MRN12S10)

0.99 { 1e-6, 5e-6, 1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3} 1e-5 1e-4
0.95 {0.0005, 0.001, 0.005, 0.01, 0.05} 0.001 0.001
0.7 {0.1, 0.5, 1} 0.5 0.1
0.6 {0.1, 0.5, 1} 1 0.1
0.3 {0.5, 1, 5, 10, 25, 50} 10 1
0.1 {1, 5, 10, 25, 50, 100} 25 5
0.05 {1, 5, 10, 25, 50, 100} 25 10
0.0 {5, 10, 25, 50, 100} 50 10

We conduct a similar search over choices of intrinsic coefficients for the ablation with components of
RC-GVF (see Figure 5). The candidates and selected intrinsic reward coefficients are reported in
Table 15. The hyperparameters for RC-GVF (�z = 0.6) and RND are the same as the ones reported
in Tables 7 and 9 respectively. Final results are reported with 10 independent runs of the selected
hyperparameters.

Table 15: Search over intrinsic coefficients for different variants of RC-GVF. KCS5R3 refers to the
KeyCorridor-S5R3 environment.

Approach Intrinsic coefficients (�) considered Selected � (KCS5R3)

RC-GVF (�z = 0.0) {5, 10, 25, 50, 100} 50
RC-GVF (�z = 0.0) w/o disagreement {0.0005, 0.001, 0.005, 0.01} 0.005

RC-GVF (�z = 0.0) w/o recurrence {10, 25, 50, 100} 50
RC-GVF (�z = 0.6) w/o disagreement {0.00001, 0.00005, 0.0001, 0.0005} 0.00005

RC-GVF (�z = 0.6) w/o recurrence {0.1, 0.5, 1} 0.5

C.5 Computational resources

All our experiments were conducted on a cluster with NVIDIA Pascal P100 GPUs. Due to low GPU
usage of a single run, we could accommodate multiple concurrent runs (usually 5) on the same node
(CPU + GPU). Our final experiments should be easy to replicate even on a single GPU machine. A
single run of RC-GVF on a desktop machine with an NVIDIA GeForce RTX 2080 GPU completes
about 30 million frames in MiniGrid (with egocentric observations) in about 9 hours (equivalent to
our KeyCorridor experiments).

D Additional experiments with the diabolical lock problem

D.1 Further baselines

Our aim with the diabolical lock experiment is to illustrate the differences between RND and RC-GVF.
For completeness, in this section, we additionally report the performance of AGAC and NovelD. We
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also investigate the performance of RND with a higher capacity predictor, as used by RC-GVF (see
Appendix B).

We conduct a grid-search to select the values for hyperparameters specific to the new baselines. These
are described in Tables 17, 18, and 19. The best configuration is selected by evaluating average lock
completion for each candidate in the grid across 5 seeds. The remaining hyperparameters are the
same as the ones detailed in Appendix B.2.

The farthest completions at different points in training (with 10 independent runs of the selected
hyperparameters) are reported in Table 20. We observe that neither AGAC nor NovelD manage to
complete the lock. AGAC does not make much progress towards solving the problem. NovelD fares
better and performs roughly as well as RND. We also observe that the higher capacity predictor does
not improve RND (on average).

Table 16: Mean over 10 seeds and (min, max) of the farthest column reached (of H = 100) at
different points on the diabolical lock problem.

Frames 5M 10M 15M 20M

RC-GVF 61 (47, 81) 94 (83, 100) 100 (100, 100) 100 (100, 100)
RND 28 (21, 41) 37 (27, 47) 41 (30, 53) 46 (33, 58)
RND (with high capacity predictor) 22 (8, 41) 28 (8, 62) 32 (8, 70) 34 (8, 72)
NovelD 28 (22, 35) 35 (26, 50) 41 (27, 54) 45 (32, 60)
AGAC 5 (5, 7) 6 (5, 7) 6 (5, 9) 6 (5, 9)

Table 17: RND (with high capacity predictor) hyperparameters for diabolical lock experiments.

Hyperparameter Candidates Selected

Predictor learning rate ⌘p {⌘, 0.75⌘, 0.5⌘, 0.25⌘} 0.25⌘ (⌘ = 0.0005)
Intrinsic reward coefficient � {4.0, 2.0, 1.0, 0.5, 0.25} 1.0

Table 18: NovelD specific hyperparameters for diabolical lock experiments.

Hyperparameter Candidates Selected

Predictor learning rate ⌘p {⌘, 0.75⌘, 0.5⌘, 0.25⌘} 0.25⌘ (⌘ = 0.0005)
Intrinsic reward coefficient � {4.0, 2.0, 1.0, 0.5, 0.25} 1.0
Scaling factor ↵ {0.5} 0.5

Table 19: AGAC specific hyperparameters for diabolical lock experiments.

Hyperparameter Candidates Selected

Predictor learning rate ⌘p {0.5⌘, 0.25⌘} 0.25⌘ (⌘ = 0.0005)
Intrinsic reward coefficient � {4.0, 2.0, 1.0, 0.5, 0.25} 1.0
Shared architecture for actor and critic {True, False} True

D.2 Ensemble size analysis

In this section, we analyse the effect of increasing the ensemble size in RC-GVF on the performance
in the diabolical lock problem. We consider 2, 4, 6 and 8 predictors in the ensemble. The other
hyperparameters are the same as those reported in Table 4.

The results are reported across 10 seeds in Table 20. For the most part, we obtain similar results for
the different ensemble sizes. The minor exception is with 6 predictors, where one run out of the ten
fails to reach the end of the lock.
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Table 20: Mean over 10 seeds and (min, max) of the farthest column reached (of H = 100) at
different points during training on the diabolical lock problem. Higher is better.

Number of predictors / Frame 5M 10M 15M 20M

2 61 (47, 81) 94 (83, 100) 100 (100, 100) 100 (100, 100)
4 66 (62, 78) 96 (82, 100) 100 (100, 100) 100 (100, 100)
6 61 (39, 75) 90 (59, 100) 96 (63, 100) 97 (67, 100)
8 69 (57, 84) 94 (77, 100) 100 (99, 100) 100 (100, 100)

E Additional experiments in MiniGrid

E.1 Intrinsic reward from solely episodic counts

Figure 7 shows that intrinsic rewards from episodic state counts are sufficient for solving the
MultiRoom-N7S8 and MultiRoom-N12S10 environments.

The exact form of the intrinsic bonus is Ri(st) =
�p

Ne(st)
, where Ne(st) is the number of times the

agent has been in that position in that episode, and � is the intrinsic reward coefficient.

We perform a search over the intrinsic reward coefficients � 2 {0.0005, 0.001, 0.005, 0.01} and
select � = 0.005 as a suitable value. The entropy coefficient for this experiment is set to 0.00001.

(a) MultiRoom-N7-S8 (b) MultiRoom-N12-S10

Figure 7: Performance with an intrinsic reward derived from episodic counts. These results show that
a bonus term from solely episodic counts can guide useful exploration in MiniGrid environments.
95% bootstrapped confidence intervals are shown for 5 seeds.

E.2 RC-GVF with episodic counts

Several recent works incorporate episodic counts from the simulator as part of their intrinsic reward
in MiniGrid [46, 18, 77]. Our main experiments with RC-GVF do not utilise episodic counts as we
do not wish to provide agents with access to privileged information. For completeness, this section
reports the result from a preliminary experiment, where we study the performance of RC-GVF with
the use of episodic counts. We incorporate episodic counts in the same way as for the other baselines
(see Appendix C.2).

To account for change in scale of the intrinsic reward with the use of the counts, we perform a search
over the intrinsic reward coefficients � 2 {1, 5, 10} and select � = 5 for KeyCorridor-S5R3 and
� = 1 for MultiRoom-N12-S10. All other hyperparameters are the same as those reported in Table 6.

As shown in Figure 8, RC-GVF can solve the harder environments (KeyCorridor-S5R3 and
MultiRoom-N12-S10) without panoramic observations when including episodic counts. In
KeyCorridor-S5R3 we observe that RC-GVF adapted in this way is competitive with the base-
lines, while in MultiRoom-N12-S10 it converges more slowly. This is unsurprising since we have not
attempted to make our approach amenable to incorporating episodic counts. Indeed, in MultiRoom-
N12-S10, we observe that RC-GVF performs worse compared to when only using episodic state-
counts (and no value function prediction), indicating that some interference takes place between
these two signals. Thus, we expect that other ways of combining (or weighting) these signals (such
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as by using an additive term for the state-counts as opposed to a multiplicative one) should lead to
improved performance when also including state-counts.

(a) KeyCorridor-S5R3 (b) MultiRoom-N12-S10

Figure 8: These results show that the performance of RC-GVF can also be improved through the
use of episodic counts. All approaches use the standard egocentric observations. 95% bootstrapped
confidence intervals are shown for 10 seeds.

E.3 Improvement from history conditioning

Figure 9: Studying the performance of RC-GVF (�z = 0) without the disagreement term on the
KeyCorridor-S5R3 environment. We see that our recurrent predictor conditioned on histories of
observations, actions and pseudo-rewards performs better than one conditioned on just histories of
observations. 95% bootstrapped confidence intervals are shown for 10 seeds.

As indicated in Figure 5a, the recurrent predictor plays an important role in the functioning of
RC-GVF. Here we present a result which shows that a recurrent predictor conditioned on histories of
observations, actions and pseudo-rewards outperforms a recurrent predictor operating on histories
of observations. Figure 9 compares the performance of the two variants on the KeyCorridor-S5R3
environment. We hypothesise that the improved results with history conditioning arise from previous
pseudo-rewards being made available to the predictor. In a procedurally generated environment,
having access to previous pseudo-rewards could support predictions of the new input observations on
which the predictor has not yet been trained.

E.4 Ensemble size analysis

Figure 10 shows the performance of larger ensemble sizes with RC-GVF in two MiniGrid environ-
ments (KeyCorridor-S5R3 and MultiRoom-N12-S10). We observe similar results for ensemble sizes
of 2, 4, 6 and 8 predictors. The intrinsic coefficient � = 1 in KeyCorridor-S5R3 and � = 0.5 in
MultiRoom-N12-S10. The remaining hyperparameters are the same as the ones in Table 7.

These results indicate that two member ensembles usually suffice in these problems. We speculate
how measuring disagreement with an ensemble of two predictors might be sufficient when also
including the prediction error term. However, note that the ensemble members have a common
recurrent core and only differ in MLP heads; perhaps having separate RNNs for each member would
lead to greater variation with ensemble size.
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(a) KeyCorridor-S5R3 (b) MultiRoom-N12-S10

Figure 10: Comparison of RC-GVF with different numbers of predictors in the ensemble. 95%
bootstrapped confidence intervals are shown for 10 seeds.
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