
Published as a conference paper at ICLR 2022

A PROOFS

A.1 PROOF OF LEMMA 2

Proof. We can rewrite V⌧1(s) as

V⌧1(s) = E⌧1
a⇠µ(·|s)[r(s, a) + �Es0⇠p(·|s,a)[V⌧1(s

0)]]

 E⌧2
a⇠µ(·|s)[r(s, a) + �Es0⇠p(·|s,a)[V⌧1(s

0)]]

= E⌧2
a⇠µ(·|s)[r(s, a) + �Es0⇠p(·|s,a)E⌧1

a0⇠µ(·|s0)[r(s
0, a0) + �Es00⇠p(·|s0,a0)[V⌧1(s

00)]]

 E⌧2
a⇠µ(·|s)[r(s, a) + �Es0⇠p(·|s,a)E⌧2

a0⇠µ(·|s0)[r(s
0, a0) + �Es00⇠p(·|s0,a0)[V⌧1(s

00)]]

= E⌧2
a⇠µ(·|s)[r(s, a) + �Es0⇠p(·|s,a)E⌧2

a0⇠µ(·|s0)[r(s
0, a0) + �Es00⇠p(·|s0,a0)E⌧1

a00⇠µ(·|s00)[r(s
00, a00) + . . .]]

...
 V⌧2(s)

B EXPERIMENTAL DETAILS

Experimental details. For the MuJoCo locomotion tasks, we average mean returns overs 10 eval-
uation trajectories and 10 random seeds. For the Ant Maze tasks, we average over 100 evaluation
trajectories. We standardize MuJoCo locomotion task rewards by dividing by the difference of re-
turns of the best and worst trajectories in each dataset. Following the suggestions of the authors of
the dataset, we subtract 1 from rewards for the Ant Maze datasets. We use ⌧ = 0.9 and � = 10.0
for Ant Maze tasks and ⌧ = 0.7 and � = 3.0 for MuJoCo locomotion tasks. We use Adam opti-
mizer (Kingma & Ba, 2014) with a learning rate 3 · 10�4 and 2 layer MLP with ReLU activations
and 256 hidden units for all networks. We use cosine schedule for the actor learning rate. We param-
eterize the policy as a Gaussian distribution with a state-independent standard deviation. We update
the target network with soft updates with parameter ↵ = 0.005. And following Brandfonbrener
et al. (2021) we clip exponentiated advantages to (�1, 100]. We implemented our method in the
JAX (Bradbury et al., 2018) framework using the Flax (Heek et al., 2020) neural networks library.

Extended results on Locomotion and Ant Maze tasks. We present learning curves for MuJoCo
locomotion tasks in Fig. 4. We also present results on Locomotion and Ant Maze for different values
of ⌧ in Fig. 5 and Table 3. We want to emphasize that ⌧ = 0.5 corresponds to using the mean squared
error instead of expectile regression.

Results on Franca Kitchen and Adoit tasks. For Franca Kitchen and Adroit tasks we use ⌧ = 0.7
and the inverse temperature � = 0.5. Due to the size of the dataset, we also apply Dropout (Srivas-
tava et al., 2014) with dropout rate of 0.1 to regularize the policy network. See complete results in
Table 4.

Table 3: Effect of ⌧ . Fitting V (s) with mean squared error (⌧ = 0.5) is not sufficient to propagate
the signal through recursion and fails to solve more challenging medium and large tasks.

IQL w/ ⌧ = 0.5 (MSE) IQL w/ ⌧ = 0.7 IQL w/ ⌧ = 0.9
antmaze-umaze-v0 44.2±7.2 87.0±2.3 87.5±2.6
antmaze-umaze-diverse-v0 53.6 ±12.7 57.2±11.9 62.2±13.8
antmaze-medium-play-v0 0.0±0.0 4.0±2.0 71.2 ±7.3
antmaze-medium-diverse-v0 0.0 ±0.0 2.6±1.4 70.0±10.9
antmaze-large-play-v0 0.0±0.0 0.2±0.4 39.6 ±5.8
antmaze-large-diverse-v0 0.0 ±0.0 1.2±1.6 47.5±9.5
total 97.8±19.9 152.2±19.6 378.0±49.9

12



Published as a conference paper at ICLR 2022

Figure 4: Learning curves for MuJoCo locomotion tasks.

Figure 5: Results on Ant Maze for different values of ⌧ . Note that ⌧ = 0.5 corresponds to using the
mean squared error instead of expectile regression.

13



Published as a conference paper at ICLR 2022

Table 4: Evaluation on Franca Kitchen and Adroit tasks from D4RL

dataset BC BRAC-p BEAR Onestep RL CQL Ours
kitchen-complete-v0 65.0 0.0 0.0 - 43.8 62.5

kitchen-partial-v0 38.0 0.0 0.0 - 49.8 46.3

kitchen-mixed-v0 51.5 0.0 0.0 - 51.0 51.0

kitchen-v0 total 154.5 0.0 0.0 - 144.6 159.8

pen-human-v0 63.9 8.1 -1.0 - 37.5 71.5

hammer-human-v0 1.2 0.3 0.3 - 4.4 1.4
door-human-v0 2 -0.3 -0.3 - 9.9 4.3
relocate-human-v0 0.1 -0.3 -0.3 - 0.2 0.1
pen-cloned-v0 37 1.6 26.5 60.0 39.2 37.3
hammer-cloned-v0 0.6 0.3 0.3 2.1 2.1 2.1

door-cloned-v0 0.0 -0.1 -0.1 0.4 0.4 1.6

relocate-cloned-v0 -0.3 -0.3 -0.3 -0.1 -0.1 -0.2
adroit-v0 total 104.5 9.3 25.1 - 93.6 118.1

total 259 9.3 25.1 - 238.2 277.9

C FINETUNING EXPERIMENTAL DETAILS

For finetuning experiments, we first run offline RL for 1M gradient steps. Then we continue training
while collecting data actively in the environment and adding that data to the replay buffer, running 1
gradient update / environment step. All other training details are kept the same between the offline
RL phase and the online RL phase. For dextrous manipulation environments (Rajeswaran et al.,
2018), we use ⌧ = 0.8 and � = 3.0, 25000 offline training steps, and add Gaussian noise with
standard deviation � = 0.03 to the policy for exploration.

Dataset Offline Online
antmaze-umaze-v0 70.1 ! 99.4 86.7 ! 96.0

antmaze-umaze-diverse-v0 31.1 ! 99.4 75.0 ! 84.0
antmaze-medium-play-v0 23.0 ! 0.0 72.0 ! 95.0

antmaze-medium-diverse-v0 23.0 ! 32.3 68.3 ! 92.0

antmaze-large-play-v0 1.0 ! 0.0 25.5 ! 46.0

antmaze-large-diverse-v0 1.0 ! 0.0 42.6 ! 60.7

pen-binary-v0 46.2 ± 6.3 63.3 ± 1.9
door-binary-v0 1.3 ± 0.7 42.0 ± 3.2
relocate-binary-v0 0.3 ± 0.4 23.3 ± 14.5

Table 5: Error bars for fine-tuning experiments with 20
seeds, showing one standard deviation.

For baselines we compare to the orig-
inal implementations of AWAC (Nair
et al., 2020) and CQL (Kumar et al.,
2020). For AWAC we used https:
//github.com/rail-berkeley/
rlkit/tree/master/rlkit. We
found AWAC to overfit heavily with too
many offline gradient steps, and instead
used 25000 offline gradient steps as in the
original paper. For the dextrous manip-
ulation results, we report average return
normalized from 0 to 100 for consistency,
instead of success rate at the final timestep, as reported in Nair et al. (2020). For CQL, we used
https://github.com/aviralkumar2907/CQL. Our reproduced results offline are worse
than the reported results, particularly on medium and large antmaze environments. We were not able
to improve these results after checking for discrepancies with the CQL paper authors and running
CQL with an alternative implementation (https://github.com/tensorflow/agents).
Thus, although for offline experiments (Table 1) we report results from the original paper, for
finetuning experiments we did not have this option and report our own results running CQL in
Table 5.

D CONNECTIONS TO PRIOR WORK

In this section, we discuss how our approach is related to prior work on offline reinforcement learn-
ing. In particular, we discuss connections to BCQ Fujimoto et al. (2019).

Our batch constrained optimization objective is similar to BCQ (Fujimoto et al., 2019). In particular,
the authors of BCQ build on the Q-learning framework and define the policy as

⇡(s) = argmax
a

s.t.(s,a)2D

Q(s, a). (8)

Note that in contrast to the standard Q-learning, maximization in Eqn. (8) is performed only over
the state-action pairs that appear in the dataset. In Fujimoto et al. (2019), these constraints are
implemented via fitting a generative model µ(·|s) on the dataset, sampling several candidate actions

14

https://github.com/rail-berkeley/rlkit/tree/master/rlkit
https://github.com/rail-berkeley/rlkit/tree/master/rlkit
https://github.com/rail-berkeley/rlkit/tree/master/rlkit
https://github.com/aviralkumar2907/CQL
https://github.com/tensorflow/agents


Published as a conference paper at ICLR 2022

from this generative model, and taking an argmax over these actions:

⇡(s) = argmax
{ai|ai⇠µ(·|s),i=1...N}

Q(s, ai).

However, this generative model can still produce out-of-dataset actions that will lead to querying
undefined Q-values. Thus, our work introduces an alternative way to optimize this objective without
requiring an additional density model. Our approach avoids this issue by enforcing the hard con-
straints via estimating expectiles. Also, it is worth mentioning that a number of sampled actions N
in BCQ has similar properties to choosing a particular expectile ⌧ in our approach.

Note that our algorithm for optimal value approximation does not require an explicit policy, in con-
trast to other algorithms for offline reinforcement learning for continuous action spaces (Fujimoto
et al., 2019; Fujimoto & Gu, 2021; Wu et al., 2019; Kostrikov et al., 2021; Kumar et al., 2019; 2020).
Thus, we do not need to alternate between actor and critic updates, though with continuous actions,
we must still extract an actor at the end once the critic converges.

E DIFFERENT ESTIMATORS OF V (s)

We also evaluate different ways to estimate the value function V (s) (Table 6). We compare V (s)
learned with expectile regression as in IQL with V (s) estimated with several samples from the
learned policy as in ABM (Siegel et al., 2020). In particular, we use N = 20 to estimate the value
function.

Table 6: Different estimators of V (s)

IQL V (s) =
PN

i=1 Q(s, ai)/N
hopper-medium-v2 66.2±5.7 69.5±3.9
hopper-medium-expert-v2 91.5±14.3 75.8±37.8
hopper-medium-replay-v2 94.7±8.6 64.7±22.6
halfcheetah-medium-v2 47.4±0.2 47.2±0.2
halfcheetah-medium-expert-v2 86.7±5.3 93.0±0.9
halfcheetah-medium-replay-v2 44.2±1.2 45.1±0.3
walker2d-medium-v2 78.3±8.7 72.0±24.6
walker2d-medium-expert-v2 109.6±1.0 110.7±0.4
walker2d-medium-replay-v2 73.8±7.1 83.3±3.0
locomotion total 692.4±52.1 661.4±93.7
antmaze-umaze-v0 87.5±2.6 96.4±1.8
antmaze-medium-play-v0 71.2±7.3 0.0±0.0
antmaze-large-play-v0 39.6±5.8 0.0±0.0
antmaze-umaze-diverse-v0 62.2±13.8 57.5±6.3
antmaze-medium-diverse-v0 70.0±10.9 0.0±0.0
antmaze-large-diverse-v0 47.5±9.5 0.0±0.0
antmaze total 378.0±49.9 153.9±8.1

15


	Introduction
	Related work
	Preliminaries
	Implicit Q-Learning
	Expectile Regression
	Learning the Value Function with Expectile Regression
	Policy Extraction and Algorithm Summary
	Analysis

	Experimental Evaluation
	The Difference Between One-Step Policy Improvement and IQL
	Comparisons on Offline RL Benchmarks
	Online Fine-tuning after Offline RL

	Conclusion
	Proofs
	Proof of Lemma 2

	Experimental details
	Finetuning experimental details
	Connections to prior work
	Different Estimators of V(s)

