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SCALING UP THE BANDED MATRIX FACTORIZATION
MECHANISM FOR DIFFERENTIALLY PRIVATE ML

Ryan McKenna∗

ABSTRACT

Correlated noise mechanisms such as DP Matrix Factorization (DP-MF) have
proven to be effective alternatives to DP-SGD in large-epsilon few-epoch training
regimes. Significant work has been done to find the best correlated noise strategies,
and the current state-of-the-art approach is DP-BANDMF, which optimally bal-
ances the benefits of privacy amplification and noise correlation. Despite it’s utility
advantages, severe scalability limitations prevent this mechanism from handling
large-scale training scenarios where the number of training iterations may exceed
104 and the number of model parameters may exceed 107. In this work, we present
techniques to scale up DP-BANDMF along these two dimensions, significantly
extending it’s reach and enabling it to handle settings with virtually any number of
model parameters and training iterations, with negligible utility degradation.

1 INTRODUCTION

Modern machine learning is done at unprecedented scales; state-of-the-art large language models
have billions of parameters and are trained on super computers with thousands of accelerators for
hundreds of thousands of iterations (Kaplan et al., 2020; Chowdhery et al., 2023). Many applications
would benefit from training these large-scale models on user data, but this raises a host of privacy
concerns (Yao et al., 2024). Differential privacy (DP) offers a formal definition and algorithmic
framework to train such models while protecting individual-level information. The most widely
used DP mechanism for machine learning is DP-SGD (Abadi et al., 2016), of which there are many
variants. DP-SGD relies crucially on privacy amplification by subsampling, and generally benefits
significantly from training with huge batch sizes for many epochs (Ponomareva et al., 2023), which
can be difficult or infeasible in large-scale compute-constrained settings. A promising alternative, the
DP-FTRL algorithm (Kairouz et al., 2021b) instead relies on carefully correlated noise, and tends to
work better than DP-SGD when training with smaller batches and fewer epochs, especially in the
low privacy regime (ε ≈ 10) that is common in real-world scenarios.

There are many variants of the DP-FTRL algorithm that primarily differ in how they generate cor-
related noise (Kairouz et al., 2021b; Denisov et al., 2022; Choquette-Choo et al., 2023b; 2024;
McMahan et al., 2024a; Fichtenberger et al., 2023; Henzinger et al., 2023; Kalinin & Lampert, 2024;
Choquette-Choo et al., 2023a). The best variants of the DP-FTRL mechanism utilize numerical
optimization to find the best noise correlation strategy, and are usually referred to as matrix factor-
ization mechanisms (DP-MF). The space of DP-MF mechanisms is rapidly evolving, with recent
work focusing intensely on improving the constant factors (Denisov et al., 2022; Choquette-Choo
et al., 2023b; 2024). The variant with the best constant factors in this space is the Banded Matrix
Factorization mechanism (DP-BANDMF), which utilizes banded correlation matrices and enjoys
the benefits of both privacy amplification and noise correlation. By setting the number of bands to
one, DP-BANDMF reduces to DP-SGD, and by setting the number of bands equal to the number of
training iterations, DP-BANDMF reduces to un-amplified variants of DP-MF. By optimally choosing
the number of bands, DP-BANDMF enjoys significantly better constant factors than both DP-SGD
and other DP-MF-style mechanisms in many settings.

Despite its advantages, severe scalability limitations of DP-BANDMF (and other DP-MF-style
mechanisms more broadly) has hindered its wider use, and prevented it from scaling effectively to
large-scale training regimes where typical models have billions of parameters and are trained for tens
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to hundreds of thousands of iterations. Existing DP-BANDMF implementations face computational
bottlenecks stemming from two places: (1) an expensive optimization problem linked to the n × n
strategy matrix C (where n is the number of training iterations), requiring O(n3) time and O(n2)
memory to evaluate the expected error, limiting its use to approximately 104 training iterations. (2)
During training, DP-BANDMF incurs an O(b ⋅ d) memory overhead (where b is the number of bands
in C, and d is model dimensionality), which is b× more than DP-SGD but n/b× less than DENSE-
DP-MF. In this work, we develop techniques to overcome DP-BANDMF’s scalability limitations,
without sacrificing on the constant factors that make it an appealing mechanism:

• Efficient Strategy Optimization: We exploit the structure of banded strategies to reduce the
per-iteration complexity of strategy optimization to O(n2 ⋅b) time and O(n ⋅b) space, which allows
DP-BANDMF to scale to approximately n = 105 training iterations. For scenarios demanding even
more iterations (up to and beyond n > 107), we restrict attention to banded Toeplitz strategies,
whose structure enables O(n ⋅ b) time and O(n) space complexity during strategy optimization.
Experiments show the approximation quality loss to be less than 2% in terms of expected error.

• Distributed Noise Generation: Prior implementations of DP-MF-style mechanisms add noise on
a single machine, even when training is coordinated across 1000’s of machines (Denisov et al.,
2022; Choquette-Choo et al., 2023b). We show how to effectively distribute the noise generation
process, allowing DP-BANDMF to effectively take advantage of multi-machine environments
common in large scale training regimes, and scale to larger models and more bands than was
previously possible. Experiments demonstrate negligible training-time overhead compared to
DP-SGD, even with hundreds of bands.

• State-of-the-art Performance: We conduct comprehensive experiments on expected error, and
show that our scalable DP-BANDMF mechanism offers lower expected error than all other scalable
MF-style mechanisms across all settings tested, including DP-SGD, and concurrent works that
also improve scalability of DP-MF (McMahan et al., 2024a;b; Kalinin & Lampert, 2024).

2 BACKGROUND

We assume the reader has familiarity with differential privacy (Dwork, 2006; 2008). Below we
provide background on DP-BANDMF, which includes DP-SGD and DP-MF-style mechanisms as
special cases. DP-BANDMF is completely characterized by a b-banded lower triangular strategy
matrix1 C ∈ Rn×n (i.e., Cij = 0 if i < j or i ≤ j + b).

2.1 TRAINING DYNAMICS

DP-BANDMF (Algorithm 2) is similar to the more well known DP-SGD algorithm (Abadi et al.,
2016): minibatches are sampled randomly, gradients are clipped and aggregated, and noise is added
to preserve privacy. The key innovation of DP-BANDMF is in the noise addition step: while DP-
SGD adds i.i.d. Gaussian noise in each iteration, DP-BANDMF adds noise from a richer class.
Specifically, the strategy matrix C is used to generate noise that is correlated across iterations, and
the key subroutine for generating this correlated noise is shown in Algorithm 1.

When instantiated with C = I (the identity matrix, b = 1), Algorithm 2 is identical to DP-SGD, as it is
easy to verify the output of Algorithm 1 is simply the i.i.d. Gaussian noise vectors zi passed as input.
When instantiated with a dense lower triangular strategy matrix C (b = n), Algorithm 2 captures

1sometimes simply referred to as the “strategy”.

Algorithm 1 Banded Inverse Multiplication (Choquette-Choo et al., 2024)

Input: lower triangular b-Banded matrix C ∈ Rn×n, stream of vectors z1, . . . ,zn ∈ Rd, where Z is
the matrix with rows zi.
Output: Y = C−1Z, one row at a time.
for i = 1, . . . , n do

yi = (zi −∑i−1
j=i−b+1Cijyj)/Cii

yield yi
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Algorithm 2 Iterative Machine Learning with DP-BANDMF

Input: b-banded strategy C ∈ Rn×n, noise multiplier σ, loss function `, initial parameters ω0,
dataset D, expected participations k, clipping norm R
Output: Learned parameters ωn
Partition D into b (approximately) equal sized subsets D0, . . .Db−1 arbitrarily
for yi in Algorithm 1(C,zi ∼i.i.d N (0,1)d) do ▷ Stream of correlated noise

Sample B ⊆Di mod b by Poisson sampling each example with probability bk/n.
gi = ∑x∈B clip(∇`(ωi−1;x),R) ▷ Clipped + aggregated gradient
g̃i = gi +Rσyi ▷ Noisy (privatized) gradient
ωi = Update(ωi−1, g̃i) ▷ Post-processing noisy gradient using any optimizer

return ωn

DENSE-DP-MF (Denisov et al., 2022). DP-SGD benefits from privacy amplification by sampling
but uses uncorrelated noise while DENSE-DP-MF benefits from correlated noise, but does not enjoy
any privacy amplification due to sampling. DP-SGD tends to work better in the small-epsilon,
many-epoch regime, while DENSE-DP-MF tends to work better in the large-epsilon, few-epoch
regime (Choquette-Choo et al., 2024). By using a b-banded strategy matrix, DP-BANDMF operates
between these two extremes and benefits from both privacy amplification by sampling and correlated
noise. Specifically, the proposition below states that the privacy properties of DP-BANDMF relate
very naturally to the simpler DP-SGD mechanism whose privacy properties are well-understood.

Proposition 2.1 (Noise Calibration (Choquette-Choo et al., 2024)). Let σSGD(ε, δ, k, n) denote the
noise multiplier required for DP-SGD to achieve (ε, δ)-DP when run for n iterations with sampling
probability k/n. Given a b-banded strategy matrix C satisfying ∥C∥1,2 ≤ 1, Algorithm 2 satisfies
(ε, δ)-DP for σBandMF = σSGD(ε, δ, k,n/b).

The function σSGD is typically computed using numerical privacy accounting methods such as the
PLD accountant (Sommer et al., 2018; Doroshenko et al., 2022).

Remark 2.1 (Memory Overhead). Algorithm 1 requires storing a state of size b×d (yi−1, . . . ,yi−b+1),
where b is the number of bands and d is the model dimensionality. This is b× larger than DP-SGD,
but n/b× smaller than DENSE-DP-MF. For large models (d ≥ 108) and many bands (b ≥ 100), this
can require hundreds of Gigabytes of space.

2.2 STRATEGY OPTIMIZATION

In this section, we describe how DP-BANDMF optimally selects the number of bands b and the
strategy matrix C. The matrix C and it’s number of bands is chosen by solving a numerical
optimization problem to minimize the expected total squared error added to the (clipped + aggregated)
minibatch gradients during training.

Proposition 2.2 (Expected Error (Choquette-Choo et al., 2024)). The expected total squared error of
DP-BANDMF given a b-banded strategy matrix C is equal to:

E[∥AC−1Z∥2
F ] = σ2

BandMF (ε, δ, b, k, n)∥C∥2
1,2∥AC−1∥2

F

where ∥C∥1,2 is the maximum L2 column norm of C and is related to it’s sensitivity, and A is the
workload, typically taken to be the lower triangular matrix of ones (Kairouz et al., 2021b), and
σBandMF (ε, δ, b, k, n) = σSGD(ε, δ, k,n/b) is the noise multiplier required to run DP-BANDMF
under the given privacy budget.

The optimization problem at the heart of DP-BANDMF follows immediately from this expression and
is stated below. Note that smaller values of b give better privacy amplification (smaller σBandMF ),
but reduces the benefits of correlated noise (more restricted space of strategies). Since b is a discrete
parameter, we solve the un-amplified version of the problem for fixed b ⊆ [1, n] (not accounting
for σBandMF ), and choose the strategy matrix and number of bands that minimizes expected error
accounting for σBandMF in a brute force manner.

Problem 2.1 (DP-BANDMF Strategy Optimization (Choquette-Choo et al., 2024)). Given a work-
load matrix A, and the desired number of bands b, the optimization problem underlying DP-BANDMF
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Algorithm 3 (Efficient) Expected Total Squared Error

Input: Θ ∈ Rb×n
Output: ∥AC(Θ)−1∥2

F
b0 = 0
loss = 0
for i = 1, . . . , n do

ei = ith row of the n × n identity matrix

ci =
√
∑bj=1 Θ2

ji ▷ Column normalization constant

yi = ci(ei −∑bj=1 Θjiyj)/Θ1i ▷ ith row of C(Θ)−1

bi = bi−1 + yi ▷ ith row of AC(Θ)−1

loss += b⊺i bi ▷ partial squared Frobenius norm
return loss

can be formulated as:

minimize
C

∥C∥2
1,2∥AC−1∥2

F subject to Cij = 0 if (j > i) or (i ≤ j + b) (1)

Absent the bandedness constraint, this optimization problem has received considerable attention (Li
et al., 2015; Yuan et al., 2016; McKenna et al., 2023; Denisov et al., 2022), and the algorithm for
solving it in the banded case is closely related (Choquette-Choo et al., 2024). Prior work (Choquette-
Choo et al., 2024) solves Problem 2.1 by reformulating it in terms of the object X = C⊺C. This
reformulation is convex and unconstrained, meaning standard optimization tools like L-BFGS can
efficiently find the best solution with access to an oracle that computes the loss and gradient with
respect to X. We note that the problem as it is stated in Problem 2.1 is not convex with respect to
C (Li et al., 2015; Yuan et al., 2016; McKenna et al., 2023; 2018). The drawback of this solution
approach is that it materializes several n × n matrices in each iteration, even though there are only
roughly b ⋅ n free (non-zero) variables. As a result, it requires O(n3) time and O(n2) space to
evaluate the objective once, and cannot be practically done beyond n ≈ 104.

3 SCALABLE STRATEGY OPTIMIZATION AND NOISE GENERATION

In this section, we propose two approaches to implicitly compute the objective function, bypassing
the need to materialize n × n matrices explicitly. These innovations enable scalability up to n ≈ 105

and n > 107 respectively. For simplicity, we specialize the presentation to the Prefix workload
(lower triangular matrix of ones), banded strategies, and the expected total squared error objective
(Proposition 2.2). In App. D, we show that the same core approach taken here easily translates to
more general classes of workloads, strategies, and objective functions.

3.1 EFFICIENT STRATEGY OPTIMIZATION

The complexity of solving Problem 2.1 using L-BFGS is proportional to the complexity of evaluating
the objective function and its corresponding gradient. Our first key idea to scale up DP-BANDMF is
to utilize Algorithm 1 to efficiently evaluate the objective function. Specifically, we will materialize
one row of AC−1 at a time and compute the norm in an online fashion as shown in Algorithm 3.

Let Θ be a b × n matrix of parameters which will define our banded strategy matrix C(Θ). We
define C(Θ) to be the column-normalized b-banded matrix satisfying: Cij = Θ(j−i+1)j/

√

∑
b
j=1 Θ2

ji.
By construction, we have ∥C(Θ)∥1,2 = 1. Thus, to evaluate the objective function we simply need
to compute ∥AC(Θ)−1∥2

F , and Algorithm 3 gives an algorithm for doing that efficiently. The key
idea is to generate rows of AC(Θ)−1 one at a time and compute the Frobenius norm in a streaming
manner.

Each iteration of Algorithm 3 requires O(n ⋅ b) time, as the vectors ei and yi are size n, and there is a
sum over b such vectors. Thus, the total time complexity of Algorithm 3 is O(n2 ⋅ b). The algorithm
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must keep track of yi−b, . . . ,yi in each iteration, and hence the space complexity is O(n ⋅ b). This
is a factor n

b
improvement in both the time and space complexity of DP-BANDMF, which can be

substantial when the number of bands is small (which it often is, as we demonstrate in Section 4).
While Algorithm 3 is specialized to the class of (column-normalized) banded strategies and the Prefix
workload, the core approach is easy to generalize to other parameterized classes of strategies and
more general workloads, as we discuss in App. D.

Our L-BFGS algorithm also requires the gradient of the objective function to run efficiently. We do
not derive that here, but rather rely on Jax’s reverse-mode auto-differentiation capabilities instead
(Bradbury et al., 2018). Depending on how the gradients are computed, the gradient computation
can be more time and memory intensive than the loss calculation. We discuss this more in depth
in App. C and provide some experiments on the scalability of this approach in Section 4. Using
these ideas, we can scale DP-BANDMF up to roughly n ≈ 105 under reasonable time and memory
constraints, without sacrificing any solution quality over prior work (Choquette-Choo et al., 2024).

3.2 OPTIMIZING BANDED TOEPLITZ STRATEGIES

We now explore another technique that is even more scalable, while only sacrificing a small amount
in terms of expected error. Our key idea is to restrict attention to the special class of banded Toeplitz
strategies. This design decision was inspired by manual inspection of the optimal dense strategies,
observing that they exhibit a near-Toeplitz structure. By exploiting the special structure of this class
of strategies, we can evaluate the objective function using only O(n ⋅ b) time and O(n) space, and
scale strategy optimization up to and beyond n ≈ 106, as we show below:

Proposition 3.1 (Banded Toeplitz Expected Total Squared Error). Let θ ∈ Rb be Toeplitz coefficients,
such that C(θ)ij = θi−j+1, and let w = C(θ)−11. The expected total squared error is equal to:

∥C(θ)∥1,2 = ∥θ∥2 ∥AC(θ)−1∥2
F =

n

∑
i=1

(n − i + 1)w2
i

Proof. The first expression states that the maximum L2 column norm of a lower triangular Toeplitz
matrix is equal to the norm of it’s first column θ. By direct inspection, the first n − b + 1 columns
of C(θ) all share the same non-zero entries of θ, and the norms of these columns are thus ∥θ∥2.
The non-zero entries of the remaining b − 1 columns of C(θ) correspond to a subvector of θ, and
hence these columns have norm ≤ ∥θ∥2. The second expression states that the Frobenius norm can
be calculated without explicitly materializing any matrices. Note that both A and C(θ) are lower
triangular Toeplitz matrices, and if C(θ) is invertible, then its inverse is also a lower triangular
Toeplitz matrix (Lin, 2008, Lemma 5). Second note that multiplication is commutative within this
class, and therefore AC−1(θ) = C−1(θ)A, and this product is itself a lower triangular Toeplitz
matrix (Lin, 2008, Lemma 5). As such, it is completely defined by its first column w. Using the
definition of matrix multiplication we can obtain w by multiplying C−1(θ) by the first column of A,
which is 1 (Lay, 2003, Page 97). The squared Frobenius norm of a Toeplitz matrix with parameters
w can be calculated directly over this vector by observing that wi is repeated along the ith diagonal
band of the Toeplitz matrix and hence appears (n − i + 1) times, leading to the expression stated
above for the squared Frobenius norm of AC−1(θ).

We note that this approach generalizes to any Toeplitz-structured workload, as we show in App. D.
The complexity of evaluating the objective function is determined by the cost of solving the linear
Toeplitz system w = C(θ)−11, which can be done with Algorithm 1 in O(n ⋅ b) time and O(b) space.
In App. I we further reduce the time complexity to O(b3) by observing that the sequence wi rapidly
converges to a fixed point, which allows scalability to virtually any n (as long as b is not too large).

Column Normalization In general the column norms of Toeplitz matrices are not all equal, a
property that optimal strategies are known to have in the single-participation setting (Zhang et al.,
2018; Yuan et al., 2016; McKenna et al., 2018) and a property built-in to DP-BANDMF (Choquette-
Choo et al., 2024). When the number of bands is small, the loss in solution quality from not column
normalizing is small, as the first n− b columns of a banded Toeplitz strategy already have equal norm.
Moreover, we can always normalize the columns of the banded Toeplitz matrices as a post-processing
step after strategy optimization, which we recommend in practice.
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3.3 DISTRIBUTED NOISE GENERATION

At training time, DP-BANDMF incurs a b ⋅ d memory overhead where b is the number of bands and d
is the number of model parameters. In large-scale settings d may exceed 109, and assuming b = 256
and 4-byte floats are used, this is a very significant one terabyte cost. In this section, we will argue
that with a careful implementation, this is not a major issue in typical large-scale training regimes.

We make two key observations. First, in order to train large models with differential privacy, large
batch sizes are typically needed, which requires a combination of coordinated training across many
accelerators and virtual batching (De et al., 2022; Anil et al., 2022). For example, to train a 1
billion parameter model with DP, one might use 1024 machines and 16× virtual batching to attain
a reasonable batch size of 16384 (assuming a per core batch size of 1). Second, we can effectively
utilize multiple machines when generating noise by observing that Algorithm 1 can be translated to an
embarrassingly parallel algorithm since each coordinate of the noise vectors are treated identically.

GPU 1

GPU 2

GPU 3

GPU 4

yi-b+1       …    yi-1        yi

# bands (b)

m
od

el
 s

iz
e 

(d
)

In our implementation, each machine is in charge of producing a different
shard of the noise vectors yi, and they keep track of the state required to
generate that noise locally.2 This state corresponds to the same shard of the
previous b− 1 correlated noise vectors (yi−1, . . . ,yi−b+1), and this sharding
strategy is illustrated in the figure to the right. This benefit of this sharding
strategy is that no communication is needed between machines until the
noise is added to the clipped + aggregated gradient. Using the example
above, this implementation would have a very manageable overhead of one
GB per machine (one TB split across 1024 machines).

In Section 4.2 we demonstrate that in practice the number of bands needed is typically far less than
256, and that the overhead incurred by our distributed correlated noise generation algorithm is small
compared to the cost of per-example gradient clipping, even when the number of bands is large.
To better understand the scalability limits of this distributed noise generation approach in different
settings, it is useful to look at a few more illustrative examples.

Example 3.1. Suppose we want to train a 4 million parameter model on a single GPU with a memory
limit of 1 GB. We can afford to store roughly 64 copies of the model assuming each parameter is
represented as a 4-byte float. This allows us to use roughly 64 bands overall.

Example 3.2. Now suppose we want to train a larger 128 million parameter model in parallel on 64
machines, which is useful/needed to get the large batch sizes usually used with large models and DP
training. By parallelizing the noise generation code across these 64 machines, we can afford to store
2 copies of the model per machine, allowing us to use roughly 128 bands overall.

Example 3.3. Now suppose we want to finetune an 8 billion parameter model on 64 machines,
and use a parameter-efficient fine-tuning method such as LoRA (Hu et al., 2021; Yu et al., 2021).
Further, assume the number of learnable finetuning parameters is 4 million. Now, the cost of the
forward/backward pass completely dwarfs any overhead of noise generation. We can store 64 copies
of the model per machine, and parallelize computation across 64 machines, allowing us to run
DP-BANDMF with up to 4096 bands.

4 EMPIRICAL RESULTS

In this section, we empirically evaluate our proposed strategy optimization algorithms in terms of
solution quality and scalability. Then, we conduct experiments and perform analysis to understand the
optimal number of bands as a function of the relevant parameters. Our analysis reveals that in many
scenarios of practical interest the optimal number of bands is small, and consequently the overhead of
DP-BANDMF at training time is small. Our experiments focus on root-mean-squared-error (RMSE),
which we compute in closed form using Proposition 2.2, dividing by n and taking the square root.
Strategy optimization is done on an NVIDIA V100 Tensor Core GPU for up to 10K iterations.

2this strategy for distributing noise generation is very different from distributed differential privacy (Kairouz
et al., 2021a), where each client/machine generates an entire vector of noise with smaller variance.
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Figure 1: (a-b) Ratio of RMSE of each strategy to the best strategy that scales to each setting.
(a) Compares our scalable banded and banded toeplitz strategies with other banded strategies. (b)
Compares our scalable DP-BANDMF with non-banded strategies as a function of ε.

4.1 COMPARISON TO PRIOR AND CONCURRENT WORK

We begin by evaluating the solution quality of our strategies compared to prior and concurrent work.
We provide a thorough qualitative comparison between the mechanisms considered here in App. G.
In Figure 1a, we fix b = 16 while varying n, and compare our strategies obtained through implicit
optimization to the strategies produced through explicit optimization as in prior work (Choquette-
Choo et al., 2024). We also include BANDED SQRT as an additional baseline, which was proposed
in concurrent work (Kalinin & Lampert, 2024), and avoids dense matrix representations through
the same banded Toeplitz structure we consider. We plot on the y-axis the RMSE Suboptimality
Ratio, which we define as the ratio of RMSE between a given strategy and the best available strategy
for that setting. Because all the strategies in this figure are 16-banded, they enjoy the same privacy
properties (whether they are used in an amplified or non-amplified setting), and therefore the RMSE
Suboptimality Ratio’s we report hold for all ε. The highlights from this experiment are four-fold:

• The prior work that represents the strategy using dense matrices scaled up to n < 104, while our
implicitly optimized banded strategies scaled up to n > 105, and our banded Toeplitz strategies
scaled well beyond n > 107. We provide more detailed scalability results in Figure 4 of App. F.

• Our implicit strategy optimization algorithm for general banded matrices converges to the same
solution as prior work (Choquette-Choo et al., 2024) for all settings tested (where the latter
successfully ran). This is encouraging in light of the fact that we directly optimize C (rather than
X = C⊺C) and Problem 2.1 is not convex with respect to C.

• The BANDED SQRT baseline approach (Kalinin & Lampert, 2024) achieves worse expected error
across all settings than both of our approaches. The suboptimality approaches up to 25% in the
settings we tested, with larger suboptimality for larger n.

• Our (column-normalized) Toeplitz strategies are between 0-2% suboptimal, with suboptimality
increasing with the number of bands and decreasing with the number of iterations. For large
n ≥ 16384 and small b ≤ 32, which is the regime of most interest, the suboptimality is ≤ 0.25%,
indicating arbitrary banded strategies do not provide much benefit over the more restrictive class.

In Figure 1b we compare against several additional baseline mechanisms for n = 16384 iterations
and k = 8 epochs while varying ε. We include results for DP-SGD (Abadi et al., 2016), Tree
Aggregation (Kairouz et al., 2021b), Stamping (Denisov et al., 2022), FHU (Fichtenberger et al.,
2023), Buffered Toeplitz, (McMahan et al., 2024a;b), and our Unamplified and Amplified scalable
DP-BANDMF approach. We omit from comparison DENSE-DP-MF (Choquette-Choo et al., 2023b)
due to scalability limitations of that approach for n ≥ 16384.

Here, DP-SGD and Amplified DP-BANDMF benefit from privacy amplification, while the other
mechanisms do not. Our highlights from this experiment are two-fold:

• Amplified DP-BANDMF is better than all other mechanism across all settings evaluated. The
improvement over DP-SGD grows with ε, while the improvement over other mechanisms decreases
with ε. The best alternatives are either DP-SGD or Buffered Toeplitz, both of which have ≈ 2×
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Figure 2: (a) RMSE Suboptimality Ratio (relative to full-batch DP-SGD) of DP-BANDMF as a
function of b for various epochs, with fixed (ε, δ) = (1,10−8) and n = 16384. (b) Optimal number
of bands (within a factor of 2) as a function of the privacy budget and the number of epochs, fixing
n = 4096 and δ = 10−8.

worse RMSE for ε = 1. Amplified DP-BANDMF still enjoy a meaningful 19% better RMSE than
the best competitor for ε as large as 8.

• Unamplified DP-BANDMF is the best non-amplified mechanism that can scale to this setting, and
enjoys ∼ 5% lower RMSE than Buffered Toeplitz strategies for all ε. While our primary focus has
been in centralized training regimes, this figure shows that DP-BANDMF is also a state-of-the-art
approach in federated scenarios where amplification is not feasible (Kairouz et al., 2021b).

While we focused on a single value of n and k in Figure 1b, our general findings remain unchanged
for other settings, although the magnitude of the improvements do change. For completeness, results
for other values of n and k are shown in Figure 7 in App. F.

4.2 OPTIMAL NUMBER OF BANDS

We now perform an ablation on DP-BANDMF to understand how to select the number of bands in
practice, and how the performance of DP-BANDMF changes as a function of the number of epochs.
Figure 2a plots the RMSE suboptimality ratio of DP-BANDMF relative to the full-batch DP-SGD
baseline for different values for epochs and bands fixing at ε = 1. Figure 2b plots the optimal number
of bands for different values of epochs and ε. Our findings from these experiments are three-fold:

• With only 32 epochs, DP-SGD (b = 1) has nearly the same RMSE as full-batch DP-SGD (16384
epochs), but the RMSE degrades rapidly with fewer epochs. Unamplified DP-BANDMF (b = n/k)
achieves worse RMSE than DP-SGD when the number of epochs is large (and utility is the
best), but it degrades more gracefully than DP-SGD, offering better utility in the few-epoch
regime. Amplified DP-BANDMF (b = b∗) offers the best of both worlds: full-batch DP-SGD-level
performance when the number of epochs is sufficiently large, and even more graceful degradation
of RMSE with respect to number of epochs than Unamplified DP-BANDMF.

• The RMSE improves predictably with increasing epochs, but there are diminishing marginal returns.
For example, the RMSE of Amplified DP-BANDMF is < 2× worse than the RMSE of full-batch
DP-SGD with only two epochs, and < 18% worse with only eight epochs. We note that RMSE
only accounts for the noise added due to privacy; increasing the number of epochs under a fixed
number of iterations increases the batch size, which also reduces the minibatch gradient variance.

• The optimal number of bands drops predictably with increasing epochs and decreasing epsilon.
Specifically, the dependence appears roughly linear in both parameters, and a good rule of thumb
is that b∗ ≈ ε

√
n/k should be near-optimal. In some parameter regimes, like k = 1, ε ≥ 16, b∗ may

be too large to feasibly handle. However, Amplified DP-BANDMF with a suboptimal number of
bands is still better than the alternative of DP-SGD.
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Figure 3: (a) Wall Clock Time for correlated noise generation and per-example gradient clipping
for a 100M parameter BertBase model when run on 32 TPU v3 cores. (b-c) RMSE vs. Learning
Performance (evaluation cross entropy) with an adaptive optimizer (b) and a non-adaptive optimizer
(c). In both (b) and (c), a 4M parameter BertTiny model is trained on the StackOverflow dataset
for various noise multipliers.

The analysis above reveals what the optimal number of bands is for different settings, but not whether
it is feasible to run the mechanism for that many bands. In Figure 3a we plot the wall clock time
to generate correlated noise as a function of the number of bands in a typical distributed training
scenario with a 100M parameter BertBase model trained on 32 accelerators. Our primary finding
for this experiment is:

• Using our distributed algorithm, correlated noise generation is not the primary bottleneck, even
when the number of bands is fairly large (up to b = 128, corresponding to 1.6 GB overhead per
accelerator). The cost of per-example gradient clipping is one- to three- orders of magnitude more
expensive, depending on the batch size.

4.3 RMSE VS. LEARNING PERFORMANCE

Thus far we have primarily focused on RMSE on the prefix workload, but this is just a proxy for what
we really care about: training-time learning performance. In Figure 3(b-c) we aim to understand the
relationship between RMSE and learning performance across a range of DP-MF strategies. Our goal
is not to compare different mechanisms across a different privacy budgets, as this has been done in
prior work (Choquette-Choo et al., 2024; 2023a; Denisov et al., 2022), and our mechanism is just a
more scalable instantiation of the prior work.

We consider strategies with differing numbers of bands, and for each setting we optimize the strategy
for the prefix workload. Note this is different from early work on matrix factorization where the
strategy is optimized for a workload that encodes the optimizer parameters like momentum and
learning rate cooldown (Denisov et al., 2022). Recent work on DP-BANDMF suggest it is fine to
configure the strategy for the prefix workload even when using SGD with momentum in practice
(Choquette-Choo et al., 2024, Section I).

For each strategy under consideration, we train a BertTiny model with per-example clipping and
correlated noise addition with a range of noise multiplies spanning 3 orders of magnitude. We tune
the learning rate for each setting and report results for the best value found. We each experiment, we
record the RMSE of the strategy / noise multiplier along with the evaluation set cross entropy, and
plot the results in Figures 3b and 3c. Our two main findings from this experiment are:

• For an adaptive optimizer and the same RMSE, strategies with fewer bands provide better learning
performance, indicating that RMSE is not the best proxy for learning performance across multiple
strategies. These results suggest that one should set bands more conservatively than suggested by
RMSE alone to optimize learning performance if using DP-BANDMF with an adaptive optimizer.

• For a non-adaptive optimizer, the lines for 1-, 8-, 64-, and 512-banded strategies all line up,
indicating that RMSE is a reasonable predictor of learning performance. However, there is still a
gap between DP-BANDMF and BLT-DP-MF (5000 bands), where fewer bands achieves better
learning performance for the same RMSE.
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While this experiment focused RMSE, we also tested the effectiveness of max error as a proxy for
learning performance in Figure 9 in App. F, with similar observations holding there as well.

5 RELATED WORK

More DP-MF Variants Koloskova et al. (2024); Choquette-Choo et al. (2023a) revisit the objec-
tive underlying DP-MF and propose new variants based on their analysis. Like us, Henzinger et al.
(2023) and Choquette-Choo et al. (2023a) use Toeplitz strategies, and bypass the O(n3) runtime of
strategy optimization. However, they consider “full” Toeplitz matrices and do not address theO(n ⋅d)
training-time memory overhead of the algorithm, preventing scalability in large-scale settings.

Scalable Approaches to the Matrix Mechanism The optimization problem we studied in this
work dates back to the Matrix Mechanism (Li et al., 2010), and has been the subject of intense
research for a different problem domain: answering workloads of linear counting queries over
discrete databases (Li et al., 2010; 2015; Yuan et al., 2016; McKenna et al., 2018; 2023; Xiao et al.,
2024; Nikolov et al., 2013; Edmonds et al., 2020; McKenna et al., 2020; Li & Miklau, 2013; Xiao
et al., 2024). McKenna et al. (2023) and Xiao et al. (2024) restrict attention to special classes of
strategies that enable efficient strategy optimization. By exploiting the special structure in these
strategies, they scale well beyond n > 107, but the specific strategies considered in those works do
not directly apply in the context of iteratively training ML models.

Concurrently with our work, McMahan et al. (2024a) proposed BLT-DP-MF, a memory-efficient
approximation of single-epoch DENSE-DP-MF, and extended to handle multiple epochs in follow-up
work (McMahan et al., 2024b). Their method scales to an arbitrary number of training iterations, and
reduces the training-time memory complexity to O(c ⋅ d) for small and configurable c ≈ 3, while only
sacrificing 5-7.5% in RMSE compared to Unamplified DP-BANDMF.

6 LIMITATIONS

Here we discuss several limitations of this paper. First, the number of bands needed to maximize
utility may differ from the number of bands that is feasible to use under compute constraints. In
Section 4.2 we provided an argument that in the regimes of most practical interest, the number of
bands will be small. However, it is conceivable for there to be situations when the optimal number of
bands is larger than what can be supported under compute constraints.

Second DP-BANDMF relies on Poisson sampling to form minibatches, which can be tricky to
integrate into modern ML infrastructure due to variable batch sizes.

Third, this work and nearly all work on DP Matrix Factorization relies on the assumption that
expected error on the prefix sums of gradients is a good proxy for learning performance (Kairouz
et al., 2021b; Denisov et al., 2022; Choquette-Choo et al., 2023a; McMahan et al., 2024a; Kalinin
& Lampert, 2024). As demonstrated in Section 4.3, this proxy is not perfect, particularly when
combined with adaptive optimizers. More research is needed to improve the objective function
underlying DP-MF-style mechanisms, and how to configure them with adaptive optimizers.

Finally, our distributed noise generation procedure relies on the assumption that the worker machines
responsible for computing each shard of the noise are not compromised, otherwise the privacy
guarantees could be at risk. In situations where noise must be generated on a single machine, DP-
BANDMF may not be able to scale to as many bands. However, as we showed throughout Section 4,
DP-BANDMF tends to work best with a small number of bands anyway.

7 CONCLUSION

This work is motivated by the desire to train large-scale ML models with differential privacy. Our
work is best characterized by its simplicity, scalability, and state-of-the-art performance. Our key
ideas are straightforward to understand and implement. Our algorithms for strategy optimization
scale effectively well beyond n > 107, and our algorithm for distributed noise generation can handle
large models with little overhead. Finally, our mechanism offers better expected error than any other
DP-MF-style mechanism across a wide variety of settings.
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A NOTATION

Symbol Domain Meaning
n N+ number of training iterations
d N+ model dimensionality
k N+ number of epochs
q (0,1] minibatch sampling probability
b N+ number of bands
σ R+ noise multiplier
A Rn×n lower triangular ones matrix
Z Rn×d Gaussian noise, Zij ∼ N (0, σ2

)

C Rn×n DP-BANDMF strategy matrix
C(θ) Rn×n Parameterized strategy matrix
ei Rn ith indicator vector

∥ ⋅ ∥1,2 R+ maximum L2 column norm
σSGD(ε, δ, q, n) R+ DP-SGD noise multiplier

Table 1: Table of Notation

B EXAMPLES

B.1 OPTIMAL 3-BANDED STRATEGY

Example B.1 (DP-BANDMF). The matrix below is the optimal 3-banded strategy matrix C config-
ured for 9 training iterations. (Informal 3) DP-BANDMF with minibatch sampling probability of

3DP-BANDMF requires a special sampling different from the usual Poisson sampling of DP-SGD to achieve
this guarantee, see Choquette-Choo et al. (2024) for the details.

13



Published as a conference paper at ICLR 2025

q ≤ 1/3 enjoys the same privacy guarantees as 3 iterations of DP-SGD with sampling probability 3q.
The vectors y1, . . .y9 are added to the minibatch gradients during training, and can be computed
efficiently in an online fashion with O(b ⋅ d) space using Algorithm 1, exemplified below:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.740 0 0 0 0 0 0 0 0
0.500 0.822 0 0 0 0 0 0 0
0.450 0.492 0.876 0 0 0 0 0 0

0 0.286 0.395 0.821 0 0 0 0 0
0 0 0.278 0.462 0.855 0 0 0 0
0 0 0 0.335 0.442 0.882 0 0 0
0 0 0 0 0.272 0.403 0.892 0 0
0 0 0 0 0 0.243 0.409 0.936 0
0 0 0 0 0 0 0.194 0.353 1.000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1

z2

z3

z4

z5

z6

z7

z8

z9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• y1 = z1/0.740

• y2 = (z2−0.500y1)/0.822

• y3 = (z3−0.492y2−0.450y1)/0.876

• y4 = (z4−0.395y3−0.286y2)/0.821

• . . .

• y9 = (z9−0.353y8−0.194y7)/1.000

C COMPUTING THE GRADIENT OF THE EXPECTED ERROR

We implemented functions to compute the expected error of banded strategies (Algorithm 5) and
banded Toeplitz strategies (Proposition 3.1) in pure JAX. This allowed us to use the jax.grad
transformation to give us a function to compute its gradients, so we didn’t have to manually derive
them. In this section, we discuss the time and memory complexity of these gradient calculations.

For both banded strategies and banded Toeplitz strategies, computing the gradient of the objective
function requires back-propagation through Algorithm 1. In the banded case, this algorithm is invoked
with a sequence of size n vectors, while in the banded Toeplitz case, it is invoked with a sequence of
scalars. To compute the objective function, the intermediate values yi can be discarded on step b + i.
However, to compute the gradient, by default jax.grad requires keeping around all values of yi in
memory at once.

Banded Strategies Both the time and memory complexity of computing the gradient with this default
implementation is O(n2b) in the banded case. By using the jax.checkpoint transformation, we
can trade-off memory for time during the backward pass by only storing some subset of intermediates.
Specifically, given a parameter k that roughly corresponds to the number of intermediates to keep
around for the backwards, we can compute the gradient using O(n2bk) time and O(n2b/k) memory
by re-materializing the inputs we need when we need them. We choose k so that the total memory
consumed is less than or equal to 4GB.

Banded Toeplitz Strategies The time and memory complexity of computing the gradient with the
default implementation is O(bn) and O(n) respectively. We believe the memory complexity of he
loss function could be reduced to O(b) with a more careful implementation though. However, O(n)
memory is already small enough to scale up to all values of n we care about in practice, and no
special tricks are needed to improve the memory footprint.

C.1 TIMING EXPERIMENTS

Figure Figure 4 shows the wallclock time required to evaluate the loss function and it’s gradient on
both CPUs and GPUs, for various n at fixed b = 16. We evaluate the wall clock time for increasing n
until the total time to compute both the loss and grad exceeds 60 seconds. Our findings from this
experiment are:

• We can compute both the loss and gradient of general banded strategies up to about n ≈ 105 under
reasonable time limits when utilizing GPUs. As n gets larger, the relative gap between the time
to compute the loss and gradient grows, as expected due to our checkpointing strategy described
above.
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Figure 4: Wallclock time required to evaluate the total squared error objective function and it’s
gradient as a function of n for b = 16. Does not include JIT-compile time, which is amortized over
strategy optimization.

Algorithm 4 Streaming Linear Operator for Prefix

Input: stream of vectors z1, . . . ,zn ∈ Rd, where Z is the matrix with rows zi.
Output: Y = AZ, one row at a time.
for i = 1, . . . , n do

yi = yi−1 + zi
yield yi

Figure 5: Algorithm for streaming matrix multiplication by a Prefix matrix. To simplify the
presentation, we use the convention that out-of-bounds indexing into a matrix or vector returns 0.

• We can compute both the loss and gradient of banded Toeplitz strategies beyond n > 107 under
reasonable time limits. These computations do not benefit from GPUs, and in fact an order of
magnitude faster on CPUs. This is due to the inherent sequential nature of Algorithm 1, which is
not a type of computation that benefits from GPUs.

D GENERALIZATIONS TO OTHER STRATEGY AND WORKLOAD CLASSES

Our presentation in Section 3.1 focused on the Prefix workload and the class of (column-normalized)
banded matrices and Toeplitz matrices. However, our core approach also applies to a broader set of
strategies in workloads, as we show in this section.

D.1 STREAMING LINEAR OPERATORS

We begin by providing a definition for a Streaming Linear Operator:

Definition D.1 (Streaming Linear Operator (SLO)). A Streaming Linear Operator is a function that
consumes a sequence of vectors z1, . . . ,zn as input one at a time, and produces a sequence of vectors
y1, . . . ,yn one at a time such that yi is a linear function of z1, . . . ,zi. We say a SLO is b-buffered if
it only requires storing a state of size at most b vectors.

We note that there is a one-to-one correspondence between SLOs and lower triangular matrices. The
Prefix matrix can be represented as a 1-buffer SLO, shown in Figure 5. Banded lower triangular
matrices and their inverses can be represented as b-buffer SLOs, as shown in Algorithm 1. The
heavyball momentum + learning rate cooldown workload studied in prior work Denison et al. (2022);
Choquette-Choo et al. (2023b) can also be represented as a 2-buffer SLO.
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Algorithm 5 Efficiently Evaluating the Per Query Error

Input: SLO for C(Θ)−1, SLO for A
Output: b⊺i bi, one entry at a time, where B = AC(Θ)−1

b0 = 0
for i = 1, . . . , n do

yi = SLOC−1(ei)
bi = SLOA(yi)
yield b⊺i bi

D.2 EFFICIENTLY OPTIMIZING PARAMETERIZED STRATEGIES VIA SLOS

Recall that computing the objective function efficiently is the core requirement for performing
efficient strategy optimization over the space of strategies. As long as we can express this function
in terms of Jax primitives, we can rely on auto-differentiation tools to compute the gradients and
perform the optimization. Hence, our focus in this section is on generalizing Algorithm 3 to handle
any workload represented as a SLO, and any parameterized strategy whose inverse is a SLO, and any
differentiable aggregator of the per-query expected squared errors.

Algorithm 5 is an algorithm to calculate the per-query expected error of any workload and parame-
terized strategy represented as a pair of SLOs. The time and memory complexity of this algorithm
depends only on the complexity of the underlying SLO implementations. In general, for a b1-
buffer SLO for C−1 and b2-buffer SLO for A, the time and memory complexity of Algorithm 5 is
O(n2(b1 + b2)) and O(n(b1 + b2)) respectively. We note that the per-query-error can be combined
with any (sub)-differentiable aggregator to get a scalar-valued loss function that can be optimized.
In this paper, our focus was on expected total squared error, which is simply a sum of the per-query
squared errors. However, the max expected error is another natural choice that has been sometimes
used in prior work McMahan et al. (2024a); Fichtenberger et al. (2023). The “best” loss function to
use, i.e., the one that best correlates with learning performance, is still an open question.

D.3 EFFICIENTLY OPTIMIZING BANDED TOEPLITZ STRATEGIES FOR TOEPLITZ WORKLOADS

In this section, we show that we can efficiently calculate the expected per-query squared error for
a banded Toeplitz strategy on any Toeplitz workload with a minor modification to Proposition 3.1.
These generalizations do not affect the time or memory complexity of the algorithm.
Proposition D.1 (Banded Toeplitz Expected Per-Query Squared Error). Let λ,θ ∈ Rb be Toeplitz
coefficients for A and C respectively. The expected square error (excluding sensitivity) on the ith

query can be evaluated as ∑ij=1w
2
j where w = C(θ)−1λ

E THEORETICAL GUARANTEES

In this section we provide theoretical guarantees on the expected error of our mechanism. To do so, it
is useful to state the theoretical guarantees of the BANDED SQRT mechanism. We restate their main
theoretical guarantee below, specialized to the Prefix workload:
Proposition E.1 (Thm 6 Kalinin & Lampert (2024)). Let A denote the Prefix workload let C(θ)
denote the strategy matrix for the Banded Square Root factorization with b bands. Then

∥C(θ)∥1,2∥AC(θ)−1∥F = O(
√

n log b

b
)

We will now argue that our Banded Toeplitz strategy inherits the theoretical guarantees of the BANDED
SQRT strategy.
Proposition E.2. Let C(θ0) denote the strategy for BANDED SQRT and note that it is a banded
Toeplitz matrix. Now let C(θ∗) denote the banded Toeplitz matrix numerically optimized for the
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objective function specified in Proposition 3.1, using θ0 as the initialization. Then the expected error
of C(θ∗) is never worse than the expected error of C(θ0), that is:

∥C(θ∗)∥2
1,2∥AC(θ∗)−1∥2

F ≤ ∥C(θ0)∥2
1,2∥AC(θ0)−1∥2

F

Proof. First note that the objective we optimize is identical to the one shown in the proposition above,
and note that it is a product of two continuous and differentiable functions of θ, and is therefore
also continuous and differentiable. For simplicity, assume we optimize this objective with gradient
descent. In each iteration, we compute the gradient which points in the direction of steepest descent.
With sufficiently small step sizes, the sequence of iterates are guaranteed to be non-inceasing. Thus,
the objective function of the final iterate is less than or equal to the objective function at the initial
point.

Combining Proposition E.1 with Proposition E.2 shows that our banded Toeplitz strategy inherits the
theoretical guarantees of the BANDED SQRT mechanism Kalinin & Lampert (2024). For simplicity,
we presented these propositions for the Prefix workload, but Proposition E.1 can be generalized to
handle any momentum-cooldown workload Kalinin & Lampert (2024), and Proposition E.2 applies
for any workload.

F ADDITIONAL EXPERIMENTS

F.1 AMPLIFICATION VS NOISE CORRELATION

In Figure 6, we measure the benefit of privacy amplification and noise correlation respectively, by
comparing the RMSE of Amplified DP-BANDMF with Unamplified DP-BANDMF and DP-SGD.
Our main findings from this experiment are:

1. Amplification is most beneficial when both ε and epochs are small. However, even up
to ε = 8, there is a meaningful improvement in RMSE of ≈ 15%. Figure 6b shows that
correlated noise is most beneficial when ε is large and epochs is small, and lines up very
nicely with Figure 2b. In the most extreme setting, the RMSE of DP-BANDMF can be
9× lower than DP-SGD. With larger epochs or smaller ε, the benefit of correlated noise
decreases, confirming it is most useful in compute-constrained settings.

2. When the number of epochs is large (but still well less than n), Amplified DP-SGD and
Unamplified DP-BANDMF both achieve similar RMSE (as indicated by the dark blue
region), despite being very different mechanisms. Moreover, the RMSE in these settings
nearly matches the RMSE attained by full-batch DP-SGD, even with many fewer epochs
(512 instead of 16384).

F.2 COMPARISONS TO BASELINES

In Figure 1b of the main text, we compared our scalable amplified DP-BANDMF approach with
other strategies as a function of ε. In this section, we compare against the same baselines, but vary
the number of training iterations n and the number of epochs k.

In Figure 7a, we see that the DP-BANDMF improves relative to baselines as n increases. At n = 105,
our mechanism enjoys 25% smaller RMSE than the next best competitor. In Figure 7b we see that
DP-BANDMF enjoys the greatest relative improvement over competitors for small k, although the
relationship is not monotonic.

F.3 BANDS VS. EPOCHS VS. RMSE

In this section, we revisit Figure 2a but increase ε from 1 to 8. Figure 8 shows how the number of
bands effects the RMSE under different number numbers of epochs. With larger ε, more epochs
are needed for DP-SGD to get near full-batch performance (in this case, 256 epochs). The optimal
number of bands also tends to be somewhat higher in this regime, with 128 bands being optimal for
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Figure 6: (a) Ratio of RMSE between Unamplified DP-BANDMF (b = n/k) and DP-BANDMF, which
measures the benefit of amplification in different settings. (b) Ratio of RMSE between Amplified
DP-SGD (b = 1) and DP-BANDMF, which measures the benefit of correlated noise in different
settings. Both plots show results for n = 16384.
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(a) k = 8, ε = 4
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(b) n = 8192, ε = 4

Figure 7: RMSE Suboptimality ratio of different strategies as a function of n (left) and k (right) for
ε = 4.

the 8 epoch setting. DP-BANDMF needs 16 epochs to get within a factor of 2× of the RMES of
full-batch DP-SGD.

F.4 MAX ERROR VS. LEARNING PERFORMANCE

G QUALATATIVE COMPARISON TO PRIOR AND CONCURRENT WORK

There are three primary axes we can evaluate prior matrix factorization approaches on: (1) efficiency
of strategy selection, (2) training-time overhead, and (3) utility. Table 2

The factorizations that are most efficient to calculate avoid numerical optimization Abadi et al. (2016);
Kairouz et al. (2021b); Kalinin & Lampert (2024); Fichtenberger et al. (2023), but do so at the cost of
utility. The factorizations that are most expensive to compute represent the noise correlation strategy
using dense matrices, and are generally inefficient for large n Denisov et al. (2022); Choquette-Choo
et al. (2023b; 2024). Our proposed approach, as well as one concurrent approach McMahan et al.
(2024a;b) get the best of both worlds, by numerically optimizing over parameterized classes of
strategies that avoid dense representations.

Different factorizations have different properties that can be exploited for runtime efficiency. DP-
SGD is the most efficient method, since it adds independent rather than correlated noise. The most
general matrix factorizations require time linear in n to generate noise for a single iteration, which
can be prohibitively expensive for large n (even with distributed noise generation). Indeed, these
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Figure 8: RMSE of DP-BANDMF as a function of b for various epochs, with fixed (ε, δ) = (8,10−8)
and n = 16384. With b = 1, DP-BANDMF is equivalent to DP-SGD, and only benefits from
amplication (not correlated noise). With b = n

k
, DP-BANDMF only benefits from correlated noise

(not amplification) and closely resembles DENSE-DP-MF. The best RMSE is obtained somewhere
in the middle, with the both the best RMSE and corresponding value of b decreasing with epochs. By
using DP-BANDMF instead of DP-SGD, one can run for far fewer epochs without sacrificing nearly
as much utility.
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Figure 9: Max Per-Query Error vs. Learning Performance (evaluation cross entropy) with an adaptive
optimizer (a) and a non-adaptive optimizer (b). In both (a) and (b), a 4M parameter BertTiny
model is trained on the StackOverflow dataset for various noise multipliers.

prior works focused on settings where n ≤ 2052 Denisov et al. (2022); Choquette-Choo et al. (2023b).
Our method bypasses this limitation via Algorithm 1, and enjoys only a b× overhead.

Finally, different factorizations enjoy different utility. We say a factorization is optimal in at least one
setting of (n ≤ 220, k ≤ n, ε ≤ 16) if it achieves the lowest RMSE among all methods that scale to
that setting. While this characterization doesn’t quantify how close to optimal different methods are,
it clearly demonstrates the advantages of DP-BANDMF relative to other scalable approaches.
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Factorization
Efficient Sub-linear Optimal
Strategy Training in at least
Selection Overhead one setting

Identity (DP-SGD) 3 3 7
TREE AGGREGATION Kairouz et al. (2021b) 3 3 7
FHU Fichtenberger et al. (2023) 3 7 7
LTI Choquette-Choo et al. (2023a) 3 7
STAMPING Denisov et al. (2022) 7 7 7
MULTI-EPOCH MF Choquette-Choo et al. (2023b) 7 7 3
BLT-DP-MF McMahan et al. (2024a) 3 3 7
BANDED SQRT Kalinin & Lampert (2024) 3 3 7
DP-BANDMF [Ours] 3 3 3

Table 2: Summary of existing matrix factorizations and their performance characteristics.

H IMPROVING FRAGILITY TO MIN SEPARATION FOR FEDERATED TRAINING
SCENARIOS

The primary focus of this paper has been on centralized training regimes, where DP-BANDMF
benefits from privacy amplification by sampling. As observed in prior work (Choquette-Choo et al.,
2024; McMahan et al., 2024b) and in Figure 1b Unamplified DP-BANDMF is still a state-of-the-art
mechanism in federated training regimes. There, a (k, b)-min-separation participation pattern is used
where each user contributes at most k times during training, and each contribution is separated by at
least b iterations. In centralized scenarios we know what these parameters are in advance based on
properties of the dataset and training setup. In federated scenarios, it is more difficult to control, and
therefore the strategy is typically optimized based on estimates of these quantities, while the privacy
budget consumed during training is computed post-hoc (Xu et al., 2023). If the min separation is
correctly estimated, DP-BANDMF is the best known mechanism currently available. However, if the
true min separation differs from the one the strategy was optimized for significantly (e.g., more than
a factor of 2×), BLT-DP-MF can outperform DP-BANDMF.

Fundamentally, this phenomenon is due to the fact that the Toeplitz coefficients in the BLT strategies
decay more quickly than the ones in banded Toeplitz strategies. A simple heuristic can improve the
robustness of banded Toeplitz strategies to miscalibration of min-separation, at the cost of increased
expected error when the min-separation is correctly calibrated.

• Let b0 and b denote the lower and upper bound on min separation we want to tailor the
mechanism for.

• Optimize θ ∈ Rb for expected error as in Proposition 3.1.

• Set θi = b−i
b−b0

θi for all i ≥ b0.

We take the setting considered in McMahan et al. (2024b), where n = 2000, k = 5, and min-sep is
between b0 = 200 and b = 400. In Figure 10a we plot the Toeplitz coefficients of three strategies: BLT,
BandToep optimized for b = 400, and BandToep + Heuristic described above. In Figure 10b we plot
the RMSE of each strategy as a function of the minimum separation. With our heuristic, we achieve
lower RMSE than BLT strategies across all min separations considered, but sacrifice some RMSE
over the baseline banded Toeplitz strategy when the minimum separation is very close to 400. Note
the relative differences between all three mechanisms are pretty small in this setting. Finally, we will
note that the heuristic can likely be replaced with something more principled, by e.g., optimizing for
the expected error averaged over different min-separations. We leave this exploration for future work.

I SCALING BEYOND n > 107

Beyond n > 107, numerically optimizing banded Toeplitz strategies becomes expensive using the
techniques we described in the main body. With a small observation, we can derive an approximate
loss function whose time complexity is significantly reduced. Recall from Proposition 3.1 that to
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Figure 10: Comparison between Buffered Toeplitz strategies and Banded Toeplitz strategies when the
min-separation is not known in advance (i.e., federated training scenarios).

compute the expected error of a Toeplitz strategy we need to compute y = C(θ)−11 (if we are
optimizing for the Prefix workload). Note that yi is defined by a simple linear recurrence of order b
shown in Algorithm 1. Rewriting that recurrence here, we have:

yi = (1 −
b

∑
j=2

θjyi−j+1)/θ1

Now consider the setting where n≫ b. Now suppose for a moment the sequence yi converges to some
fixed point x, that is limi→∞ yi = x. We can solve for this fixed point by substituting yi = yi−j+1 = x,
and solving for x. Doing so, we obtain:

x = 1

∑bj=1 θj

It is natural to question whether the sequence yi converges. Since divergence would generally imply
high expected error, we believe any reasonable iterative optimization procedure should produce
well-behaved strategy parameters θ. To compute an approximate expected error, we can simply
compute yi exactly up to some fixed index m, and then approximate yi ≈ 1

∑j θj
for i >m. Using this

idea, we can easily approximate the expected mean squared error as:

1

n

n

∑
i=1

iy2
i ≈

1

n
[
m

∑
i=1

iy2
i + ( 1

∑j θj
)

2 n

∑
i=m+1

i]

We can evaluate this expression in O(m) time using the closed form expression for ∑ni=m+1 i. We
can similarly easily approximate the expected max squared error as:

n

∑
i=1

y2
i ≈

m

∑
i=1

y2
i + ( 1

∑j θj
)

2

(n −m + 1)

Empirically, the sequence converges quite quickly and we recommend setting m = b2 (assuming
n > b2), which gives an overall time complexity of O(b3) for evaluating the loss function. As a
concrete data point, optimizing the expected max squared error for n = 216 and b = 64 using m = b,
m = b2 yields suboptimality ratios are 1.032 and 1.0 respectively. That is, setting m = b2 gives no
loss in solution quality.
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J NEAR-OPTIMAL BANDED TOEPLITZ STRATEGIES WITHOUT GRADIENTS

Through inspection of the optimal Toeplitz coefficients in Figure 10a, one can attempt to fit a
functional form to the parameters. The expression θi = 1/i + c provides an excellent fit for the optimal
banded Toeplitz coefficients when c is chosen appropriately. To find the best value of c given the n
and b, one can do a simple sweep over a range of possible values, picking the best one. This avoids
the need to compute gradients, and the evaluation of the loss function at different values of c can be
easily vectorized / parallelized. This provides an excellent approximation of the optimal Toeplitz
coefficients, particularly when n >> b, as demonstrated in Figure 11.

While we do not work out the details here, we believe that it may be possible to identify an efficient
single-shot algorithm to find the optimal value of c by deriving and analyzing the gradient, and
identifying where it is 0.

K OPTIMIZING COLUMN-NORMALIZED BANDED TOEPLITZ STRATEGIES

In Section 3.2, we discuss the importance of column normalization, and propose a simple heuristic
of normalizing the columns of the optimized banded Toeplitz matrix. This heuristic improves the
expected error over the corresponding un-normalized strategy, but is not in general optimal among the
class of all column-normalized banded Toeplitz strategies, (since it was optimized without accounting
for column normalization). In this section, we describe two approaches to optimize over the space
of column normalized banded Toeplitz strategies. In general, we can optimize over the space of
column-normalized Toeplitz strategies, but we would have to forfeit the efficiency advantages that
come along with the Toeplitz structure, and instead use the techniques we described for general
banded matrices in Section 3.1. Alternatively, we can use the gradient-free approach described
in App. J, which can be helpful because the gradient computation is the primary bottleneck for
general banded optimization as explained in App. C. However, the latter approach would only give
an approximate minimum (although in practice the sub-optimality is likely too small to matter).
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