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Leveraging RGB-Pressure for Whole-body Human-to-Humanoid
Motion Imitation
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ABSTRACT
Whole-body motion imitation has gained wide attention in recent
years as it can enhance the locomotive capabilities of humanoid
robots. In this task, non-intrusive human motion capturing with
RGB cameras is commonly used for its low-cost, efficiency, porta-
bility and user-friendliness. However, RGB based methods always
faces the problem of depth ambiguity, leading to inaccurate and
unstable imitation. Accordingly, we propose to introduce pressure
sensor into the non-intrusive humanoid motion imitation system
for two considerations: first, pressure can be used to estimate the
contact relationship and interaction force between human and the
ground, which play a key role in the balancing and stabilizing mo-
tion; second, pressure can be measured in the manner of almost
non-intrusive approach, which can keep the experience of human
demonstrator. In this paper, we establish a RGB-Pressure (RGB-P)
based humanoid imitation system, achieving accurate and stable
end-to-end mapping from human body models to robot control
parameters. Specifically, we use RGB camera to capture human
posture and pressure insoles to measure the underfoot pressure
during the movements of human demonstrator. Then, a constraint
relationship between pressure and pose is studied to refine the
estimated pose according to the support modes and balance mech-
anism, thereby enhancing consistency between human and robot
motions. Experimental results demonstrate that fusing RGB and
pressure can enhance overall robot motion execution performance
by improving stability while maintaining imitation similarity.

KEYWORDS
Motion Imitation, Humanoid Robot, Multi-modal Fusion, Motion
Retargeting

1 INTRODUCTION
Humanoid have long been a focal point of robotics research, em-
bodying engineering challenges related to human biology, cogni-
tion, and motor abilities [54]. Despite their human-like appearance
often suggests higher interactivity and approachability compared
to other forms of robots, traditional control methods relying pre-
defined action sequences limits the adaptability and autonomy of
robots in real-world environments [27, 47]. To address this limi-
tation and broaden the range of actions achievable by humanoid
robots, researchers have introduced motion imitation as a means to
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Figure 1: Motivation of ourmethod.When performing an action
where the CoM projection on the ground exceeds the foot support
region, the robot falls. However, when the action, corrected by the
pressure data, is input to the robot, the action is executed stably.

enhance their capabilities, facilitating humanoid interaction with
the physical world in a manner similar to humans [11].

Nonetheless, there is the issue of creating a precise, efficient,
and user-friendly demonstration format for human demonstrators
during imitation [29, 34]. Previous methods have employed manip-
ulators [20, 21], force feedback devices (exoskeleton) [2, 19], and
high-precision motion capture equipment such as inertial motion
capture [12, 24, 43] and optical motion capture systems [10, 18].
However, these tools are often expensive, operationally complex,
poor portability, and cumbersome to wear. In contrast, low-cost,
non-intrusive devices like RGB or RGB-D cameras offer significant
advantages [5, 16, 45, 59, 67].

Regrettably, Methods relying solely on RGB often encounter
challenges in accurately capturing 3D representation of human
movements due to depth ambiguity and uncertainties in the foot-
ground contact relationship, resulting in motion that is unstable and
potentially hazardous for robots. Fig. 1 depicts a classic movement
within Tai Chi, known as the single-leg stance. The pose estimated
from the RGB image perceptually describes the tilted state of the
human body, but inaccurately determines the center of mass (CoM),
leading to an unreasonable reference. When introducing pressure
for guidance, the reference pose can be adjusted to incorporate a
more reasonable CoM. This correction will greatly enhance the
ability of humanoid robots to imitate human motion effectively.

In this paper, we propose a novel non-intrusivemethod forwhole-
body human-to-humanoidmotion imitation by integrating RGB and
pressure information. Initially, we establish a systematic baseline
comprising three modules: pose estimation, motion retargeting, and
whole-body control. This system not only captures human poses in
the real world but also retargets them into the new pose space of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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a humanoid robot, utilizing them to drive the robot in reality. Ad-
ditionally, foot pressure data is obtained through pressure sensors
embedded in insoles. Subsequently, the estimated pose undergoes
refinement by determining the support mode and correcting the
center of mass (CoM). To validate the efficacy of our proposed
method, we compare the motion imitation performance of RGB
and RGB-P based methods using similarity and stability metrics.
Furthermore, we showcase motion imitation results not only in
simulation but also in real-world scenarios. Through our endeavors,
we demonstrate that integrating RGB and pressure information can
facilitate human-to-humanoid motion imitation efficiently, accu-
rately, and safely while maintaining user-friendliness.

The contributions of our work can be summarized as follows:

• We explore the feasibility and superiority of the pressure
modality for non-intrusive robot motion imitation through
both theoretical analysis and experimental validation.
• We develop a non-intrusive human-to-humanoid motion
imitation system with RGB and pressure.
• We evaluate the performance not only in simulation but
also in real environments, demonstrating that the proposed
method enhances the completeness and stability of robot
motion imitation tasks while ensuring motion similarity.

2 RELATEDWORK
2.1 Physics-Based and Multi-Modal Human

Motion Capture
The rapid development of monocular motion capture has attracted
more and more widespread attention [6, 23, 26, 30, 41, 55]. However,
due to the depth ambiguity of monocular images, the estimated
human motion does not meet the real physical constraints. In par-
ticular, the principle of balance is not satisfied.

To enhance the realism of virtual human movements, some
researchers have incorporated physical constraints and correc-
tions [31, 44, 49, 50, 60, 61]. These endeavors provide valuable
priors for estimating accurate human body poses.

On the basis of monocular motion capture, adding multi-modal
information has also become a method to improve the plausibility
and stability of virtual human. Von et al. [56] uses offline opti-
mization method to estimate human body pose by fusing RGB and
IMUs. While, Liang et al. [32] and Pan et al. [40] combine IMUs
and human body 2D keypoints to obtain pose and translation. Re-
cently researchers have paid attention to the importance of pressure
for motion capture and tried to introduce pressure as supervision
or constraint information in monocular motion capture. Scott et
al. [46] curated a dataset containing real human action images,
poses, and foot pressure data. However, their emphasis was primar-
ily on estimating pressure from human body images. Tripathi et
al. [55] achieves more precise motion capture by inferring physical
characteristics of the human body, such as center of mass (CoM),
center of pressure (CoP) and contact pressure, and constructs a
human body dataset containing pressure for evaluation. Zhang et
al. [63] introduced pressure as supervision to enhance the estima-
tion of virtual human contacts, thereby obtaining more accurate
human pose and translation. Pressure has emerged as our preferred
non-invasive tool, offering a wealth of physical information.

2.2 Humanoid Teleoperation by Imitating
The teleoperation of humanoids through imitation has been preva-
lent for a considerable period [3, 11]. He et al. [16] categorized it
into three types: task space teleoperation [2, 8, 9, 48, 65], upper-
body teleoperation [4, 14, 58, 62, 66], and whole-body teleopera-
tion [5, 12, 13, 16–18, 24, 38, 52, 53, 67]. We focus on the third type
to explore the scalability of humanoid robots in whole-body motion
capabilities.

When transferring human motion to humanoid robots, the se-
lection of motion capture modalities and motion representation
is crucial for bridging the gap between humans and robots. The
challenge is to identify the most relevant features that capture the
essence of human actions. Various approaches have been explored
in this area, including using CoM [2, 8, 13, 38], joint rotations or
positions [4, 12, 14, 67], force [19, 37], and other information for
representation and mapping. He et al. [16] utilized image-based
motion capture for teleoperation of humanoids, representing a com-
mendable effort towards user-friendly teleoperation. However, their
tracking of the lower body of the robot was not sufficiently precise.
These uni-modal methods didn’t integrate information from mul-
tiple dimensions. This leads to the loss of human motion features,
and sometimes can impose redundant information unsuitable for
imitation onto the robot. Whole-body teleoperation based on multi-
modal motion capture is relatively rare. It is worth mentioning
that Dafarra et al. [9] integrated IMUs, pressure insoles, and optical
sensors into their iCub3 avatar system, achieving effective teleop-
eration in task space. However, the complex wearing devices are
not user-friendly for operators, and they do not emphasize the con-
sistency and similarity of lower-body motion between humanoid
robots and humans.

In whole-body motion imitation, a crucial issue is how to balance
the similarity and stability of the lower body. There are two ap-
proaches for mapping lower-bodymotions: (1) Robot-centric [12, 18,
42, 59]: This approach emphasizes robot control, where the human
posture is transferred to the robot. Here, the robot autonomously
selects or predefines the appropriate support based on the actual
posture situation. (2) Human-centric [24, 28, 67]: In contrast, this
approach prioritizes human support, where the support is obtained
from the human and then mapped to the robot. Subsequently, the
robot adjusts its posture based on the acquired support mode. These
two approaches give dominance to one side without unifying the
consistency of human-robot actions. Either humans make stiff leg
movements to accommodate the robot’s structure, or robots experi-
ence delays to adapt to human actions, significantly increasing the
risk of instability, especially when the posture conflicts with the
support mode.

Therefore, we believe that Image-based motion capture can pro-
vide a good user experience, while integrating pressure sensing can
ensure consistency between support and posture, thereby unifying
human and humanoid motion.

3 OVERVIEW
The ultimate goal of human-to-humanoid motion imitation is that
humanoid robots can perform exactly the same motion as humans,
i.e., P̃𝑅𝑜𝑏𝑜𝑡 � P̃𝐻𝑢𝑚𝑎𝑛 . However, achieving end-to-end human-
to-humanoid motion imitation is not a straightforward task and
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Figure 2: Overview of our method. (a) The framework of human-to-humanoid motion imitation. (b) Our proposed motion retargeting
leveraging pressure.

typically involves three main steps, as illustrated in Fig. 2 (a). Pose
Estimation serves as the initial step in capturing and representing
the human pose in the real world P̃𝐻𝑢𝑚𝑎𝑛 , into an interpretable
and executable format P𝐻𝑢𝑚𝑎𝑛 . Since there are still differences
in size, degree of freedom, and structure between human and hu-
manoid robot, Motion Retargeting is necessary to transfer the
estimated human body pose P𝐻𝑢𝑚𝑎𝑛 into humanoid robot pose
P𝑅𝑜𝑏𝑜𝑡 . Considering the control strategy and balance constraints
of the robot, it is crucial to determine precise drive parameters 𝑸
within the Whole-Body Control module to represent the final
pose in the real world P̃𝑅𝑜𝑏𝑜𝑡 . In this paper, we develop a human-
to-humanoid motion imitation system with non-intrusive sensors
(e.g., RGB cameras and pressure insoles). The details are elaborated
as follows.

3.1 Pose Estimation
Pose estimation utilizing monocular RGB camera have emerged
as the predominant approach, owing to their non-intrusive nature,
cost-effectiveness, and convenience. However, due to the depth
ambiguity of RGB images, estimating 3D joint points from RGB im-
ages is ill-posed. To solve this problem, we introduce the parametric
human model SMPL [33] to offer a robust human structure prior in
natural human poses. We obtain the SMPL model parameters 𝚯 of
the human body by leveraging the off-the-shelf monocular human
pose estimation method CLIFF [30]. In this case, the sub-problem
of pose estimation can be formulated as:

min
𝚯

𝐿𝑒 (P𝐻𝑢𝑚𝑎𝑛 (𝚯), P̃𝐻𝑢𝑚𝑎𝑛) (1)

where the estimated human pose P𝐻𝑢𝑚𝑎𝑛 (𝚯) can be represented
by {𝑱𝐻 (𝚯),𝑴𝐻 (𝚯)}. 𝑱𝐻 (𝚯) ∈ R24×3 represents the positions of
24 joints, including head, hands, elbows, and feet [33]. 𝑴𝐻 (𝚯) ∈
R1×3 is the position of human body’s CoM [55]. Both of them are
calculated by the SMPL model parameters 𝚯. It is expected that
P𝐻𝑢𝑚𝑎𝑛 (𝚯) is as similar as possible to P̃𝐻𝑢𝑚𝑎𝑛 , which is measured
by Euclidean distance 𝐿𝑒 (·).

3.2 Motion Retargeting
As shown in Fig. 3, there are large differences between human
and humanoid robot in terms of topology, quantity, size and struc-
ture, etc. Motion retargeting is a essential process in Human-to-
Humanoidmotion imitation. The estimated human pose P𝐻𝑢𝑚𝑎𝑛 (𝚯)
undergoes a series of transformations, including reduction, scaling,
and coordinate system alignment [24, 39], to yield the humanoid
robot pose P𝑅𝑜𝑏𝑜𝑡 = {𝑱𝑅, 𝑹𝑅,𝑴𝑅}. Here, 𝑱𝑅 ∈ R16×3 denotes the
positions of the 16 robot joints, 𝑹𝑅 ∈ R16×3×3 denotes the rota-
tion of the feet, while 𝑴𝑅 ∈ R1×3 represents the position of the
humanoid robot’s CoM.

3.3 Whole-Body Control
While the retargeted pose P𝑅𝑜𝑏𝑜𝑡 exhibits a high degree of morpho-
logical similarity to the human pose, it cannot be directly applied
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Figure 3: Differences between human and humanoid robot.

to the humanoid entity due to the inability to meet real physical
constraints, thus leading to potential issues such as falling or im-
balance. To solve this problem, whole-body control is employed
following the classical approaches [36]. Specifically, P𝑅𝑜𝑏𝑜𝑡 is input
into a differential inverse kinematics (IK) solver to calculate the
joint control parameters 𝑸 by utilizing the robot’s Jacobian matrix
under the constraints of robot’s kinematic balance.

This can be formulated as
min
𝑸

𝐿𝑒 (P𝑅𝑜𝑏𝑜𝑡 , P̃𝑅𝑜𝑏𝑜𝑡 (𝑸))

s.t. P̃𝑅𝑜𝑏𝑜𝑡 (𝑸) ⊆𝑪𝑟𝑜𝑏𝑜𝑡 ,
(2)

where 𝑪𝑟𝑜𝑏𝑜𝑡 represents a set of stable and safe motion.

4 MOTION RETARGETING USING PRESSURE
As shown in Fig. 2 (a), the pose estimated from RGB encounters
challenges related to depth ambiguity and an unclear foot-ground
contact relationship. Little attention is paid to verifying whether
the RGB-estimated human body key points align with reality, which
significantly impacts the stability of robot imitation. To enhance the
physical realism of human key points, both the CoM, representing
the overall kinematic state, and the foot-ground contact, reflecting
human balance control, play significant roles. Since representing
them solely from RGB information is highly hard, we introduce a
new modality, pressure, and represent the problem of robot motion
imitation in the following form:

min
𝚯,𝑸

𝐿𝑒 (P𝐻𝑢𝑚𝑎𝑛 (𝚯), P̃𝐻𝑢𝑚𝑎𝑛) + 𝐿𝑒 (P𝑅𝑜𝑏𝑜𝑡 , P̃𝑅𝑜𝑏𝑜𝑡 (𝑸))

s.t. P𝑅𝑜𝑏𝑜𝑡 = 𝛿 (P𝐻𝑢𝑚𝑎𝑛 (𝚯), 𝝓)
P̃𝑅𝑜𝑏𝑜𝑡 (𝑸) ⊆ 𝑪𝑟𝑜𝑏𝑜𝑡 .

(3)

Combining Eq. 1 and 2, we introduce an additional constraint, where
𝝓 denotes the pressure between the human feet and the ground. It
serves as a link within the function 𝛿 (·) to establish the mapping
between the human body model and the humanoid. Building upon
the analysis, we elaborate on our motion retargeting method using
pressure. As shown in Fig. 2 (b), the human key points is expanded

𝑷𝑟𝑓 𝑜𝑚

`𝑜𝑚 = 𝑜𝑝

𝑴

𝑷𝑙𝑓

` 𝑷𝑙𝑓

Figure 4: CoM offset definition and pose refinement.

to P𝐻𝑢𝑚𝑎𝑛 (𝚯) = {𝑱𝐻 (𝚯),𝑴𝐻 (𝚯), 𝑷𝐻 (𝚯)}, where 𝑷𝐻 (𝚯) is the
position of CoP calculated by SMPL parameters𝚯 [55]. Additionally,
we can acquire highly accurate foot-ground contact information
based on pressure data, which is then fed into a Support Mode
Discriminator to determine the current support mode 𝑆 of the
human body. Then, 𝑆 and 𝝓 are used to refine the estimated pose
P𝐻𝑢𝑚𝑎𝑛 and P𝑅𝑜𝑏𝑜𝑡 respectively.

4.1 Stability Analysis
To incorporate pressure into human pose representation, let’s begin
by analyzing the stability of human and humanoid. Both humans
and humanoids have two support areas (feet), each bearing a portion
of the body’s mass. The pressure insoles measure the pressure
distribution on the soles of each foot, which is presented in pixels.
From the pressure and positions of the pixels, we can obtain CoP of
each foot 𝑷 = {𝑷𝑙 𝑓 , 𝑷𝑟 𝑓 }. As shown in Fig. 4, (·)𝑙 𝑓 and (·)𝑟 𝑓 means
left and right foot. Taking the left foot as an example:

𝜙𝑙 𝑓 =
∑︁
𝑖∈𝑙 𝑓

𝜙𝑖 , (4)

𝑷𝑙 𝑓 =

∑
𝑖∈𝑙 𝑓 𝑿𝑖 · 𝜙𝑖

𝜙𝑙 𝑓
. (5)

Here, 𝜙𝑖 represents the pressure value of each pixel, and 𝑿𝑖 is its
position. 𝑷𝑙 𝑓 is the CoP of the left foot. The calculation method for
the right foot is similar. In theory, we can also obtain the CoP of
the whole body, written as

𝑷 = (1 − 𝑜𝑝 ) · 𝑷𝑙 𝑓 + 𝑜𝑝 · 𝑷𝑟 𝑓 , (6)

where 𝑜𝑝 is a pressure offset denoted as follows:

𝑜𝑝 =
𝜙𝑟 𝑓

𝜙𝑙 𝑓 + 𝜙𝑟 𝑓
. (7)

This value ranges from 0 to 1, with a value of 0 when all the pressure
falls on the left foot and a value of 1 when all the pressure falls on
the right foot.
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Next, we follow [24, 38, 42] to extend the concept of CoM offset
and define it as

𝑜𝑚 =


(𝑴−𝑷𝑙 𝑓 ) (𝑷𝑟 𝑓 −𝑷𝑙 𝑓 )
∥𝑷𝑟 𝑓 −𝑷𝑙 𝑓 ∥22

, if 𝑆 = 𝐷

0 , if 𝑆 = 𝐿

1 , if 𝑆 = 𝑅.

(8)

Here, 𝑆 represents the support mode, 𝐿,𝑅, and𝐷 respectively denote
left leg support, right leg support, and dual legs support. 𝑜𝑚 ∈ [0, 1].
When the body is fully supported by the left leg, this value is 0, and
when it is fully supported by the right leg, the value is 1.

Under quasi-static conditions, the CoP can be considered equiv-
alent to the projection of the CoM onto the ground [7, 22, 57], so
we have the following relationship when 𝑆 = 𝐷 :

𝑜𝑚 =
(𝑷 − 𝑷𝑙 𝑓 ) (𝑷𝑟 𝑓 − 𝑷𝑙 𝑓 )
∥𝑷𝑟 𝑓 − 𝑷𝑙 𝑓 ∥22

=
((1 − 𝑜𝑝 )𝑷𝑙 𝑓 + 𝑜𝑝 · 𝑷𝑟 𝑓 − 𝑷𝑙 𝑓 ) (𝑷𝑟 𝑓 − 𝑷𝑙 𝑓 )

∥𝑷𝑟 𝑓 − 𝑷𝑙 𝑓 ∥22

=
𝑜𝑝 (𝑷𝑟 𝑓 − 𝑷𝑙 𝑓 ) (𝑷𝑟 𝑓 − 𝑷𝑙 𝑓 )

∥𝑷𝑟 𝑓 − 𝑷𝑙 𝑓 ∥22
= 𝑜𝑝 .

(9)

Eq. 9 indicates that under quasi-static conditions, the pressure offset
𝑜𝑝 is equal to the CoM offset 𝑜𝑚 . Hence, we can utilize the pressure
offset 𝑜𝑝 to correct the CoM offset 𝑜𝑚 , ensuring that the human
key points align with the pressure distribution.

4.2 Kinematic Pose Refinement
For a human demonstrator, we can derive an estimated 𝑜𝑚 from
RGB image and a real 𝑜𝑝 from pressure data. However, the esti-
mated 𝑜𝑚 and the 𝑜𝑝 are usually not equal. Following the analysis
presented in Sec. 4.1, we apply a geometric method, as described
in [24], to refine estimated pose, ensuring consistency between
𝑜𝑚 and 𝑜𝑝 . Specifically, the pose of human P𝐻𝑢𝑚𝑎𝑛 and humanoid
P𝑅𝑜𝑏𝑜𝑡 are refined respectively according to the support mode (i.e.,
Dual support and single support).

Dual support. As illustrated in Fig. 4, the ultimate target of pose
refinement is to find a new offset ′𝑜𝑚 satisfies ′𝑜𝑚 = 𝑜𝑝 . Assuming
the right foot remains fixed, our goal is to locate a new left foot
CoP ′𝑷𝑙 𝑓 , which is constrained along the line connecting 𝑴 and
𝑷𝑙 𝑓 . According to Eq. 8, we have:

′𝑜𝑚 =
(𝑴 −′ 𝑷𝑙 𝑓 ) (𝑷𝑟 𝑓 −′ 𝑷𝑙 𝑓 )
∥𝑷𝑟 𝑓 −′ 𝑷𝑙 𝑓 ∥22

. (10)

After solving the Eq. 10, we can obtain the refined CoP ′𝑷𝑙 𝑓 . Then,
the normal vector of the foot plane can be obtained as follow

𝒏𝑙 𝑓 = 𝑴 − (′𝑷𝑙 𝑓 +′ 𝑜𝑚 (𝑷𝑟 𝑓 −′ 𝑷𝑙 𝑓 )) . (11)

From the normal vector, we can obtain the orientation of the foot
plane by

𝑹𝑙 𝑓 = cos(𝜃 )𝑰 + (1 − cos(𝜃 ))𝒏𝑙 𝑓 · (𝒏𝑙 𝑓 )𝑇 + sin(𝜃 ) [𝒏𝑙 𝑓 ]× (12)

where 𝑰 is the identitymatrix, [𝒏𝑙 𝑓 ]× represents the skew-symmetric
matrix of the normal vector, 𝜃 is the angle between foot normal
vector and ground normal vector.

Algorithm 1: Support Mode Discriminator Pseudo-code
Input :𝑆 , 𝑜𝑝
Output :𝑆

1 if S == L then
2 if 𝑜𝑝 > 𝑡ℎ then
3 𝑆 ← D

4 else if S == R then
5 if 𝑜𝑝 < 1 − 𝑡ℎ then
6 𝑆 ← D

7 else if S == D then
8 if 𝑜𝑝 ≤ 𝑡ℎ then
9 𝑆 ← L

10 else if 𝑜𝑝 ≥ 1 − 𝑡ℎ then
11 𝑆 ← R

The refinement process for the right foot follows the same prin-
ciple. When 𝑜𝑚 > 𝑜𝑝 , we perform left foot refinement; otherwise,
we perform right foot refinement.
Single support. When the support mode 𝑆 = 𝐿 or 𝑅, there is no
need to refine the position. It only needs to calculate the orientation
of feet by current 𝑷𝑙 𝑓 or 𝑷𝑟 𝑓 according to Eq. 11 and 12.
Note that, orientation information is not crucial for refining the
human body, as we do not focus on human joint orientation. How-
ever, it is vital for refining the robot key points, as the robot’s foot
plane must align with the normal vector to ensure balance.

Subsequently, the refined pose ′P𝑅𝑜𝑏𝑜𝑡 is fed into whole-body
control module to drive the humanoid robot, facilitating the achieve-
ment of balanced and stable motion.

4.3 Support Mode Discriminator
There is little research that can precisely capture foot-ground con-
tact using RGB, RGB-D, or even IMU data. However, pressure sens-
ing presents notable advantages in this context, as it accurately
captures changes in the body’s CoP, thereby determining the hu-
man support mode. Our designed discriminator is illustrated in
Algorithm. 1, where 𝑡ℎ is the threshold for the pressure distribution.
We employ the concept outlined in Eq. 7. When 𝑜𝑝 surpasses 𝑡ℎ, a
switch in the support mode is activated.

We believe that in the process of action imitation, accurate map-
ping of leg support modes is crucial, as it constitutes the essence
of imitation. Otherwise, in cases where only the overall location
is considered, the leg structure of the humanoid robot would be
meaningless.

5 EXPERIMENTS
To assess the efficacy of our proposed human-to-humanoid mo-
tion imitation method, we utilize the PSU Taiji MultiModal (PSU-
TMM100) Dataset [46] as the human motion demonstrator and the
NAO humanoid robot [15, 25, 51] as the motion executor. We quan-
titatively and subjectively compare the similarity and stability of
methods based on RGB and RGB-P modalities.
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All sequences Normalized sequences
𝔈𝑚𝑝 𝑗𝑝𝑒,𝐻 ↓ 𝔈𝑚𝑝 𝑗𝑝𝑒,𝑅 ↓ 𝔈𝑓 𝑟𝑒𝑐ℎ𝑒𝑡 ↓ 𝔈𝑚𝑝 𝑗𝑝𝑒,𝐻 ↓ 𝔈𝑚𝑝 𝑗𝑝𝑒,𝑅 ↓ 𝔈𝑓 𝑟𝑒𝑐ℎ𝑒𝑡 ↓

RGB 94.95 15.19 525.71 97.37 15.45 535.99
RGB-P(Ours) 95.76 16.01 532.53 98.76 15.93 539.43

Table 1: Quantitative results of similarity.

𝔈𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ↑
All sequences Normalized sequences

𝔈𝑐𝑜𝑚 ↓ 𝔈𝑐𝑜𝑝 ↓ 𝔈𝑐𝑜𝑚 ↓ 𝔈𝑐𝑜𝑝 ↓
V-MoCap 113001 35.37 44.86 34.87 47.32

RGB 82746 41.33 61.65 36.98 56.27
RGB-P(Ours) 96434 30.41 31.81 32.28 36.31

Table 2: Quantitative results of completeness and stability.

5.1 Experimental Setup
Dataset. The PSU Taiji MultiModal (PSU-TMM100) Dataset [46]
comprises 100 Taiji motion sequences performed by 10 human
subjects, providing RGB video and foot pressure. Additionally, a
wearable optical motion capture system (Vicon motion capture
system (V-MoCap) [1]) is used to obtain precise and accurate 3D
markers on human body. We select this dataset for the following
reasons: (1) It contains RGB and pressure modal data, aligning with
the requirements of our method; (2) It offers accurate human body
3D marker data, serving as a good benchmark for non-intrusive
pose estimation; (3) Tai Chi encompasses numerous balancing mo-
tions, posing significant challenges for humanoid robot.
Platform. NAO humanoid robot [15, 25, 51] has 25 degrees of
freedom (DOF). Its motion model is based on generalized inverse
kinematics and performs well in tasks involving Cartesian and joint
control, balance, and other functions. Our simulation environment
utilizes Webots and qiBullet. We evaluate the the similarity of hu-
manoid in qiBullet and stability in Webots.
Metrics. We employ the Mean Per Joint Position Error (MPJPE)
𝔈𝑚𝑝 𝑗𝑝𝑒 and the Frechet Distance𝔈𝑓 𝑟𝑒𝑐ℎ𝑒𝑡 for similarity evaluation,
while for stability evaluation, we utilize Imitating Duration𝔈𝑙𝑒𝑛𝑔𝑡ℎ ,
CoM Deviation 𝔈𝑐𝑜𝑚 , and CoP Deviation 𝔈𝑐𝑜𝑝 .

1) MPJPE 𝔈𝑚𝑝 𝑗𝑝𝑒 : After aligning the estimated and ground-
truth 3D joints at the root, we calculate the MPJPE 𝔈𝑚𝑝 𝑗𝑝𝑒 (mm)
to measure the accuracy of the estimated pose.

2) Frechet Distance 𝔈𝑓 𝑟𝑒𝑐ℎ𝑒𝑡 : Due to the mismatch in the joint
numbers and link sizes between human and humanoid, we use
the root-aligned mean per-joint Frechet distance 𝔈𝑓 𝑟𝑒𝑐ℎ𝑒𝑡 (mm)
to evaluate the similarity of all motion joints of the robot and the
corresponding human groundtruth [62], including the head, elbows,
hands, and feet.

3) Imitating Duration 𝔈𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 : We evaluate the completeness
of humanoid imitation by summing the total lengths of stable action
sequences (𝔈𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ) executed by the robot without experiencing
falls. Throughout the experiment, we terminate the process when-
ever the absolute height of the head drops below 250 millimeters,
indicating a fall by the robot.

4) CoMDeviation𝔈𝑐𝑜𝑚 : To evaluate the stability of the humanoid
during execution, we measure the mean global deviation 𝔈𝑐𝑜𝑚

(mm) between the CoM projection and the ideal support region.
Specifically, when the humanoid stands on dual legs, we calculate
the distance from the CoM projection to the line between the ankle
joints [39]. When the robot stands on a single leg, the distance
is from the CoM projection to the ankle joint projection of the
supporting leg.

5) CoP Deviation 𝔈𝑐𝑜𝑝 : We also use the whole-body CoP com-
puted from the foot sensors. To calculate the global deviation of
the CoP and ideal support region 𝔈𝑐𝑜𝑝 (mm).

5.2 Similarity Evaluation
Considering that V-MoCap can provide precision and accurate 3D
markers on human body, we follow [35] to obtain the ground-truth
of human body key points P̃𝐻𝑢𝑚𝑎𝑛 through SMPL model [33]. So
that, we can compare the motion imitation similarity of our pro-
posed RGB-P based method with the RGB based method through
𝔈𝑚𝑝 𝑗𝑝𝑒 and𝔈𝑓 𝑟𝑒𝑐ℎ𝑒𝑡 . The results are demonstrated in Tab. 1. Given
that robots cannot execute all human actions, the motion imitation
always terminate early with falling down. For a fair and compre-
hensive comparison, we provide test results for two cases. The
term of "All sequences" in the table indicates that both our method
and the comparative method use their respective metrics at their
highest completion. The term of "Normalized sequences" indicates
normalizing the sequence lengths to a uniform length. For instance,
if our RGB-P method achieves a completion of 2000 frames and
the RGB method achieves a completion of 1000 frames, the metrics
are calculated across all frames (i.e., 2000 for RGB-P method and
1000 for RGB method) in terms of "All sequences". Meanwhile, the
metrics are calculated across the minimum number of frames (i.e.,
1000 for both RGB-P and RGB methods) in terms of "Normalized
sequences".

The 𝔈𝑚𝑝 𝑗𝑝𝑒,𝐻 in the first column primarily presents the error
between the estimated human pose (i.e., P𝐻𝑢𝑚𝑎𝑛 for RGB method
and ′P𝐻𝑢𝑚𝑎𝑛 for RGB-P method) and the ground-truth P̃𝐻𝑢𝑚𝑎𝑛 .
𝔈𝑚𝑝 𝑗𝑝𝑒,𝑅 represents the error between the target pose of the robot
(i.e., P𝑅𝑜𝑏𝑜𝑡 for RGBmethod and ′P𝑅𝑜𝑏𝑜𝑡 for RGB-Pmethod) and the
actual executed pose P̃𝑅𝑜𝑏𝑜𝑡 . For RGB method, there is no human
key points refinement module, and support mode discriminator
relies on a method from the estimated pose [28, 64].
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Figure 5: Comparison of human support mode discrimination.

Human

RGB

RGB-P

Figure 6: Comparison of RGB method and RGB-P method given the same pose.

It can be observed that our method does not improve the ac-
curacy of pose estimation or the execution accuracy of the robot
before and after adding pressure. This is understandable because
the accuracy of human pose estimation depends on the precision
of the RGB-based pose estimation algorithm we employ, and our
pose refinement only corrects the CoPs of the human feet, which
does not contribute to improving accuracy. It is worth noting that,
the performance degradation of RGB-P method is less than 1 mm,
which is negligible.

The metric 𝔈𝐹𝑟𝑒𝑐ℎ𝑒𝑡 indicates the similarity between the robot
pose P̃𝑅𝑜𝑏𝑜𝑡 and the human ground-truth P̃𝐻𝑢𝑚𝑎𝑛 . From the exper-
imental data, it can be observed that the similarity remains almost
unchanged before and after the addition of pressure. This suggests
that although our refinement leads to a decrease in the accuracy of
human pose estimation, this decrease does not significantly affect
the similarity of robot execution actions. This also implies that in
the task of robot motion imitation, higher accuracy in pose estima-
tion does not necessarily lead to better performance. The motion
remapping module plays a more significant role in performance
improvement.
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5.3 Stability Evaluation
As shown in Table 2, we evaluate the stability of our system. The
metrics 𝔈𝑐𝑜𝑚 and 𝔈𝑐𝑜𝑝 suggest that integrating pressure data can
notably enhance stability. This indicates the effectiveness of our
pressure-based pose refinement and support mode discriminator.
We also test the stability using human ground-truth (V-MoCap)
as input, and the results show that our RGB-P method performed
the best. This suggests that the accuracy of human pose estimation
does not necessarily lead to improved stability. Instead, it is more
crucial to find a mapping relationship that can reasonably establish
human and humanoid pose and balance.

5.4 Subjective Evaluation
To intuitively demonstrate the effectiveness of human-to-humanoid
motion imitation using our proposed method, we conduct tests both
in simulation and real-world scenarios.

In Figure 5, we present a motion sequence in PSU-TMM100
alongside corresponding pressure distribution. The imitation results
obtained from the pose captured by V-MoCap, RGB, and RGB-P
are compared. It is evident that pressure data provides accurate
foot-ground contact information, leading to more precise mode
recognition. Interestingly, our method even surpasses the V-MoCap
approach in terms of action completion, showcasing the advantages
of our RGB-P integration. Upon observing instances of falls in both
V-MoCap and RGB methods, we note that both of them are caused
by misjudgments of the support mode.

The motion imitation performed by a real physical humanoid
robot (i.e., NAO) is depicted in Figure 6. For illustrative purposes,
only five key frames are selected as examples. It can be observed
that our human-to-humanoid motion imitation system can con-
ducted on real robots and achieve good balance between motion
similarity and stability. In detail, the methods using RGB-P and
RGB are similar in terms of upper-body similarity. But regarding
the whole body, the RGB-P method sometimes adjusts leg posture
to achieve a support mode more similar to that of humans, resulting
in a better imitation effect. As highlighted by the red circles, the
human primarily supports her weight on the right foot, whereas
the RGB-based method results in a humanoid pose distributing
weight across both feet. Conversely, our method achieves a support
pattern consistent to that of the human.

6 CONCLUSION AND DISCUSSION
In this study, we establish a multi-modal motion mapping system
to explore the importance of pressure in humanoid robot imitation.
By utilizing RGB and pressure data for humanoid robot motion
imitation, we introduce a low-cost and non-intrusive method that
enhances stability and balance. Leveraging precise pressure data,
we refine the posture of both humans and robots, thereby enhancing
their physical consistency. Through experiments in both simulated
and real environments, our method demonstrates a significant im-
provement in stability while maintaining the imitation similarity.
However, we must acknowledge that humanoid robot motion imi-
tation still has a long way to go. Making humanoid robots perform
routine actions like humans remains highly challenging. We sup-
pose there are several key aspects to consider:
Robot motion dataset. Current robot motion imitation faces a

challenge due to the limited availability of comprehensive datasets.
Most existing datasets are based on human motions, which of-
ten include actions beyond robots’ capabilities. We believe that in
the future, generating synthetic data using computer graphics and
physics simulations could broaden the dataset’s scope. Transfer
learning from existing human motion datasets could also aid in
adapting motions to new robot tasks, accelerating learning and
improving performance.
High dynamic motion imitation. In high-speed dynamic motion
imitation, robots face increased complexity in dynamics and kine-
matics, requiring precise modeling and prediction. This involves
understanding interactions between different body parts and the im-
pact of the external environment. Hence, advanced perception and
cognition systems are vital. We suppose that integrating various
sensors like vision, sound, and touch for comprehensive environ-
mental data is crucial. Additionally, efficient control algorithms
leveraging deep learning and reinforcement learning are essential
for real-time monitoring and swift adjustments to maintain stability
and balance.
Whole-bodymotion imitation. In humanoid whole-body motion
imitation, a frequently discussed issue is how to enhancemotion sta-
bility while ensuring similarity in lower-body actions. For bipedal
structures, future focus should also be on maintaining accurate
global location control while achieving precise leg imitation. These
challenges underscore the need for more advanced sensor and feed-
back systems, as well as dynamic control algorithms.
Real-timemotion imitation. Robot teleoperation imposes higher
demands on the real-time performance of motion capture and mo-
tion control algorithms. We believe that it is highly necessary to
develop a low-latency real-time imitation system in the future,
which should effectively integrate multiple processes including per-
ception, learning, decision-making, action, and feedback to enhance
the capabilities of robot teleoperation.
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