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1 DATASET DETAILS
PSU-TMM100 are measured by Viconmotion capture system, which
has 12 IR cameras and 39 optical markers. In order to obtain the
ground truth of the SMPL model parameters, we first process the
original 3D marker points. As shown in Table 1, we match the
marker index and the SMPL vertex index according to [5]. Then we
utilize Mosh++ [5] to obtain SMPL parameters ground-truth.

2 ROBOT CONTROL
The whole-body control of the humanoid can be divided into two
steps: the inverse kinematic (IK) solver and the stabilizer. The IK
solver determines a joint configuration that enables the joints to
reach the target positions, while the stabilizer ensures that the
motion adheres to balance and stability constraints.

Firstly, given a target pose, we employ a differential IK approach,
which can be denoted as

min
¤𝑸

∑︁
𝑖

𝜔𝑖 ∥J𝑖
¤𝑸 − 𝐾𝑖𝒗𝑖 ∥22 + ∥ ¤𝑸 ∥22

s.t. 𝐾𝑚
𝑸𝑙 − 𝑸𝑐

𝑑𝑡
≤ ¤𝑸 ≤ 𝐾𝑚

𝑸𝑢 − 𝑸𝑐

𝑑𝑡
.

(1)

Here,J𝑖 represents the Jacobianmatrix, whichmaps joint velocities
¤𝑸 to the velocities of end-point 𝑖 . 𝒗𝑖 denotes the velocity residual,
defined as the difference between the current and target positions
of the end-point. By multiplying 𝒗𝑖 by a proportional gain 𝐾𝑖 , we
ensure that J𝑖

¤𝑸 endeavors to reach the desired values at each time
step 𝑑𝑡 , allowing us to obtain the desired ¤𝑸 . In practice, we can set
implicit priorities between targets by having e.g. 𝜔𝑖 = 104 for the
most important end-point positions (such as elbows, wrists, etc.)
to preserve motion similarity, and 𝜔𝑖 = 102 to the subsequent ones
(like ankles, etc.) to ensure stability [4]. Additionally, we consider
∥ ¤𝑸 ∥22 to keep the ¤𝑸 as continuous as possible.

In this process, the ¤𝑸 must be constrained within the lower and
upper limit of joint variation. In Eq. 1, 𝑸𝑐 represents the current
joint angle, 𝑸𝑙 is the lower limit of the joint angle, and 𝑸𝑢 is the
upper limit of the joint angle. 𝐾𝑚 is a proportional gain which
means a joint angle update will not exceed the gap separating its
current value from its bounds.

We use QP solvers, CVXOPT [1] and OSQP [3] in Python to solve
the problem described in Eq. 1. For mathematical derivation and
more details, readers can refer to [2].

Having got the joint velocities ¤𝑸 , we can update the joint con-
figuration by

𝑸̂ = ¤𝑸 + 𝑸𝑐 , (2)

where 𝑸̂ is the target joint configuration. However, the robot can
not directly be driven by 𝑸̂ due to the risk of losing balance. So
we design a stabilizer to further optimize the joint configuration,

which can be represented as

min
𝑸

∥𝑸̂ − 𝑸 ∥22

s.t. 𝑴𝑅 (𝑸) ⊆ 𝐶𝑚𝑟𝑜𝑏𝑜𝑡
𝑱
𝑙 𝑓 ,𝑟 𝑓

𝑅
(𝑸) ⊆ 𝐶 𝑗

𝑟𝑜𝑏𝑜𝑡

𝑹
𝑙 𝑓 ,𝑟 𝑓

𝑅
(𝑸) ⊆ 𝐶𝑟

𝑟𝑜𝑏𝑜𝑡
.

(3)

Here, 𝑴𝑅 represents the CoM position of the robot, which must
be constrained within the support polygons 𝐶𝑚

𝑟𝑜𝑏𝑜𝑡
[6]. Addition-

ally, 𝑱 𝑙 𝑓 ,𝑟 𝑓
𝑅

denotes the positions of the two feet, which need to
be restricted in foot position constraints 𝐶 𝑗

𝑟𝑜𝑏𝑜𝑡
to ensure stabil-

ity. For instance, when the humanoid is supported by both feet,
the heights of both feet must be equal, when supported by the
left foot, the height of the right foot must not be lower than that
of the left foot. Similarly, the foot rotations 𝑹𝑙 𝑓 ,𝑟 𝑓

𝑅
must also be

restricted in rotation constraints 𝐶𝑟
𝑟𝑜𝑏𝑜𝑡

. For example, when the
humanoid is supported by both feet, the rotation of both feet should
be consistent.

3 ADDITIONAL EXPERIMENTS
3.1 Similarity Visualization
We compare the trajectories of human(ground-truth) and robot
joints in Fig 2. It’s evident that the upper-body joint trajectories (i.e.,
Elbows and Wrists) generated by the our RGB-P method are con-
sistent with those of the RGB method, indicating that our method
doesn’t alter the upper-body imitation similarity. However, there is
a substantial decline in similarity observed in the lower-body joint
trajectories (i.e., ankles), which occasionally differ from those of
the RGB method. This discrepancy arises from the need to correct
trajectories for stability and balance maintenance. We posit that this
compromise in similarity is essential to ensure the robot’s safety.

3.2 Stability Visualization
As depicted in Fig. 1, the curves generated by the RGB method
display considerable jitter, especially in the case of CoP deviation,
which directly detected by foot sensors. This jitter suggests insta-
bility in humanoid. In contrast, the curves from our RGB-P method
appear smoother and more stable, demonstrating that the integra-
tion of pressure data into the RGB method substantially improves
stability.

3.3 Imitation Video
We also provide a video showcasing the imitation process in both
simulation and a real environment. In the simulation, the RGB
method fails to adjust the CoM to match the support mode, result-
ing in a lean in the body. This is primarily due to the imprecise
estimation of the human CoM by the RGB method. In contrast,
our RGB-P method accurately captures the changes in the human
CoM and maps them to the humanoid, successfully completing the
motion of lifting the leg.
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Table 1: Marker and vertex correspondence table

Marker Index Marker Name Vertex Index Marker Index Marker Name Vertex Index

1 LFHD 0 21 RWRA 5573
2 RFHD 3512 22 RWRB 5568
3 LBHD 182 23 RFIN 5635
4 RBHD 3694 24 LASI 857
5 C7 3470 25 RASI 4343
6 T10 3016 26 LPSI 3122
7 CLAV 3171 27 RPSI 6544
8 STRN 3506 28 LTHI 1454
9 RBAK 5273 29 LKNE 1053
10 LSHO 1861 30 LTIB 1112
11 LUPA 1443 31 LANK 3327
12 LELB 1666 32 LHEE 3387
13 LFRM 1568 33 LTOE 3233
14 LWRA 2112 34 RTHI 4927
15 LWRB 2108 35 RKNE 4538
16 LFIN 2174 36 RTIB 4598
17 RSHO 5322 37 RANK 6728
18 RUPA 4918 38 RHEE 6786
19 RELB 5135 39 RTOE 6633
20 RFRM 5037

(a) CoM Deviation (b) CoP Deviation

Figure 1: Comparison of CoM and CoP deviations.

Additionally, we conduct an experiment with a real robot per-
forming a series of Taiji motions learned from a human. Due to the
low efficiency of the robot’s servomotors, we have accelerated the
humanoid motion video to display it conveniently at the same pace
as the human motion. Comparing the robot’s motion with that of a
human, we can observe that the humanoid moved in a similar trend
while maintaining its balance and stability, which further confirms
the effectiveness of our method.
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(a) Elbow Similarity

(b) Wrist Similarity

(c) Ankle Similarity

Figure 2: Comparison of similarities in different joints.
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