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ABSTRACT

We study how deep reinforcement learning algorithms learn meaningful features
when optimized for finding the optimal policy. In particular, we focus on a version
of the neural actor-critic algorithm where both the actor and critic are represented
by over-parameterized neural networks in the mean-field regime, and are updated
via temporal-differece (TD) and policy gradient respectively. Specifically, for the
critic neural network to perform policy evaluation, we propose mean-field Langevin
TD learning method (MFLTD), an extension of the mean-field Langevin dynamics
with proximal TD updates, and compare its effectiveness against existing methods
through numerical experiments. In addition, for the actor neural network to perform
policy updates, we propose mean-field Langevin policy gradient (MFLPG), which
implements policy gradient in the policy space through a version of Wasserstein
gradient flow in the space of network parameters. We prove that MFLTD finds
the correct value function, and the sequence of actors created by MFLPG created
by the algorithm converges linearly to the globally optimal policy of the Kullback
Leibler divergence regularized objective. To our best knowledge, we provide the
first linear convergence guarantee for neural actor-critic algorithms with global
optimality and feature learning.

1 INTRODUCTION

In recent years, the field of reinforcement learning (RL) (Sutton & Barto, 2018) including the policy
gradient method (Williams, 1992; Baxter et al., 1999; Sutton et al., 1999) and the temporal-difference
(TD) learning (Sutton, 1988) has made tremendous progress, with deep reinforcement learning
methods. The combination of the actor-critic method (Konda & Tsitsiklis, 1999) and neural networks
has demonstrated significant empirical success in challenging applications, such as the game of Go
(Silver et al., 2016; 2017) or the human-like feedback alignment (Ouyang et al., 2022). In these
empirical successes, the employment of deep neural networks plays an indispensable role — their
expressivity enable learning meaningful features that benefit decision-making. However, despite the
impressive empirical results, there remain many open questions about the theoretical foundations
of these methods. In particular, when viewing deep RL methods as optimization algorithms in the
space of neural network policies, it remains elusive how deep RL algorithms learn features during the
course of finding the optimal policy.

One source of difficulty in the analysis of neural policy optimization comes from the nonconvexity
of the expected total reward over the policy space. Also, TD learning used in the policy evaluation
subproblem faces classic challenges (Baird, 1995; Tsitsiklis & Van Roy, 1996) stemming from the
bias of semi-gradient optimization (Sutton, 1988). Another source of difficulty is the nonlinearity
associated with the neural networks parameterizing both the policy and state-action value functions.
The tremendous success of deep RL is attributed to its rich expressive power, which is backed by
the nonlinearity of neural networks, which at the same time brings a considerable challenge to the
optimization aspect. Unfortunately, the advantages of data-dependent learning of neural networks
in the context of RL have only a limited theoretical understanding. Classical theoretical studies of
policy optimization and policy evaluation problems, including the actor-critic method, limit their
analysis to the case of linear function approximation in both the actor and the critic, where the feature
mapping is fixed during learning (Sutton et al., 1999; Kakade, 2001; Bhatnagar et al., 2007; 2009).
Recently, some analyses based on the theory of Neural Tangent Kernel (NTK) (Jacot et al., 2018)
are established, which state that an infinite-width neural network is well approximated by a linear
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function of random features determined by initial parameters under certain conditions (Cai et al.,
2019; Wang et al., 2020; Liu et al., 2019). More recent works (Zhang et al., 2020; 2021) establish
the study of convergence and optimality of over-parameterized neural networks over lazy training
(Chizat et al., 2019), incorporating a mean-field perspective corresponding to NTK. Specifically, by
letting the network width be sufficiently large under appropriate conditions in NTK or lazy training
regimes, optimality is guaranteed based on the fact that the neural network features are as close as
possible to the data-independent initial feature representation. In other words, these existing analyses
do not fully capture the representation learning aspect of neural RL empowered by the expressivity of
neural networks. Thus, in this paper, we aim to address the following question:

Does neural actor-critic provably learn features on the way to the global optima?

We provide an affirmative answer to this question by focusing on the case where both the actor and
the critic are represented by an over-parameterized two-layer neural network in the mean-field regime.
Under this setting, we propose to update the actor and critic by a variant of policy gradient and
TD learning tailored to mean-field neural networks, based on Langevin dynamics. We prove that
the critic converges to the correct value function sublinearly and the sequence of actors converges
to the globally optimal policy of a Kullback Leibler (KL) divergence regularized objective. More
importantly, our theory is beyond the lazy training regime and provably shows that the actor and critic
networks performs feature learning in the algorithm.

Our Contributions The main contribution of this paper is to propose the Mean-field Langevin actor-
critic algorithm and prove linear convergence and global optimality with feature learning (Suzuki,
2019; Ghorbani et al., 2019). We treat the problem of policy improvement and policy evaluation as an
optimization over a probability distribution of network parameters with KL-divergence regularization
and build convergence analysis based on mean field Langevin dynamics (MFLD). Specifically,

1. We introduce the mean-field Langevin TD learning (MFLTD) as the policy evaluation component
(critic) and show that it converges to the true value function at a sublinear rate. In this algorithm,
we employ a double-loop proximity gradient algorithm to resolve the difficulties posed by having
semi-gradients instead of gradients of the mean-square Bellman error in TD-learning.

2. We introduce the mean-field Langevin policy gradient (MFLPG) as the policy improvement
component (actor) and prove that it converges to the globally optimal policy of expected total
reward at a linear convergence rate under KL-divergence regularization. This algorithm is
equivalent to the standard policy gradient in the parameter space with additional injected noises.

Our analysis extends the convergence analysis of MFLD with general over-parameterized neural
networks (Nitanda et al., 2022; Chizat, 2022) to both TD learning and the policy gradient methods.
At the core of our analysis are (1) the over-parameterization of two-layer neural networks to represent
policies and approximate state-action value functions, (2) the strong convexity-like properties acquired
by the objective function through KL-divergence regularization, (3) the proximal gradient algorithm
for TD learning to prevent convergence breakdown by using the semi-gradient of the mean squared
Bellman error, and (4) the use of geometric property taking advantage of the universal approximation
of the Barron-like class to connect the convergence of the policy gradient method with the one-
point convexity from Kakade & Langford (2002). In particular, (1) attributes the problem to the
Wasserstein gradient flow and enables to utilize the convexity of the loss function in the measure
space. Furthermore, together with (2), it induces the log-Sobolev inequality, which guarantees linear
convergence speed in the presence of globally convergent solutions. Note here that, our whole results
are valid with arbitrary regularization parameters. To the best of our knowledge, our analysis gives
the first global optimality and linear convergence guarantees for the neural policy gradient methods
with feature learning, confirming their considerable empirical success.

Related Works Regarding the convergence and optimality of the actor-critic, there is a need
to encompass the two optimization problems of the actor component and the critic component,
and in terms of the complexity of each problem, the theoretical research is limited. Regarding
TD learning, various approaches mainly utilizing linear function approximation have been made to
address the divergence and non-convergence issues arising from semi-gradient (Baird, 1995; Tsitsiklis
& Van Roy, 1996). In particular, Capturing neural networks in the NTK regime, Cai et al. (2019)
demonstrated sublinear convergence to the true value function, and Zhang et al. (2020) showed such
sublinear convergence by attributing this optimization to lazy training. On the other hand, the global
convergence of policy gradient methods is limited due to the non-convexity of the objective function,
but Fazel et al. (2018); Yang & Wang (2019) proved the convergence of policy gradient methods to
the globally optimal policy in the LQR setting (Fazel et al., 2018), and Bhandari & Russo (2019);
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Agarwal et al. (2020) proved convergence to the globally optimal policy in tabular and their own
linear settings. Along the line of research, Wang et al. (2020) incorporated Cai et al. (2019) as the
critic component, assuming that both the actor and critic, over-parameterized neural networks, are
well approximated by linear functions of random features determined by initial parameters. They
provided convergence to the globally optimal policy at a sublinear rate. However, these analyses over
NTK or lazy training regimes assume that the neural network does not learn features from the input
data.

As opposed to the linearization analysis above, we use the following tools of mean-field Langevin
theory. In general, gradient method analysis of mean-field neural networks uses the convexity of
the objective in the space of probability measures to show its global optimality (Nitanda & Suzuki,
2017; Chizat & Bach, 2018; Mei et al., 2018), MFLD yields to an entropy regularization term in the
objective by adding Gaussian noises to the gradient. Within this research stream, our work is closely
related to Nitanda et al. (2022); Chizat (2022) using convex analysis focusing on the log-Sobolev
inequality starting from the Nitanda et al. (2021). There is also a large body of literature analyzing
the optimization analysis of supervised learning with over-parameterized neural networks in the
mean-field regime (Hu et al., 2021; Chen et al., 2020; Nitanda et al., 2022; Chizat, 2022).

2 BACKGROUND

The agent interacts with the environment in a discounted Markov decision process (MDP) (Puterman,
2014) given by a tuple (S,A, γ, P, r). The policy π : S × A → P(S) represents the probability
at which the agent takes a specific action a ∈ A at a given state s ∈ S, with the agent receiving a
reward r(s, a) when taking an action a at state s, and transitioning to a new state s′ ∈ S according
to the transition probability P (·|s, a) ∈ P(S). Rewards are received as an expected total reward
J [π] = E[

∑∞
τ=0 γ

τrτ |aτ ∼ π(sτ )], with γ ∈ (0, 1) being the discount factor.

Here, we denote the state-value function and the state-action value function (Q-function) associated
with π by Vπ(s) = (1 − γ) · E [

∑∞
τ=0 γ

τ · r(sτ , aτ ) | s0 = s, aτ ∼ π(sτ ), sτ+1 ∼ P (sτ , aτ )] and
Qπ(s, a) = (1− γ)E [

∑∞
τ=0 γ

τ · r(sτ , aτ ) | s0 = s, a0 = a, aτ ∼ π(sτ ), sτ+1 ∼ P (sτ , aτ )].

Note that policy π with the transition kernel P induces a Markov chain over state space S, and we
make the assumption that every policy π is ergodic, i.e. has a well-defined stationary state distribution
ϱπ and the stationary state-action distribution ςπ = π(a|s) · ϱπ(s). Moreover, we define the state
visitation measure and the state-action visitation measure induced by policy π, respectively, as

νπ(s) =(1− γ) ·
∞∑
τ=0

γτ · P (sτ = s | aτ ∼ π(sτ ), sτ+1 ∼ P (stτ, aτ )) , σπ(s, a) =π(a|s) · νπ(s),

which counts the discounted number of steps that the agent visits each s or (s, a) in expectation.
Policy Gradient Here, we define the expected total reward function J [π] for all π as

J [π] =(1− γ) · E

[ ∞∑
τ=0

γτ · r(sτ , aτ )

∣∣∣∣∣ at ∼ π(sτ ), sτ+1 ∼ P (sτ , aτ )

]
.

The goal of the policy gradient ascent is to maximize J [π] by controlling policy π under the
reinforcement learning setting defined above, where the optimal policy is denoted by π∗. We
parameterize the policy as πθ, where θ ∈ Θ is the parameter. We aim to adjust the parameters of
the policy in the direction of the gradient of the expected cumulative reward with respect to the
parameters with some approximations. The gradient of J [πΘ] over Θ is introduced by the policy
gradient theorem (Sutton et al., 1999) as∇ΘJ [πΘ] = EνπΘ

[∫
∇ΘπΘ(da|s) ·QπΘ

(s, a)
]
. The value

function in the above gradient is estimated by the policy evaluation problem.
Temporal-Difference Learning In temporal-difference (TD) learning, we parameterize a Q-
function as QΩ and aim to estimate Qπ by minimizing the mean-squared Bellman error (MSBE):

min
Ω

MSBE(Ω) =Eςπ

[
(QΩ(s, a)− T πQΩ(s, a))

2
]
, (1)

where T π is the Bellman evaluation operator associated with policy π, which is defined by
T πQ(s, a) = E [r(s, a) + γQ(s′, a′) | s′ ∼ P (s, a), a′ ∼ π(s′)], and QΩ is a Q-function parameter-
ized with parameter Ω. The most common example of TD-learning is TD(0) algorithm, which, in the
population version, updates Ω via the semi-gradient Eςπ [(QΩ(s, a)− T πQΩ(s, a)) · ∇ΩQΩ(s, a)].
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3 MEAN-FIELD LANGEVIN POLICY GRADIENT

In this section, we introduce a particle-based double-loop neural actor-critic method with the policy
and Q-function parameterized by neural networks in discrete time and the convergence analysis in
the mean-field limit. We first introduce the parameterization of actor and critic below.
Parameterization of Policy and Q-Function For notational simplicity, we assume that S ×A ⊂
RD with D ≥ 2 and that ∥(s, a)∥ ≤ 1 for all (s, a) ∈ S × A without loss of generality. We
parameterize a function h : S × A → R using a two-layer neural network with width m and
d-dimentional parameters Θ = (θ(1), . . . , θ(m)) ∈ Rd×m where it holds that d = D + 2, which is
denoted by NN(Θ;m),

fΘ(s, a) =
1

m

m∑
i=1

hθ(i)(s, a), hθ(s, a) = R · β(b) · σ(w⊤(s, a, 1)), θ = (w, b), (2)

where hθ(s, a) : S ×A → R is the nonlinear transformation function, σ : R→ R is the activation
function, β : R→ (−1, 1) is a bounded function that represents the second layer weights with the
bound R > 0. We now introduce the parameterization of the policy π and the Q-function Q with
neural networks in the mean-field regimes respectively. Let fΘ = NN(Θ;m), fΩ = NN(Ω;m).
Then we denote the policy and Q-function by πΘ and QΩ, which are given by

πΘ(a|s) = exp (−fΘ(s, a)− lnZΘ(s)) , QΩ(s, a) =fΩ(s, a),

where ZΘ is a normalization term and, by the definition, we have
∫
πΘ(a|s)da = 1 for all s ∈ S.

Mean-field Limit By taking mean-field limit m→∞, we obtain the policy πρ and the Q-function
Qq induced by the weight distributions ρ, q ∈ P2, respectively,

πρ(a|s) = exp (−Eθ∼ρ[hθ(s, a)]− lnZρ(s)) , Qq(s, a) =Eω∼q[hω(s, a)], (3)

where Zρ(s) is a normalization term making πρ(·|s) a probability distribution on A. We now impose
the following assumption on the two-layer neural network hθ.
Assumption 1 (Regularity of the neural network.). For the neural network hθ defined in Eq. (2),
we assume the activation function σ : R→ R is uniformly bounded, L1-Lipschitz continuous, and
L2-smooth. Besides, we assume the second weight function β : R → (−1, 1) is an odd function
which is L3-Lipschitz continuous and L4-smooth.

Without loss of generality, we can assume σ ∈ (−1, 1), which implies that the neural network hθ is
bounded by R > 0. Assumption 1 is a mild regularity condition except for the boundary of the neural
network. Assumption 1 can be satisfied by a wide range of neural networks, e.g., β(·) = tanh(·/R)
and σ(·) = tanh(·). We further redefine J : ρ 7→ J [ρ] := J [πρ] as a functional over ρ.

3.1 ACTOR UPDATE: MEAN-FIELD LANGEVIN POLICY GRADIENT

We aim to minimize the regularized negative expected total rewards J [ρ] over the probability distribu-
tion together. The regularized objective can be written as follows:

min
ρ
F [ρ] =F [ρ] + λ · Ent[ρ], F [ρ] =− J [ρ] +

λ

2
· Eρ[∥θ∥22] + Z,

where λ > 0 is a regularization parameter and Z > 0 is a constant. Here we add two regularization
terms to the objective function. The L2-regularization Eρ[∥θ∥22] helps to induce log-Sobolev inequal-
ity. This is due to the fact that ∥θ∥22 is strongly convex, see Section B.1 especially Proposal 2 for
details over log-Sobolev inequality. The entropy regularization term is required by adding Gaussian
noise to the gradient, allowing global convergence analysis under less restrictive settings (Mei et al.,
2019b). Adding these terms introduces a slight optimization bias of order O(λ). These regularization
terms also have statistical benefits to smooth the problem. Note that we can rewrite the objective
functional F as minρ F [ρ] = −J [ρ] + λ ·DKL(ρ∥ν) where ν = N (0, Id) is a standard Gaussian
distribution.

In the sequel, we introduce the policy gradient with respect to the distribution ρ, the parameter of πρ.
Proposition 1 (Policy Gradient). For πρ defined in Eq. (3), we have

δJ

δρ
[ρ](θ) = −Eσπρ

[Aπρ · hθ], (4)

where δJ
δρ [ρ](θ) is the first-variation of J [ρ] = J [πρ] in Definition 1, and Aπρ

is the advantage
function defined by Aπρ(s, a) = Qπρ(s, a)−

∫
π(da′|s) ·Qπρ(s, a

′).
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See Appendix D.1 for the proof. Now we have all the elements necessary to construct the MFLPG.
To obtain the optimal distribution ρ∗ that minimizes F [ρ], we define the surrogate first-variation of
F , δF

δρ [ρ](θ) = Eσπρ
[Aπρ · hθ] +

λ
2 ∥θ∥

2
2 by gt[ρ]. Let the initial distribution ρ0 = N (0, Id). Then

we update ρt according to the following McKean-Vlasov stochastic differential equation with time
t ∈ R≥0:

dθt =−∇gt[ρt](θt) · dt+
√
2λ · dWt, gt[ρ] =Eσπρ

[At · hθ] +
λ

2
∥θ∥22, (5)

where θt ∼ ρt(dθ), At(s, a) = Qt(s, a) −
∫
πt(da′|s) · Qt(s, a

′) induced by the estimator Qt of
Qπt

given by the critic, and {Wt}t≥0 is the Brownian motion in Rd with W0 = 0. It holds that the
distribution of θt following the dynamics Eq. (5) solves the following Fokker-Planck equation:

∂tρt = λ ·∆ρt +∇ · (ρt · ∇gt[ρt]) , (6)
Moreover, to utilize the nature of Wasserstein gradient flow, we denote by ρ̃t the approximated
proximal Gibbs distribution (PGD) defined in Definition 2 around ρt, which is induced by gt[ρt] as
ρ̃t = exp

(
− 1

λgt[ρt]− ln
∫
exp

(
− 1

λgt[ρt]
)

dθ
)
. If the exact value of the advantage function Aπt

is available and At = Aπt
, then ρ̃t is propotional to exp(− 1

λ
δF
δρ [ρt]). In this point, the MFLD can

evolve as ρt locally approaches the PGD of F around ρt. Indeed, Eq. (6) can be rewritten as a
continuity equation like ∂tρt = −λ∇ · (ρt · vt) with the velocity vector vt = −∇ ln ρt

ρ̃t
.

Discrete-time Analysis of MFLD To implement our approach, we represent ρ as a mixture of
m particles denoted by {θ(i)}mi=1, which corresponds to a neural network with m neurons. We
perform a discrete-time update at each k-th step of a noisy policy gradient method, where the policy
parameter Θ = {θ(i)}mi=1 is updated as in Algorithm 1. Note that, for each k-step, the agent uniformly
sample l ∈ [1, TTD] and adopt Q(l) as Qk from the estimated Q-functions {Q(l)}l∈[TTD] obtained
by MFLTD (Algorithm 2). Let η > 0 be a learning rate, and K is the number of iterations. The
discrete version of the MFLPG can be attributed to the MFLDs in Eq. (5) by taking the mean-field
limit m, k →∞, η → 0 and defining t = η · k and T = η ·K.

Algorithm 1 Mean-field Langevin Policy Gradient

Initialization: θ
(i)
0 ← N(0, Id) for all i ∈ [1,m] and π0(·)← π(· ; {θ0}i∈[1,m]).

1: for k = 0 to K − 1 do
2: Given the current policy πk, run Algorithm 2 and uniformly sample l ∈ [TTD]: Qk ← Q(l)

3: Calculate Ak = Qk − ⟨πk, Qk⟩ and update Θk+1 = {θk+1}i∈[1,m] with the Gaussian noise
{ξ(i)k }i∈[0,m] ∼ N (0, Id) by
θ
(i)
k+1 ← (1− η · λ) · θ(i)k − η · Eσπk

[Ak · ∇hθ
(i)
k

] +
√
2λ · η · ξ(i)k

4: πk+1(·)← π(· ; Θk+1)
5: end for
6: return πK

3.2 CRITIC UPDATE: MEAN-FIELD LANGEVIN TD LEARNING

We now propose the MFLTD to approximately solve the problem (1) by optimizing a two-layer neural
network in the mean field regime, and provide the algorithmic intuition. The difficulty in TD learning
is that the semi-gradient of the mean-square Bellman error in (1) does not always point in the descent
direction and it possibly does not converge. It is notable that it essentially stems from a nature of
the mean-field regime such that it optimizes the probability measure instead of the parameter itself,
that is, the optimization is performed as a Wasserstein gradient flow on the space of probability
measure instead of that on an L2 vector space like in the usual Euclidean space. Due to this fact,
the semi-gradient does not provide a monotonic decrease of the objective in the mean-field regime
while the normal gradient flow on a vector space decreases the objective monotonically. To resolve
such a technical challenge, we propose a unique novel double-loop algorithm, MFLTD, like proximal
gradient descent to make the algorithm monotonically decrease at each outer loop. MFLTD behaves
like a majorization-minimization algorithm, where the inner loop solves the majorization problem
and estimates the true value function from the fact that its minimum value always upper bounds the
mean squared error, which is the true objective function.

Outer loop In the outer loop, the last iterate Q(l) of the previous inner loop is given. At the l-th step,
the ideal minimizer of Ll given by the inner-loop MFLD lets the mean squared error be guaranteed to
be upper bounded by the mean squared error at the previous step with KL-divergence regularization.
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Inner loop The inner loop is based on the KL-divergence regularized MFLD analysis in (Nitanda
et al., 2022; Chizat, 2022). In the mean-field view, we minimize the objective minq Ll[q] = Ll[q] +
λTD · Ent[q] where λTD is a regularization parameter and Ll[q] is defined, for l ∈ [0, TTD], by

Ll[q] = Eςπ [(Q
(l)−T πQ(l)) · (Qq−Qπ)] +

1

2(1− γ)
Eςπ [(Q

(l) −Qq)
2] +

λTD

2
Eq[∥ω∥22]+Z,(7)

where Z > 0 is a constant, on the right-hand side, the first term is the linearized surrogate TD error
at s-th outer-loop step, the second one is the proximal regularization, and the last one is the L2-
regularization. We obtain the MFLD and the following Fokker-Planck equation at time s, respectively,
as

dωs =−∇
δLl

δq
[qs](ωs) · dt+

√
2λTD · dWs, ∂sqs = λTD ·∆qs +∇ ·

(
qs∇

δLl

δq
[qs]

)
,

where {Ws}s≥0 is the Brownian motion in Rd with W0 = 0.

Let (s′, a′) be the next state and action of (s, a). To understand the intuition behind the proximal
semi-gradient, Note that we have the gradient of first variation of Ll as

∇δLl

δq
[qs](ω) =Eςπ

[(
Q̄(l)

s − T πQ(l)
)
· ∇hω

]
+ λTD · ω,

where the expectation is obtained under (s, a, s′, a′) ∼ ςπ and we define the averaged Q-function by
Q̄

(l)
s = (Qqs − γ ·Q(l))/(1− γ). See the corresponding part of Algorithm 2 for the discretization

algorithm for inner-loop MFLDs.

We remark that considering that the inner-loop algorithm converges to the optimum at the exponential
rate, the computational complexity of the inner-loop does not become a bottleneck in implementation.
In this regard, the results in Section 5 offer valuable insights.

Algorithm 2 Mean-field Langevin TD Learning

Initialization: ω̃
(j)
0 ← N(0, Id) for all j ∈ [0,mTD].

1: for l = 0 to TTD − 1 do
2: for r = 0 to K − 1 do
3: Average Q-function: Q̄(l)

r = 1
1−γ (QΩ̃r

− γ ·Q(l))

4: Run a noisy gradient descent for all j ∈ [1,m]:
∇ δLl

δq (ω̃
(j)
r )← Eςπ

[(
Q̄

(l)
r (x)− r(x)− γ ·Q(l)(x′)

)
· ∇h

ω̃
(j)
r
(x)
]
+ λTD · ω̃(j)

r

ω̃
(j)
r+1 ← ω̃

(j)
r − ηTD · ∇ δLl

δq (ω̃
(j)
r ) +

√
2λTDηTD · ξ(j)r , {ξ(j)r }j∈[1,m] ∼ N (0, Id)

5: end for
6: Q(l) ← Q(·; Ω̃(K))
7: end for
8: return {Q(l)}l∈[1,TTD]

4 MAIN RESULTS

In this section, we present the results of our investigation into the theoretical support of the mean-field
Langevin actor-critic consisting of Algorithm 1 and 2. First of all, we base our analysis on the
regularity condition that the reward is bounded.
Assumption 2 (Regularity Condition on Reward). We assume that there exists an absolute constant
Rr > 0 such that Rr = sup(s,a)∈S×A |r(s, a)|. As a result, we have |Vπ(s)| ≤ Rr, |Qπ(s, a)| ≤
Rr, |J [π]| ≤ Rr and |Aπ(s, a)| ≤ 2Rr for all π and (s, a) ∈ S ×A.

Considering Assumption 1 and 2, it holds that Rr ≤ R by setting R > 0 large enough where R is the
boundary of neural networks Q-function estimator. Such a regularity condition is commonly used
in the literature (Liu et al., 2019; Wang et al., 2020). In what follows, we introduce the following
regularity condition on the state-action value function Qπ .
Assumption 3 (State-Action Value Function Class). We define for R,M > 0

FR,M =

{∫
β′ · σ(w⊤(s, a, 1)) · ρ′(dβ′, dw) : DKL(ρ∥ν) ≤M, ρ′ ∈P((−R,R)× Rd−1)

}
,

(8)
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which is equivalent to the function class of Eθ∼ρ[hθ] for ρ ∈ P(Rd). We assume that Qπ(s, a) ∈
FR,M for any π.

As will be further explained in Appendix B.2, we note that Assumption 3 is a natural regularity
condition on Qπ, as FR,M captures a rich family of functions, which is a subset of the Barron
class (Barron, 1993). Indeed, by making the neural network radius R,M sufficiently large, FR,M

asymptotically approaches the Barron class and captures a rich function class by the universal
approximation theorem (Barron, 1993; Pinkus, 1999). Also, as long as smoothness and boundedness
of networks are assumed (Assumption 1), every network can be included in the above class at least
with a small modification. Similar regularity condition is a commonly used concept in literature
(Farahmand et al., 2016; Yang & Wang, 2019; Liu et al., 2019; Wang et al., 2020).

Error from Mean-field Langevin TD Learning In the continuous-time limit, we denote q(l+1)

as the last-iterate distribution of the previous inner loop for each outer-loop step l, i.e., q(l+1) = qS
where S is the inner-loop run-time. Regarding the outer-loop update, we obtain the following one-step
descent lemma.

Lemma 1 (One-Step Descent Lemma for MFLTD). Let q(l+1)
∗ be the inner-loop optimal distribution

for any inner step l. For {Q(l)}l∈[1,TTD] in Algorithm 2 with the TD update in Line 6 and any
γ ∈ [0, 1), it holds that

γ(2− γ)

2(1− γ)
Eςπ

[
(∆Q(l+1))2 − (∆Q(l))2

]
≤− 1− γ

2
Eςπ [(∆Q(l+1))2] +

2R

1− γ
(Eςπ [(Q

(l+1) −Q(l+1)
∗ )2])

1
2

+ λTD ·DKL(q
(l+1)∥q(l+1)

∗ ) + λTD ·DKL(qπ∥ν),
(9)

where we define that ∆Q(l) = Q(l) −Qπ , and denote Q
(l+1)
∗ as a Q-function Q

q
(l+1)
∗

.

See Appendix C.1 Lemma 1 shows that the Q-function of the outer steps of the MFLTD Q(l)

converges to the true state-value function Qπ . The second and third term of the right-hand side of Eq.
(9) represents non-asymptotic errors obtained through the inner loop, and it exponentially decreases
with an increase in the run-time S of the inner loop. The key to the proof of Lemma 1 is the use of
geometric features due to the fact that the norm of the Bellman equation operator is no more than 1
(Lemma 7). The shrinking norm suppresses errors in the semi-gradient direction that deviates from
the true gradient direction. Combining Proposition 5, in what follows, Lemma 1 allows us to establish
the global convergence theorem for the MFLTD as
Theorem 1 (Global Convergence of the MFLTD). Under Assumption 1, 2, and 3, the outputs
{Q(l)}TTD

l=1 of Algorithm 2 satisfies, for the inner run time S > 0, that

1

TTD

TTD∑
l=1

Eςπ [(Q
(l) −Qπ)

2] ≤4γ(2− γ)R2

(1− γ)2TTD
+ C1e

(−αλTDS) + C2λTDe
(−2αλTDS) + C3λTD,

where we denote by C1, C2, C3 > 0 the absolute constants satisfying that C1 = 8(3−2γ)
1
2 R3

(1−γ)
3
2

, C2 =
8(3−2γ)R4

(1−γ)2 , C3 = 2M
1−γ , and we define α as a LSI constant defined in Definition 2.

See Appendix C.2 for the proof sketch. Theorem 1 shows that, given a policy π, the MFLTD
converges Q-function to the true state-action value function Qπ at the time-averaged sublinear rate
O(1/TTD) for the iteration number TTD of the outer loop. This result is in perfect agreement with
the convergence rate O(1/TTD) that Cai et al. (2019) obtains from TD learning in the NTK regime
and the convergence rate O(1/TTD) that Zhang et al. (2020) obtains from TD learning viewed as the
Wasserstein gradient flow attributed to lazy training. Note here that the results obtained in this study
ignore the computational speed of the inner loop, which converges at an exponential rate. However, it
is worth noting that this is the first time that global convergence has been demonstrated in a domain
that takes advantage of the data-dependent advantage of neural networks. Since the bias O(λTD) in
this result is due only to the inner-loop algorithm, we follow Theorem 4.1 in (Chizat, 2022) and can
achieve the annealed Langevin dynamics by attenuating λTD by O(1/ log(S)).
Global Convergence of the MFLPG We lay out the analysis of convergence and global optimality
of the MFLPG in Algorithm 1. In our algorithm, since MFLD can be attributed to the Wasserstein
gradient flow, the convergence to the stationary point is guaranteed.

7
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Lemma 2 (Time Derivative of Objective Function). Under Assumption 1,2, and 3, for any ρ̃ ∈
P2, β > 0, we obtain that

d
dt

F [ρt] ≤− αλ · Eσt

[
Aπt ·

(
ft − β · f̃

)]
+ αλ2 · (β ·DKL (ρ̃∥ν)−DKL (ρt∥ν)) + 2L2

2 ·∆t, (10)

where f̃ =
∫
hθρ̃(dθ), α > 0 is the LSI constant of ρ̂t and ∆t = ∥dσt/dςt∥2ςt,2 · Eσt

[(Qt −Qπt
)
2
]

is the critic error where Qt is the Q-function estimator given by the critic.

See Appendix D.2 for the proof. The first term on the right-hand side of Eq. (10) is derived from the
equivalent of the square of the gradient of the expected total rewards J [ρt]. It is worth noting that if J
is a convex function, we can substitute ρ∗ for this arbitrary ρ̃ and this part appears as the performance
difference. Meanwhile, the second term is the regularization error, and the third term is the policy
evaluation error given by the critic. We, therefore, wish to suppress this first term from the equality
obtained by Proposition 3 which establishes the one-point convexity of J [π] at the global optimum
π∗ derived by Kakade & Langford (2002). In what follows, we lay out a moment condition on the
discrepancy between the state-action visitation measure σt and the stationary state-action distribution
ςt corresponding to the same policy πt, and also optimal policy π∗.
Assumption 4 (Moment Condition on Radon-Nikodym Derivative). We assume that there exists
absolute constants κ, ι > 0 such that for all t ∈ [0, T ]

∥dσt/dςt∥2ςt,2 ≤ ι, ∥dσ∗/dσt∥2σt,2
≤ κ,

where dσt

dςt
and dσ∗

dσt
are the Radon-Nikodym derivatives.

It is important to note that when the MDP starts at the stationary distribution ςt, the state-action
visitation measures σt are identical to ςt. Additionally, if the induced Markov state-action chain
rapidly reaches equilibrium, this assumption also holds true. The same requirement is imposed by Liu
et al. (2019); Wang et al. (2020). Meanwhile, the optimal moment condition in Assumption 4 asserts
that the concentrability coefficients are upper-bounded. This regularity condition is a commonly
used concept in literature (Farahmand et al., 2016; Chen & Jiang, 2019; Liu et al., 2019; Wang et al.,
2020). Finally, we lay out the following regularity condition on the richness of the function class as
Assumption 5 (Regularity Condition on FR,M ). We assume that there exists a constant M,B > 0
such that there exists a function f ∈ FR,M satisfying that |⟨Aπ, f⟩σπ |/∥Aπ∥σπ ≥ 1/B for each π.

Assumption 5 guarantees that when one has a policy, one can always approximate the advantage
function in the gradient direction of the policy gradient within the finite KL-divergence ball. Indeed,
for example, Assumption 5 is satisfied when Aπ/∥Aπ∥σπ

∈ FR,M . Now that Qπ ∈ FR,M is
assumed by Assumption 3, the geometric regularity of Assumption 5, coupled with the richness of
the function class FR,M , is moderate. See Appendix B.2 for details. In what follows, we establish
the global optimality and the convergence rate of the MFLPG.
Theorem 2 (Global Optimality and Convergence of the MFLPG). Let J∗ be the optimal expected
total reward. We set λTD = αλ2 and TTD = O(1/λTD). Under the assumptions of Lemma 2 and
Assumption 4, 5, by Algorithm 1, where the actor update is given in Eq. (5), we obtain for all T ∈ R
and λ > 0 that

J∗ − J [ρT ] ≤ exp(−2αλT ) · (J∗ − J [ρ0]) +O (λ) . (11)

Proof. We utilize a one-point convexity of the expected total rewards in Kakade & Langford (2002)
to prove the global optimality of the stationary point led by Lemma 2. We here use the geometric
property of the richness of the approximation capacity of FR,M to connect this one-point convexity.
See Appendix D.3 for a detailed proof.

Theorem 2 shows that the suboptimality of the sequence of actors returned by MFLPG converges
linearly to zero up to aO(λ) bias induced by the KL-divergence regularization. Here the suboptimality
is in terms of the unregularized expected total reward J and λ can be as close to 0. Therefore, by
choosing a sufficiently small λ, we conclude that MFLPG finds the globally optimal policy efficiently.
In addition, as in other general regularized optimization algorithms, there is always a trade-off
between the convergence rate in the first term and the bias term in the second term, on the right-hand
side of Eq. (11). In comparison, by redefining the regularization coefficient λ as a time-dependent
variable λt by λt = O(1/ ln t), Chizat (2022) established the objective difference converges to the
globally optimal objective at a sublinear convergence rate with no error term in general MFLD
problems. Therefore, we highlight that Theorem 4.1 in Chizat (2022) also guarantees the sublinear

8
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convergence of Theorem 2 without regularization bias. To the best of our knowledge, this is the
first analysis that shows the linear convergence O(exp(−αλT )) to globally optimal expected total
rewards J∗ in neural policy gradient and neural actor-critic. This predominates the conventional
convergence rate O(T−1/2) in neural policy gradients with the NTK-type analysis (Wang et al.,
2020). This is also the first convergence analysis of algorithms trained as neural networks for both
actors and critics, where the feature representation (Suzuki, 2019; Ghorbani et al., 2019) is guaranteed
to be learned in a data-dependent manner beyond the lazy-training regime.

5 NUMERICAL ANALYSIS

In this section, we conducted a numerical experiment to compare the Critic component, which is
based on the proposed MFLTD, against the existing TD(1) algorithm that utilizes the Bellman error
semi-gradient. Additionally, we demonstrated how the learning performance differs when using a
neural network that follows the NTK with a representation that is independent of input data and
dependent on initial values. Specifically, we performed learning on the CartPole-v1 environment
provided by OpenAI’s Gym and implemented the estimation of the state-action value function
during optimal policy selection. In this experiment, we used a neural network with 256 neurons, ran
4000 episodes, and employed a learning rate of η = 0.0001 for MFLTD. Notably, we conducted
MFLTD’s inner loop with a step size of K = 10, repeated it TTD = 400 times in the outer loop, and
sampled using one episode for each inner step. Furthermore, we applied Gaussian noise of magnitude
induced by the entropy regularization parameter λ = 0.001, following Algorithm 2, along with L2

regularization. To assess the difference in performance due to representation learning covered by
Mean-field analysis, we also implemented NTK-TD with a double-loop setup where representations
are fixed at initial values, similar to MFLTD. Additionally, we addressed the primary weakness of our
proposed algorithm, the double-loop, and examined its impact on computational complexity. To do
so, we ran the conventional single-loop TD(1) algorithm under the same conditions.
Figure 1 presents the average and standard deviation of each learning process conducted ten times.
It’s essential to note that Figure 1 compares the results under the same number of episodes and
parameter updates. From this figure, we observe that learning with features independent of initial
values outperforms when compared with an equal number of neurons, primarily due to increased
expressiveness gained through feature learning. Furthermore, while the single-loop results are faster
in regions of lower accuracy under the same computational load and time, they exhibit decreased
speed in regions of higher accuracy, ultimately demonstrating that our proposed double-loop method
approximates the true value function more effectively.
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Figure 1: Comparison of Time Evolution of Mean Squared Bellman Error Between Algorithms for
TD Learning Near the Optimal Policy in the Game Model "CartPole-v1".

6 CONCLUSION

We studied neural policy optimization in the mean-field regime, and provided the first global optimality
guarantee and the linear convergence rate for a neural actor-critic algorithm, in the presence of feature
learning. For both actor and critic, we attributed their updates to the mean-field Langevin dynamics
and analyzed their evolutions as the optimization of corresponding probability measures. We provide
theoretical guarantees for global convergence to global optimality, and empirical experiments that
validate the superiority of the proposed algorithm in policy evaluation. In future work, it would be
interesting to extend our analysis to the finite particles, discrete-time, and stochastic gradient settings
Suzuki et al. (2023).
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APPENDIX

A NOTATIONS

We denote by P(X ) the set of distribution measures over the measurable space X . Given a
distribution measure function µ ∈ P(X ), the expectation with respect to µ as Eθ∼µ[·] or simply
Eµ[·],Eθ[·] when the random variable and distribution are obvious from the context. In addition, for
µ ∈ P(X ) and p > 0, we define ∥f(·)∥µ,p = (

∫
Θ
|f |pdµ)

1
p as the Lp(µ)-norm of f . We define

∥f(·)∥µ,∞ = inf{C ≥ 0 : |f(x)| ≤ C for µ-almost every x} as the L∞(µ)-norm of f . We write
∥f∥µ,p for notational simplicity when the variable of f is obvious from the context. Especially, the
L2(µ)-norm is denoted by ∥·∥µ. For a vector v ∈ Rd and p > 0, we denote by ∥v∥p the Lp-norm of v.
Given two distribution measures µ, ρ ∈P(X ), we denote the Radon–Nikodým derivative between
µ and ρ by dµ

dρ . DKL(·∥·) stands for the Kullbuck-Leibler divergence as DKL(µ∥ρ) =
∫

dµ ln dµ
dρ ,

and also I(·∥·) stands for the Fisher divergence as I(µ∥ρ) =
∫

dµ∥∇θ ln
dµ
dρ ∥

2
2. Also, we define

the entropy Ent[·] by Ent[µ] =
∫

dµ lnµ. Let P2 ⊂ P(Rd) be the space of probability density
functions such that both the entropy and second moment are finite.

B ADDITIONAL REMARKS

B.1 LOGARITHMIC SOBOLEV INEQUALITY

In this paper, we extend the convergence analysis of a nonlinear Fokker-Planck equation, mean-
field Langevin dynamics to the context of reinforcement learning. The analysis is based on the
KL-divergence regularization (Mei et al., 2019a; Hu et al., 2021; Chen et al., 2020) and the induced
log-Sobolev inequality (Nitanda et al., 2022; Chizat, 2022). Below are some mathematical tools
necessary for them. Particularly, in the MFLD convergence analysis, it is important to make use of
the following proximal Gibbs distribution defined as follows. To define the MFLD of functional F ,
we first introduce the first variation of functionals as
Definition 1 (First-variation of Functionals). Let F : P2 → R and we suppose there is a functional
δF
δρ : P2 × Rd ∋ (ρ, θ) 7→ δF

δρ [ρ](θ) ∈ R such that for any ρ, ρ′ ∈ P2,

dF (ρ+ ϵ · (ρ′ − ρ))

dϵ

∣∣∣∣
ϵ=0

=

∫
δF

δρ
[ρ](θ)(ρ′ − ρ)(dθ),

for all ρ ∈ P2. If there exists a functional δF
δρ [ρ](θ), we say that F is differentiable at ρ.

Note that any first variation of a functional is invariant with respect to a constant shift. In what
follows, we define the proximal Gibbs distribution (PGD) with a first variation, as
Definition 2 (Proximal Gibbs Distribution (PGD)). Let ρ ∈ P2 and λ > 0 the temperature. We
define the Gibbs distribution with potential function − 1

λ
δF
δρ around ρ by

ρ̂(θ) ∝ exp

(
− 1

λ

δF

δρ
[ρ](θ)

)
,

where θ ∈ Rd. We call ρ̂(θ) the proximal Gibbs distribution of the functional F around ρ.

The convergence analysis of ρt over the objective F heavily depends on the relationship between the
PGD around ρt, ρ̂t and the optimal distribution ρ∗. Regarding the convergence rate of MFLDs, the
key analysis is depending on the following logarithmic Sobolev inequality.
Definition 3 (Logarithmic Sobolev Inequality (LSI)). We define that a distribution measure ρ ∈ P2

satisfies a logarithmic Sobolev inequality with constant α > 0, which is called LSI(α) in short, if
and only if, for any smooth function Ψ : Rd → R with Eρ[Ψ

2] <∞, it holds that

Eρ[Ψ
2 ln(Ψ2)]− Eρ[Ψ

2] · ln(Eρ[Ψ
2]) ≤ 2

α
Eρ[∥∇Ψ∥22],

which is equivalent to the condition that for all ν ∈ P2 absolutely continuous w.r.t. µ, it holds

DKL(ρ∥µ) ≤
1

2α
I(ρ∥µ).
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In particular, the LSI holds uniformly for the PGD over the mean-field neural network condition, given
some appropriate boundedness assumptions. The result is achieved by leveraging two well-known
facts. Firstly, it is established that strongly log-concave densities satisfy the LSI with a dimension-free
constant, up to the spectral norm of the covariance. For instance, Bakry & Émery (1985) showed the
following lemma:

Lemma 3 (Bakry & Émery (1985)). If ρ ∝ exp(−f(θ)) is a smooth probability density with
f : Rd → R and there exists c > 0 such that the Hessian matrix of f satisfies ∇2f ⪰ c · Id, then the
distribution ρ(θ)dθ satisfies the LSI with constant c.

It is worth noting that, for example, the Gaussian distribution ν ∼ N (0, Id) satisfies Lemma 3 with
the LSI constant c = 1. That is, ν ∼ N (0, Id) satisfies LSI(1). In addition to that, preservation of
LSI under bounded perturbation has been demonstrated in Holley & Stroock (1987) as
Lemma 4 (Holley & Stroock (1987)). If ρ is a distribution on Rd that satisfies the LSI with constant
c > 0, and for a bounded function f : Rd → R, the distribution ρf is defined as

ρf (θ) ∝ exp(f(θ)) · ρ(θ),
then ρf satisfies the LSI with a constant c/ exp (4|f |∞).

Combined with the previous example of Lemma 3, νf with some uniformly bounded potential
function f satisfies Lemma 4. These lemmas lead to the important fact that follows. Under the
definition of the two-layer neural network in mean-field regime and Assumption 1, the PGD of each
function appearing in this paper satisfies the LSI with an absolute constant α. Specifically, we have

Proposition 2 (LSI Constant of PGD). Let the first-variation of a function L, δL
δρ be uniformly bound

by C > 0, and F = L+ λ
2 · Eρ[∥θ∥22] with λ > 0. Then we have that the PGD around ρ, ρ̂ satisfies

the LSI with a constant α = 1
exp( 4C

λ )
.

In our case, the boundness of each first-variation is guaranteed by the neural network’s boundness in
Assumption 1 and the reward’s boundness in Assumption 2. It is worth noting that the exponential
dependence on the LSI constant may be inevitable in the most general setting (Menz & Schlichting,
2014).

B.2 ON THE FUNCTION CLASS

In Assumption 3 and 5, we considered the class of measures with the bounded KL divergence
and some regularity condition. We first note that, as we let M and B large, then FR,M satisfying
Assumption 5 can contain a wider class of neural networks. What is worth mentioning is the relation
to the so-called Barron class. As we increase M and B, we can approximate a neural network in the
Barron class with arbitrary accuracy.

Barron (1993; 1994) showed that a neural network with a sigmoid activation function can avoid
the curse of dimensionality (Weinan et al., 2019) if the Fourier transform of the function f satisfies
certain integrability conditions, and he defined a function class with good properties that can be
approximated universally (Barron, 1993; Pinkus, 1999). Particularly, we name the function class as
the Barron class and denote it as BF , such that∫

Cd

∥ω∥21 · |f̂(ω)|dω <∞,

where f̂ is the Fourier transform of a function f .

One pleasant aspect of considering the Barron class is that one of the biggest contributions of feature
learning, the avoidance of the curse of dimensionality inherent in neural networks, theoretically
arises (Weinan et al., 2019). The Barron class is also closely related to the avoidance of the curse of
dimensionality in other function spaces such as in the mixed Besov space (Suzuki, 2019).

A similar analysis of function classes has been developed (Klusowski & Barron, 2016; E et al., 2019)
and, in particular, the following derivations of the Barron class are known:
Definition 4 (Barron Class (Li et al., 2020)). The Barron class is defined as

B∞ =

{∫
Rd

β(w) · σ(w⊤(x, 1)) · ρ(dw) : ρ ∈P(Rd), inf
ρ
∥β(w) · (∥w∥1 + 1)∥ρ,∞ <∞

}
,

15
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The Barron norm for any f ∈ B∞ is defined by ∥f∥B∞ = infρ ∥β(w) · (∥w∥1 +1)∥ρ,∞. In addition,
we define the R-Barron space by R′ > 0 by

BR′ = {f ∈ B∞ : ∥f∥B∞ ≤ R′}.

Note that the R-Barron space BR′ corresponds to the function class FR,M targeted by our neural
network. That is, our function class can approximate an element of the Barron class with any degree
of accuracy as a set. Although the R-Barron space and the Barron class cannot be directly compared,
they are closely related and can be adequately covered by a sufficiently large R′.

Finally, we remark that based on Assumption 1, which guarantees the smoothness and boundedness of
neural networks, it is very easy for such a network to satisfy Eq. (8) with some R and K at least with
a small modification. For any such neural network, if we consider convolution of the corresponding
measure with a Gaussian of small variance, this does not change the output of the network very much
due to the smoothness and boundedness, this smoothens the distribution and as a result, guarantees
that the modified neural network belongs to our class of measures.

C MEAN-FIELD LANGEVIN TD LEARNING

C.1 PROOF OF LEMMA 1

Proof. From the definition of Ll[·] in Eq. (7), for s ∈ [0, TTD] we have

Ll[q] =Ll[q] + λTD · Ent[q]

=Eςπ [(Q
(l) − T Q(l)) · (Qq −Qπ)] +

1

2(1− γ)
Eςπ [(Q

(l) −Qq)
2] + λTD ·DKL(q∥ν).(12)

The inner algorithm performs a gradient descent of Ll over Wasserstein metric; note that Ll always
upper bounds the mean squared error. Therefore, we evaluate the difference of the objective function
Ll between the optimum of the true objective function, qπ , and q(l+1) which is ideally the optimum
of the Majorization problem, from above and below, respectively. For l ∈ N we have

Ll[qπ]− Ll[q
(l+1)] =− Eςπ [(Q

(l) − T Q(l)) · (Q(l+1) −Qπ)] +
1

2(1− γ)
Eςπ [(Q

(l) −Qπ)
2]

− 1

2(1− γ)
Eςπ [(Q

(l) −Q(l+1))2] + λTD ·DKL(qπ∥ν)− λTD ·DKL(q
(l+1)∥ν).

(13)

In what follows, we upper bound the first term on the right-hand side of Eq. (13) by each difference
of Q-functions without any transition kernels. For simplicity, we define that ∆Q(l) = Q(l) −Qπ , I
is an identity operator, and P : L2(ςπ)(S × A)→ L2(ςπ)(S × A) as the linear operator such that
PQ(s, a) =

∫
ds′P (s′|s, a)

∫
da′π(a′|s′)Q(s, a), Q ∈ L2(ςπ)(S × A). Focusing on the fact that

we can reformulate the first term on the right-hand side of Eq. (13) as Eςπ [(Q
(l)−T Q(l)) · (Q(l+1)−

Qπ)] = Eςπ [∆Q(l+1)(I − γP)∆Q(l)], it holds that

Eςπ [(∆Q(l+1) −∆Q(l))(I − γP)(∆Q(l+1) −∆Q(l))]

=Eςπ [∆Q(l+1)(I − γP)∆Q(l+1)] + Eςπ [∆Q(l)(I − γP)∆Q(l)]

− Eςπ [∆Q(l+1)(I − γP)∆Q(l)]− Eςπ [∆Q(l)(I − γP)∆Q(l+1)]

=Eςπ [∆Q(l+1)(I − γP)∆Q(l+1)] + Eςπ [∆Q(l)(I − γP)∆Q(l)]

+ Eςπ [∆Q(l)(I − γP∗)∆Q(l+1)]− Eςπ [∆Q(l)(I − γP)∆Q(l+1)]

− 2Eςπ [∆Q(l+1)(I − γP)∆Q(l)]

=Eςπ [∆Q(l+1)(I − γP)∆Q(l+1)] + Eςπ [∆Q(l)(I − γP)∆Q(l)]

+ γ · Eςπ [∆Q(l+1)(P∗ − P)∆Q(l)]− 2Eςπ [∆Q(l+1)(I − γP)∆Q(l)]
, (14)
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where P∗ is the adjoint operator of P . As for each term of Eq. (14), we have the following
inequalities:

Eςπ [(∆Q(l+1) −∆Q(l))(I − γP)(∆Q(l+1) −∆Q(l))]

=Eςπ [(Q
(l+1) −Q(l))(I − γP)(Q(l+1) −Q(l))]

=Eςπ [(Q
(l+1) −Q(l))2]− γ · Eςπ [(Q

(l+1) −Q(l)) · P(Q(l+1) −Q(l))]

≤Eςπ [(Q
(l+1) −Q(l))2] + γ · Eςπ [(Q

(l+1) −Q(l))2]1/2 · ∥P(Q(l+1) −Q(l))∥ςπ,2
≤Eςπ [(Q

(l+1) −Q(l))2] + γ · Eςπ [(Q
(l+1) −Q(l))2]1/2 · Eςπ [(Q

(l+1) −Q(l))2]1/2

=(1 + γ) · Eςπ [(Q
(l+1) −Q(l))2], (15)

where the first inequality follows from Hölder’s inequality and the second one follows from Lemma
7. In exactly the same way, we have

−Eςπ [∆Q(l+1)(I − γP)∆Q(l+1)]

=− Eςπ [(∆Q(l+1))2] + γ · Eςπ [∆Q(l+1) · P∆Q(l+1)]

≤− Eςπ [(∆Q(l+1))2] + γ · Eςπ [(∆Q(l+1))2]1/2 · ∥P(∆Q(l+1))∥ςπ,2
≤− Eςπ [(∆Q(l+1))2] + γ · Eςπ [(∆Q(l+1))2]1/2 · Eςπ [(∆Q(l+1))2]1/2

=− (1− γ) · Eςπ [(∆Q(l+1))2], (16)

where the first inequality follows from Hölder’s inequality and the second one follows from Lemma 7.
From the same discussions, we also have −Eςπ [∆Q(l)(I − γP)∆Q(l)] ≤ −(1− γ) ·Eςπ [(∆Q(l))2].
In addition, from the fact that Eςπ [Q(P∗ − P)Q] = 0 for all Q ∈ L2(ςπ)(S ×A), it holds that

−Eςπ [∆Q(l+1)(P∗ − P)∆Q(l)]

=− Eςπ [∆Q(l+1)(P∗ − P)∆Q(l)] + Eςπ [∆Q(l+1)(P∗ − P)∆Q(l+1)]

=Eςπ [∆Q(l+1)(P∗ − P)(Q(l+1) −Q(l))]

≤1

2
· 2(1− γ)

γ
Eςπ [(∆Q(l+1))2] +

1

2
· γ

2(1− γ)
∥(P∗ − P)(Q(l+1) −Q(l))∥2ςπ,2

≤1− γ

γ
Eςπ [(∆Q(l+1))2] +

γ

1− γ
∥P(Q(l+1) −Q(l))∥2ςπ,2

≤1− γ

γ
Eςπ [(∆Q(l+1))2] +

γ

1− γ
Eςπ [(Q

(l+1) −Q(l))2], (17)

where the first inequality follows from Young’s inequality with an arbitrary constant 2(1−γ)
γ > 0, and

the last one follows from Lemma 7. Combining Eq. (15), (16), (17), and (14), we obtain that

−Eςπ [(Q
(l) − T Q(l)) · (Q(l+1) −Qπ)]

=− Eςπ [∆Q(l+1)(I − γP)∆Q(l)]

=− 1

2
Eςπ [∆Q(l+1)(I − γP)∆Q(l+1)]− 1

2
Eςπ [∆Q(l)(I − γP)∆Q(l)]

− γ

2
Eςπ [∆Q(l+1)(P∗ − P)∆Q(l)]

+
1

2
Eςπ [(∆Q(l+1) −∆Q(l))(I − γP)(∆Q(l+1) −∆Q(l))]

≤− 1− γ

2
Eςπ [(∆Q(l))2] +

1

2(1− γ)
Eςπ [(Q

(l+1) −Q(l))2]. (18)

Plugging Eq. (18) into Eq. (13), we obtain the following upper-bound of Eq. (13) as

Ll[qπ]− Ll[q
(l+1)] ≤γ(2− γ)

2(1− γ)
Eςπ [(∆Q(l))2]

+ λTD ·DKL(qπ∥ν)− λTD ·DKL(q
(l+1)∥ν),

(19)
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In what follows, we give a lower bound on the difference for majorization objectives using the strong
convexity of Ll. From the definition of Ll in Eq. (12), it holds that

δLl

δq
[q](ω) =Eςπ [(Q

(l) − T Q(l)) · hω] +
1

1− γ
Eςπ [(Q

(l) −Qq) · hω] + λTD · ln
q

ν
. (20)

In what we follow, we control the error induced by the difference between the last iterate of inner-loop
dynamics, q(l+1), and the optimal distribution of L(l), q(l+1)

∗ .It holds from Eq. (20) that

−
∫

δLl

δq
[q(l+1)](dqπ − dq(l+1))− λTD ·DKL(qπ∥q(l+1))

=Eςπ [(Q
(l) − T Q(l)) · (Q(l+1) −Qπ)] +

1

1− γ
Eςπ [(Q

(l+1) −Qs) · (Q(l+1) −Qπ)]

− λTD ·
∫

ln
q(l+1)

ν
(dqπ − dq(l+1))− λTD ·DKL(qπ∥q(l+1))

=Eςπ [(Q
(l) − T Q(l)) · (Q(l+1) −Qπ)] +

1

1− γ
Eςπ [(Q

(l+1) −Q(l)) · (Q(l+1) −Qπ)]

− λTD ·DKL(qπ∥ν) + λTD ·DKL(q
(l+1)∥ν).

(21)

Plugging Eq. (21) into Eq. (13), we have

Ll[qπ]− Ll[q
(l+1)] =− Eςπ [(Q

(l) − T Q(l)) · (Q(l+1) −Qπ)]

+
1

2(1− γ)
Eςπ [(Q

(l) −Qπ)
2]− 1

2(1− γ)
Eςπ [(Q

(l) −Q(l+1))2]

+ λTD ·DKL(qπ∥ν)− λTD ·DKL(q
(l+1)∥ν)

=
1

2(1− γ)
Eςπ [(Q

(l) −Qπ)
2]− 1

2(1− γ)
Eςπ [(Q

(l) −Q(l+1))2]

+
1

1− γ
· Eςπ [(Q

(l+1) −Q(l)) · (Q(l+1) −Qπ)]

+

∫
δLl

δq
[q(l+1)](dqπ − dq(l+1))− λTD ·DKL(qπ∥q(l+1))

=
1

2(1− γ)
Eςπ [(Q

(l+1) −Qπ)
2]

+

∫
δLl

δq
[q(l+1)](dqπ − dq(l+1))− λTD ·DKL(qπ∥q(l+1))

. (22)

Note that if the output q(l+1) of the inner algorithm were the optimal solution q
(l)
∗ of Ll, then in Eq.

(22),
∫

δLl

δq [q(l+1)](dqπ − dq(l+1))− λTD ·DKL(qπ∥q(l+1)) would be zero, and Eq. (22) would be

the optimality condition of q(l)∗ itself. In the sequel, we obtain the error bound by establishing Lemma
5.

Lemma 5 (Inner-Loop Error Bound). Under assumptions of Proposition 5, for any l ∈ N, s > 0, we
have

−
∫

δLl

δq
[qs](dqπ − dqs)− λTD ·DKL(qπ∥qs)

=
2R

1− γ

(
Eςπ [(Qqs − q

(l+1)
∗ )2]

) 1
2

+ λTD ·DKL(qs∥q(l+1)
∗ ).

Proof. See Appendix C.3 for a detailed proof.

Recall that the inner dynamics is stopped at the time s = S > 0 when we set the next outer iterate
q(l+1) as that q(l+1) = qS . Combining Eq. (19), Eq. (22), and Eq. 5, we finish the proof of Lemma
1.
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C.2 PROOF OF THEOREM 1

Proof. Before jumping to the proof of Theorem 1, we evaluate the mean-squared error between the
Q-function Qqs induced by qs and the global optimal Q-function q

(l+1)
∗ = Qq∗ over the L2-norm. In

the sequel, we provide the following convergence lemma about the mean squared error of Q-functions.

Lemma 6 (Linear Convergence of the Mean Squared Error of Q-functions). Under the same assump-
tion of Theorem 1, for l ∈ N we have

Eςπ [(Q
(l+1) − q

(l+1)
∗ )2] ≤ 4(3− 2γ)R4

1− γ
· exp(−2αλTDS).

where we denote q
(l+1)
∗ = Q

q
(l)
∗

with the global optimal distribution q
(l+1)
∗ of the inner objective Ll

and the definition of each variable follows that of Proposition 5.

Proof. For any parameter distributions q, q′ ∈ P2, we first upper bound the Q-function difference
with the Wasserstein distance.

(Qq(x)−Qq′(x))
2
=

(∫
hω(x)(dq(ω)− dq′(ω))

)2

≤R2 · ∥q − q′∥21
≤2R2 ·DKL(q∥q′), (23)

where R > 0 is an absolute constant defined in Assumption 1 and the last inequality follows from
Pinsker’s inequality. Combining eq. (23) and Proposition 5, we obtain that

Eςπ [(Qqs − q
(l+1)
∗ )2] ≤2R2 ·DKL(qs∥q(l+1)

∗ )

=2R2 exp (−2αλTDs) ·
(
Ll[q0]− Ll[q

(l+1)
∗ ]

)
.

In order to control the right-hand side of the inequality above, given Ll > 0 for any condition by the
definition, we only take care of the boundness of Ll[q0]. It holds from Assumption 1, 2, that

Ll[q0] =Eςπ [(Q
(l) − T Q(l)) · (Q0 −Qπ)]

+
1

2(1− γ)
Eςπ [(Q

(l) −Q0)
2] + λTD ·DKL(q0∥ν)

≤4R2 +
1

2(1− γ)
4R2

=
2(3− 2γ)R2

1− γ
,

which concludes the proof.

By Lemma 1, we have

Eςπ [(Q
(l+1) −Qπ)

2] ≤γ(2− γ)

(1− γ)2
Eςπ

[
(∆Q(l))2 − (∆Q(l+1))2

]
+

4R

(1− γ)2
(Eςπ [(Q

(l+1) − q
(l+1)
∗ )2])

1
2

+
2λTD

1− γ
·DKL(q

(l+1)∥q(l+1)
∗ ) +

2λTD

1− γ
DKL(qπ∥ν).

Combining Lemma 6 and Proposition 5, by the same argument of the proof of Lemma 6, it holds that

Eςπ [(Q
(l+1) −Qπ)

2] ≤γ(2− γ)

(1− γ)2
Eςπ

[
(∆Q(l))2 − (∆Q(l+1))2

]
+

8(3− 2γ)
1
2R3

(1− γ)
3
2

· exp (−αλTDS)

+
8(3− 2γ)λTDR

4

(1− γ)2
· exp (−2αλTDS) +

2λTDM

1− γ
. (24)
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Telescoping (24) for s = 0, . . . , TTD − 1, we obtain

1

TTD

TTD∑
s=1

Eςπ [(Q
(l) −Qπ)

2] ≤ γ(2− γ)

(1− γ)2TTD
Eςπ

[
(∆Q(0))2 − (∆Q(TTD))2

]
+

8(3− 2γ)
1
2R3

(1− γ)
3
2

· exp (−αλTDS)

+
8(3− 2γ)λTDR

4

(1− γ)2
· exp (−2αλTDS) +

2λTDM

1− γ

≤ γ(2− γ)

(1− γ)2TTD
Eςπ

[
(∆Q(0))2

]
+

8(3− 2γ)
1
2R3

(1− γ)
3
2

· exp (−αλTDS)

+
8(3− 2γ)λTDR

4

(1− γ)2
· exp (−2αλTDS) +

2λTDM

1− γ
.

Recall that R is the neural network radius satisfying Q ≤ Rr ≤ R for any Q-function Q, we have

Eςπ [(∆Q(0))2] = Eςπ [(Q
(0) −Qπ)

2] ≤ 4R2.

Therefore, we have

1

TTD

TTD∑
s=1

Eςπ [(Q
(l) −Qπ)

2] ≤4γ(2− γ)R2

(1− γ)2TTD
+

8(3− 2γ)
1
2R3

(1− γ)
3
2

· exp (−αλTDS)

+
8(3− 2γ)λTDR

4

(1− γ)2
· exp (−2αλTDS) +

2λTDM

1− γ

which concludes the proof of Theorem 1.

C.3 PROOF OF LEMMA 5

Proof. We first present some lemmas on convergence properties. In specific, we prove the conver-
gence of the parameter distribution qs to the global optimal distribution q∗ in the inner-loop MFLD
and also Using the two convergence lemmas above, we evaluate the error derived from the inner-loop
algorithm.

−
∫

δLl

δq
[qs](dqπ − dqs)− λTD ·DKL(qπ∥qs)

=−
∫ (

δLl

δq
[qs]−

δLl

δq
[q

(l+1)
∗ ]

)
(dqπ − dqs)− λTD ·DKL(qπ∥qs), (25)

where the last equality follows from the optimal condition with the stationary point q(l+1)
∗ as

δLl

δq
[q

(l+1)
∗ ] = const.

For the first term on the right-hand side of Eq. (25), the difference of the first-variations of Ll satisfies
from the definition in Eq. (7) that

δLl

δq
[qs]−

δLl

δq
[q

(l+1)
∗ ] =

1

1− γ
Eςπ

[
(q

(l+1)
∗ −Qqs) · hω

]
+ λTD · ln

qs

q
(l+1)
∗

. (26)

20



Under review as a conference paper at ICLR 2024

Plugging Eq. (26) into Eq. (25), we have

−
∫

δLl

δq
[qs](dqπ − dqs)− λTD ·DKL(qπ∥qs)

=
1

1− γ
Eςπ

[
(q

(l+1)
∗ −Qqs) · (Qqs −Qπ)

]
− λTD ·

∫
ln

qs

q
(l+1)
∗

(dqπ − dqs)− λTD ·DKL(qπ∥qs)

≤ 1

1− γ
Eςπ

[
(Qqs − q

(l+1)
∗ )2)

] 1
2 · ∥Qqs −Qπ∥ςπ,2

+ λTD ·DKL(qs∥q(l+1)
∗ )− λTD ·DKL(qπ∥q(l+1)

∗ )

≤ 2R

1− γ
Eςπ

[
(Qqs − q

(l+1)
∗ )2)

] 1
2

+ λTD ·DKL(qs∥q(l+1)
∗ )− λTD ·DKL(qπ∥q(l+1)

∗ )

≤ 2R

1− γ
Eςπ

[
(Qqs − q

(l+1)
∗ )2)

] 1
2

+ λTD ·DKL(qs∥q(l+1)
∗ ),

where the second inequality follows from Assumption 1 and 2.

D MEAN-FIELD LANGEVIN POLICY GRADIENT

D.1 PROOF OF PROPOSITION 1

Proof. By Proposition 4, we have for all πρ that

dJ [ρ] =Eνπρ

[∫
dπρ(da) ·Qπρ

(a)

]
=Eνπρ

[∫ (
−dfρ(a) +

∫
πρ(da′)dfρ(a′)

)
πρ(da) ·Qπρ(a)

]
=Eνπρ

[
−
∫

πρ(da)dfρ(a) ·Qπρ
(a) +

(∫
πρ(da′)dfρ(a′)

)
·
(∫

πρ(da)Qπρ
(a)

)]
=− Eνπρ

[∫
πρ(da)dfρ(a) ·

(
Qπρ

(a)−
∫

πρ(da′)Qπρ
(a′)

)]
=− Eσπρ

[
dfρ ·Aπρ

]
=

∫
dρ(dθ)Eσπρ

[
−hθ ·Aπρ

]
.

From the first-variation of J [ρ] is written from the Definition 1, it holds that

dJ [ρ] =
∫

dρ(dθ)
δJ

δρ
[ρ].

Comparing Equation D.1 and Equation D.1, we obtain Eq. (4).

D.2 PROOF OF LEMMA 2

Proof. First of all, we define the PGD of F around ρt by ρ̂t ∝ exp
(
− 1

λ
δF
δρ [ρt]

)
. We calculate the

time derivative of F :

d
dt
F [ρt] =

∫
δF
δρ

[ρt]∂tρt(dθ). (27)
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Since we have F [ρ] = F [ρ] + λ · Ent[ρ], it holds that
δF
δρ

[ρ] =
δF

δρ
[ρ] + λ · ln ρ

=− λ · ln exp
(
− 1

λ

δF

δρ
[ρ]

)
+ λ · ln ρ

=λ · ln ρ

ρ̂
− λ ln ·Z[ρ̂], (28)

where we denote by Z[·] a normalization constant. In addition to that, from the definitions we have
the following Fokker-Planck equation about the time evolution of ρt:

∂tρt =λ ·∆ρt +∇ · (ρt · ∇gt[ρt])

=λ · ∇
(
ρt · ∇ ln

ρt
ρ̃t

)
, (29)

where ρ̃t is the approximation of ρ̂t. Plugging Eq. (28) and (29) into Eq. (27), it holds that

d
dt
F [ρt] =λ2

∫
ln

ρt
ρ̂t
∇ ·
(
ρt · ∇ ln

ρt
ρ̃t

)
dθ

=− λ2

∫
ρt(dθ)

(
∇ ln

ρt
ρ̂t

)⊤(
∇ ln

ρt
ρ̃t

)
≤− λ2

2

∫
ρt(dθ)

(∥∥∥∥∇ ln
ρt
ρ̂t

∥∥∥∥2
2

−
∥∥∥∥∇ ln

ρ̂t
ρ̃t

∥∥∥∥2
2

)
. (30)

For the first term on the right-hand side of Eq. (30), it holds from LSI of ρ̂t with the LSI constant
α > 0 which is given in Proposition 2 that

−λ2

2

∫
ρt(dθ)

∥∥∥∥∇ ln
ρt
ρ̂t

∥∥∥∥2
2

=− λ2

2
I(ρt||ρ̂t)

≤− αλ2 ·DKL(ρt||ρ̂t).
Note that α depends on λ at the order O(exp(−1/λ)). See Proposition 2 for the detail of the
construction of the LSI constant. Furthermore, we obtain, for all β > 0, that

−λ ·DKL(ρt||ρ̂t) =− λ

∫
ρt(dθ) ln

ρt
ρ̂t

=λ

∫
ln

ρt
ρ̂t

(β · ρ̂t − ρt) dθ + λβ ·DKL (ρ̂t∥ρt) .

Considering the minimum of λ
∫
ln ρt

ρ̂t
(β · ρ̃− ρt) dθ + λβ ·DKL (ρ̃∥ρt) = λβ ·DKL(ρ̃∥ρ̂t)− λ ·

DKL(ρt∥ρ̂t) for all ρ̃ ∈ P2, we obtain that

−λ ·DKL(ρt||ρ̂t) =λ

∫
ln

ρt
ρ̂t

(β · ρ̂t − ρt) dθ + λβ ·DKL (ρ̂t∥ρt)

= min
ρ̃∈P2

{
λ

∫
ln

ρt
ρ̂t

(β · ρ̃− ρt) dθ + λβ ·DKL (ρ̃∥ρt)
}

≤λ
∫

ln
ρt
ρ̂t

(β · ρ̃− ρt) dθ + λβ ·DKL (ρ̃∥ρt)

=

∫
Eσt

[Aπt
· hθ] (β · ρ̃− ρt) dθ

+ λ

∫
ln

ρt
ν

(β · ρ̃− ρt) dθ + λβ ·DKL (ρ̃∥ρt) ,
(31)

where ρ̃ ∈ P2 and β > 0 are arbitrary. On the right-hand side of Eq. (31), The first term holds that∫
Eσt

[Aπt
hθ] (β · ρ̃− ρt) dθ =Eσt

[
Aπt

(∫
β · hθρ̃(dθ)−

∫
hθρt(dθ)

)]
=Eσt

[
Aπt

(
β · f̃ − ft

)]
, (32)
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where f̃ =
∫
hθρ̃(dθ). Eq. (32) is expected to be upper bounded by the difference of the expected

total rewards. By contrast, as for the KL part on the right-hand side of Eq. (31), we have∫
ln

ρt
ν
(β · ρ̃− ρt) dθ + β ·DKL (ρ̃∥ρt) =

∫
ln

ρt
ν
(β · ρ̃− ρt) (dθ) + β

∫
ρ̃(dθ) ln

ρ̃

ρt

=β

∫
dρ̃ ln

ρt
ν
−
∫

dρt ln
ρt
ν

+ β

∫
dρ̃ ln

ρ̃

ρt

=−
∫

dρt ln
ρt
ν

+ β

∫
dρ̃ ln

ρ̃

ν

=−DKL(ρt∥ν) + β ·DKL(ρ̃∥ν). (33)

Plugging Eq. (32) and Eq. (33) into Eq. (31), we have

−λ ·DKL(ρt||ρ̂t) ≤Eσt

[
Aπt ·

(
β · f̃ − ft

)]
−DKL(ρt∥ν) + β ·DKL(ρ̃∥ν).

In the sequel, in order to upper bound the third term on the right-hand side of Eq. (30), we obtain the
difference of advantage function as

∇ ln
ρ̂t
ρ̃t

=

(
− 1

λ
∇δF

δρ
[ρt]

)
−
(
− 1

λ
∇g[ρt]

)
=
1

λ
Eσt

[∇hθ · (At −Aπt
)],

where At is the advantage function estimator given by the critic at time t. This term defines the policy
evaluation error as

λ2

∫
ρt(dθ)

∥∥∥∥∇ ln
ρ̂t
ρ̃t

∥∥∥∥2
2

=

∫
ρt(dθ) ∥Eσt

[∇hθ · (Aπt
−At)]∥22

=

∫
ρt(dθ) ∥Eσt [∇hθ · (Qt −Qπt)]− Eσt [∇hθ · (Vt − Vπt)]∥

2
2

=

∫
ρt(dθ)

∥∥∥∥Eσt
[∇hθ · (Qt −Qπt

)]− Eνπ

[∫
π(da)∇hθ ·

(∫
π(da′) (Qt −Qπt

)

)]∥∥∥∥2
2

=

∫
ρt(dθ)

∥∥∥∥Eσt
[∇hθ · (Qt −Qπt

)]− Eνπ

[∫
π(da) (Qt −Qπt

) ·
(∫

π(da′)∇hθ

)]∥∥∥∥2
2

=

∫
ρt(dθ)

∥∥∥∥Eσt

[
(Qt −Qπ) ·

(
∇hθ −

∫
π(da′)∇hθ

)]∥∥∥∥2
2

=

∫
ρt(dθ)

∥∥∥∥Eςt

[
dσt

dςt
· (Qt −Qπt

) ·
(
∇hθ −

∫
π(da′)∇hθ

)]∥∥∥∥2
2

,

where we exchange a with a′ at the forth equality and dσt

dςt
is the Radon-Nikodim derivative between

the state-action visitation measure σt and the stationary state-action distribution ςt corresponding
to the same policy πt. Since we assume that the neural network hθ is L1-Lipschitz continous in
Assumption 1, we have ∥∇hθ∥∞ ≤ L1. It holds that∫

ρt(dθ)
∥∥∥∥Eςt

[
dσt

dςt
· (Qt −Qπt) ·

(
∇hθ −

∫
π(da′)∇hθ

)]∥∥∥∥2
2

≤Eςt

[
(Qt −Qπt

)
2
]
· Eςt

[(
dσt

dςt

)2

·
∫

ρt(dθ)
∥∥∥∥∇hθ −

∫
π(da′)∇hθ

∥∥∥∥2
2

]

≤4L2
2 · Eςt

[
(Qt −Qπt

)
2
]
·
∥∥∥∥dσt

dςt

∥∥∥∥2
ςt,2

, (34)
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where the first inequality follows from Jansen’s inequality. By plugging Eq. (32) and Eq. (33) into
Eq. (31) and then plugging Eq. (31) and Eq. (46) into Eq. (30), we conclude that

d
dt
F [ρt] ≤αλ · Eσt

[
Aπt ·

(
β · f̃ − ft

)]
+ αλ2 · (DKL (ρ̃∥ν)−DKL (ρt∥ν)) + 2L2

1 ·
∥∥∥∥dσt

dςt

∥∥∥∥2
ςt,2

· Eςt

[
(Qt −Qπt

)
2
]
,

which concludes the proof of Lemma 2.

D.3 PROOF OF THEOREM 2

Proof. It is well known that the expected total reward function J [π] has non-convexity, which makes
the optimization of the expected total rewards much more difficult. We first make use of a lemma to
prove the one-point convexity of J [π] at the global optimum π∗. This lemma is adapted from Kakade
& Langford (2002).

Proposition 3 (Expected Total Rewards Difference (Kakade & Langford, 2002)). For all π, π′, it
holds that

(1− γ) · (J [π′]− J [π]) = Eσπ′ [Aπ]

where σπ′ and νπ′ are the state-action visitation measure and the state visitation measure induced by
policy π′, respectively.

In our analysis, we utilize Proposition 3 as a one-point convexity of the expected total rewards to
prove the global optimality of the stationary point of the MFLPG, which is provided by Lemma 2.
In specific, we first evaluate the first term on the right-hand side of Eq. (10) with the performance
difference. Let π∗ be the globally optimal policy of the expected total reward function J and further
define the globally optimal expected total reward by J∗ = J [π∗]. By Proposition 3, it holds for all
t ∈ [0, T ] that

J∗ − J [ρt] =(1− γ)−1Eσ∗ [Aπt ] = (1− γ)−1Eσt

[
dσ∗

dσt
·Aπt

]
, (35)

where Eσ∗ [·] = Eσπ∗ [·], hereafter. As for the first term on the right-hand side of Eq. (10), combining
Lemma 2 and Eq. (35), for all ρ̃ ∈ P2, β > 0 we have

Eσt

[
Aπt
·
(
β · f̃ − ft

)]
=− (J∗ − J [ρt])

+ Eσt

[
Aπt
·
(
β · f̃ − ft

)]
+ (1− γ)−1Eσt

[
dσ∗

dσt
·Aπt

]
=− (J∗ − J [ρt])

+ Eσt

[
Aπt
·
(
β · f̃ − ft + (1− γ)−1 dσ∗

dσt

)]
.

(36)

As for the second term on the right-hand side in Eq. (36), we have

Eσt

[
Aπt
·
(
β · f̃ − ft + (1− γ)−1 dσ∗

dσt

)]
=β · ⟨Aπt

, f̃⟩σt
− ⟨Aπt

, ft⟩σt
+ (1− γ)−1

〈
Aπt

,
dσ∗

dσt

〉
σt

,

(37)

where ⟨·, ·⟩σt
denotes inner product which introduces Lσt,2 norm. Now we upper bound the second

and third term on the right-hand side in Eq. (37). By Assumption 1, we obtain, from the fact that the
neural network hρt

is bounded by R > 0, that

−⟨Aπt , ft⟩σt ≤|⟨Aπt , ft⟩σt |
≤∥Aπt

∥σt,2 · ∥ft∥σt,2

≤R · ∥Aπt∥σt,2, (38)
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where R > 0 is an absolute constant defined in Assumption 1. Meanwhile, we upper bound the third
term on the right-hand side in Eq. (37) as〈

Aπt ,
dσ∗

dσt

〉
σt

≤∥Aπt∥σt,2 ·
∥∥∥∥dσ∗

dσt

∥∥∥∥
σt,2

≤κ · ∥Aπt∥σt,2, (39)
where the first inequality follows from Jansen’s inequality, the second inequality follows from
Assumption 4, and κ > 0 is an absolute constant defined in Assumption 4. By plugging Eq. (38) and
(39) into Eq. (37), we have

Eσt

[
Aπt
·
(
β · f̃ − ft + (1− γ)−1 dσ∗

dσt

)]
≤β · ⟨Aπt

, f̃⟩σt
+ (R+ κ) · ∥Aπt

∥σt,2

=β ·
(
⟨Aπt , f̃⟩σt +

R+ κ

β
· ∥Aπt∥σt,2

)
. (40)

From Assumption 5, there exists a function f ∈ FR,M satisfying the following equation, where
M,B > 0 are finite constants:

|⟨Aπt
, f⟩σt

| ≥ 1

B
∥Aπt

∥σt,2.

If ⟨Aπt
, f⟩σt

≤ 0, then it holds that

⟨Aπt
, f⟩σt

+
1

B
∥Aπt

∥σt,2 ≤ 0.

By contrast, if ⟨Aπt , f⟩σt > 0, then we consider the following function f ′. Recall that the second
weight function β(·) is an odd function given by Assumption 1, from the definition of the neural
networks we can easily create such a distribution ρ′ and f ′ =

∫
hθdρ′ satisfying both ⟨Aπt

, f ′⟩σt
=

−⟨Aπt
, f⟩σt

and DKL(ρ
′∥ν) = DKL(ρ∥ν). That is, f ′ satisfies f ′ ∈ FR,M and also it holds that

⟨Aπt , f
′⟩σt +

1

B
∥Aπt∥σt,2 ≤ 0.

Therefore, from the above we have a certain function f̃ ∈ FR,M such that

⟨Aπt
, f̃⟩σt

+
1

B
∥Aπt

∥σt,2 ≤ 0. (41)

Thus, we here set β = B(R+ κ) > 0 and it holds by plugging Eq. (41) into Eq. (40) that

Eσt

[
Aπt ·

(
β · f̃ − ft + (1− γ)−1 dσ∗

dσt

)]
≤0. (42)

As a result, Plugging Eq. (42) into Eq. (36), we have

Eσt

[
Aπt
·
(
β · f̃ − ft

)]
≤− (J [ρ∗]− J [ρt]). (43)

Furthermore, recall that the function f̃ ∈ FR,M satisfies from the definition in Eq. (8) that
DKL(ρ̃∥ν) ≤M, (44)

where f̃ =
∫
hθdρ̃. By plugging Eq. (44), (43), and β = B(1 + κ) into Eq. (10), we obtain that

d
dt
F [ρt] ≤− αλ · (J∗ − J [ρt]) + αλ2 · (BM(R+ κ)−DKL (ρt∥ν)) + 2L2

2 ·∆t

≤− αλ ·
(
F [ρt] + J∗ − λBM(R+ κ)− 2L2

2

αλ
∆t

)
. (45)

As for the forth term on the right-hand side of Eq. (45), we upper bound the inner-loop error ∆t from
Assumption 4 and Theorem 1 with TTD = O(1/λTD) as

∆t =

∥∥∥∥dσt

dςt

∥∥∥∥2
ςt,2

· Eςt [(Qt −Qπt
)
2
]

≤ι · Eςt [(Qt −Qπt
)
2
]

≤ι · O(λTD). (46)
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In addition to that, set λTD = O(αλ2) and define ε(λ) as ε(λ) = λBM(R+ κ) +
2L2

2

αλ ∆t ≥ 0 for
simplicity, then we have

ε(λ) = O(λ).
Plugging Eq. (46) into Eq. (45), it holds that

d
dt

(F [ρt] + J∗ − ε(λ)) ≤− αλ · (F [ρt] + J∗ − ε(λ)) . (47)

We obtain from a straightforward application of the Grönwall’s inequality to Eq. (47) that

−J [ρt] + λ ·DKL(ρt∥ν) + J∗ − ε(λ) ≤ exp(−2αλt) · (F [ρ0] + J∗ − ε(λ))

= exp(−2αλt) · (J∗ − J [ρ0] + λ ·DKL(ρ0∥ν)− ε(λ))

= exp(−2αλt) · (J∗ − J [ρ0]− ε(λ))

≤ exp(−2αλt) · (J∗ − J [ρ0]) ,

where the second equality follows from the fact that ρ0 = ν ∼ N (0, Id). Therefore, we conclude that

J∗ − J [ρT ] ≤ exp(−2αλT ) · (J∗ − J [ρ0]) + ε(λ),

which concludes the proof of Theorem 2.

E AUXILIARY LEMMAS

This section is devoted to presenting the related propositions and lemmas used in the proof.

First of all, we present the policy gradient theorem presented by Sutton et al. (1999) as Proposition 4,
which provides the gradient of the expected total reward function J with a policy πΘ parameterized
by Θ. Refer to the original paper for the proof.
Proposition 4 (Policy Gradient Theorem (Sutton et al., 1999)). For any MDP, it holds that

∇J [πΘ] =EσπΘ

[∫
∇πΘ(da|s) ·QπΘ(s, a)

]
,

where σπθ
is the state visitation measure.

Second, we provide the basic proposition to access the inner-loop convergence of MFLTD. For l-th
outer step, we define the global optimal distribution of an inner-loop MFLD by q

(l+1)
∗ . It holds that

Proposition 5 (Linear Convergence of Inner-Loop MFLD). Under Assumption 1, 2, and 3, if we run
the noisy gradient descent which is the inner-loop algorithm in Algorithm 2 for all l-step, we obtain
for all s ≥ 0, l ∈ [0, TTD − 1] and λTD > 0 that

DKL(qs∥q(l+1)
∗ ) ≤ Ll[qs]− Ll[q

(l+1)
∗ ] ≤ exp (−2αλTDs) ·

(
Ll[q0]− Ll[q

(l+1)
∗ ]

)
,

where α is the LSI constant induced by λTD.

Proof. For the proof of Proposition 5, we apply Nitanda et al. (2022)’s convex optimization analysis.
First of all, we prove the convexity of Ll over the parameter distribution. From the definition of Ll,
we can reformulate Ll as

Ll[q] =

∫
Udq +

(∫
V dq

)2

, (48)

where U, V do not depend on q but only θ. Eq. (48) results that the objective function Ll is convex in
terms of a functional with a probability distribution q as a variable, where we define the convexity
condition for functional F and q, q′ ∈ P2 as

F [q′] ≥ F [q] +

∫
δF

δq
[q](θ)(dq′ − dq).

Therefore, Noting that the MFLD used in the inner algorithm of the MFLTD is a simple Wasserstein
gradient flow with the convex objective functional Ll, it holds from Theorem 1 in (Nitanda et al.,
2022) that

Ll[qs]− Ll[q
(l+1)
∗ ] ≤ exp (−2αλTDs) ·

(
Ll[q0]− Ll[q

(l+1)
∗ ]

)
,
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where α is the LSI constant induced by λTD, which is given in Proposition 2. In addition, the proof
of the first inequality of the statement Proposition 5 follows from Proposition 1. in (Nitanda et al.,
2022), from which we have

DKL(qs∥q(l+1)
∗ ) ≤ Ll[qs]− Ll[q

(l+1)
∗ ].

We finish the proof of Proposition 5.

In the sequel, we introduce the following basic lemma about the norm of the transition operator,
which is useful for a geometric property of the semi-gradient of the Bellman error.
Lemma 7 (Transition Operator Norm). Let the linear operator P : L2(ςπ)(S ×A)→ L2(ςπ)(S ×
A) be the transition operator satisfying PQ(s, a) =

∫
ds′P (s′|s, a)

∫
da′π(a′|s′)Q(s′, a′), Q ∈

L2(ςπ)(S ×A). Then the operator norm of P is no more than 1.

Proof. For all Q(x) ∈ L2(ςπ)(S ×A), x = (s, a) ∈ S ×A, we have that

∥PQ(x)∥ςπ,2 =Ex∼ςπ

[(∫
d(π ⊗ P )(x′|x)Q(x′)

)2
]

≤Ex∼ςπ

[∫
d(π ⊗ P )(x′|x)Q(x′)2

]
=Ex∼ςπ

[
Q(x)2

]
=∥Q(x)∥ςπ,2,

where the inequality follows Jensen’s inequality and the second equality follows the fact that ςπ is the
stationary distribution under the transition probability.
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